Efficient Character-level Taint Tracking for Java

Erika Chin
University of California, Berkeley
Berkeley, CA, USA
emc@cs.berkeley.edu

ABSTRACT

Over 80% of web services are vulnerable to attack [4], and
much of the danger arises from command injection vulner-
abilities. We present an efficient character-level taint track-
ing system for Java web applications and argue that it can
be used to defend against command injection vulnerabili-
ties. Our approach involves modification only to Java li-
brary classes and the implementation of the Java servlets
framework, so it requires only a one-time modification to
the server without any subsequent modifications to a web
application’s bytecode or access to the web application’s
source code. This makes it easy to deploy our technique
and easy to secure legacy web software. Our preliminary
experiments with the JForum web application suggest that
character-level taint tracking adds 0-15% runtime overhead.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General—Protection Mech-
anisms; D.4.6 [Operating Systems|: Security and Protec-
tion—Information flow controls

General Terms

Security, Performance, Languages

Keywords

dynamic taint tracking, Java, web applications, information
flow

1. INTRODUCTION

Web applications provide user services on a global scale
without the need to distribute specialized client software.
They allow for easy, centralized software maintenance via
server-side updates, making it possible to provide useful,
inexpensive services to anyone with access to the Internet.
Unfortunately, many of these services contain security vul-
nerabilities, making the use of web services and websites

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SWS’09, November 13, 2009, Chicago, Illinois, USA.

Copyright 2009 ACM 978-1-60558-789-9/09/11 ...$10.00.

David Wagner

University of California, Berkeley

Berkeley, CA, USA
daw@cs.berkeley.edu

potentially dangerous to a user’s security and privacy. It
has been observed that over 80% of websites contain secu-
rity vulnerabilities [4].

Much of the danger arises from data-driven attacks. A
malicious user can send a web application malformed in-
put that, if improperly sanitized, can cause the program
to behave in an unexpected and undesirable manner. The
exploited application may then leak personal information
or serve malware to users. Some common attacks in this
class include SQL injection, cross-site scripting (XSS), path
traversal, response splitting, and shell injection attacks.

One emerging approach to solving this problem is taint
tracking. Taint tracking consists of three main steps. The
first step is to identify untrusted input at the point that
it enters the program and mark that it is untrusted (i.e.,
tainted). This is called “source identification” or “source
tainting.” The second step is to propagate taint information
as subsequent computation occurs, marking as tainted all
data that is derived from an untrusted source. For example,
if part of the tainted data is used to create a new variable,
that variable also becomes tainted and subsequently tracked
as well. Finally, all data going into a sensitive data sink
(e.g., a database, response output, or file) is checked, using
the taint information to identify potential attacks.

We present an efficient character-level taint tracking sys-
tem for Java programs. Our approach requires modifica-
tion only to Java library classes and the Java servlets imple-
mentation. Unlike techniques that require bytecode trans-
lation on every web application, our approach is a zero-
maintenance server-centric approach that does not require
any changes to be made to any web application bytecode or
source code. It is a one-time server-side modification, mak-
ing it easy to adopt, deploy, and protect legacy web software.
This technique also allows taint tracking to be performed on
strings that use Java reflection, unlike bytecode translation
techniques.

In this work, we focus on character-level taint tracking:
i.e., we track the taint status of each character individually.
Instead of considering each string variable as either tainted
or untainted, character-level taint propagation tracks the
taint status of each character of the string separately, allow-
ing us to determine which portions of the string are tainted.
This provides finer-grained information to the sanitization
method, and thus contributes to a lower false positive rate.
Despite the added analysis, we show that character-level
tracking can be performed efficiently. We evaluate perfor-
mance in the context of Java web services as they often need
to interface with untrusted input. Our technique, however,

can be generalized for any Java program. Our preliminary
measurements indicate that character-level tracking adds no
more than 15% runtime overhead, suggesting that our ap-
proach is efficient and easily deployable.

We are not the first to study character-level taint track-
ing for web security. There is a great deal of prior work
on taint tracking [8, 9, 3, 12, 7, 1, 2, 5, 6], and many au-
thors have explained how character-level taint tracking can
be used to build runtime defenses against command injec-
tion attacks [8, 9, 12, 10]. Most closely related is work by
Halfond et al., who also study character-level taint track-
ing for Java web applications [6]. Their system works by
rewriting the bytecode of the web application. We build
upon many of their ideas, but we implement taint tracking
by replacing the Java libraries instead of rewriting applica-
tion bytecode. Because our approach avoids the need for
bytecode rewriting, it may be easier to deploy and may be
more compatible with legacy code: for instance, we avoid
certain technical limitations regarding use of reflection. In
addition, we place a special focus on the completeness of our
taint propagation policy, and we carefully analyze a number
of technical details that were not discussed in that work.

In Section 2, we give an overview of command injection
attacks and how character-level taint tracking is effective in
protecting against these attacks. In Section 3, we present
our Java taint tracking system and our policy decisions. In
Section 4, we share our implementation details, and in Sec-
tion 5, we evaluate JForum’s performance using our system.
We discuss open problems in Section 6, discuss related work
in Section 7, and conclude in Section 8.

2. APPLICATIONS TO WEB SECURITY

Character-level taint tracking can be used to defend against
a large class of security vulnerabilities in server-side web
code, especially command injection attacks [8, 9, 12, 10].

Many data formats on the web mix both data and control,
sending control instructions over the same communication
channel as data. This use of in-band signalling introduces
the risk that maliciously chosen data might be interpreted
by the receiver as control instructions. This is sometimes
known as a command injection attack. The risk of command
injection attack is especially pronounced for text-based mes-
sage formats, such as those found on the web, as they often
provide many subtle ways (e.g., escaping and quoting rules)
to induce such confusion.

On the web, common types of command injection at-
tacks include SQL injection, cross-site scripting, HTTP re-
sponse splitting, path traversal, and shell command injec-
tion. For instance, SQL queries mix control (SQL keywords
and operators) with data (string and numeric literals), and
HTML documents mix control (HTML markup: tags and
attributes) with data (text).

Character-level taint tracking is well-suited for detecting
injection attacks. Assume that all inputs controlled by the
attacker are marked as tainted and taint propagates to every
character or substring that depends upon these attacker-
controlled inputs. One could then check that the control
part of every message is wholly untainted, ensuring that
servers cannot be fooled into executing control instructions
provided by the attacker. We elaborate on this approach
below by explaining how it applies to several classes of com-
mand injection vulnerabilities.

2.1 SQL injection
Consider a web application that builds up a SQL query,
as follows:

query = "SELECT * FROM students WHERE name = "
+ studentName + "’";

Suppose that studentName is derived from an input field pro-
vided by the user of the web application. If the user enters
the name Bobby, then the resulting SQL query will select
all database entries where the name is Bobby—presumably
what the programmer intended. However, if a malicious user
claims their name is

Bobby’; DROP TABLE students; --
then the resulting query becomes

SELECT * FROM students WHERE name = ’Bobby’; DROP
TABLE students; —--’

This SQL statement deletes part of the database, which is
presumably not what the programmer intended.

Character-level taint tracking can help detect and block
SQL injection attacks. Before executing any SQL query, the
infrastructure should tokenize the SQL query and then check
that nothing other than string literals or numeric literals are
tainted. In the above example, if the user’s name is Bobby,
then the resulting SQL query will be

SELECT * FROM students WHERE name = ’Bobby’

where all tainted characters are underlined. This query will
be allowed, since tainted characters occur only inside a string
literal. On the other hand, when the malicious user enters
their name, the SQL query will be:

SELECT * FROM students WHERE name = ’Bobby’; DROP
TABLE students; --’

In this case, the infrastructure can recognize that the web
application is under attack, since taint is not limited to liter-
als: several SQL keywords (e.g., DROP) and operators (e.g.,
;) are partially or wholly tainted. The infrastructure could
check every SQL query in this way and decline to execute
any SQL query that indicates an attack.

2.2 Cross-site scripting

Many web applications dynamically construct HIT'ML pa-
ges through simple string concatenation. This can introduce
cross-site scripting vulnerabilities. Consider the following
example:

html = "<P>Welcome, " + name + "!
";

A malicious user who claims their name is
Bobby<SCRIPT>alert (42) ; </SCRIPT>

will trick the application into emitting the following HTML:

<P>Welcome, Bobby<SCRIPT>alert (42);</SCRIPT>!

In this way, a malicious user could insert malicious Javascript
into the page, causing it to be executed with the privileges
of the web application.

Character-level taint tracking can help detect and block
cross-site scripting attacks. For many web sites, it might

suffice to enforce a simple policy on all dynamically con-
structed HTML: tainted characters may only occur inside
text and must not appear in markup, attributes, Javascript,
CSS, or other content. A natural relaxation is to allow dy-
namically constructed HTML to include URLs that are par-
tially or wholly tainted, as long as the protocol is found in
a whitelist (e.g., http:, https:, mailto:), and to include other
attribute values in certain cases. Many other variations are
possible.

2.3 HTTP response splitting

The response to a HTTP request consists of two parts:
the HTTP headers and the body (which typically contains
the HTML for the page). These may be dynamically con-
structed by the web application. In particular, headers may
incorporate content that was initially supplied by an un-
trusted user. If an attacker supplies a value that includes a
newline character, and if the web application does not sani-
tize this value before incorporating it into a HTTP header,
the attacker may be able to forge a subsequent HT'TP header
or forge part of the body. In effect, HT'TP response splitting
is a close cousin to cross-site scripting, except that it occurs
in the header part of the response, rather than the body.

Character-level taint tracking can be used to detect and
block HTTP response splitting attacks. One approach would
be to parse the headers in the HTTP response, checking
that no newline (CR or LF) character is tainted and that all
header names are wholly untainted.

2.4 Path traversal

Sometimes, web applications access the filesystem through
filenames that incorporate some user-supplied information.
For instance, consider an application that allows Jimmy to
access the files he stores under his account:

filename = "/srv/www/users/jimmy/" + filename;

Suppose Jimmy is a malicious user and provides the file-
name ../bobby/secretfile.txt. Jimmy now has access
to Bobby’s secret file and potentially access to any file he
wants. Path traversal attacks can be detected and blocked
using character-level taint tracking. For instance, we can
parse each filename accessed by the web application and
check whether it contains a tainted slash character.

2.5 Shell command injection

Occasionally, web applications may spawn a new process
by passing a command to be executed to the Unix shell. If
the shell command incorporates any information supplied by
the user, then a malicious user might be able to incorporate
shell metacharacters (e.g., ; or *) and trigger execution of
malicious commands.

These attacks could be detected and stopped by parsing
each shell command and checking that tainted characters
appear only in certain positions (e.g., program arguments),
and that no metacharacter, operator, or keyword interpreted
by the Unix shell is wholly or partially tainted.

2.6 Discussion

Command injection attacks account for a large fraction
of vulnerabilities on the web. One study reports that SQL
injection, cross-site scripting, and HTTP response splitting
account for 52% of observed vulnerabilities in a large collec-
tion of web sites [11]; another found that these vulnerabil-
ity classes accounted for 80% of observed vulnerabilities [4].

Therefore, a successful defense against these attacks could
make a significant difference to web applications.

One attraction of the approach to defending web applica-
tions sketched above is that it can be applied to legacy ap-
plications. The required checks are application-independent
and could be incorporated into the underlying application
server or libraries. Because this approach detects attacks
at runtime as they occur and blocks them before they can
cause any harm, no extra effort from developers is needed
to deploy these defenses.

This approach crucially relies upon the ability to track
taint status at character granularity. Many researchers have
proposed taint-tracking mechanisms where there is concep-
tually a single taint bit per string: each string is either
tainted or untainted. Although this may be sufficient for
PHP, it is not for Java. In PHP, the programmer may use
the echo command to avoid direct concatenation, poten-
tially keeping tainted data separate from untainted data. In
this case, if taint is checked per echo call, string granularity
tainting may be sufficient. Java programs, however, gener-
ally use string concatenation heavily, so string-level tainting
would lead to many false positives. As the examples above
illustrate, many SQL queries, HTML documents, and other
messages will commonly contain some tainted data. This is
often benign and not an indication of an attack. Distinguish-
ing these benign cases from actual attacks requires a way to
keep track of which portions of each string are tainted. This
motivates our study of character-level taint tracking.

3. TECHNIQUES FOR CHARACTER-LEVEL

TAINT TRACKING

Taint tracking can be divided into three parts: source
tainting, taint propagation, and sink checking. The first two
can be implemented independently of the type of vulnerabil-
ity considered, but the third depends upon the vulnerability
class one wants to defend against. Our prototype currently
implements source tainting and taint propagation and omits
sink checking.

For every string in a Java program, we track the taint
status of each individual character in the string. In order
to do this dynamically (and without access to web appli-
cation source code), we look to what the web application
bytecode relies on: Java standard library and the servlet
container infrastructure. By altering these modules, our
system requires only a one-time change to the server and
no subsequent changes when legacy or new web applications
are added. Also, because command injection attacks typi-
cally arise due to errors in string processing, we focus only
on tracking the taint status of strings.

3.1 Source Tainting

We treat all of the information in the HTTP request as
untrusted, and mark it as tainted. This includes the HTTP
verb (e.g., GET or POST); the protocol (e.g., http or https),
hostname, and path from the URL requested; form parame-
ters (whether from the URL or from the request body, in the
case of POST requests); HT'TP headers (including cookies
and session information); and the request body. Thus, the
HTTP request is the source of all taint.

We implement this policy by instrumenting the web ap-
plication server, which is responsible for implementing the
Java Servlet API. We augment the Servlet API classes to

mark all strings from a HTTP request as fully tainted, i.e.,
we taint every character of those strings. Most of the acces-
sor methods for the request components are contained in
the javax.servlet.http.HttpServletRequest class. We
modify these methods to mark the strings they return as
tainted. A few of these accessor methods, however, re-
turn a non-String object type, such as a Cookie, Session,
or CoyoteReader (a subclass of BufferedReader that lets the
servlet read the body of the HTTP request). Therefore,
we also modified the javax.servlet.http.Cookie, javax.
servlet.http.HttpSession, and org.apache.catalina.
connector.CoyoteReader classes to mark these strings as
tainted.

3.2 Sink Checking

A sink is a consumer of string data that is security-critical
and might be vulnerable to attack if the string is maliciously
chosen. We instrument each sink to add runtime checks that
use the taint information to determine whether the system
is under attack. As outlined in Section 2, these checks are
dependent upon the format of the data and the specific type
of command injection vulnerability under consideration.

These checks can be added by instrumenting the class li-
braries. For example, to guard against SQL injection at-
tacks, one can augment the JDBC classes to parse the SQL
string and check whether taint is confined to string and nu-
meric literals before the SQL query is sent to the database.
For XSS attacks, one can augment the HT'TP response class
of the web application server to check the HTML response.
Our prototype does not yet implement any of these checks.
Many researchers have shown that these checks can be im-
plemented efficiently [3, 9, 6, 10], and it would be straight-
forward to implement them in our framework.

3.3 Taint Propagation

One of the most interesting challenges is to determine how
taint should be propagated from string to string, as the
application performs various string processing operations.
We next describe some of the technical challenges, the taint
propagation policy we propose, and the techniques we used
to implement this policy.

3.3.1 Goals and Challenges

We had several goals in mind when designing our taint
propagation policy:

e Accuracy: We want to ensure that the taint propaga-
tion policy captures all dependencies between strings.

e Completeness: Our taint propagation policy should
accurately model all primitive operations that can be
performed on strings. Because we cannot predict what
types of string processing a legacy web application may
perform, we cannot omit any operation from consider-
ation; otherwise we might miss attacks.

e Backwards compatibility: We want to ensure that our
tainting will not disturb the behavior of the web ap-
plication in any way. The web application must con-
tinue to work properly when we enable taint tracking.
In particular, the behavior of the web application with
taint tracking enabled should be identical to its behav-
ior without taint tracking, with only one exception: if
a sink check detects an attack, then processing may be

halted. In other words, the taint mechanism should
be transparent: it must not disturb the execution of
legacy code. This fail-stop model ensures that we will
not “break” legacy web applications.

There are a number of technical challenges in applying
these principles to taint tracking of Java applications:

e Fquality: We must determine the semantics of string
comparison: when are two strings identical? If two
String objects contain the same sequence of charac-
ters, but with different taint status, should they com-
pare equal? For instance, is "DROP TABLE" equal to
"DROP TABLE"? Should the string hashcode depend
upon taint information?

o Mutability: A closely related question is whether the
taint status of a String object is mutable: Can it be
changed during the execution of the program? For
instance, if we have a String object representing the
string "DROP TABLE", should we provide a way to set
the taint bits for individual characters?

e Interning: Java distinguishes between object identity
(which may be compared with the == operator) and
equality (which may be compared with the equals()
method). In particular, it is possible to have mul-
tiple String objects that are not identical (s != t)
but that have the same contents and thereby compare
equal (s.equals(t)). As a performance enhancement,
Java provides a way to intern strings: given a String
object s, s.intern() returns a canonical String ob-
ject with the same contents as s, with the promise
that if s.equals(t), then we will have s.intern() ==
t.intern(). This is sometimes used to speed up string
comparisons. Should taint status affect interning? If
we have two String objects that represent the same se-
quence of characters, but with different taint status,
should interning them yield the same canonical String
object? How should the taint status of s.intern()
relate to the taint status of s?

e Reflection: Web applications may use reflection to in-
voke methods at runtime, rather than calling them di-
rectly. We would like those web applications to con-
tinue to work correctly when taint tracking is enabled.

e Serialization: If the web application serializes a String
object, what should happen to the associated taint
information? Should the serialized representation of
strings be modified to store their taint status?

e Character encodings: Java strings are specified to be a
sequence of Unicode characters, represented in UTF-
16. UTF-16 is a variable-length representation: some
characters are represented in two bytes, and others
take four bytes. Variable-length representations have
been known to introduce vulnerabilities in other con-
texts, such as UTF-8 (another variable-length repre-
sentation). For instance, UTF-8’s multibyte encodings
provide one potential way to bypass quoting. Sup-
pose a web application tries to prevent SQL injec-
tion attacks by replacing each single quote (’) with
an escaped version (\’). Consider the input string
John 0b’Neill, where b denotes the byte 0xCO. Af-
ter escaping, the input becomes John 0b\’Neill. In

UTF-8, 0xCO indicates the start of a multibyte se-
quence, so if the developer is not careful, the database
might treat b\ as a two-byte sequence encoding a single
Unicode character, leaving the single-quote unescaped.
We would like our taint propagation policy to assist in
defending against such attacks.

e Locales and internationalization: In Java, the interpre-
tation of strings depends upon the locale. In certain
non-English locales (particularly Turkish, Azeri, and
Lithuanian), several string operations might convert a
four-byte character character to a two-byte character
or vice versa. We must ensure that this does not pro-
vide a subtle way to evade taint tracking or to launder
tainted data into untainted data.

3.3.2 Taint Propagation Policy

Basic policy. Conceptually, for each string, we associate a
separate taint bit with each character of the string, indicat-
ing whether that character was derived from untrusted in-
put or not. We instrument the string-related library classes
(String, StringBuffer, and StringBuilder) to record this taint
information, and we modify their methods to propagate
taint information from string to string. In some cases, we
added additional constructors to enable creation of strings
with a specified taint status. We note that this approach is
compatible with web applications that use reflection to dy-
namically invoke methods: those applications will continue
to work without change.

For most of the methods (e.g., replace(), concat(), sub-
string(), trim(), toUpperCase(), etc.), propagating taint in-
formation is straightforward. We discuss non-trivial cases
below.

Equality and interning. To ensure backwards compatibil-
ity and avoid breaking legacy web applications, we decided
that the conditions under which two String objects com-
pare equal should be identical, regardless of whether taint
tracking is enabled or not. As a consequence, our instru-
mented equals() method does not examine the taint infor-
mation: two String objects compare equal if they represent
the same sequence of characters, even if their taint status
differs. Similarly, the hashCode () method ignores taint in-
formation when computing taint status. As a result, neither
the equals() nor hashCode() methods are modified in our
prototype.

Similarly, we decided that interning should ignore the
taint information. This ensures that taint tracking will not
disturb the behavior of the web application, and thus avoids
breaking legacy web applications. This does come at a po-
tential cost in accuracy: it means that taint information
does not necessarily propagate from the string s to the re-
sult s.intern(). This could cause taint to be lost if the
program first adds an untainted string to the intern pool,
then later calls intern() on another String object with the
same contents. For instance:

String s = "foo"; // untainted

String t = s.intern();

String u = makeTaintedCopy("foo"); // tainted
String v = u.intern();

// Now t == v, so v is untainted

If the web application uses interning, this could cause false
negatives: if we are unlucky, in principle attacks on the web
applications might go undetected. However a mitigating fac-
tor is that this may be very difficult to exploit: it seems un-
likely that there will be an untainted string already present
in the intern pool that happens to be just what an attacker
needed to mount a SQL injection or cross-site scripting at-
tack.

Our treatment of interning could also cause false positives.
For similar reasons, we expect this to be rare.

Mutability. Since String objects are immutable in Java, we
decided that their taint status should be immutable as well.
Instead of providing a way to set or clear the taint bits on
a string, we instead provide a way to create a new String
object with the same sequence of characters as the original
but with a different taint status. We found that this was
sufficient to encode all of the patterns we encountered.

Primitive characters. In most cases, when propagating
taint information, we directly copy the taint status of the
source character to the destination character. We were forced
to make two exceptions for the following methods, from
java.lang.String and java.lang.StringBuilder, respec-
tively:

public String replace(char oldChar, char newChar);
public void setCharAt(int index, char ch);

One of the difficulties of taint tracking through the stan-
dard library classes is that it is not possible to track the taint
status of primitive types, such as char, byte, or int. Conse-
quently, we lack taint information on single chars. To avoid
false positives, we decided to treat chars and other primitive
types as untainted. This may introduce false negatives, i.e.,
missed attacks, as discussed in Section 3.4.

This introduces challenges for modelling the replace()
and setCharAt() methods mentioned above. Because we
treat primitive chars as untainted, in our basic approach
these methods would replace a character (tainted or not)
from the underlying string with an untainted char (newChar
or ch). In other words, our basic approach would clear the
taint bit on the character of the string that was replaced, re-
sulting in loss of taint information and, potentially, missed
attacks. To avoid missing attacks, we decided to refine our
standard approach for these two methods. Instead of clear-
ing the taint bit on the character in the string that is re-
placed, we preserve the taint status of the original character.
Thus, these two methods leave the taint status of the string
being operated upon unchanged.

Serialization. For backwards compatibility, we chose not
to serialize taint information. In particular, we wanted to
ensure that a web application with taint tracking enabled
would still be able to read data it might have serialized ear-
lier before taint tracking was enabled and vice versa. This
could be a source of taint information loss, but we hypothe-
size that due to the performance requirements of interactive
websites, very few web applications, if any, serialize request
information. Consequently, we did not modify any of the
serialization or deserialization methods (e.g., readObject ()
or writeObject()).

Character encodings. The Unicode standard defines a uni-
versal character set. Every Unicode character is assigned a
code point, a value ranging from 0x000000 to 0x10FFFF.
To take advantage of the fact that most characters can be
represented with fewer than 4 bytes, a few variable-length
encoding schemes have been proposed. Java, in particular,
uses UTF-16, where some code points are represented in two
bytes and some in four bytes. In Java, the primitive char
type holds a single code unit: a two-byte value. Each Uni-
code code point is represented in UTF-16 as either one or
two code units (chars). The set of characters that can be
represented by a single Java code unit is called the Basic
Multilingual Plane. Characters that must be represented by
two Java code units are called supplementary characters. A
supplementary character is represented as two code units,
where the first code unit takes on a value from 0xD800 to
0xDBFF and the second Java code unit ranges from 0xDCO00
to OxDFFF. The range from 0xD800 to 0xDFFF is reserved
for UTF-16’s supplementary characters and does not rep-
resent any real character. The set of code points that can
be represented in a single code unit (the Basic Multilingual
Plane) are exactly those in the range U+0000 to U+D7FF
or U+E000 to U+FFFF.

Conceptually, a String stores Unicode characters (code
points). Internally, this is represented as a char array hold-
ing a sequence of code units representing the UTF-16 en-
coding of the Unicode characters of the string. With this
scheme, one can examine a single code unit in a String and
tell whether it is a single unit, the first part of a two unit
code, or the second part of a two unit code: one does not
need to examine any other context (e.g., the preceding or
following code units).

Conceptually, when processing Strings, we consider each
character wholly tainted or wholly untainted. Our internal
representation stores a taint bit with each code unit. How-
ever, if a string contains a supplementary character, i.e., a
character that is represented as a pair of code units, then
we consider the character tainted if either of its two units
are marked tainted. This, combined with the fact that non-
supplementary characters are represented with a two-byte
value that is disjoint from the values used to encode sup-
plementary characters, helps defend against attacks that at-
tempt to bypass quoting.

Locales. Some locales (particularly Turkish, Azeri, or Lith-
uanian) support accents or diacritical marks using combin-
ing characters. These allow a two-code unit sequence to
represent a single character: one code unit represents the
letter, and the other code unit represents the accent, dia-
critical mark, or other combining character. However many
of these characters can also be represented in a single code
unit. For various reasons, it can be useful to canonicalize the
representation. As a consequence, some Java string meth-
ods (such as String.toUpperCase() and toLowerCase()) may
convert a two-code unit character to a one-code unit char-
acter or vice versa in certain cases. In this case, we take
the logical OR of all the code units’ taint information to
determine the taint status of the new character. In other
words, if part of a two-code point character is tainted, the
combination is itself considered tainted.

3.3.3 Taint Propagation Mechanism

Representing taint information. The String data type in
Java is an immutable data type that consists of a character

array, an offset into the array (starting index), count (length
of the string), and hashcode:

public final class String {
private final char[] value;
private final int offset;
private final int count;
private int hashCode;

}

A String object s represents the string consisting of the
sequence of characters in the range s.value[s.offset ..
s.offset+s.count-1]. This representation permits multi-
ple Strings to share a single character array while referring
to different (sub)strings by using different offset and count
values.

We augment the String class by adding a boolean array
to store the taint value for each character of the string:

public final class String {
private final char[] value;
private final int offset;
private final int count;
private int hashCode;
private boolean[] taintarr;

.

We consider s.value[i] tainted if and only if s.taintarr[i]
is true. This increases the space required to represent a
String by a small constant factor.

We modify the methods of the String, StringBuffer,
StringBuilder classes as described above. We found that
only a subset of methods handled taint information and thus
needed to be instrumented; we examined every method and
instrumented each one that needed to propagate taint infor-
mation. Of 96 original methods in the java.lang.String
class, we instrumented 28 methods and added 11 methods.
Of 60 original methods in the java.lang.StringBuilder
class, we instrumented 27 methods and added 6 methods. Of
60 original methods in the java.lang.StringBuffer class,
we instrumented 26 methods and added 4 methods.

We then replace the old string class files contained in the
Java standard library JAR file with the new, augmented
class files. When a Java program is executed, the JVM au-
tomatically loads the augmented classes instead of the origi-
nal string classes. As the propagation policy is implemented
in the library classes, it does not require any changes to
the legacy Java application’s source code or bytecode. This
makes the solution easy to adopt.

Optimizing for the common case. We noticed that many
strings are wholly untainted: none of their characters are
marked as tainted. To optimize our taint tracking mecha-
nism for this common case, we perform character-level taint
tracking on demand only. Instead of introducing a taint
array for every string, we introduce character taint infor-
mation only if one or more of the characters of the string
are marked as tainted. We set the taintarr field of wholly
untainted strings to null. This eliminates unnecessary taint
propagation for string literals and other strings from trusted
sources, and avoids unnecessary construction and copying of
taint arrays for wholly untainted strings, thus reducing the
runtime overhead.

This is an advantage of our method over other methods
that use shadow memory for every character [12]. This op-
timization is made possible because Java strings are repre-
sented by a dedicated String class, which serves as an ab-
stract data type that we can easily instrument. It might be
more difficult to apply this kind of optimization in a lan-
guage like C.

3.4 Discussion

With our technique, it is possible to lose taint information
in a few subtle ways, which can lead to a failure to detect
some attacks.

We do not track taint information associated with the
Java char, char[], or other primitive types. If the web ap-
plication developer takes a tainted string from the HTTP re-
quest and extracts its character information (through, e.g.,
getBytes (), getChars(), toCharArray(), codePointAt(),
charAt (), etc.) and then performs text processing on these
primitive chars, then taint information is lost. We hypoth-
esize that this is a rare occurrence if the developer is not
adversarial. One way to evaluate this hypothesis might be
to log when a tainted character is extracted from a string
using one of these methods, to measure how frequently this
scenario occurs in practice. Our prototype currently logs
these cases, but we have not yet performed any experiments
to test this hypothesis.

There is one case where taint information can be lost due
to an inability to taint a character buffer from the Servlet
framework. In the implementation of the javax.servlet.
http.HttpServletRequest interface, the getReader() method
returns an object of type CoyoteReader which allows for ac-
cess to the raw request body data in the form of either a
String or character array. If returned as a String, taint can
be tracked. However, if it is accessed as a character array,
taint information is lost. We hypothesize that the latter
case would usually occur only for opaque handling of binary
data (e.g., file uploads) that is unlikely to participate in com-
mand injection attacks. We do not expect applications to
use getReader() to obtain form parameters, as that data is
more naturally and easily accessed via the getParameter()
method.

Another way to lose taint information is if we fail to prop-
agate taint or miss a taint source. Outside of methods in the
StringBuffer and StringBuilder classes, a few String meth-
ods create objects from other classes. The String.format()
method creates an object of type java.util.Formatter.
This method constructs a string from arguments given in the
printf() style. For this, the format() in the formatter class
also needs to be augmented to track taint across any %s style
strings. Likewise, a few methods call other methods in the
java.util.regex.Pattern and java.util.regex.Matcher
classes. We have yet to instrument these additional classes.

As mentioned earlier, it is also possible to lose taint infor-
mation through serialization. Finally, like other approaches,
we do not attempt to track implicit data flow.

4. IMPLEMENTATION

Our taint tracking system was implemented using the 32-
bit IBM JDK 6.! We experimented with other JDKs, in-
cluding Sun’s OpenJDK 6 and IBM JDK 5. However, both

!One thing to note about the IBM JDK is that it structures
its library class files differently from those of the Sun JDK.
While Sun stores all of its class files in a JAR file called

of these JDKs presented problems when trying to augment
the string classes. We suspect that they require a prede-
termined size for the string class files, so changes to these
classes broke the JVM.

To support web applications, we instrumented Tomcat
Servlet Container 6, which follows the Servlet 2.5 specifi-
cation.?

To ensure that our implementation correctly implements
the taint propagation policy described in Section 3.3, we
wrote over 135 unit tests and used them to validate our
implementation.

5. EXPERIMENTAL RESULTS

Our web application server was run on a 2.40GHz Intel
Pentium 4 / 1 GB RAM machine. The clients were run on
4 Dual-Core AMD Opteron Processor 2214 machines.

To test our system, we used the JForum web application,
a Java-based discussion board. We believe this to be an
appropriate web application for our preliminary experiments
as it allows us to create a range of request types: basic
GET requests, basic POSTs of varying length, and GETs
and POSTSs that require varying amounts of additional text
processing (due to handling URL links, emoticons, images,
etc.). We examine and compare the request throughput of
the program under various conditions. We limit our focus to
overhead created by source tainting and taint propagation.

For measurement purposes, we examined the roundtrip
time of making the request, processing the request on the
server, and receiving the response. With less than 100 KB
per response (and much smaller requests), 100+ Mbps con-
nections, and measured response times on the order of sev-
eral milliseconds, the network effect can be considered neg-
ligible compared to the server-side computation.

In Figure 1 we show the throughput as the size of the
tainted data in the POST is increased in both the instru-
mented and the uninstrumented versions of Tomcat. As
predicted, the overall throughput decreases as the POST in-
creases. More importantly, we also see that there is very
little difference between the throughput for JForum with
and without taint tracking.

In Figure 2, we examined the throughput for 1) the unin-
strumented program, 2) the instrumented program with the
on-demand character-level taint tracking optimization, and
3) the naive character-level taint tracking for different types
of requests: basic GET requests, GET requests with addi-
tional text processing, basic POSTs, and POSTs with ad-
ditional text processing. These experiments were run five
times with 1000 requests each, averaging the latter four
hot-cache runs. As expected, the optimized taint tracking
method performs slightly better than naive taint tracking,
and the uninstrumented version performs just slightly bet-
ter than the optimized taint tracking. In fact, in most cases
the runtime overhead of the optimized version is less than
5% (see Table 1).

rt.jar, IBM breaks the library class files down into separate
JAR files. The relevant string library class files are located
in vm.jar.

2Due to a bug in Tomcat 6, it can only be built with Java 1.5.
Because the instrumentation could not be done with Java
1.5, we partially built under 1.5 (Part 1 “ant download”), and
then completed the build with 1.6 after that point (Part 2
“ant”). Feel free to contact the authors for more information
about this workaround.

Throughput vs. Amount of Tainted Data

Requests per Second
t
»

10 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400
Length (in Characters) of Tainted Data

++©- w/o Taint Tracking =@ w/ Opt. Taint Tracking

Figure 1: Even as the length of the JForum text
increases, there is very little difference between
the throughput for JForum with and without taint
tracking.

Table 1: Measured Overhead
w/ Opt | w/o Opt

Request Type

Basic GET 0.11% 2.11%
GET w/ Add’l Formatting | 14.91% | 14.54%
Basic POST 4.81% 8.28%

POST w/ Add’l Formatting | 1.45% 2.20%

There are a few limitations of our analysis. In our over-
head experiments, the HTTP requests were sent sequentially
and therefore may not have driven the server to its maximum
serving capacity. Additionally, our workload was artificially
created, and therefore it does not test the system under a
real mix of HTTP request types and lengths. By individu-
ally examining GETs and POSTs separately, we attempt to
determine the runtime overhead of the program at the two
ends of the spectrum.

Due to our decision to leave the choice of the sink checking
technique to the user, we could not perform an analysis of
the rate of false positives and negatives. However, we expect
to see similar results to results seen in other character-level
taint tracking implementations. The work of Halfond et al.
[6] as well as Sekar [10] both achieve a false positive rate of
0%.

Our preliminary experiments indicate that character-level
taint tracking can be performed efficiently with a runtime
overhead ranging from 0-15%. While this is only one ap-
plication tested on artificial workloads, we show that our
approach is a promising step towards efficient taint track-
ing.

6. OPEN PROBLEMS

There are many open problems with regard to potential
applications to taint tracking in web services. Many pro-
grams are starting to integrate multiple programming lan-
guages. An interesting area to examine is taint tracking

Sequential Throughput

100

90

80

70

60

50

40

30

20 P
0+ T T T

Basic GET GET w/ Add'l
Formatting

Requests per second

Basic POST POST w/ Add'l

Formatting

Type of Request to JForum

™ w/o Taint Tracking ™ Optimized Character Tracking ™ Full Character Tracking

Figure 2: Throughput for different types of requests
to JForum without taint tracking, with optimized
taint tracking, and with unoptimized taint tracking

across different languages. Another open problem is con-
sidering how to track taint across a database. The current
focus is to perform taint checking before input enters the
database. Instead, to check for persistent XSS attacks, we
can consider tracking taint across the database. Finally,
many systems examine XSS attacks from the server-side.
The problem with this is that different browsers might inter-
pret the HTML differently. One solution would be to specify
taint status to the browser through the HTML. Conversely,
another approach may be to examine XSS attacks from the
server-side using the tainted data to predict where potential
attacks may exist.

7. RELATED WORK

Our work is inspired by seminal work on fine-grained taint
analysis in other languages, including PHP, C, and Java.

PHP. Nguyen-Tuong et al. show how to provide character-
level taint tracking for PHP web applications by augment-
ing the PHP interpreter [8]. Their implementation achieves
a performance overhead of less than 10%. Pietraszek and
Berghe present a similar character-level taint tracker for
PHP, and use it to prevent SQL injection [9]. The runtime
overhead of their scheme is 2-17%, depending upon the ap-
plication. Futoransky et al. present GRASP, an augmented
PHP interpreter that also does character-level taint tracking
and achieves a 30-100% overhead [3].

C. Several researchers have studied byte-level taint tracking
of C programs. Xu et al. use source-to-source transforma-
tions to track the taint status of every byte of memory [12].
By applying their transformation to the source code of the
PHP interpreter, they also show how to protect PHP web
applications from a number of vulnerabilities. They do not
measure the performance overhead in this scenario, but over-
heads for other applications range from 3-100%. Lam and
Chiueh present a general framework which can be used for
byte-level taint tracking, among other things [7]; they ob-

serve performance overheads in the 1-30% range. Chang
et al. further reduce performance overheads by applying
static analysis to optimize the dynamic taint tracking oper-
ations [1]. They achieve performance overheads as low as
0-4% for taint tracking of several network servers written in
C.

While the performance of these systems is impressive,
their performance cannot be directly applied to our measure-
ments because they evaluated different systems and different
workloads. Also, few web applications are written directly
in C, which limits the ability to apply C-based systems to
web security directly. It is plausible that the static analysis
methods developed by these authors could be applied to op-
timize character-level taint tracking in Java as well, though
we have not investigated this direction.

Java. Although we have seen impressive techniques for taint
tracking in other programming languages, it does not nec-
essarily follow that they can or will translate well to other
languages. As we have discussed previously in Section 2.6,
PHP may be more suited to string-level taint tracking be-
cause of its ability to keep tainted data separate from un-
tainted data by using the echo command on separate strings.
Java however uses string concatenation heavily and there-
fore could be prone to false positives if taint is not tracked at
the character granularity. With regard to C, the language
lacks string types, possibly requiring a more heavyweight
process to perform taint tracking.

A few researchers have examined taint tracking for Java.
The early work only tracked taint at a string level and was
not able to track taint information at a character granular-
ity [2, 5]

Since then, Halfond et al. have introduced methods for
character-level taint tracking of Java applications based upon
bytecode rewriting [6]. They apply their methods to pre-
venting SQL injection in web applications, and observe a
performance overhead of 1-19%. Our work shows that one
can achieve acceptable performance simply by replacing li-
brary classes, without requiring bytecode rewriting of the
application itself. Additionally, our work handles taint prop-
agation for Java reflected strings while the bytecode rewrit-
ing technique is unable to do this.

8. CONCLUSION

In efforts to harden legacy web applications against input-
based attacks, we introduce a taint tracking system that can
be easily adopted and deployed through server-side changes.
This approach is a one-time modification that is transparent
to the web application. It neither requires any web applica-
tion source code nor any change to the bytecode.

Our preliminary experiments indicate that character-level
taint tracking can be performed efficiently without a signif-
icant impact on the application’s runtime performance: in
the context of the JForum application, we observed a run-
time overhead of 0-15%. Although this paper focuses on the
problem of securing web applications, our approach can also
be applied to track taint information in any Java applica-
tion.

Acknowledgments

We would like to thank Koushik Sen and Prateek Saxena
for their guidance and invaluable feedback. We also thank

Brian Chess, Matt Finifter, Adrian Mettler, Cynthia Stur-
ton, and the anonymous reviewers for their comments on
earlier versions of this paper. This research was supported
by NSF grants CNS-0524745 and CNS-0430585.

9. REFERENCES

[1] W. Chang, B. Streiff, and C. Lin. Efficient and
extensible security enforcement using dynamic data
flow analysis. In Proceedings of the 15th ACM
conference on Computer and communications security,
pages 39-50. ACM New York, NY, USA, 2008.

[2] B. Chess and J. West. Dynamic taint propagation:
Finding vulnerabilities without attacking. Information
Security Technical Report, 13(1):33 — 39, 2008.

[3] A. Futoransky, E. Gutesman, and A. Waissbein. A
dynamic technique for enhancing the security and
privacy of web applications. Proc. Black Hat USA,
2007.

[4] J. Grossman. WhiteHat website security statistics
report, Aug. 2008. http://www.whitehatsec.com/
home/assets/WPstats0808.pdf.

[5] V. Haldar, D. Chandra, and M. Franz. Dynamic taint
propagation for Java. In Annual Computer Security
Applications Conference (ACSAC 2005), pages
303-311, 2005.

[6] W. Halfond, A. Orso, and P. Manolios. WASP:
Protecting web applications using positive tainting
and syntax-aware evaluation. IEEE Transactions on
Software Engineering (TSE), 34(1):65-81, 2008.

[7] L. Lam and T. Chiueh. A general dynamic information
flow tracking framework for security applications. In
Annual Computer Security Applications Conference
(ACSAC 2006), pages 463-472, 2006.

[8] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley,
and D. Evans. Automatically hardening web
applications using precise tainting. In 20th IFIP
International Informations Security Conference (SEC
2005), pages 295-307. Springer, 2005.

[9] T. Pietraszek and C. Berghe. Defending against
injection attacks through context-sensitive string
evaluation. In Recent Advances in Intrusion Detection
(RAID 2005), volume 3858 of Lecture Notes in
Computer Science, page 124. Springer, 2006.

[10] R. Sekar. An efficient black-box technique for defeating
web application attacks. In Network and Distributed
Systems Symposium (NDSS 2009), Feb. 2009.

[11] Web Application Security Consortium. Web
Application Security Statistics Project 2007.
http://wuw.webappsec.org/projects/statistics/
wasc_wass_2007.pdf.

[12] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat a
wide range of attacks. In 15th USENIX Security
Symposium, pages 121-136, August 2006.

