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Abstract

Background: A biological system’s robustness to mutations and its evolution are influenced by the structure of its

viable space, the region of its space of biochemical parameters where it can exert its function. In systems with a large

number of biochemical parameters, viable regions with potentially complex geometries fill a tiny fraction of the

whole parameter space. This hampers explorations of the viable space based on “brute force” or Gaussian sampling.

Results: We here propose a novel algorithm to characterize viable spaces efficiently. The algorithm combines

global and local explorations of a parameter space. The global exploration involves an out-of-equilibrium adaptive

Metropolis Monte Carlo method aimed at identifying poorly connected viable regions. The local exploration then

samples these regions in detail by a method we call multiple ellipsoid-based sampling. Our algorithm explores

efficiently nonconvex and poorly connected viable regions of different test-problems. Most importantly, its

computational effort scales linearly with the number of dimensions, in contrast to “brute force” sampling that

shows an exponential dependence on the number of dimensions. We also apply this algorithm to a simplified

model of a biochemical oscillator with positive and negative feedback loops. A detailed characterization of the

model’s viable space captures well known structural properties of circadian oscillators. Concretely, we find that

model topologies with an essential negative feedback loop and a nonessential positive feedback loop provide the

most robust fixed period oscillations. Moreover, the connectedness of the model’s viable space suggests that

biochemical oscillators with varying topologies can evolve from one another.

Conclusions: Our algorithm permits an efficient analysis of high-dimensional, nonconvex, and poorly connected

viable spaces characteristic of complex biological circuitry. It allows a systematic use of robustness as a tool for

model discrimination.

Background

High-throughput experimental technologies have allowed

biology to generate huge amounts of data. The enormity

of these data sets permits a systemic view of the cell [1].

In this new framework mathematical models are immen-

sely useful as compact representations of data [2], and as

highly structured hypotheses that include underlying

mechanisms of the processes under study. These models

often consist of large systems of ordinary differential

equations that govern the kinetics of proteins, mRNAs,

and small molecules.

Mathematical modeling in biology faces several chal-

lenges that arise from uncertainty about relevant para-

meters. For example, the chemical reactions and the

corresponding kinetic equations governing any one biolo-

gical system are only partially known [3,4]. Also, finding

accurate numerical values for model parameters is vir-

tually impossible, because many biochemical parameters

cannot be measured directly. In addition, evolutionary

processes can cause parameters to vary on evolutionary

time scales, yet preserve system function. Thus, even a

perfect mathematical model of an individual system might

have limitations in describing other individuals of the

same population that are sufficiently diverse genetically or

epigenetically. In sum, it is often of limited use to identify

a single best set of parameters for any one biochemical

system. However, one can focus on a viable parameter

space instead. This viable space is a subset of a space of

biochemical parameters, where a model maintains a desir-

able behavior. Values of these parameters must lie inside* Correspondence: e.zamora@bioc.uzh.ch
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the boundaries of this viable space for every organism in a

population.

The investigation of viable spaces is closely linked to

the analysis of robustness in biology. We here define

robustness as the persistence, under perturbations, of a

behavior that is characteristic for a system [5]. When

focusing on robustness to changes in biochemical para-

meters that define system behavior, a biological system’s

robustness is a reflection of the topology and size of its

viable space [6,7]. The volume of the viable space indi-

cates the “amount” of parameter combinations that allow

a system’s desired behaviour. A small viable volume

forces a precise tuning of biochemical parameters. in

contrast, a large viable volume allows a system to suc-

cessfully face changes in environmental conditions,

because its parameters can change, sometimes by orders

of magnitude, without impairing its function. Hence,

robustness is associated with larger viable volumes.

The geometry of viable spaces also plays an important

role in a system’s robustness. Geometries that permit

moderate parameter fluctuations without leaving the

viable volume enhance robustness. In evolutionary terms,

different ways of performing the same function - for

instance, by conserved pathways with homologous yet

different proteins [8] - can be traced back to a common

ancestor and are thus “reachable” from each other [9]. A

connected viable volume improves a system’s evolvability

and allows neutral evolutionary trajectories that may

drive the system towards viable parameter points with

high local robustness. Therefore, the robustness of a bio-

logical system can be a reflection of the geometry and

size of its viable space.

A final motivation to characterize viable spaces comes

from model building itself. As we pointed out above,

some relevant components and interactions in cellular

networks are typically unknown. It follows that the struc-

ture of mathematical models describing these networks

contains uncertainties. These uncertainties may lead to

qualitatively different models that match experimental

observations equally well. In this case, robustness can be

used as a tool to discriminate between more and less

plausible models. Everything else being equal, a model

can be considered superior if it is more robust than other

plausible models [5,8].

The use of robustness for model discrimination raises

the problem of how to measure robustness. Most robust-

ness analyses in the literature are local (e.g. see [10-12]

and references therein). They use a specific set of para-

meters, and their results do not reflect model behavior

under all possible viable parameter sets. Some nonlocal

approaches alter one or two parameters, and use bifurca-

tion analysis to characterize the regions of a parameter

space with similar qualitative model behavior [8,13-18].

These methods have serious limitations whenever multi-

ple parameters have unknown values, which is usually

the case. To address these limitations, a third group of

techniques [7,19] use “glocal” approaches [20]. In a first

“global” step of their analysis, these techniques obtain a

sample of parameters from the viable space, and then, in

a “local” analysis, they study the local robustness around

every element of this set. In this way, they compute non-

local measures of robustness, but they also face the pro-

blem of acquiring a large and statistically representative

sample of viable parameter points. Therefore, they need

efficient global methods to sample the viable space.

The main challenges for global methods typically result

from the fact that parameter spaces can have many

dimensions and a complex geometry, about which one

has little prior knowledge. To characterize a viable space,

some authors perform uniform sampling of the whole

parameter space to identify regions where a model

displays the desired behavior [8,21-25]. Determining this

behavior typically involves integration of the model equa-

tions, which can become computationally very expensive

when done for large samples. Even more fundamentally,

the “curse of dimensionality” [26] makes the fraction of

the whole parameter space occupied by viable parameters

decrease exponentially with increasing dimension, i.e.,

increasing number of parameters. Therefore, “brute

force” uniform sampling becomes quickly infeasible as

model complexity increases. To avoid this problem, Haf-

ner et al. [20] developed an algorithm that explores a

parameter space by iterative Gaussian sampling. Briefly,

in every iteration, this method determines the mean

value and the covariance matrix of the identified viable

points in parameter space to guide further sampling.

However, the algorithm is only efficient when the viable

region is convex and when enough viable points are

found in each iteration.

Here, we propose an algorithm that overcomes these

limitations. Specifically, it can efficiently characterize

nonconvex and poorly connected viable spaces. The

algorithm consists of two steps, namely a coarse-grained

sampling of the viable space, which in turn delivers

starting points for a finer-grained exploration. The

sampled points also define a domain for subsequent

volume computations by Monte Carlo integration, and

for acquisition of a large set of uniformly distributed

viable points. After describing the algorithm, we analyse

a synthetic test problem involving a nonconvex and

poorly connected viable space. This analysis will show

that in high dimensional spaces our algorithm converges

faster and identifies a larger proportion of the viable

space than uniform sampling and Hafner’s method.

Moreover, in contrast to uniform sampling and Hafner’s

algorithm, whose performances scale exponentially with
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the number of dimensions, our algorithm’s performance

scales linearly with the number of dimensions. Subse-

quently, we illustrate an application of our method to a

biochemical circuit. To this end, we focus on a simpli-

fied model of biochemical oscillators with positive and

negative feedback loops [27,28], in order to investigate

the contributions of individual control loops to the

robustness of oscillations in a narrow range of frequen-

cies. Our algorithm allows us to characterize the non-

convex viable space of this model. In spite of the

model’s simplicity, the geometry of this space shows

well known properties of circadian oscillators. Specifi-

cally, it indicates that model topologies with an essential

negative feedback loop and a nonessential positive feed-

back loop provide the most robust fixed period oscilla-

tions, as has been observed in different models of

circadian oscillators [19,29-32]. In addition, the connect-

edness of the model’s viable space suggests that bio-

chemical oscillators with varying topologies can evolve

from one another.

Methods

Viable regions

Given a model that involves d parameters, we define a

parameter space as

�d = �1 × �2 × · · · × �d, (1)

where Θi is the interval of the real numbers ℝ for which

the parameter θi is defined. We call the d-tuple θ = (θ1, θ2,

..., θd) Î Θ
d a parameter point. It represents a configura-

tion of the biochemical parameters involved in the model

(Figure 1). In addition, each parameter point has an asso-

ciated value of a cost function

E(θ) : �d → R
+, (2)

that reflects how well a model produces a behavior

under consideration. For a given θ, the lower the value

of E(θ) the better the model behaves.

A parameter point θ is viable if it fulfills the condition

E(θ) < E0, E0 > 0, (3)

that is, if the cost function does not exceed some posi-

tive threshold E0. For example, θ may imply a system

behavior that allows an organism to survive or repro-

duce. The subset of parameter points θ Î Θ
d for which

(3) holds comprises the viable space [2,20].

Out-of-equilibrium adaptive Monte Carlo sampling

We next describe our coarse-grained, global exploration

of the viable space via an out-of-equilibrium adaptive

Metropolis Monte Carlo sampling (OEAMC) (Figure 2).

The Metropolis algorithm was initially introduced to

analyse thermodynamic systems [33]. However, it can

also be applied to systems like those we study here. To

do so, one must identify the parameter space Θd and

the cost function E(θ) with a state space and with the

energy of a thermodynamic system, respectively [34].

Moreover a parameter b has to be introduced in order

to mimic the inverse of the temperature. This paralle-

lism has been widely used in simulated annealing [35]

and Metropolis Monte Carlo sampling [36-41].

Viable region in
parameter space

Optimal
region in
parameter
space

Cost
function

Figure 1 Hypothetical cost function and viability condition. Contour plot (red curves) of a generic cost function in a 2-dimensional

parameter space. Blue areas correspond to the viable space defined by a threshold on the cost function. Some regions in the viable space may

have different cost, indicated by different shades of blue in the left panel.
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This analogy allows us to use an adaptive selection

probability with covariance matrix ∑

g(θi → θ) =
1

√

(2π)d
|�|

exp

[

−
1

2
(θ − θi) �−1(θ − θi)

′

]

, (4)

in order to propose the transitions between parameter

points, and Metropolis adaptive acceptance ratios

A(θi → θ) =

{

exp
[

−β
(

E(θ) − E(θi)
)]

, if E(θ) − E(θi) > 0,

1, otherwise,
(5)

to accept or not those transitions.

Given b and ∑, the exploration starts from a known

viable parameter point θ0. Then, from the current θ0 a

new θ is constructed by sampling the distribution (4)

centred on θ0. If E(θ) < E(θ0), the new θ is automatically

accepted and becomes θ1. In contrast, if E(θ) > E(θ0), θ

is accepted with a probability exp [-b (E(θ) - E(θ0))], in

which case it becomes θ1. If θ is rejected, then θ1 = θ0.

This scheme is repeated for a predefined number of

iterations n.

After n iterations the algorithm determines whether

OEAMC sampling must stop. To do so, the viable para-

meter points found so far are divided into a predefined

Figure 2 Flowchart representing the basic scheme of the out-of-equilibrium adaptive Monte Carlo (OEAMC) algorithm. Given an initial

parameter point θ0, covariance matrix ∑ and b, the algorithm carries out n iterations in which every new parameter point is sampled from a

normal distribution (4), and accepted or rejected based on Metropolis acceptances ratios (5). Every n iterations the viable points (blue and black

points in the figure correspond to viable and nonviable sampled parameter points, respectively) found so far are grouped into clusters and the

volume (grey areas in the figure) of ellipsoids that enclose the viable parameter points in each cluster is calculated. If the sum of these volumes

converges the algorithm stops; if not, the covariance matrix ∑ and b are updated (6), and n new iterations are performed. The output of the

algorithm is the set VMC which includes all the viable parameter points found.
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number of clusters. Then, OEAMC calculates the ellip-

soids with minimum volume that enclose the points in

each cluster and computes the sum of all ellipsoids

volumes. The algorithm stops when the volume of all

ellipsoids converges or when a maximum number of

iterations is reached. If either of these criteria are met,

OEAMC sampling terminates. Otherwise, n more itera-

tions are carried out after updating b and ∑ according

to

β =

⎧

⎨

⎩

bβ , if fv = 0,

β , if 0 < fv ≤ f0,

β/b, if fv > f0,

� =

⎧

⎨

⎩

s�, if fa > fu
�, if fl < fa ≤ fu,

�/s, if fa < fl,

(6)

where fv and fa are the proportions of sampled viable

parameter points and accepted transitions calculated

over the last n iterations, respectively. The parameters b,

s are larger than one and must be specified by the user.

Equation (6) implies the following procedure. When

Monte Carlo sampling is mainly confined to a viable

region (fv > f0), b decreases and the frequency of accepted

transitions increases. If this makes the frequency of

accepted transitions larger than an upper limit (fa > fu),

the covariance matrix ∑ will become larger and the

method will sample broader regions. In contrast, when

the method has not found any viable parameter point

(fv = 0), b increases and the frequency of accepted transi-

tions decreases in order to force the algorithm to sample

regions with lower cost function. If this frequency falls

below a lower limit (fa < fl), ∑ decreases to maintain the

desired frequency of accepted transitions. The end pro-

duct of OEAMC is the set VMC of all the viable para-

meter points that it found.

Several differences of OEAMC to existing approaches

are worth noting. First, OEAMC does not increase b

continuously from values near zero to values much lar-

ger than the maximum of the cost function, as in simu-

lated annealing (see [42,43] and references therein).

Furthermore, OEAMC does not utilize b as an “extra”

stochastic parameter, an idea used in tempering

approaches (see [44,45]). In addition, it does not dimin-

ish the adaptation of ∑ over time, as equilibrium adap-

tive Monte Carlo sampling does (see [45,46] and

references therein). In contrast, OEAMC automatically

adapts both b and ∑ during the whole sampling in order

to obtain high and low frequencies of accepted transi-

tions and viable parameter points, respectively. The

objective of OEAMC is not to find a point close to the

global optimum of the cost function, as in the case of

simulated annealing, or to obtain a Markov chain with a

specified equilibrium distribution, as in the case of

equilibrium adaptive Monte Carlo sampling or simulated

tempering. Instead, it aims to acquire a (potentially

biased) sample of parameter points distributed all over

the viable space.

Multiple ellipsoid-based sampling

The OEAMC samples the viable space at low resolution.

Thus, it is necessary to introduce a method that uses

the viable points already found by OEAMC to explore

the viable space in detail. A novel method we call multi-

ple ellipsoid based sampling (MEBS) (Figure 3) carries

out this fine-grained exploration of the viable space.

The use of an ellipsoid to bound viable regions in

search spaces has been known for decades (see [47] and

references therein). However, nonconvex viable regions

are not accurately bounded by a single ellipsoid [48]. The

problem is specially difficult in high dimensional spaces,

where the “curse of dimensionality” forces the volume of

the bounding ellipsoid to be much larger than the

volume of the nonconvex bounded object of interest. The

probability of “hitting” this object by sampling uniformly

inside a bounding ellipsoid becomes negligible as the

number of dimensions increases. To overcome this pro-

blem, MEBS iteratively constructs ellipsoids that start

firstly from viable points already found by OEAMC, and

then also by points found by MEBS. These ellipsoids

change their centres and orientations in order to enclose

multiple nearly convex viable regions and to cover the

whole viable space as tightly as possible.

The j-th ellipsoid expansion starts by selecting a viable

parameter point θv,j in an adaptive way (see the Addi-

tional File 1 for details). In the first ellipsoid expansions

the starting point will typically be a viable point obtained

from OEAMC. This point defines 2d (d denotes the

dimension of the parameter space) viable parameter

points that are placed near the intersection between the

boundary of the viable region and the straight lines paral-

lel to the axes of the Cartesian coordinate system that

pass through θv ,j (see Additional File 1 for a more

detailed description). Then MEBS constructs an ellipsoid

Li
j. If i = 0, L0

j is the minimum volume ellipsoid that

encloses the 2d viable points near the boundary of the

viable space. If i ≠ 0, Li
j is the minimum volume ellipsoid

that encloses the set of viable points V i
j which comprises

the viable points found after the iteration i of the j-th

ellipsoid expansion. From this ellipsoid Li
j, the MEBS cre-

ates a new ellipsoid Si
j that has the same orientation as Li

j,

but the lengths of its axes are multiplied by a scaling

parameter gi. Then the algorithm uniformly samples a

predefined number of parameter points n from this ellip-

soid Si
j. The union of the set of viable points in Si

j with V i
j

then gives V i+1
j .
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Figure 3 Flowchart for the multiple ellipsoid-based sampling (MEBS) procedure. Given VMC, the set of viable parameter points found by

OEAMC, and an initial viable parameter point, the method finds viable parameter points near the boundary of the viable region. Then, it

calculates the minimum volume enclosing ellipsoid (MVEE) that encloses those viable parameter points and samples inside an ellipsoid with the

same orientation but smaller axes. In the figure, the ellipsoids inside of which sampling is carried out are represented by solid curves; dark blue

and black points correspond to viable and nonviable points found in the last sampling, respectively; the MVEE ellipsoids are represented by

dashed curves. After the sampling step just desribed, the method again calculates the MVEE of the viable points found so far (light blue points

in the figure), and samples inside a scaled ellipsoid with the same orientation but larger axes (7). If the scaling factor tends to one, or a fixed

number of iterations is reached, the initial exploration finishes. If this does not happen the method calculates the MVEE of the viable parameter

points found and performs a new uniform sampling inside a new scaled ellipsoid. At the end of every new ellipsoid expansion, the algorithm

checks if MEBS must stop, which occurs if the algorithm does not find any new viable points in viable nonexplored regions (grey ellipsoids). If

MEBS does not stop, it carries out another ellipsoid expansion starting from a different viable parameter point. The result of the MEBS is the set

of the viable parameter points found during all the ellipsoid expansions.
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The selection of the scaling parameter gi is critical for

the performance of the algorithm. We define it as:

gi =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

g0 < 1, if i = 0

g1 > 1, if i = 1,

gi−1 +

(

gi−1 − 1
)

p
, if

∣

∣

∣
V i

j

∣

∣

∣
−

∣

∣

∣
V i−1

j

∣

∣

∣
> nbu, i > 1,

gi−1 −

(

gi−1 − 1
)

p
, if

∣

∣

∣
V i

j

∣

∣

∣
−

∣

∣

∣
V i−1

j

∣

∣

∣
< nbl, i > 1,

gi−1, otherwise.

(7)

where V i
j indicates the number of elements in the set

and bl, bu, and p <1 are parameters for lower and upper

bounds, and for axis scaling, respectively.

The rationale behind equation (7) is as follows: Points

in L0
j lie near the boundary of the viable space. In high

dimensional spaces the “curse of dimensionality” may

cause a large proportion of this ellipsoid volume to be

filled by nonviable points. Setting g0 <1 forces S0
j to be

smaller than L0
j . This makes it more likely that S0

j con-

tains a larger proportion of viable parameter points,

which will lead to a larger set V0
j . To explore a larger

elliptic region around θv,j, the method then performs a

second iteration with g1 >1. All subsequent iterations

depend on the number of viable points found in the last

iteration
(
∣

∣

∣
V i

j

∣

∣

∣
−

∣

∣

∣
V i−1

j

∣

∣

∣

)

. Specifically, when this number is

larger than some upper limit nbu, the scaling parameter

grows by a factor 1/p >1 to explore larger domains of

parameter space. When the difference
(
∣

∣

∣
V i

j

∣

∣

∣
−

∣

∣

∣
V i−1

j

∣

∣

∣

)

is

below some lower limit nbl - only few additional viable

points have been found in the last iteration - shrinking

the axes allows an efficient exploration of smaller regions.

Thus, viable parameter points found in previous itera-

tions guide and define the ellipsoid where the next sam-

pling is carried out.

The j-th ellipsoid expansion started from θv,j finishes

when gi converges to one or after a fixed number of

iterations is reached. The output is Ve,j, a set of sampled

viable points that contains the 2d viable parameter

points found near the boundary of the viable space, and

the set of viable parameter vectors V i
j updated in the last

iteration.

Then, the MEBS initiates a j+1-th ellipsoid expansion.

The new initial point θv,j+1, is chosen from the set com-

posed by VMC and the union of Ve,k, k = 1 ... j, that is,

the set of viable points obtained after OEAMC explora-

tion and previous ellipsoid expansions, respectively. To

explore regions that have not yet been sampled, we pre-

ferentially select a θv,j+1 that is far away from the aver-

age of all previous starting points θv,k, k = 1 ... j (see

Additional File 1 for details).

At the end of each ellipsoid expansion, the algorithm

determines if MEBS should stop. To do so, the viable

parameter points found so far {VMC, Ve,1, Ve,2 ..., Ve,j, Ve,

j+1} are divided into a predefined number of clusters.

Then, MEBS calculates the ellipsoids with minimum

volume that enclose the points grouped in each cluster

and computes the sum of all ellipsoids volumes. The

algorithm stops when the sum of the volume of all ellip-

soids converges, or when a maximum number of ellip-

soid expansions is reached. The final result of MEBS is

the set of viable parameter points {VMC, Ve,1, Ve,2, ..., Ve,

j, Ve,j+1}.

Volume computation and acquisition of a large set of

uniformly distributed viable parameter points

The end result of OEAMC and MEBS is a set of viable

parameter points that can be used for a variety of pur-

poses. Specifically, this set allows us to obtain simulta-

neously a large set of uniformly distributed viable points

and an estimate of the viable volume Volv. (Note that

the set of viable points obtained by OEAMC and MEBS

is not an uniform sample from the viable space).

To calculate Volv we must evaluate the integral

Volv =

∫

�d

f (θ)dθ ,

f (θ) =

{

1, if E(θ) < E0,

0, if E(θ) ≥ E0.

(8)

Given N parameter points uniformly sampled in Θd,

the Monte Carlo integration theorem [49] implies that

the volume (8) can be estimated by

Volv =

∫

�d

f (θ)dθ ≃ Vol�d〈f 〉,

〈f 〉 =
1

N

N
∑

i=1

f (θi),

(9)

where Vol�d is the volume of the entire parameter

space. If the error is Gaussian distributed, the standard

deviation of the volume estimator is given by

�Volv = Vol�d

√

〈f 2〉 − 〈f 〉2

N
,

〈f 2〉 =
1

N

N
∑

i=1

f 2(θi).

(10)

Thus, if a high proportion of the N sampled parameter

points is viable, the Monte Carlo integration in Θd will

estimate the viable volume accurately.

This approach is usually sufficient to carry out viable

volume estimations in low-dimensional spaces [8,21-25].

However, the “curse of dimensionality” poses a specific
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problem when this technique is applied to high-dimen-

sional parameter spaces. To calculate the viable volume

(9) and to obtain a large set of uniformly distributed

viable parameters efficiently, one cannot simply sample

over the entire parameter space, because doing so would

be too inefficient. It would be much better to perform a

uniform sampling over a subspace W Î Θ
d that encloses

the viable space as “tightly” as possible. This subspace

will typically be much smaller than the entire space

(VolW ≪ Vol�d ).

To construct such a subspace (Figure 4), we build on

the ideas already present in the algorithm developed by

Hafner et al. [20]. The first step consists of using the set

of viable parameter points Vt that comprises the viable

points already found by OEAMV and MEBS (the letter t

stands for total). To make Volv and VolW as similar as

possible, Hafner’s method encloses the set of viable

parameter points Vt into a single box with a smaller

volume than the entire space. However, in many dimen-

sions the volume of a nonconvex viable space may be

much smaller than the volume of its enclosing box. To

overcome this limitation we define the subspace W via a

family of ellipsoids that cover the viable space locally

(do not confuse with the ellipsoid based exploration of

the viable space described above). To determine these

ellipsoids we group the set of viable parameter points Vt

into k clusters, and compute the ellipsoid with mini-

mum volume that encloses the viable points grouped in

every cluster (see Additional File 1 for details).

In this procedure, the subspace W is composed of the

points of the parameter space enclosed by the k ellipsoids

W =
{

θ ∈ �d
∣

∣θ ∈
⋃

Wi

}

i = 1, 2, . . . , k, (11)

where Wi is the region of the parameter space enclosed

by the i-th ellipsoid. In general, the k ellipsoids may inter-

sect, so the viable volume in W may be smaller than the

sum of the viable volumes in Wi. To avoid the resulting

inaccuracy in volume estimation, we introduce a new

integrand

fi(θ) =

⎧

⎨

⎩

0, if θ ∈
⋃

Wj, j = 1, 2, . . . , i − 1,

0, if θ /∈ �d,

f (θ), otherwise.

(12)

This integrand evaluates the parameter points in the

ellipsoid intersections only once. Therefore, by sampling

N parameter points points uniformly from W (11) and

by using (9), we can estimate the viable volume (8) as

Volv ≃

∫

W

f (θ)dθ =

k
∑

i=1

∫

Wi

fi(θ)dθ ≃

k
∑

i=1

VolWi
〈fi〉,

k
∑

i=1

mi = N,

(13)

where mi is the number of parameter vectors sampled

inside Wi.

This approach of covering the viable region with ellip-

soids can reduce the sampling volume dramatically, and

thus increase the proportion of viable parameter points

sampled in W far beyond that in the entire space Θd.

This means that the viable volume can be calculated

more accurately, and larger sets of viable parameter

points can be sampled uniformly.

We caution that in practice, one can never be certain

that the whole viable space is contained in the integration

domain W that our approach (or any other approach)

determines. The agreement between the actual viable

volume from expression (8) and the estimated viable

volume (13) depends on the proportion of the viable

volume that is enclosed in W. The subspace W is defined

by the set of viable parameter points Vt found by

OEAMC and MEBS; therefore, the success of the volume

estimation hinges on whether the previous exploration of

parameter space found many viable points throughout

the viable space. An implementation of our algorithm in

MATLAB is available as the package HYPERSPACE from

http://www.ieu.uzh.ch/wagner/software and http://www.

csb.ethz.ch/tools/index.

Results and Discussion

A two-step algorithm for sampling of parameter spaces

The algorithm we propose starts from the definition of a

viability condition and of a cost function (Figure 1).

Depending on the biological model considered, the viabi-

lity condition may include stability of a specific steady

state, bistability [50], oscillations whose period lies in a

given interval [20,24], the production of specific gene

expression patterns [22], and many others. The cost

function measures how closely the model’s behavior

matches the viability condition.

The first step of the algorithm consists of a global

coarse-grained exploration of the viable space by an out-

of-equilibrium adaptive Monte Carlo (OEAMC) sampling

of the entire parameter space (Figure 2). Following a

thermodynamic analogy used by simulated annealing [35]

and Metropolis Monte Carlo sampling [36-41], we iden-

tify the parameter space and the cost function with the

state space and the energy, respectively, of a thermody-

namic system that is in contact with a thermal bath with

variable temperature. The objective of OEAMC is to

identify viable regions in the parameter space by adjust-

ing the “temperature” and the length of the jumps

through the parameter space. Briefly, OEAMC adapts the

“temperature” and jump lengths to force a finite but

small frequency of sampled viable parameter points, and

a high proportion of accepted transitions to new para-

meter points. This helps OEAMC not to “get lost” in the

parameter space, but at the same time lets it “travel”
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Figure 4 Flowchart representing the algorithm for viable volume estimation, and the acquisition of a set of viable parameter points. A

set of viable parameter points found by OEAMC and MEBS (uppermost set of blue points in the figure) which are nonuniformly distributed over

the whole viable space (area covered by the red curve in the figure) seeds the algorithm. Then, the method groups these points into k clusters

(k = 3 in the hypothetical example shown), and calculates the ellipsoids with minimum volume that enclose the points in each cluster (11). After

that, the algorithm performs a Monte Carlo integration of every ellipsoid (the intersections between ellipsoids are sampled only once) (12, 13).

The result of the algorithm is a set of uniformly distributed viable parameter points (bottom set of blue points in the figure), from which the

viable volume can be estimated.

Zamora-Sillero et al. BMC Systems Biology 2011, 5:142

http://www.biomedcentral.com/1752-0509/5/142

Page 9 of 22



through nonviable regions where the cost function may

have moderately high values. Thus, this procedure allows

OEAMC to visit and sample from regions of the viable

space that may be poorly connected to each other.

The low frequency of sampled viable parameter points

forces OEAMC to explore the viable space at low reso-

lution. To characterize the viable space in greater detail,

it is necessary to define its borders more precisely, and

to gain insight into its local geometry. In a second step,

we therefore carry out a fine-grained exploration of the

viable regions already identified through OEAMC, using

a technique we call multiple ellipsoid-based sampling

(MEBS) (Figure 3). This technique performs a local

exploration of the parameter space by sampling from

ellipsoids (an approach that is widely used in search

algorithms, see [47] and references therein) that change

their centres and expand or shrink their axes to enclose

different regions of the viable space in which viable

points are found. To cover locally nonconvex and/or

poorly connected viable spaces, different ellipsoid expan-

sions start from parameter points far away from each

other (see Methods and Additional File 1).

The end result of OEAMC and MEBS is a set of viable

parameter points that can be used for a variety of pur-

poses. One of them is to define the integration domain in

which a Monte Carlo integration estimates the volume of

the viable space. (Note that the set of viable points

obtained by OEAMC and MEBS is not an uniform sam-

ple from this space, and cannot be used directly for this

purpose). We define this domain as the union of multiple

ellipsoids - different from those used in MEBS sampling -

that are constructed by grouping the viable parameter

points into clusters, and by determining the ellipsoid

with minimum volume that encloses the viable points in

each of the clusters (Figure 4). This integration domain

thus designed can cover nonconvex and high dimen-

sional viable spaces “tightly”. That is, the proportion of

viable parameter points in this new integration domain is

much higher than in the whole parameter space. By sam-

pling viable points uniformly within this domain, we can

compute the volume of a viable space. We reasoned that

our procedure would allow us to reduce the computa-

tional effort in estimating a viable volume substantially.

We will show in the next section that this is indeed the

case. More generally, the large set of uniformly distribu-

ted viable parameter points that our method can generate

permits us to characterize not only the size, but also the

topology of a viable space. It also allows us to connect

the robustness of a biological system to the geometrical

properties of its viable space. Furthermore, this large set

of viable parameters opens the possibility for a “glocal”

analysis [20], in which the global characterization is sup-

plemented by a local analysis around every viable para-

meter point. Thus, our algorithm can be used together

with a local robustness measurement (e.g., that proposed

by Dayarian et al. [7]) to get insight into the distribution

of a model’s robustness in a viable space.

Efficient sampling of high-dimensional spaces

In a first test problem, we estimated the volume of a

nonconvex region defined by either one single or two

tangent multidimensional spherical shells (Figure 5). We

chose this study system to analyze the efficiency of our

method as a function of the geometry and dimension of

a viable space, because here the viable volume can be

calculated analytically.

We define the parameter space as Θd = Θ1 × Θ2 × ... ×

Θd, where Θi = [-10, 10], i = 1, 2, ..., d. The cost func-

tion and the viability condition are given by

En(θ) = minj

∣

∣

∣
||θ − cj|| −

re + ri

2

∣

∣

∣
, En ≤

re − ri

2
,

j = 1, 2, . . . , n, ||cj − cj−1|| = 2re,
(14)

where cj is a point in Θd and re and ri are two scalars

that fulfill re > ri (in all our numerical tests re = 0.5 and

ri = 0.3).

When n = 1 (single spherical shell test case), the lines

of constant cost are multidimensional spheres centred

on c1 (Figure 5-b). The (degenerate) global minimum of

the cost function occurs in the multidimensional sphere

centred on c, and with radius re+ri

2 (Figure 5-a, b). The

viability condition is fulfilled by the parameter points

that lie in the region enclosed by two multidimensional

spheres with centre c and radii ri and re, respectively.

For n = 2 (two tangent spherical shells test case), the

cost function has its degenerate global minimum in two

multidimensional spheres centered on c1 and c2, respec-

tively, with radius re+ri

2 (Figure 5-c, d); the viable para-

meter points lie in the inner region of two tangent

multidimensional spherical shells with internal radii ri,

external radii re and centers c1 and c2, respectively.

The volume filled by the viable region can be com-

puted analytically as:

Volv,t = nCd

(

rd
e − rd

i

)

,

Cd =

⎧

⎪

⎨

⎪

⎩

1, if d = 0,

2, if d = 1,
2π

d
Cd−2, otherwise,

(15)

where Cd is the volume of a d - dimensional hyper-

sphere with radius 1.

We now compare the performance of (i) MEBS and

OEAMC alone, (ii) both of them together, (iii) uniform

sampling, and (iv) the method proposed by Hafner et al.

[20] based on Gaussian sampling (see the Additional

File 1 for details). For the single spherical shell test case,

MEBS and OEAMC alone, and the combination of both
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methods can identify the viable regions and obtain a

good estimate of the viable volumes for dimensions up

to d = 15 (Figure 6-b). Specifically, for all dimensions

we studied they sample more than 95 per cent of the

whole viable volume before converging. In addition, for

this test case MEBS alone is much more efficient than

OEAMC or a combination of both (Figure 6-a). Specifi-

cally, MEBS converges after sampling substantially fewer

parameter points, because the frequency of viable points

sampled by OEAMC is comparatively small, and

OEAMC thus needs more sampling to estimate the

viable volume to a given accuracy. For example, to

achieve the same accuracy of volume estimation in d =

15 dimensions, MEBS uses 3-fold less samples than the

OEAMC, and 2-fold less samples than the combination

of both methods. In this first test case, the viable space,

albeit nonconvex, is well-connected. This permits a

ready exploration of the space by ellipsoid expansions -

efficient “travel” of ellipsoids inside the viable volume is

possible.

MEBS, OEAMC, and their combination are much more

efficient than uniform sampling of the parameter space.

For instance, at d = 15 dimensions, “brute force” sam-

pling uses 17 orders of magnitude more sampling points

to estimate the viable volume (Figure 6-a inset).

The Gaussian sampling carried out by Hafner’s method

et al. does not permit to identify in detail the borders of

the viable volume for high dimensional spaces. Therefore,

this technique can not estimate viable volumes in high

dimensional spaces with precision (Figure 6-b). More-

over, in high dimensional spaces the tiny proportion of

the whole parameter space filled by the viable volume
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forces this technique to sample a large number of viable

points before converging (Figure 6-a). For example in d =

15 dimensions, Hafner’s method uses 4-fold more sam-

ples than MEBS and underestimates the viable volume by

25 percent.

For the test case of two tangent spherical shells, MEBS

and Hafner’s method often fail to “find” half of the

viable volume in high dimensions (Figure 6-d). For

example, in 14 dimensions, only 25 percent of the

explorations carried out by MEBS and Hafner’s method

find both shells. The two methods share the same lim-

itation: the inability of sampling a point from the second

shell, when starting from a random parameter point in

the first shell. To find the second shell starting from the

first shell, MEBS and Hafner’s method must sample

from an ellipsoid or from a Gaussian distribution,

respectively, both of which must cover viable regions

from both shells. However, both also include nonviable

parameter points. In high dimensions the fraction of

viable points becomes very small, and the probability of

finding a viable point from the second shell is very low.

In contrast, OEAMC alone, and the combination of

both OEAMC and MEBS sample the viable regions well

(Figure 6-d). Specifically, for up to d = 15 dimensions,

they estimate the viable volume with an error smaller

than a 5 percent. Importantly, the combination of both

OEAMC and MEBS is more efficient than OEAMC alone

(Figure 6-c). For instance, to achieve the same accuracy
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Figure 6 Sampling efficiency of the single and tangent spherical shells test cases. Panel and inset (a): Number of sampled parameters

before convergence as a function of the dimension of the parameter space for the single spherical shell test case. The main panel and the inset

show linear and logarithmic scales, respectively. Panel (b): Proportion of sampled viable volume before convergence for the single spherical shell

test case. Panel and inset (c): Number of sampled parameters before convergence as a function of the dimension of the parameter space for the

two tangent spherical shells test case. The main panel and the inset show linear and logarithmic scales, respectively. Panel (d): Proportion of

identified viable volume before convergence for the two tangent spherical shells test case. Red, blue, magenta, green, and black circles represent

the results obtained by OEAMC, MEBS, the combination of OEAMC and MEBS, the Hafner’s method [20], and uniform samplings over the whole

parameter space, respectively.
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of volume estimation in d = 15 dimensions, the combina-

tion of MEBS and OEAMC used approximately 2-fold

smaller samples than the OEAMC alone (and 17 order of

magnitude smaller samples than uniform sampling).

The key for the success of the combination of

OEAMC and MEBS is the complementary nature of

their individual strengths. OEAMC does not need many

sampled points to find two poorly connected regions.

For example, in our two shell test case, it always hit

both shells before sampling 25000 parameter in d = 15

dimensions. However, its low frequency of sampled

viable points forces it to sample excessively many para-

meter points in order to explore a viable region in

detail. In contrast, the bottleneck for the MEBS proce-

dure is the discovery of a viable region - the second

spherical shell in our example - that is poorly connected

to a region that it already explored. Once such a region

has been discovered by OEAMC, MEBS is able to sam-

ple from it efficiently, even if the region is nonconvex.

In sum, the combination of OEAMC and MEBS

explores nonconvex and poorly connected viable regions

in high dimensional parameter spaces more efficiently

and accurately than either method alone and than other

methods we evaluated. In addition, for both test cases

the number of parameter points sampled by the combi-

nation of OEAMC and MEBS scales linearly with the

number of dimensions (Figure 6-a and Figure 6-c). This

suggests that for a given fixed complexity of the viable

space, the computational effort needed by our method

scales linearly with the dimensionality of the parameter

space. This property makes our method suitable to

explore high dimensional viable spaces.

Model of a biochemical oscillator with two feedback

loops

The viable space of a realistic model of a biological system

is in general unknown. Therefore, it is necessary to get an

estimate of the viable volume through uniform sampling

in order to check the performance of our method. How-

ever, complex models may have tiny and complex viable

spaces that make it infeasible to get such an estimate. This

hampers the use of biological models with realistic com-

plexity to characterize our algorithm. To illustrate the

application of our method and to check its performance

with a biological model, we therefore used a very simpli-

fied biological model containing only 12 parameters that

permits us to compare the results of our method with the

uniform sampling of the parameter space.

This model describes a biochemical oscillator intro-

duced by Hafner et al. [51]. It mimics the basic architec-

ture of biological oscillators, such as cardiac pacemaker

cells [52], intracellular calcium oscillations [53], cell cycle

[27,54], and circadian clocks [55]. The model comprises

two feedback loops (Figure 7) and it contains 12 individual

parameters and 5 state variables which correspond to the

concentrations of different proteins. Briefly, in this model

a protein R is expressed, phosphorylated and degraded.

Protein R can also auto-phosphorylate. In the positive

feedback loop, the phosphorylated form Rp acts as a kinase

for protein Z whose active state Zp increases the auto-

phosphorylation rate of R. This kind of positive loop is a

basic mechanism behind substrate-depletion oscillators.

An example is the maturation promoting factor (MPF)

oscillator involved in the cell division cycle of frog eggs

[56]. The negative feedback loop is composed of three

steps: Rp acts as kinase for an intermediate protein X. Its

phosphorylated form Xp phosphorylates a second protein

Y, whose phosphorylated state Yp increases the degrada-

tion rate of R. Such negative feedback has been proposed

as a basis for oscillations in many biological systems (see

[27,28] for reviews).

The dynamics of the concentrations of the proteins R

and Rp follow mass action kinetics [57]

[ .

R
]

= k̃1 − p
([

Zp

])

[R] ,
[ .
Rp

]

= p
([

Zp

])

[R] − n
([

Yp

]) [

Rp

]

,
(16)

where p ([Zp]) and n ([Yp]) respectively, reflect the

effects of a positive and a negative feedbacks loops

p
([

Zp

])

= k̃2 + k̃11

[

Zp

]

,

n
([

Yp

])

= k̃3 + k̃12

[

Yp

]

.
(17)

In contrast, the concentrations of Xp, Yp, and Zp are

governed by Michaelis-Menten kinetics [57]

[

Ẋp

]

=
k̃4

[

Rp

] (

[XT] − [Xp]
)

k̃10 +
(

[XT] − [XP]
)

−
k̃5[XP]

k̃10 + [XP]
,

[Ẏp] =
k̃6

[

Xp

] (

[YT ] − [YP]
)

k̃10 +
(

[YT ] − [YP]
)

−
k̃7[YP]

k̃10 + [YP]
,

[Żp] =
k̃8

[

Rp

] (

[ZT ] − [ZP]
)

k̃10 +
(

[ZT ] − [ZP]
)

−
k̃9[ZP]

k̃10 + [ZP]
,

(18)

where [XT ], [YT ], and [ZT ] denote the total concen-

tration of X, Y, and Z, respectively. For the sake of simpli-

city, we normalize all concentrations to one, i.e., [XT] =

[YT] = [ZT] = 1.

The combination of active positive and negative feed-

back loops creates oscillators with a tunable frequency,

and a robust amplitude [30]. These features make the

negative plus positive loop oscillator suitable for systems

like beating hearts and cell cycles. Here, we focused on

oscillations in a narrow range of frequencies such as

those produced by circadian clocks, and used the model

to study the robustness of the oscillation period to para-

meter variations.
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To explore broad ranges of parameters values we work

in a logarithmic domain in which the logarithm of indi-

vidual parameters are constrained as follows

ki = log(k̃i),

ki ∈ [−4, 2], i = 1, 2, . . . , 10,

ki ∈ [−7, 2], i = 11, 12.

(19)

Together, these ranges define the 12-dimensional

parameter space Θ12 = k1 × k2 × ... × k12. We use the

cost function

Em(θ) =

{

[(TRp
(θ) − 1)/0.1]2, if Rp oscillates,

∞, otherwise,
(20)

where TRp
(θ) is the period of the oscillations of Rp for

a parameter point θ = (k1, k2, ..., k12). The minimum of

this cost function is attained by parameter vectors for

which TRp
(θ) = 1.

Finally, we introduced the viability condition

Em ≤ 1, (21)

meaning that a parameter point θ is viable if it

causes Rp to oscillate with a period in the narrow

interval [0.9, 1.1].

To explore the viable space we carried out an OEAMC

sampling followed by a MEBS. The viable parameter

points obtained during this exploration are shown in

Figure 8, which displays the 12-dimensional parameter

space through six two-dimensional projections. The blue

and red points, acquired by MEBS and OEAMC, respec-

tively, occur in similar regions of the parameter space.

This shows that the MEBS explored in detail the viable

regions previously visited by OEAMC, just as for our

spherical shells test case. The combination of OEAMC

and MEBS revealed the nonconvexity of the viable space

and its implications for the model function. Specifically,

we note the viable region in Figure 8-f, which is com-

posed of two approximately rectangular or bar-like

regions that, together, form a nonconvex shape resem-

bling an inverted L. Parts of these regions define topolo-

gies in which a single feedback loop produces the

oscillations. More precisely, the left part of the horizontal

bar corresponds to viable parameter points for which k12
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Figure 7 Reaction diagram of the model of a simplified biochemical oscillator with two feedback loops proposed by Hafner et al. [51].

The protein R is produced at a constant rate k1 and its phosphorylated state Rp is produced at a rate, k2. The phosphorylated protein Zp
modulates this phosphorylation rate by means of a positive feedback loop (blue diagram in the figure). In addition, Rp is degraded with a rate, k3
that depends on the phosphorylated protein Yp by means of a negative feedback loop (red diagram in the figure).
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is large and k11 small. In this region, only the negative

feedback loop is active. Conversely, the bottom part of

the vertical bar consists of viable parameter points for

which k12 is small and k11 high. It corresponds to archi-

tectures where only the positive feedback loop is active

(see Figure 7).

In a next step, we performed a Monte Carlo integration

(see Methods and Additional File 1 for details) to estimate

the viable volume. The integration domain is defined by

using the viable points obtained by the OEAMC and

MEBS explorations. This domain is approximately 630-

times smaller than the whole parameter space. After uni-

formly sampling over the integration domain we obtained

3595 viable points, and estimated a viable volume of Volv
= 8.3 · 104 ± 2 · 103. To validate this estimate, we uni-

formly sampled over the whole parameter space with the

same number of points we used in the OEAMC, MEBS,

and integration parts of our algorithm. Only 9 of these

points were viable, leading to a viable volume estimate of

Volv = 8.1 · 104 ± 2.7 · 104. The two estimates are very

similar, but the estimation obtained through uniform sam-

pling has an uncertainty one order of magnitude larger

than the one calculated through our method. In addition,

we uniformly sampled 4 · 107 points from the whole para-

meter space to compare the distributions of every single

viable parameter. The results showed that the distributions

of each of the 12 parameters obtained through our

method and the extensive brute force sampling are very

similar (Figure S1).

In sum, our method yields an accurate characterization

of the viable space for this complex twelve-dimensional

system at much higher efficiency than brute-force

approaches. Specifically, by using the same number of

sampling points it carries out a 13 times more accurate

estimation of the viable volume, and obtains 400 times

more uniformly distributed viable points.

Robustness of positive and negative feedback loops

The sample of the viable space we obtained suggests a

clear distinction between two oscillatory regimes, one
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Figure 8 Exploration of the viable space for the oscillator with two feedback loops. Panels show projections of the 12-dimensional

parameter space of the oscillator model onto six two-dimensional spaces corresponding to different parameter pairs. Red and blue points

correspond to the viable parameter vectors found by OEAMC and MEBS, respectively.
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driven by a positive and the other driven by a negative

feedback loops. We next discuss these regimes, as an

illustration of the type of analyses that our method

enables.

The many viable parameter points we found allowed us

to characterize key properties of model architectures with

individual or combined feedback loops via the geometry of

the viable space. For this purpose, we classified each of the

viable points into one of the following categories:

• Essential negative feedback loop: The model keeps

fulfiling the viability condition (21) after removing

the positive loop, or after substituting this loop with

a higher activation rate of Rp (see Additional File 1).

• Essential positive feedback loop: The model keeps

fulfiling the viability condition (21) after removing

the negative loop or substituting this loop with a

higher degradation rate of Rp (see Additional File 1).

• Essential positive and negative feedback loops: No

loop can be removed or substituted by a higher acti-

vation or degradation rate without violating the viabi-

lity condition (21).

We found that model architectures for which the

negative feedback loop is essential occupy the vast

majority (86%) of the viable space we sampled. In con-

trast, significantly fewer parameter combinations lead to

viable oscillations based on an essential positive loop

(10%), or on a combination of essential positive and

negative feedback loops (4%).

If a single loop is essential, the parameters mainly

responsible for this loop will be constrained. These are

parameters k8, k9, k11 for the positive loop, and para-

meters k4, k5, k6, k7, k12 for the negative loop (Figure 7).

Figures 9-a and 9b illustrate these constraints. For exam-

ple, in Figure 9-a, black coloring indicates to what extent

parameters involved in the negative loop are constrained

if this loop is essential, blue coloring indicates these con-

straints if only the positive loop is essential, and green

coloring indicates these constraints if both loops are

essential. Clearly, parameters involved in the negative

loop can vary to a lesser extent if this loop is essential

than when it is not essential. Analogous observations can

be made for parameters involved in the positive loop

(Figure 9-b).

A comparison of Figures 9-a and 9b also shows that

parameters involved in the negative and positive feed-

back loops are constrained to different extents. Specifi-

cally, negative loop parameters can vary over broader

intervals when the negative loop is essential than posi-

tive loop parameters can when this loop is essential. In

addition, the parameters that do not form part of any

loop (k1, k2, k3, k10) are more constrained in architec-

tures with essential positive feedback loop than in
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Figure 9 Distribution of single parameters for model

architectures with an essential negative, an essential positive,

or essential positive and negative feedback loops. The top,

central, and bottom panels show the distribution of single

parameters involved in the negative loop, positive loop, and not

involved in any loop, respectively. Black, blue, and green boxplots

correspond to parameter points that define architectures based on

an essential negative loop, an essential positive loop, or essential

positive and negative loop, respectively.
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topologies with an essential negative feedback loop

(Figure 9-c).

Taken together, these observations imply that model

architectures based on a negative loop fill more of the

viable space, and allow individual parameters to vary

more broadly than architectures based on positive feed-

back loops. In other words, model topologies based on

an essential negative feedback loop are more robust

than topologies with essential positive loops, or topolo-

gies with both essential positive and negative loops.

To further explore this aspect of robustness, we used the

method proposed by Dayarian et al. [7] which estimates

the number of steps that a random walk needs to escape

from the viable space. Briefly, we started ten random

walks from every viable parameter point. Each new point

in a random walk was selected from an independent Gaus-

sian distribution centred on the previous parameter point

and with a diagonal covariance matrix with standard

deviations s = 0.01. We followed every random walk until

it arrived at a nonviable parameter point, and recorded the

number of steps it had taken to reach this nonviable point.

We used this number of steps as an indicator of local

robustness around such parameter point. The mean num-

ber of steps before exiting the viable region was higher if

the starting point corresponded to an architecture with a

negative loop than to an architecture with an essential

positive loop, or to a combination of essential positive and

negative loops (Figure 10). Moreover, the distribution of

the number of steps for the negative feedback architec-

tures has a long tail (Figure 10-a). Specifically, two times

more steps may be needed to leave the viable space than

for the other two architectures (Figure 10-b, c). Hence,

also in terms of local properties revealed by this approach,

architectures with an essential negative feedback loop are

significantly more robust than other topologies.

In addition, we found that adding a positive (not neces-

sarily essential) loop to a model architecture based on a

negative feedback loop further increases robustness and

the allowable range of parameter variation. Figure 11-a

already hints at this observation, because it shows that

the largest density of viable parameter points occurs in

regions of parameter space where both k11 and k12 are

high. These parameters are important for the positive

and negative feedback loops, respectively. In regions with

the most viable parameter points both feedback loops are

active and at least one of these loops is essential.

Further analysis corroborates this observation. In archi-

tectures with an essential negative feedback loop, the

mean value of the parameter k11, which controls the

strength of the positive feedback loop, is significantly

higher (p-value = 2.0 · 10-27; Wilcoxon signed rank test)

than the centre of the interval in which k11 is defined. In

other words, the randomly sampled architectures with an

essential negative feedback loop preferentially occur in
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Figure 10 Local robustness: distribution of the mean number

of random walk steps needed to escape from the viable

region for different model architectures. Panels (a), (b), and (c)

show the distributions of the mean number of steps for

architectures based on essential negative, essential positive, as well

as essential positive and negative feedback loops, respectively. The

mean number of steps averaged over all the viable parameter

points that define topologies with an essential negative feedback

loop is significantly higher than the mean number of steps for

oscillators with essential positive or a combination of negative and

positive feedback loops (Wilcoxon rank sum test: p-value = 2.25 · 10-

29 and p-value = 4.0 · 10-20, respectively).
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regions of parameter space where a positive loop is also

active. Moreover, the density of viable parameter points

increases with the value of the parameter k11 (Figure 11-

b). Thus, a higher strength of the positive feedback loop

increases the number of parameter combinations that

gives rise to viable oscillations.

Taken together, these observations suggest that an

added nonessential positive feedback loop gives a
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Figure 11 Distribution of viable parameter points in the k11 k12 plane. (a) proportion of viable parameter points found through Monte Carlo

integration in every bin of the k11 k12 plane. The highest density of viable parameter points appears in configurations for which k11 and k12 are high;

that is, model architectures in which both feedback loops are present (although one of them may not be essential). (b) proportion of viable parameter

points which define architectures based on a negative feedback loop as a function of k11; that is, as a function of the single parameter that controls

the strength of the positive feedback loop. The mean value of the parameter k11 is significantly higher (p-value = 2.0 · 10-27 Wilcoxon signed rank test)

than the centre of the interval in which k11 is defined. The density of viable parameter points increases with the value of the parameter k11.
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negative-loop-based model oscillator access to more

viable parameter points. In the Additional File 1 we per-

form a similar analysis with a more complex model of a

mammalian circadian oscillator. For this more realistic

model we also observe that the circadian oscillations

can be generated by a single negative feedback loop,

whereas an additional positive feedback loop increases

the robustness of the oscillations.

Connectivity of the viable space

The connectivity of the viable space indicates to what

extent different model architectures with the same beha-

vior can change into one another through small changes

in individual parameters, as might occur on evolutionary

time scales.

To study this connectivity, we chose a set of viable points

in which each of the three basic model architectures we

consider are represented. For every pair of parameter

points, we defined a straight line connecting them, and

identified a set of three points that subdivide the line into

four equally long segments (we also subdivided the line

into 5, 6, 7, and 8 equally long segments, obtaining qualita-

tively identical results). We then asked whether each of

these points was located in the viable space. If so, it may be

possible to connect the two parameter points by a straight

line that lies entirely in the viable space. Based on this

information, we defined a graph whose nodes are the set

viable parameter points. Two nodes are connected by an

edge if the entire straight line between the nodes does not

leave the viable space. Such an edge reflects the existence

of potential evolutionary paths from one to the other node

(parameter point) that does not leave the viable space. We

find that this graph has one large connected component

that comprises 95 percent of all nodes. This observation,

together with our earlier analysis (Figure 8-f) shows that

most of the viable space forms a nonconvex connected

body with possible evolutionary trajectories that maintain

the same behaviour and that connect qualitatively different

system topologies through small changes in individual

parameters.

The connected component contains nodes associated

with all three basic architectures, but these three kinds of

nodes are not equally likely to be connected to each other.

Specifically, nodes (viable points) corresponding to model

topologies with essential negative feedback loops are only

connected to themselves, and to nodes with essential posi-

tive and negative feedback loops. Similarly, nodes that

define topologies with essential positive feedback loops are

only connected to themselves and to nodes with essential

positive and negative feedback loops. Potential evolution-

ary trajectories that connect model architectures based on

essential positive feedback loop and essential negative

feedback loop, need to pass through configurations for

which both loops are essential.

Overall, the global geometry of the viable space shows

that model topologies based on an essential negative

feedback loop are more robust than other architectures.

Essential negative feedback allows the individual para-

meters to span larger intervals than essential positive

feedback. Moreover, our local analysis reveals that topol-

ogies based on an essential negative feedback loop sus-

tain the most change before losing viability. Successive

small parameter changes can transform oscillators with

an essential positive feedback loop into oscillators with

an essential negative feedback loop, or vice versa. To do

so, requires an intermediary stage in which both loops

are essential.

Conclusions

In biological systems, the diversity of biochemical para-

meter values that can lead to similar behavior makes it

useful to introduce the concept of a viable space in which

a biological system maintains a given function. The algo-

rithm we present here allows an efficient exploration and

characterization of such a viable space in systems with

many parameters. It involves a global coarse grained iden-

tification of viable regions, followed by detailed local

explorations of these regions. The global part of our algo-

rithm can find viable regions that may be poorly con-

nected. In the local part, the viable regions discovered in

the global part are explored in detail. The exploration of

the viable space allows us to identify a (typically noncon-

vex) subspace of the whole parameter space in which the

proportion of viable parameter points is much higher than

in the whole space. Knowledge of this subspace can dra-

matically reduce the number of samples needed to charac-

terize the viable space. It also permits us to acquire a large

number of uniformly distributed viable parameter points.

The advantages of our method are especially dramatic in

high-dimensional parameter spaces. It allows us to explore

high dimensional nonconvex and poorly connected viable

regions more efficiently and accurately than iterative

Gaussian sampling [20] or uniform sampling of the entire

parameter space [21-25]. Moreover, in the test problems

we studied, the number of sampled parameters necessary

to estimate the volume of the viable space to a given accu-

racy scales exponentially with the number of dimensions

for Gaussian and uniform sampling, whereas it scales line-

arly for our algorithm. This suggests that for a given fixed

complexity of the viable space, the computational effort of

our method scales linearly with the dimensionality of the

parameter space. This allows our method to explore high

dimensional viable spaces efficiently.

An intrinsic limitation of our approach is imposed by

the potential increase of the viable space’s geometric

complexity, when the dimension of the parameter space

also increases. That is, increasing the dimensionality

may cause the emergence of more poorly connected
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viable regions, which can exponentially increase the

minimum number of iterations needed to identify all

poorly connected viable regions and to sample them

thoroughly. A second potential limitation concerns the

identification of unconnected viable regions that are far

from each other. The finite sampling frequency of viable

parameter points required in the global exploration pre-

vents one from “getting lost” in high dimensional spaces,

but it may not allow the algorithm to travel across the

wide nonviable region that may separates two viable

regions far from each other. A third limitation includes

that values for the parameters involved in the global and

local explorations steps need to be chosen judiciously.

These parameters include the maximum frequency of

sampled viable points, bounds for the frequency of

accepted iterations, and scaling factors for ellipsoid

expansions.

Efficient sampling of the viable space allows one to

accurately estimate the viable volume to assess model

robustness, to study the topology of the viable space, and

to carry out a “glocal” analysis [20], in which the global

characterization of the viable space is supplemented by a

local analysis. To illustrate how our method enables

insights into the working of a biological system, we stu-

died simple model of a biochemical oscillator with posi-

tive and negative feedback loops that involves 12

parameters [51]. We focused our attention on oscillations

in a narrow range of frequencies such as those produced

by circadian clocks, and used the model to study the

robustness of the oscillation period to parameter varia-

tions. When characterizing the viable space composed by

parameters for which the model oscillates in a narrow

period interval, our method was 13 times more accurate

in estimating the viable volume than uniform brute-force

sampling. In addition, it obtained 400 times more uni-

formly distributed viable points.

We showed that the viable space of this oscillator

forms a nonconvex connected body in which three

classes of parameter points exist. They correspond to

model architectures where the negative feedback loop,

the positive feedback loop, or both loops are essential for

fixed period oscillations. We also found that topologies

with an essential negative feedback loop provide more

robust fixed period oscillations than those based on an

essential positive loop. Moreover, the addition of a non-

essential positive feedback loop to a model with an essen-

tial negative feedback loop increases the number of

parameter combinations that give rise to viable oscilla-

tions, and it therefore increases the robustness of fixed

period oscillations. In spite of the model’s simplicity,

these results are consistent with well known structural

properties of circadian oscillators: they typically rely on

positive and negative feedback loops [58-60], the negative

feedback alone is sufficient for fixed period oscillations

[61-65], and the positive feedback loop increases the

robustness of the oscillations to parameter changes

[19,29-32]. These results reinforce the use of robustness

as a tool for model discrimination [5,19]. Specifically, we

observed that among the three model architectures that

permit viable oscillations, the basic topology of circadian

oscillators in nature coincides with the most robust one

formed by an essential negative feedback loop and a non

essential positive feedback loop.

In summary, we have introduced an efficient algo-

rithm that explores and characterizes the often tiny

regions of a parameter space in which a model displays

a desired behavior. We have applied our method to a

biological model, but it is not restricted to such systems.

It is suitable for all models with many parameters whose

values are not well constrained by experimental data. Its

spectrum of applications ranges from systems biology

[66] all the way down to atomic physics [67].

An implementation of our algorithm in MATLAB is

available as the package HYPERSPACE from http://

www.ieu.uzh.ch/wagner/software and http://www.csb.

ethz.ch/tools/index.

Additional material

Additional file 1: Supplementary Information for “Efficient

Characterization of High-Dimensional Parameter Spaces for Systems

Biology”. This document shows additional technical information about: •

The calculation of minimum volume enclosing ellipsoids involved in

OEAMC, MEBS, and the construction of the integration domain. • The

determination of the number of clusters involved in the construction of

the integration domain. • The acquisition of viable parameter points near

the boundary of the viable space involved in the MEBS. • The choice of

starting points for new ellipsoid expansions involved in MEBS. • The

exploration and volume calculation of spherical shells. • The exploration

exploration and volume calculation the viable space associated to

biochemical oscillator model. • Characterization of the viable space of a

model of the mammalian circadian oscillator with two feedback loops.
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