
Efficient Circuit-based PSI

with Linear Communication

Benny Pinkas1, Thomas Schneider2, Oleksandr Tkachenko2, and Avishay Yanai1

1 Bar-Ilan University, Israel
benny@pinkas.net, ay.yanay@gmail.com

2 TU Darmstadt, Germany
{schneider,tkachenko}@encrypto.cs.tu-darmstadt.de

Abstract. We present a new protocol for computing a circuit which
implements the private set intersection functionality (PSI). Using circuits
for this task is advantageous over the usage of specific protocols for PSI,
since many applications of PSI do not need to compute the intersection
itself but rather functions based on the items in the intersection.
Our protocol is the first circuit-based PSI protocol to achieve linear com-
munication complexity. It is also concretely more efficient than all previous
circuit-based PSI protocols. For example, for sets of size 220 it improves
the communication of the recent work of Pinkas et al. (EUROCRYPT’18)
by more than 10 times, and improves the run time by a factor of 2.8x in
the LAN setting, and by a factor of 5.8x in the WAN setting.
Our protocol is based on the usage of a protocol for computing oblivious
programmable pseudo-random functions (OPPRF), and more specifically
on our technique to amortize the cost of batching together multiple
invocations of OPPRF.

Keywords: Private Set Intersection, Secure Computation

1 Introduction

The functionality of Private Set Intersection (PSI) enables two parties, P1 and P2,
with respective input sets X and Y to compute the intersection X ∩ Y without
revealing any information about the items which are not in the intersection.
There exist multiple constructions of secure protocols for computing PSI, which
can be split into two categories: (i) constructions that output the intersection
itself and (ii) constructions that output the result of a function f computed on
the intersection. In this work, we concentrate on the second type of constructions
(see §1.2 for motivation). These constructions keep the intersection X ∩ Y secret
from both parties and allow the function f to be securely computed on top of
it, namely, yielding only f(X ∩ Y). Formally, denote by FPSI,f the functionality
(X,Y) 7→ (f(X ∩ Y), f(X ∩ Y)).

A functionality for computing f(X ∩ Y) can be naively implemented using
generic MPC protocols by expressing the functionality as a circuit. However, naive

protocols for computing f(X ∩Y) have high communication complexity, which is
of paramount importance for real-world applications. The difficulty in designing
a circuit for computing the intersection is in deciding which pairs of items of the
two parties need to be compared. We refer here to the number of comparisons
computed by the circuit as the major indicator of the overhead, since it directly
affects the amount of communication in the protocol (which is proportional to
the number of comparisons, times the length of the representation of the items,
times the security parameter). Since the latter factors (input length and security
parameter) are typically given, and since the circuit computation mostly involves
symmetric key operations, the goal is to minimize the communication overhead
as a function of the input size. We typically state this goal as minimizing the
number of comparisons computed in the circuit. The protocol presented in this
paper is the first to achieve linear communication overhead, which is optimal.

Suppose that each party has an input set of n items. A naive circuit for this
task compares all pairs and computes O(n2) comparisons. More efficient circuits
are possible, assuming that the parties first order their respective inputs in specific
ways. For example, if each party has sorted its input set then the intersection can
be computed using a circuit which first computes, using a merge-sort network, a
sorted list of the union of the two sets, and then compares adjacent items [HEK12].
This circuit computes only O(n log n) comparisons. The protocol of [PSSZ15]
(denoted “Circuit-Phasing”) has P1 map its items to a table using Cuckoo hashing,
and P2 maps its items using simple hashing. The intersection is computed on top
of these tables by a circuit with O(n log n/ log log n) comparisons. This protocol
is the starting point of our work.

A recent circuit-based PSI construction [PSWW18] is based on a new hashing
algorithm, denoted “two-dimensional Cuckoo hashing”, which uses a table of size
O(n) and a stash of size ω(1). Each party inserts its inputs to a separate table,
and the hashing scheme assures that each value in the intersection is mapped
by both parties to exactly one mutual bin. Hence, a circuit which compares
the items that the two parties mapped to each bin, and also compares all stash
items to all items of the other party, computes the intersection in only ω(n)
comparisons (namely, the overhead is slightly more than linear, although it can
be made arbitrarily close to being linear).

Our work is based on the usage of an oblivious programmable pseudo-random
function (OPPRF), which is a new primitive that was introduced in [KMP+17].
An OPRF — oblivious pseudo-random function (note, this is different than an
OPPRF) — is a two-party protocol where one party has a key to a PRF F and
the other party can privately query F at specific locations. An OPPRF is an
extension of the protocol which lets the key owner “program” F so that it has
specific outputs for some specific input values (and is pseudo-random on all other
values). The other party which evaluates the OPPRF does not learn whether it
learns a “programmed” output of F or just a pseudo-random value.

2

1.1 Overview of our Protocol

The starting point for our protocols is the Circuit-Phasing PSI protocol of [PSSZ15],
in which O(n) bins are considered and the circuit computes O(n log n/ log logn)
comparisons. Party P1 uses Cuckoo hashing to map at most one item to each bin,
whereas party P2 maps its items to the bins using simple hashing (two times,
once with each of the two functions used in the Cuckoo hashing of the first party).
Thus, P2 maps up to S = O(log n/ log log n) items to each bin. Since the parties
have to hide the number of items that are mapped to each bin, they pad the bins
with “dummy” items to the maximum bin size. That is, P1 pads all bins so they
all contain exactly one item and P2 pads all bins so they all contain S items.

Both parties use the same hash functions, and therefore for each input
element x that is owned by both parties there is exactly one bin to which x is
mapped by both parties. Thus, it is only needed to check whether the item that
P1 places in a bin is among the items that are placed in this bin by P2. This is
essentially a private set membership (PSM) problem: As input, P1 has a single
item x and P2 has a set Σ with |Σ| items, where S = |Σ|. As for the output, if
x ∈ Σ then both parties learn the same random output, otherwise they learn
independent random outputs. These outputs can then be fed to a circuit, which
computes the intersection. The Circuit-Phasing protocol [PSSZ15] essentially
computes the PSM functionality using a sub-circuit of the overall circuit that it
computes. Namely, let S = O(log n/ log log n) be an upper bound on the number
of items mapped by P2 to a single bin. For each bin the sub-circuit receives one
input from P1 and S inputs from P2, computes S comparisons, and feeds the
result to the main part of the circuit which computes the intersection itself (and
possibly some function on top of the intersection). Therefore the communication
overhead is O(nS) = O(n log n/ log log n). A very recent work in [CO18] uses the
same hashing method and computes the PSM using a specific protocol whose
output is fed to the circuit. The circuit there computes only ω(n) comparisons but
the PSM protocol itself incurs a communication overhead of O(log n/ log log n)
and is run O(n) times. Therefore, the communication overhead of [CO18] is also
O(n log n/ log logn).

We diverge from the protocol of [PSSZ15] in the method for comparing
the items mapped to each bin. In our protocol, the parties run an oblivious
programmable PRF (OPPRF) protocol for each bin i, such that party P2 chooses
the PRF key and the programmed values, and the first party learns the output.
The function is “programmed” to give the same output βi for each of the
O(log n/ log log n) items that P2 mapped to this bin. Therefore, if there is any
match in this bin then P1 learns the same value βi. Then, the parties evaluate
a circuit, where for each bin i party P1 inputs its output in the corresponding
OPPRF protocol, and P2 inputs βi. This circuit therefore needs to compute only
a single comparison per bin.

The communication overhead of an OPPRF is linear in the number of pro-
grammed values. Thus, a stand alone invocation of an OPPRF for every bin
incurs an overall overhead of O(n log n/ log log n). We achieve linear overhead
for comparing the items in all bins, by observing that although each bin is of

3

maximal size O(log n/ log log n) (and therefore naively requires to program this
number of values in the OPPRF), the total number of items that need to be
programmed in all bins is O(n). We can amortize communication so that the
total communication of computing all O(n) OPPRFs is the same as the total
number of items, which is O(n).

In addition to comparing the items that are mapped to the hash tables, the
protocol must also compare items that are mapped to the stash of the Cuckoo
hashing scheme. Fixing a stash size s = O(1), the probability that the stash
does not overflow is O(n−(s+1)) [KMW09]. It was shown in [GM11] that a stash
of size O(log n) ensures a negligible failure probability (namely, a probability
that is asymptotically smaller than any polynomial function). Each item that
P1 places in the stash must be compared to all items of P2, and therefore a
straightforward implementation of this step requires the circuit to compute ω(n)
comparisons. However, we show an advanced variant of our protocol that computes
all comparisons (including elements in the stash) with only O(n) comparisons.

In addition to designing a generic O(n) circuit-based PSI protocol, we also
investigate an important and commonly used variant of the problem where each
item is associated with some value (“payload”), and it is required to compute a
function of the payloads of the items in the intersection. (For example, compute
the sum of financial transactions associated with these items.) The challenge is
that each of the S items that the second party maps to a bin has a different
payload and therefore it is hard to represent them using a single value. (The
work in [PSSZ15, CO18], for example, did not consider payloads.) We describe
a variant of our PSI protocol which injects the correct payloads to the circuit
while keeping the O(n) overhead.

Overall, the work in this paper improves the state of the art in two dimensions:
– With regards to asymptotic performance, we show a protocol for circuit-based

PSI which has only O(n) communication. This cost is asymptotically smaller
than that of all known circuit-based constructions of PSI, and matches the
obvious lower bound on the number of comparisons that must be computed.

– With regards to concrete overhead, our most efficient protocols improve
communication by a factor of 2.6x to 12.8x, and run faster by factor 2.8x to
5.8x compared to the previous best circuit-based PSI protocol of [PSWW18].
We demonstrate this both analytically and experimentally.

1.2 Motivation for Circuit-based PSI

Most research on computing PSI focused on computing the intersection itself
(see §1.4). On the other hand, many applications of PSI are based on computing
arbitrary functions of the intersection. For example, Google reported a PSI-
based application for measuring the revenues from online ad viewers who later
perform a related offline transaction (namely, ad conversion rates) [Yun15, Kre17].
This computation compares the set of people who were shown an ad with the
set of people who have completed a transaction. These sets are held by the
advertiser, and by merchants, respectively. A typical use case is where the
merchant inputs pairs of the customer-identity and the value of the transactions

4

made by this customer, and the computation calculates the total revenue from
customers who have seen an ad, namely customers in the intersection of the sets
known to the advertiser and the merchant. Google reported implementing this
computation using a Diffie-Hellman-based PSI cardinality protocol (for computing
the cardinality of the intersection) and Paillier encryption (for computing the
total revenues) [IKN+17, Kre18]. In fact, it was recently reported that Google
is using such a “double-blind encryption” protocol in a beta version of their
ads tool.3 However, their protocol reveals the size of the intersection, and has
substantially higher runtimes than our protocol as it uses public key operations,
rather than efficient symmetric cryptographic operations (cf. §7.4).

Another motivation for running circuit-based PSI is adaptability. A protocol
that is specific for computing the intersection, or a specific function such as the
cardinality of the intersection, cannot be easily changed to compute another
function of the intersection (say, the cardinality plus some noise to preserve
differential privacy). Any change to a specialized protocol will require considerable
cryptographic know-how, and might not even be possible. On the other hand,
the task of writing a new circuit component which computes a different function
of the intersection is rather trivial.

Circuit-based protocols also benefit from the existing code base for generic
secure computation. Users only need to design the circuit to be computed,
and can use available libraries of optimized code for secure computation, such
as [HEKM11, EFLL12, DSZ15, LWN+15].

1.3 Computing Symmetric Functions

We focus in this work on constructing a circuit which computes the intersection.
On top of that circuit it is possible to compose a circuit for computing any
function that is based on the intersection. In order to preserve privacy, that
function must be a symmetric function of the items in the intersection. Namely,
the output of the function must not depend on the order of its inputs.

If the function that needs to be computed is non-symmetric, then the circuit
for computing the intersection must shuffle its output, in order to place each
item of the intersection in a location which is independent of the other values.
The result is used as the input to the function. The size of this “shuffle” step
is O(n log n), as is described in [HEK12], and it dominates the O(n) size of the
intersection circuit. We therefore focus on the symmetric case.4

Most interesting functions of the intersection (except for the intersection
itself) are symmetric. Examples of symmetric functions include:
– The size of the intersection, i.e., PSI cardinality (PSI-CA).

3 https://www.bloomberg.com/news/articles/2018-08-30/google-and-masterc

ard-cut-a-secret-ad-deal-to-track-retail-sales
4 Note that outputting the intersection is a non-symmetric function. Therefore in
that case the order of the elements must be shuffled. However, it is unclear why a
circuit-based protocol should be used for computing the intersection, since there are
specialized protocols for this which are much more efficient, e.g. [KKRT16, PSZ18].

5

https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-cut-a-secret-ad-deal-to-track-retail-sales
https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-cut-a-secret-ad-deal-to-track-retail-sales

– A threshold function that is based on the size of the intersection. For example
identifying whether the size of the intersection is greater than some threshold
(PSI-CAT). An extension of PSI-CAT, where the intersection is revealed only
if the size of the intersection is greater than a threshold, can be used for
privacy-preserving ridesharing [HOS17]. Other public-key based protocols for
this functionality appear in [ZC17, ZC18].

– A differentially private [Dwo06] value of the size of the intersection, which is
computed by adding some noise to the exact count.

– The sum of values associated with the items in the intersection. This is used
for measuring ad-generated revenues (cf. §1.2).

The circuits for computing all these functions are of size O(n). Therefore, with
our new construction the total size of the circuits for applying these functions to
the intersection is O(n).

1.4 Related Work

We classify previous works into dedicated protocols for PSI, generic protocols for
circuit-based PSI, and dedicated protocols for PSI cardinality.

PSI. The first PSI protocols were based on public-key cryptography, e.g., on
the Diffie Hellman function (e.g. [Mea86], with an earlier mention in [Sha80]),
oblivious polynomial evaluation [FNP04], or blind RSA [DT10]. More recent
protocols are based on oblivious transfer (OT) which can be efficiently instantiated
using symmetric key cryptography [IKNP03, ALSZ13]: these protocols use either
Bloom filters [FNP04] or hashing to bins [PSZ14, PSSZ15, KKRT16, PSZ18].
All these PSI protocols have super-linear complexity and many of them were
compared experimentally in [PSZ18]. PSI protocols have also been evaluated on
mobile devices, e.g., in [HCE11, ADN+13, CADT14, KLS+17]. PSI protocols
with input sets of different sizes were studied in [KLS+17, PSZ18, RA18].

Circuit-based PSI. These protocols use secure evaluation of circuits for PSI.
A trivial circuit for PSI computes O(n2) comparisons which result in O(σn2)
gates, where σ is the bit-length of the elements.
The sort-compare-shuffle (SCS) PSI circuit of [HEK12] computes O(n log n)
comparisons and is of size O(σn log n) gates (even without the final shuffle layer).
The Circuit-Phasing PSI circuit of [PSSZ15] uses Cuckoo hashing to O(n) bins
by one party and simple hashing by the other party which maps at most
O(log n/ log log n) elements per bin. Therefore, the Circuit-Phasing circuit has a
size of O(σn log n/ log log n) gates.
The recent circuit-based PSI protocol of [CO18] applies a protocol based on
OT extension to compute private set membership in each bin. The outputs of
the invocations of this protocol are input to a comparison circuit. The circuit
itself computes a linear number of comparisons, but the total communication
complexity of the private set membership protocols is of the same order as that
of the Circuit-Phasing circuit [PSSZ15] with O(σn log n/ log log n) gates.

6

Another recent circuit-based PSI protocol of [FNO18, Section 8] has communi-
cation complexity O(σn log log n). It uses hashing to O(n) bins where each bin
has multiple buckets and then runs the SCS circuit of [HEK12] to compute the
intersection of the elements in the respective bins.
The two-dimensional Cuckoo hashing circuit of [PSWW18] uses a new variant of
Cuckoo hashing in two dimensions and has an almost linear complexity of ω(σn)
gates.

In this work, we present the first circuit-based PSI protocol with a true linear
complexity of O(σn) gates.

PSI Cardinality. Several protocols for securely computing the cardinality of
the intersection, i.e., |X ∩ Y |, were proposed in the literature. These protocols
have linear complexity and are based on public-key cryptography, namely Diffie-
Hellman [DGT12], the Goldwasser-Micali cryptosystem [DD15], or additively
homomorphic encryption [DC17]. However, these protocols reveal the cardinality
of the intersection to one of the parties. In contrast, circuit-based PSI protocols
can easily be adapted to efficiently compute the cardinality and even functions
of it using mostly symmetric cryptography.

1.5 Our Contributions

In summary, in this paper we present the following contributions:
– The first circuit-based PSI protocol with linear asymptotic communication

overhead. We remark that achieving a linear overhead is technically hard since
hashing to a table of linear size requires a stash of super-linear size in order to
guarantee a negligible failure probability. It is hard to achieve linear overhead
with objects of super-linear size.

– A circuit-based PSI protocol with small constants and an improved concrete
overhead over the state of the art. As a special case, we consider a very common
variant of PSI, namely threshold PSI, in which the intersection is revealed only
if it is bigger/smaller than some threshold. Surprisingly, our protocol is 1-2
orders of magnitude more efficient than the state-of-the-art [ZC18] and has
the same asymptotic communication complexity of O(n), despite the fact that
the protocol in [ZC18] is a special purpose protocol for threshold-PSI.

– Our protocol supports associating data (“payload”) with each input (from
both parties), and compute a function that depends on the data associated
with the items in the intersection. This property was not supported by the
Phasing circuit-based protocol in [PSSZ15]. It is important for applications that
compute some function of data associated with the items in the intersection,
e.g., aggregate revenues from common users (cf. §1.2).

– On a technical level, we present a new paradigm for handling ω(1) stash sizes
and obtaining an overall overhead that is linear. This is achieved by running
an extremely simple dual-execution variant of the protocol.

– Finally, with regards to concrete efficiency, we introduce a circuit-based PSI
protocol with linear complexity. This is achieved by using Cuckoo hashing

7

with K = 3 instead of K = 2 hash functions, and no stash. This protocol
substantially reduces communication (by a factor of 2.6x to 12.8x) and runtime
(by a factor of 2.8x to 5.8x) compared to the best previous circuit-based PSI
protocol of [PSWW18].

2 Preliminaries

2.1 Setting

There are two parties, which we denote as P1 (the “receiver”) and P2 (the
“sender”). They have input sets, X and Y , respectively, each of which contains n
items of bitlength λ. We assume that both parties agree on a function f and wish
to securely compute f(X ∩ Y). They also agree on a circuit C that receives the
items in the intersection as input and computes f . That is, C has O(nλ) input
wires if we consider a computation on the elements themselves or O(n(λ+ ρ)) if
we consider a computation on the elements and their associated payloads where
the associated payload of each item has bitlength ρ. We denote the computational
and statistical security parameters by κ and σ, respectively. Denote the set
1, . . . , c by [c]. We use the notation X(i) to denote the i-th element in the set X.

2.2 Security Model

This work, similar to most protocols for private set intersection, operates in the
semi-honest model, where adversaries may try to learn as much information as
possible from a given protocol execution but are not able to deviate from the
protocol steps. This is in contrast to malicious adversaries which are able to
deviate arbitrarily from the protocol. PSI protocols for the malicious setting
exist, but they are less efficient than protocols for the semi-honest setting, e.g.,
[FNP04, DSMRY09, HN10, DKT10, FHNP16, RR17a, RR17b]. The only circuit-
based PSI protocol that can be easily secured against malicious adversaries is
the Sort-Compare-Shuffle protocol of [HEK12]: here a circuit of size O(n) can
be used to check that the inputs are sorted, resulting in an overall complexity
of O(n log n). For the recent circuit-based PSI protocols that rely on Cuckoo
hashing, ensuring that the hashing was done correctly remains the challenge. The
semi-honest adversary model is appropriate for scenarios where execution of the
intended software is guaranteed via software attestation or business restrictions,
and yet an untrusted third party is able to obtain the transcript of the protocol
after its execution, by stealing it or by legally enforcing its disclosure.

2.3 Secure Two-Party Computation

There are two main approaches for generic secure two-party computation of
Boolean circuits with security against semi-honest adversaries: (1) Yao’s garbled
circuit protocol [Yao86] has a constant round complexity and with today’s
most efficient optimizations provides free XOR gates [KS08], whereas securely

8

FUNCTIONALITY 1 (Two-Party Computation)

Parameters. The Boolean circuit C to be computed, with I1, I2 inputs and
O1, O2 outputs associated with P1 and P2 resp.
Inputs. P1 inputs bits x1, . . . , xI1 and P2 inputs bits y1, . . . , yI2 .
Outputs. The functionality computes the circuit C on the parties’ inputs and
returns the outputs to the parties.

evaluating an AND gate requires sending two ciphertexts [ZRE15]. (2) The GMW
protocol [GMW87] also provides free XOR gates and also sends two ciphertexts
per AND gate using OT extension [ALSZ13].

The main advantage of the GMW protocol is that all symmetric cryptographic
operations can be pre-computed in a constant number of rounds in a setup phase,
whereas the online phase is very efficient, but requires interaction for each layer
of AND gates. In more detail, the setup phase is independent of the actual inputs
and precomputes multiplication triples for each AND gate using OT extension
in a constant number of rounds. The online phase begins when the inputs are
provided and involves a communication round for each layer of AND gates. See
[SZ13] for a detailed description and comparison between Yao and GMW.

In our protocol we make use of Functionality 1.

2.4 Cuckoo Hashing

Cuckoo hashing [PR01] uses two hash functions h0, h1 to map n elements to
two tables T0, T1 which each contain (1 + ε)n bins. (It is also possible to use a
single table T with 2(1 + ε)n bins. The two versions are essentially equivalent.)
Each bin accommodates at most a single element. The scheme avoids collisions
by relocating elements when a collision is found using the following procedure:
Let b ∈ {0, 1}. An element x is inserted into a bin hb(x) in table Tb. If a prior
item y exists in that bin, it is evicted to bin h1−b(y) in T1−b. The pointer b is
then assigned the value 1− b. The procedure is repeated until no more evictions
are necessary, or until a threshold number of relocations has been reached. In the
latter case, the last element is put in a special stash. It was shown in [KMW09]
that for a stash of constant size s the probability that the stash overflows is at
most O(n−(s+1)). It was also shown in [GM11] that this failure probablity is
negligilble when the stash is of size O(log n). An observation in [KM18] shows
that this is also the case when s = O(ω(1) · logn

log logn
). After insertion, each item

can be found in one of two locations or in the stash.

2.5 PSI based on Hashing

Existing constructions for circuit-based PSI require the parties to reorder their
inputs before inputting them to the circuit. In the sorting network-based circuit
of [HEK12], the parties sort their inputs. In the hashing-based construction
of [PSSZ15], the parties map their items to bins using a hashing scheme.

9

It was observed as early as [FNP04] that if the two parties agree on the same
hash function and use it to assign their respective input to bins, then the items
that one party maps to a specific bin only need to be compared to the items
that the other party maps to the same bin. However, the parties must be careful
not to reveal to each other the number of items that they mapped to each bin,
since this leaks information about their input sets. Therefore, the parties agree
beforehand on an upper bound m for the maximum number of items that can
be mapped to a bin (such upper bounds are well known for common hashing
algorithms, and can also be substantiated using simulation), and pad each bin
with random dummy values until it has exactly m items in it. If both parties use
the same hash algorithm, then this approach considerably reduces the overhead
of the computation from O(n2) to O(β ·m2) where β is the number of bins.

When using a random hash function h to map n items to n bins such that x
is mapped to bin h(x), the most occupied bin has at most m = lnn

ln lnn
(1 + o(1))

items with high probability [Gon81]. For instance, for n = 220 and a desired error
probability of 2−40, a careful analysis shows that m = 20. Cuckoo hashing is
much more promising, since it maps n items to 2n(1 + ε) bins, where each bin
stores at most m = 1 items.

It is tempting to let both parties, P1 and P2, map their items to bins using
Cuckoo hashing, and then only compare the item that P1 maps to a bin with
the item that P2 maps to the same bin. The problem is that P1 might map x
to h0(x) whereas P2 might map it to h1(x). Unfortunately, they cannot use a
protocol where P1’s value in bin h0(x) is compared to the two bins h0(x), h1(x)
in P2’s input, since this reveals that P1 has an item which is mapped to these two
locations. The solution used in [FHNP16, PSZ14, PSSZ15] is to let P1 map its
items to bins using Cuckoo hashing, and P2 map its items using simple hashing.
Namely, each item of P2 is mapped to both bins h0(x), h1(x). Therefore, P2 needs
to pad its bins to have exactly m = O(log n/ log log n) items in each bin, and the
total number of comparisons is O(n log n/ log log n).

3 OPPRF – Oblivious Programmable PRF

Our protocol builds on a (batched) oblivious programmable pseudorandom func-
tion (OPPRF). In this section we gradually present the properties required by that
kind of a primitive, by first describing simpler primitives, namely, Programmable
PRF (and its batched version) and Oblivious PRF.

3.1 Oblivious PRF

An oblivious PRF (OPRF) [FIPR05] is a two-party protocol implementing a
functionality between a sender and a receiver. Let F be a pseudo-random function
(PRF) such that F : {0, 1}κ × {0, 1}ℓ → {0, 1}ℓ. The sender inputs a key k to F
and the receiver inputs q1 . . . , qc. The functionality outputs F (k, q1), . . . , F (k, qc)
to the receiver and nothing to the sender. In another variant of oblivious PRF the
sender is given a fresh random key k as an output from the functionality rather

10

than choosing it on its own. In our protocol we will make use of a “one-time”
OPRF functionality in which the receiver can query a single query, namely, the
sender inputs nothing and the receiver inputs a query q; the functionality outputs
to the sender a key k and to the receiver the result Fk(q). Let us denote that
functionality by FOPRF.

3.2 (One-Time) Programmable PRF (PPRF)

A programmable PRF (PPRF) is similar to a PRF, with the additional property
that on a certain “programmed” set of inputs the function outputs “programmed”
values. Namely, for an arbitrary set X and a “target” multi-set T , where |X| = |T |
and each t ∈ T is uniformly distributed5, it is guaranteed that on input X(i) the
function outputs T (i). Let T be a distribution of such multi-sets, which may be
public to both parties.

The restriction of the PPRF to be only one-time comes from the fact that we
allow the elements in T to be correlated. If the elements are indeed correlated
then by querying it two times (on the correlated positions) it would be easy to
distinguish it from a random function.

We capture the above notion by the following formal definition:

Definition 1. An ℓ-bits PPRF is a pair of algorithms F̂ = (Hint, F) as follows:
– Hint(k,X, T) → hintk,X,T : Given a uniformly random key k ∈ {0, 1}κ, the

set X where |X(i)| = ℓ for all i ∈ [|X|] and a target multi-set T with |T | = |X|
and all elements in T are uniformly distributed (but may be correlated), output
the hint hintk,X,T ∈ {0, 1}

κ·|X|.
– F (k, hint, x) → y⋆. Given a key k ∈ {0, 1}κ, a hint hint ∈ {0, 1}κ·|X| and an

input x ∈ {0, 1}ℓ, output y⋆ ∈ {0, 1}ℓ.
We consider two properties of a PPRF, correctness and security:

– Correctness. For every k, T and X, and for every i ∈ [|X|] we have:

F (k, hint, X(i)) = T (i).

– Security. We say that an interactive machine M is a PPRF oracle over F̂ if,
when interacting with a “caller” A, it works as follows:
1. M is given a set X from A.
2. M samples a uniformly random k ∈ {0, 1}κ and T from T , invokes hint←

Hint(k,X, T) and hands hint to A.
3. M is given an input x ∈ {0, 1}ℓ from A and responds with F (k, hint, x).
4. M halts (any subsequent queries will be ignored).
The scheme F̂ is said to be secure if, for every X input by A (i.e. the caller),
the interaction of A with M is computationally indistinguishable from the
interaction with the PPRF oracle S, where S outputs a uniformly random “hint”
{0, 1}κ·|X| and a “PRF result” from {0, 1}ℓ.

5 We require that each element in T is uniformly random but the elements may be
correlated.

11

CONSTRUCTION 2 (PPRF)

Let F ′ : {0, 1}κ × {0, 1}ℓ → {0, 1}ℓ be a PRF.
– Hint(k,X, T). Interpolate a polynomial p over the points

{(

X(i) , F ′
k(X(i))⊕

T (i)
)}

i∈[|X|]
. Return p as the hint.

– F (k, hint, x). Interpret hint as a polynomial, denoted p. Return F ′
k(x)⊕p(x).

The definition is reminiscent of a semantically secure encryption scheme.
Informally, semantic security means that whatever is efficiently computable about
the cleartext given the ciphertext, is also efficiently computable without the
ciphertext. Also here, whatever can be efficiently computable given X is also
efficiently computable given only |X|. That implicitely means that the interaction
with a PPRF oracle M over (KeyGen, F) does not leak the elements in X.

Our security definition diverges from that of [KMP+17] in two aspects:
1. In [KMP+17], A has many queries to M in Step 3 of the interaction, whereas

our definition allows only a single query. In the (n, t)-security definition
in [KMP+17] this corresponds to setting t = 1. Our definition is weaker in this
sense, but this is sufficient for our protocol as we invoke multiple instances of
the one-time PPRF.

2. The definition in [KMP+17] compensates for the fact that A has many queries,
by requiring that the function F outputs an independent target value for every
x ∈ X. Our definition is stronger as it allows having correlated target elements
in T . In the most extreme form of correlation all values in T are equal, which
makes the task of the adversary “easier”. We require the security property to
hold even in this case.
We present in Construction 2 a polynomial-based PPRF scheme that is based

on the construction in [KMP+17].

Theorem 3. Construction 2 is a PPRF.

Proof. It is easy to see that this construction is correct. For every k,X and T ,
let p = Hint(k,X, T), then for all i ∈ |X| it holds that

F (k, p,X(i)) = F ′(k,X(i))⊕ p(X(i))

= F ′(k,X(i))⊕ F ′(k,X(i))⊕ T (i)

= T (i)

as required. We now reduce the security of the scheme to the security of a PRF
(i.e., to the standard PRF definition, with many oracle accesses). Let M be a
PPRF oracle over F̂ of Construction 2. Assume there exists a distinguisher D and
a caller A such that D distinguishes between the output of M after interacting
with A, when A chooses X and x as its inputs, and the output of S(1κ, |X|)
(where S is the simulator described in Definition 1) with probability µ.

We present a distinguisher D′ that has an oracle access to either a truly
random function R(·) or a PRF F̃ (k, ·). The distinguisher D′ runs as follows:

12

Given an oracle O to either R(·) or F̃ (k, ·), D′ samples T from T , then, for
every i ∈ [|X|] it queries the oracle on X(i) and obtains O(X(i)). It interpolates
the polynomial p using the points {(X(i),O(X(i)) ⊕ T (i))}i∈|X| and provides
p’s coefficients to D. For the query x, D′ hands D the value O(x) ⊕ p(x) and
outputs whatever D outputs.

Observe that if O is truly random, then the values {R(X(i))⊕ T (i))}i∈[|X|]

are uniformly random and thus the polynomial p is uniformly random and
independent of T . If x /∈ X then the value R(x)⊕ p(x) is obviously random since
R(x) is independent of p. In addition, if x = X(i) for some i, then the value
R(x)⊕ p(x) equals T (i) for some i ∈ [|X|], which is uniformly random since T
is sampled from T and every t ∈ T is distributed uniformly. Therefore, the pair
(p,R(x)⊕ p(x)) is distributed identically to the output of S. On the other hand,
if O is a pseudorandom function, then the values {Fk(X(i))⊕ T (i))}i∈[|X|] from
which the polynomial p is interpolated, along with the second output Fk(x)⊕p(x),
are distributed identically to the output of M upon an interaction with A. This
leads to the same distinguishing success probability µ, for both D and D′, which
must be negligible. ⊓⊔

3.3 Batch PPRF

Note that the size of the hint generated by algorithm KeyGen is κ · |X| (i.e.,
the polynomial is represented by |X| coefficients, each of size κ bits). In our
setting we use an independent PPRF per bin, where each bin contains at
most O(log n/ log log n) values. Therefore the hint for one bin is of size O(κ ·
log n/ log log n), and the size of all hints is O(κ · n · log n/ log log n). However, we
know that the total number of values in all P2’s bins is 2n, since each value is
stored in (at most) two locations of the table6. We next show that it is possible
to combine the hints of all bins to a single hint of length 2n, thus reducing the
total communication for all hints to O(n).

We first present a formal definition of the notion of batch PPRF.

Definition 2. An ℓ-bits, β-bins PPRF (or (ℓ, β)-PPRF) is a pair of algorithms
F̂ = (KeyGen, F) as follows:

– Hint(k,X, T)→ hintk,X,T . Given a set of uniformly random and independent
keys k = k1, . . . , kβ ∈ {0, 1}

κ, the sets X = X1, . . . , Xβ where |Xj(i)| = ℓ for
all j ∈ [β] and i ∈ [|X|] and a target multi-sets T = T1, . . . , Tβ where for every
j ∈ [β] it holds that |Tj | = |Xj | and all elements in Tj are uniformly distributed
(but, again, may be correlated), output the hint hintk,X,T ∈ {0, 1}

κ·N where

N =
∑β

j=1 |Xj |.

– F (k, hint, x) → y⋆. Given a key k ∈ {0, 1}κ, a hint hint ∈ {0, 1}κ·N and an
input x ∈ {0, 1}ℓ, output y⋆ ∈ {0, 1}ℓ.

As before, we want a batched PPRF to have the following properties:

6 In the actual implementation we use a more general variant of Cuckoo hashing with
a parameter K ∈ {2, 3} where each item is stored in K locations in the table. The
size of the hint will be K · n.

13

CONSTRUCTION 4 (Batched PPRF)

Let F ′ : {0, 1}κ × {0, 1}ℓ → {0, 1}ℓ be a PRF.
– Hint(k,X, T).

Given the keys k = k1, . . . , kβ , the sets X = X1, . . . , Xβ and the target
multi-sets T = T1, . . . , Tβ , interpolate the polynomial p using the points
{(Xj(i), F

′(kj , Xj(i))⊕ Tj(i))}j∈β;i∈[|Xj |]
. Return p as the hint.

– F (k, hint, x).
Interpret hint as a polynomial, denoted p. Return F ′(k, x)⊕ p(x). (Same

as in Construction 2.)

– Correctness. For every k = k1, . . . , kβ, T = T1, . . . , Tβ and X = X1, . . . , Xβ

as above, we have

F (kj , hint, Xj(i)) = Tj(i)

for every j ∈ [β] and i ∈ [|Xj |].
– Security. We say that an interactive machine M is a batched PPRF oracle

over F̂ if, when interacting with a “caller” A, it works as follows:
1. M is given X = X1, . . . , Xβ from A.
2. M samples uniformly random keys k = k1, . . . , kβ and target multi-sets

T = T1, . . . , Tβ from T , and invokes hint← Hint(k,X, T) hands hint to A.
3. M is given β queries x1, . . . , xβ from A and responds with y⋆1 , . . . , y

⋆
β where

y⋆j = F (kj , hint, xj).
4. M halts.
The scheme F̂ is said to be secure if for every disjoint sets X1, . . . , Xβ (where
N =

∑

j∈[β] |Xj |) input by a PPT machine A, the output of M is computa-

tionally indistinguishable from the output of S(1κ, N), such that S outputs a
uniformly random hint ∈ {0, 1}κ·N and a set of β uniformly random values
from {0, 1}ℓ.

Construction 4 is a batched version of Construction 2.

Theorem 5. Construction 4 is a secure (ℓ, β)-PPRF.

Proof. For correctness, note that for every j ∈ [β] and i ∈ [|Xj |] it holds that

F (kj , p,Xj(i)) = F ′(kj , Xj(i))⊕ p(Xj(i))

= F ′(ki, Xj(i))⊕ F ′(ki, Xj(i))⊕ Tj(i)

= Tj(i).

The security of the scheme is reduced to the security of a batch PRF F̃ .
Informally, a batch PRF works as follows: Sample uniform keys k1, . . . , kβ ∈

{0, 1}κ and for a query (j, x) respond with F̃ (kj , x). One can easily show that a
batch PRF is indistinguishable from a set of β truly random functions R1, . . . , Rβ

where on query (j, x) the output is Rj(x).

14

Let M be a batched PPRF oracle over F̂ of Construction 4. Assume there
exists a distinguisher D and a caller A such that D distinguishes between the
output of M after interacting with A, when A chooses X1, . . . , Xβ and x1, . . . , xβ

as its inputs, and the outputs of S(1κ, N), where S is the simulator described in
Definition 2.

We present a distinguisher D′ that has an oracle access O, to either a batch
PRF F̃ (kj , ·) or a set of truly random functions Rj(·) (where j ∈ [β]). The distin-
guisher D′ works as follows: sample T1, . . . , Tβ from T , interpolate a polynomial p
with the points {(Xj(i),O(j,Xj(i))⊕Tj(i))}j∈[β];i∈[|Xj |] and hand p’s coefficients
to D as the hint. Then, for query xj of D, respond with y⋆j = O(xj) ⊕ p(xj).
Finally, D′ outputs whatever D outputs.

First note that if O is a set of truly random functions then the polynomial p is
uniformly random and independent of y⋆1 , . . . , y

⋆
β because all interpolation points

are uniformly random. Now, if xj /∈ Xj then the result is obviously uniformly
random. Otherwise, if xj = Xj(i) for some i then note that the result is Tj(i) which
is uniformly random as well, since the other elements in Tj are unknown. Thus, this
is distributed identically to the output of S(1κ, N). On the other hand, if O is a
batch PRF then the interpolation points {(Xj(i),O(j,Xj(i))⊕Tj(i))}j∈[β];i∈[|Xj |]

along with y⋆1 , . . . , y
⋆
β are distributed identically to the output of M upon an

interaction with A. This leads to the same distinguishing success probability for
both D and D′, which must be negligible. ⊓⊔

3.4 Batch Oblivious Programmable Pseudorandom Functions

In this section we define a two-party functionality for batched oblivious pro-

grammable pseudorandom function (Functionality 6), which is the main building
block in our PSI protocols. The functionality is parametrised by a (ℓ, β)-PPRF
F̂ = (Hint, F) and interacts with a sender, who programs F̂ with β sets, and
a receiver who queries F̂ with β queries. The functionality guarantees that the
sender does not learn what are the receiver’s queries and the receiver does not
learn what are the programmed points.

Given a protocol that realizes FOPRF and a secure (ℓ, β)-PPRF, the realization
of Functionality 6 is simple and described in Protocol 7.

Theorem 8. Given an (ℓ, β)-PPRF, Protocol 7 securely realizes Functionality 6
in the FOPRF-hybrid model.

Proof. Note that party P2 receives nothing in the functionality but receives
k1, . . . , kβ in the real execution as output from FOPRF. Therefore, P2’s view can
be easily simulated with the simulator of FOPRF.

As for the view of P1, from the security of the PPRF it follows that it is
indistinguishable from the output of S(1κ, N) where S is the simulator from
Definition 2. ⊓⊔

15

FUNCTIONALITY 6 (Batch Oblivious PPRF)

Parameters. A (ℓ, β)-PPRF F̂ = (Hint, F).
Sender’s inputs. These are the following values:
– Disjoint sets X = X1, . . . , Xβ where |Xj(i)| ∈ {0, 1}

ℓ for every j ∈ [β] and
i ∈ [|Xj |]. Let the total number of elements in all sets be N =

∑

j |Xj |.
– The sets T = T1, . . . , Tβ sampled independently from T .
Receiver’s inputs. The queries x1, . . . , xβ ∈ {0, 1}

ℓ.

The functionality works as follows:
1. Sample uniformly random and independent keys k = k1, . . . , kβ .
2. Invoke Hint(k,X, T)→ hint.
3. Output hint to P1 (P2 can compute it on its own from k,X, T).
4. For every j ∈ [β] output F (kj , hint, xj) to the receiver.

PROTOCOL 7 (Batch Oblivious PPRF)

The protocol is defined in the FOPRF-hybrid model and receives an (ℓ, β)-PPRF
F̂ = (Hint, F) as a parameter. The underlying PRF in both FOPRF and F̂ is
the same and denoted F ′. The protocol proceeds as follows:
1. The parties invoke β instances of FOPRF. In the j ∈ [β] instance, P2 inputs

nothing and receives the key kj , and P1 inputs xj and receives F ′(kj , xj).
2. Party P2 invokes p← Hint(k,X, T) and sends p to P1.
3. For every j ∈ [β], party P1 outputs F ′(kj , xj)⊕ p(xj).

4 A Super-Linear Communication Protocol

4.1 The Basic Construction

Let Ca,b be a Boolean circuit that has 2 · a · (b + λ) input wires, divided to a
sections of 2b + λ inputs wires each. For each section, the first (resp. second)
β input wires are associated with P1 (resp. P2). The last λ input wires are
associated with P1 as well. Denote the first (resp. second) β bits input to the i-th
section by ui,1 (resp. vi,2) and the last λ bits by zi. The circuit first compares
ui,1 to vi,2 for every i ∈ [α] and produces wi = 1 if ui,1 = vi,2 and 0 otherwise.
Then, the circuit computes and outputs f(Z) where Z = {zi | wi = 1}i∈[a] and f
is the function required to be computed in the FPSI,f functionality.

Correctness. If z ∈ X ∩ Y then z is mapped to both Table2[H1(z)] and
Table2[H2(z)] by P2. There are two cases: (1) z is mapped to Table1[Hb(z)]
by P1 for b ∈ {1, 2}. (2) z is mapped to Stash by P1. In the first case the match
is found in section Hb(z) of the circuit; in the second case the match is certainly
found since every item in the Stash is compared to every item in Y .

Two items x ∈ X and y ∈ Y where x 6= y will not be matched, since by the
properties of the PPRF P1 receives a pseudorandom output. Since the parties

16

PROTOCOL 9 (Private Set Intersection)

Inputs. P1 has X = {x1, . . . , xn} and P2 has Y = {y1, . . . , yn}.
Protocol. The protocol proceeds in 3 steps as follows:
1. Hashing. The parties agree on hash functions H1, H2 : {0, 1}ℓ → [β], which

are used as follows:
– P1 uses H1, H2 in a Cuckoo hashing construction that maps x1, . . . , xn

to a table Table1 of β = 2(1 + ε)n entries, where input xi is mapped to
either entry Table1[H1(xi)] or Table1[H2(xi)] or the stash Stash (which
is of size s)a. Since β > n, P1 fills the empty entries in Table1 with a
uniformly random value.

– P2 maps y1, . . . , yn to Table2 of β entries using both H1 and H2. That is,
yi is placed in both Table2[H1(yi)] and Table2[H2(yi)]. (Obviously, some
bins will have multiple items mapped to them. This is not an issue, and
there is even no need to use a probabilistic upper bound on the occupancy
of the bin.)

2. Computing batch OPPRF. P2 samples uniformly random and inde-
pendent target values t1, . . . , tβ ∈ {0, 1}

κ. The parties invoke an (λ, β)-
OPPRF (Functionality 6; recall that λ is the bit-length of the items).
P2 inputs Y1, . . . , Yβ and T1, . . . , Tβ where Yj = Table2[j] = {y||j | y ∈
Y ∧ j ∈ {H1(y), H2(y)}} and Tj has |Yj | elements, all equal to tj . If,
j = H1(y) = H2(y) for some y ∈ Y then P2 adds a uniformly random ele-
ment to Table2[j]. P1 inputs Table1[1], . . . ,Table1[β] and receives y⋆

1 , . . . , y
⋆
β .

According to the definition of the OPPRF, if Table1[j] ∈ Table2[j] then
y⋆
j = tj .

3. Computing the circuit. The parties use a two-party computation (Func-
tionality 1) with the circuit Cβ+s·n,γ .

b For section j ∈ [β] of the circuit,
party P1 inputs the first γ bits of y⋆

j and Table1[j], and P2 inputs the first
γ bits tj ; for the β + j-th section P1 inputs Stash[⌈j/n⌉+ 1] and P2 inputs
Table[(j mod n) + 1].

a We discuss the value of s in §4.2 and the value of ε in §7.1.
b We discuss the value of γ in §4.2.

only input the first γ bits of the PPRF results, those values will be matched with
probability 2−γ . See §4.2 for a discussion on limiting the failure probability.

Security. The security of the protocol follows immediately from the security of
the OPPRF and the two-party computation functionalities.

4.2 Limiting the Failure Probability

Protocol 9 might fail due to two reasons:

– Stash size. For an actual implementation, one needs to fix s and ε so that
the stash failure probability will be smaller than 2−σ. If the stash is overflowed

17

(i.e., more than s items are mapped to it) then the protocol fails.7 As discussed
in §2, setting s = O(log n/ log log n) makes the failure probability negligible.

– Input encoding. The circuit compares the first γ bits of y⋆j of P1 to the
first γ bits of tj of P2. Thus, the false positive error probability in each
comparison equals 2−γ (due to F (x), for x /∈ Y , being equal to the programmed
output), and therefore the overall probability of a false positive is at most
β · 2−γ = 2(1 + ε)n · 2−γ .

4.3 Reducing Computation

A major computation task of the protocol is interpolating the polynomial which
encodes the hint. If we use Cuckoo hashing with K = O(1) hash functions then
the polynomial encodes O(n) items and is of degree O(n). This section describes
how to reduce the asymptotic overhead of computing the polynomial and therefore
we will use asymptotic notation. The concrete overhead is discussed in §7.2.

The overhead of interpolating a polynomial of degree O(n) over arbitrary
points is O(n2) operations using Lagrange interpolation, or O(n log2 n) operations
using FFT. The overhead can be reduced by dividing the polynomial to several
lower-degree polynomials. In particular, let us divide the β = O(n) bins to
B “mega-bins”, each encompassing β/B bins. Suppose that we have an upper
bound such that the number of items in a mega-bin is at most m, except with
negligible probability. Then the protocol can invoke a batch OPPRF for each
mega-bin, using a different hint polynomial. Each such polynomial is of degree m.
Therefore the computation overhead is O(B ·m log2 m). Ideally, the upper bound
on the number of items in a mega-bin, m, is of the same order as the expected
number of items in a mega-bin, O(n/B). In this case the computation overhead
is O(n/B · B · log2(n/B)) = O(n log2(n/B)) and will be minimized when the
number of mega-bins B is maximal.

It is known that when mapping O(n) items to B = n/ log n (mega-)bins, then
with high probability the most occupied bin has less thanm = O(n/B) = O(log n)
items. When interested in concrete efficiency we can use the analysis in [PSZ18]
to find the exact number of mega-bins to make the failure probability sufficiently
small (see §7.2). When interested in asymptotic analysis, it is easy to deduce
from the analysis in [PSZ18] that with B = n/ log n mega-bins, the probability
of having more than ω(log n) items in a mega-bin is negligible. Therefore when
using this number of mega-bins, the computation overhead is only ω((n/ log n) ·
log2(n)) = ω(n log n) using Lagrange interpolation. Using FFT interpolation,
the asymptotic overhead is reduced to ω((n/ log n) log n(log log n)2) = ω(n ·
(log log n)2). But since we map relatively few items to each mega-bin the gain in
practice of using FFT is marginal.

7 In that case either not all items are stored in the stash – resulting in the protocol
ignoring part of the input and potentially computing the wrong output, or P1 needs
to inform P2 that it uses a stash larger than s – resulting in a privacy breach.

18

5 A Linear Communication Protocol

We describe here a protocol in which the circuit computes only O(n) comparisons.
This protocol outperforms the protocols in §4.1 or in [PSWW18, CO18] which
have a circuit that computes ω(n) comparisons. A careful analysis reveals that
those protocols require O(n) comparisons to process all items that were mapped
to the Cuckoo hash table, and an additional s · n comparisons to process the
s = ω(1) items that were mapped to the stash. We note that the concurrent and
independent work of [FNO18] proposes to use a PSI protocol for unbalanced set
sizes, such as in the work of [KLS+17], to reduce the complexity of handling the
stash from ω(n) to O(n) in PSI protocols. However, their idea can only be applied
when the output is the intersection itself. When the output is a function of the
intersection then their protocol has communication complexity O(n log log n), cf.
§1.4). In contrast, we achieve O(n) communication even when the output is a
function of the intersection.

We present two different techniques to achieve a linear communication protocol
with failure probability that is negligible in the statistical security parameter σ.
The first technique (see §5.1) is implied by a mathematical analysis of the failure
probability (as argued in §1.4). The second technique (see §5.2) is implied by the
empirical analysis presented in [PSZ18].

5.1 Linear Communication via Dual Execution

We overcome the difficulty of handling the stash by running a modified version
of the protocol in three phases. The first phase is similar to the basic protocol,
but ignores the items that P1 maps to the stash. Therefore this phase inputs to
the circuit the O(n) results of comparing P1’s input items (except those mapped
to the stash) with all of P2’s items. The second phase reverses the roles of the
parties, and in addition now P1 inputs only the items that it previously mapped
to the stash. In this phase P2 uses Cuckoo hashing and might map some items
to the stash. The last phase only compares the items that P1 mapped to the
stash in the first phase, to the items that P2 mapped to the stash in the second
phase, and therefore only needs to handle very few items. Below, we describe our
protocol in more detail: In Protocol 10, we describe our protocol in more detail.

Correctness & Efficiency. The protocol compares every pair in X × Y and
therefore every item in the intersection is input to the circuit exactly once:
Sections 1, . . . , β of the circuit cover all pairs in XT × Y , sections β + 1, . . . , 2β
cover all pairs in XS × YT and sections 2β + 1, . . . , 2β + s2 covers all pairs in
XS × YS . This implies that the result of the three-phase construction is exactly
the intersection X ∩ Y . The communication complexity in the first two steps of
the protocol is O(n · κ) as they involve the execution of a OPPRF with at most
O(n) items to the parties. The communication complexity of the third step is
O(n · γ) since it involves 2n+ s2 comparisons of γ-bit elements. Since the stash
size is s = O(log n), overall there are O(n) comparisons.

19

PROTOCOL 10 (PSI with Linear Communication)

Inputs. P1 has X = {x1, . . . , xn} and P2 has Y = {y1, . . . , yn}.
Protocol. The protocol proceeds in 3 phases as follows:
1. Run steps 1-2 of Protocol 9. Denote the items mapped to P1’s table by XT

(i.e., excluding the items mapped to the stash). In the end of this phase, for
every j ∈ [β], P1 holds the OPPRF result y⋆

j and P2 holds the target value
tj .

2. Reverse the roles of P1 and P2 and run steps 1-2 of Protocol 9 again, where
P1 inputs XS = XrXT (i.e., only the items that were previously mapped
to the stash) and P2 inputs Y . Since the roles are reversed then P1 maps
XS using simple hashing and P2 maps Y using Cuckoo hashing. Denote the
items mapped to the table and stash of P2 by YT and YS , respectively. In
the end of this phase, for every j ∈ [β], P1 has the target value t̃j and P2

has the OPPRF result ỹ⋆
j .

3. The parties use secure two-party computation (Functionality 1) with the
circuit C2β+s2,γ (where s is the stash size). For section j ∈ [β] of the
circuit, P1 and P2 input the first γ bits of y⋆

j and tj resp. For section
j ∈ {β + 1, . . . , 2β} of the circuit P1 and P2 input the first γ bits of t̃j and
ỹ⋆
j , respectively. Finally, for the rest s2 sections of the circuit, the parties

input every combination of XS × YS (padded with uniformly random items
so that |XS | = |YS | = s).

Security. As in the basic protocol (see §4.1), the security of this protocol is
implied by the security of the OPPRF and secure two-party computation.

5.2 Linear Communication via Stash-less Cuckoo Hashing

The largest communication cost factor in our protocols is the secure evaluation of
the circuit. The asymptotically efficient Protocol 10 requires computing at least
two copies of the basic circuit (for Phases 1 and 2), and it is therefore preferable
to implement a protocol which has better concrete efficiency. We design a protocol
that requires no stash (while achieving a small failure probability of less than
2−40), and hence uses no dual execution.

In order to be able to not use the stash, hashing is done with K > 2 hash
functions. We take into account the results of [PSZ18], which ran an empirical
evaluation for the failure probability of Cuckoo hashing (failure is defined as the
event where an item cannot be stored in the table and must be stored in the
stash). They run experiments for a failure probability of 2−30 with K = 3, 4 and
5 hash functions, and extrapolated the results to yield the minimum number of
bins for achieving a failure probability of less than 2−40. The results showed that
β = 1.27n, 1.09n, and 1.05n bins are required for K = 3, 4, and 5, respectively.

The main obstacle in using more than two hash functions in previous works
on PSI was that the communication was still linear in O(maxb · β), where maxb
is the maximal number of elements in a bin of the simple hash table. The value
of maxb increases with K since each item is stored K times in the simple hash

20

table. In our protocol the communication for the circuit is independent of maxb,
as it only depends on the number of bins β. The communication for sending
the polynomials, whose size is O(K · n · κ), is just a small fraction of the overall
communication and was in our experiments always smaller than 3%. In this
paper, we therefore use K = 3 hash functions for our stash-less protocol.

6 PSI with Associated Payload

In many cases, each input item of the parties has some “payload” data associated
with it. For example, an input item might include an id which is a credit card
number, and a payload which is a transaction that was paid using this credit card.
The parties might wish to compute some function of the payloads of the items in
the intersection (for example, the sum of the financial transactions associated
with these items). However, a straightforward application of our techniques does
not seem to support this type of computation: Recall that P2 might map multiple
items to each bin. The OPPRF associates a single output β to all these items,
and this value is compared in the circuit with the output α of P1. But if P2

inserts a single item to the circuit, it seems that this item cannot encode the
payloads of all items mapped to this bin.

The 2D Cuckoo hashing circuit-based PSI protocol of [PSWW18] handles
payloads well, since each comparison involves only a single item from each party.
While our basic protocol cannot handle payloads, we show here how it can be
adapted to efficiently encode payloads in the input to the circuit.

Let Table1 and Stash be P1’s table and stash after mapping its items using
Cuckoo hashing and let Table2 be P2’s table after mapping its items using simple
hashing. In addition, denote by U(x) and V (y) the payloads associated with
x ∈ X and y ∈ Y respectively and assume that all payloads have the same
length δ. The parties invoke two instances of batch OPPRF as follows:
1. A batch OPPRF where P1 inputs Table1[1], . . . ,Table1[β] and P2 inputs

Table2[1], . . . ,Table2[β] and T1, . . . , Tβ where Tj has |Table2[j]| elements, all
equal to a uniformly random and independent value tj ∈ {0, 1}

λ. This is the
same invocation of a batch OPPRF as in Protocol 9. At the end, P1 has the
OPPRF results y⋆1 , . . . , y

⋆
β and P2 has the target values t1, . . . , tj .

2. In the second batch OPPRF, P2 chooses the target values such that the ele-
ments in the set Tj are not equal. Specifically, P1 inputs Table1[1], . . . ,Table1[β]
and P2 samples t̃1, . . . , t̃β uniformly, and inputs Table2[1], . . . ,Table2[β] and
T1, . . . , Tβ where Tj(i) = t̃j ⊕V (Table2[j](i)). Denote the OPPRF results that
P1 obtains by ỹ⋆1 , . . . , ỹ

⋆
β .

Then, the circuit operates in the following way: For the j-th section, P1 inputs
Table1[j], y

⋆
j , ỹ

⋆
j and U(Table1[j]), and P2 inputs tj and t̃j . The circuit compares

y⋆j to tj . If they are equal then it forwards to the sub-circuit that computes f

the item Table1[j] itself, P1’s payload U(Table1[j]) and P2’s payload ỹ⋆j ⊕ t̃j . This
holds since if Table1[j] is the i-th item in P2’s table, namely, Table2[j](i), then the
value ỹ⋆j received by P1 is ỹ

⋆
j = t̃j⊕V (Table2[j](i)). Thus, ỹ

⋆
j⊕t̃j = V (Table2[j](i))

as required.

21

Table 1. The results of [PSZ18] for the required stash sizes s for K = 2 hash functions
and β = 2.4n bins, and the minimum OPPRF output bitlength γ to achieve failure
probability < 2−40 when mapping n elements into β bins with Cuckoo hashing. For
K > 2 hash functions we choose a large enough number of bins β to achieve stash
failure probability < 2−40.

Elements n 28 212 216 220 224

Stash size s for K = 2 12 6 4 3 2

OPPRF
output
length γ

K = 2, β = 2.4n 50 54 58 62 66
K = 3, β = 1.27n, s = 0 49 53 57 61 65
K = 4, β = 1.09n, s = 0 49 53 57 61 65
K = 5, β = 1.05n, s = 0 49 53 57 61 65

Efficiency. The resulting protocol has the same asymptotic complexity as our
initial protocols without payloads. The number of comparisons in the circuit is
the same as in the basic circuit.

7 Concrete Costs

In this section we evaluate the concrete costs of our protocol for concrete values of
the security parameters. We set the computational security parameter to κ = 128,
and the statistical security parameter to σ = 40.

7.1 Parameter Choices for Sufficiently Small Failure Probability

For K = 2 hash functions, following previous works on PSI (e.g., [PSSZ15,
PSWW18]), we set the table size parameter for Cuckoo hashing to ǫ = 0.2, and
use a Cuckoo table with β = 2n(1 + ǫ) = 2.4n bins. The resulting stash sizes for
mapping n elements into β = 2.4n bins, as determined by the experiments in
[PSZ18], are summarized in Tab. 1. Note that we use here concrete values for
the stash size, and are aiming for a failure probability smaller than 2−40. This
can either be achieved using the basic protocol of §4.1 with the right choice of
the stash size, or by running the three rounds O(n) complexity protocol of §5.

Another option is described in §5.2, where we use more than two hash
functions (specifically, use K = 3, 4, or 5 functions), with the hash table being of
size β = 1.27n, 1.09n, or 1.05n, respectively. These parameters achieve a failure
probability smaller than 2−40 according to the experimental analysis in [PSZ18].

As described in §4.2, even if there are no stash failures, the scheme can fail
due to collisions in the output of the PRF, with probability β · 2−γ , where γ is
the output bitlength of the OPPRF. To make this failure probability smaller
than the statistical security parameter (which we set to 40), the output bitlength
of the OPPRF must be γ = 40 + log2 β bits.

22

7.2 Computing Polynomial Interpolation

We implemented interpolation of polynomials of degree d using an O(d2) algorithm
based on Lagrange interpolation in a prime field where the prime is the Mersenne
prime 261 − 1. The runtime for interpolating a polynomial of degree d = 1024
was 7ms, measured on an Intel Core i7-4770K CPU with a single thread. The
runtime for different values of d behaved (very accurately) as a quadratic function
of d. The actual algorithms are those implemented in NTL v10.0 with field
arithmetics replaced with our customized arithmetic operations over the Mersenne
prime 261 − 1. Most importantly, this field enables an order of magnitude faster
multiplication of field elements: multiplying x ·y with |x|, |y| ≤ 61 is implemented
by multiplying x and y over Z to obtain z = xy with |z| ≤ 122. Then the result
is the sum of the element represented by the lower 61 bits of z with the element
represented by the higher 61 bits of z (and therefore no expensive modular
reduction is required). The Mersenne prime 261 − 1 allows the use of at least
40-bit statistical security for up to n = 220 elements for all our algorithms using
permutation-based hashing (cf. [PSSZ15]). To use larger sets, we see two possible
solutions: (i) using a larger Mersenne prime or (ii) reducing the statistical security
parameter σ (e.g., using σ = 38 for achieving less than 2−σ failure probability
for n = 222 elements, K = 3 hash functions, and β = 1.27n bins). The required
minimum bit-length of the elements using permutation-based hashing with failure
probability 2−σ is computed as ℓ = σ + 2 log2 n− log2 β. The OPPRF output is
also ≤ 61 bits in most cases as shown in Tab. 1.

For reducing the computation complexity of our protocol, we use the approach
described in §4.3, where instead of interpolating a polynomial of degree K · n,
where K is the number of hash functions and n is the number of elements for
PSI, we interpolate multiple smaller polynomials of degree at most d = 1024.
We therefore have to determine the minimum number of mega-bins B such that
when mapping N = K · n elements to B bins, the probability of having a bin
with more than maxb = 1024 elements is smaller than 2−40. As in the analysis
for simple hashing in [PSZ18], we use the formula from [MR95]:

P (“∃ bin with ≥ maxb elements”) ≤

B
∑

i=1

P (“bin i has ≥ maxb elements”)

= B ·
N
∑

i=maxb

(

N

i

)

·

(

1

B

)i

·

(

1−
1

B

)N−i

.

We depict the corresponding numbers in Tab. 2. With these numbers and
our experiments for polynomial interpolation described above, the estimated
runtimes for the polynomial interpolation are B · 7 ms. The hints (polynomials)
that need to be sent have size B ·maxb · γ bits which is only slightly larger than
the ideal communication of K · n · γ bits when using one large polynomial as
shown in Tab. 2.

Note that in contrast to many PSI solutions whose main run-time bottleneck
is already network bandwidth (which cannot be easily improved in many settings

23

Table 2. Parameters for mapping N = K ·n elements to B mega-bins s.t. each mega-bin
has at most maxb ≤ 1 024 elements with probability smaller than 2−40. The lower half
of the table contains the expected costs for the polynomial interpolations.

hash functions K = 2 K = 3

Set size n = 212 n = 216 n = 220 n = 212 n = 216 n = 220

mega-bins B 11 165 2 663 16 248 4 002

Maximum number of
elements maxb

944 1 021 1 024 975 1 021 1 024

Polynomial interpola-
tion [in milliseconds]

126 1 815 29 293 183 2 809 45 335

Size of hints [in bits] 560 736 9 770 970 169 068 544 826 800 14 432 856 249 980 928

Ideal size of hints for
one polynomial [in bits]

436 330 7 505 580 128 477 895 651 264 11 206 656 191 889 408

such as over the Internet), the run-time of our protocols can be improved by using
multiple threads instead of one thread. Since the interpolation of polynomials for
different mega-bins is independent of each other, the computation scales linearly
in the number of physical cores and thus can be efficiently parallelized.

7.3 Communication and Depth Comparison

We first compute the communication complexity of our basic construction
from §4.1. The communication is composed of (a) the OPRF evaluations for
each of the B bins, (b) the hints consisting of the polynomials, (c) the circuit
for comparing the outputs of the OPPRFs in each bin, and (d) the circuit for
comparing the s elements on the stash with the n elements of P2.

With regards to (a), the OPRF protocol of [KKRT16], which was also used
in [KMP+17], has an amortized communication of at most 450 bits per OPRF
evaluation for set sizes up to n = 224 elements (cf. [KKRT16, Tab. 1]). This
amounts to B · 450 bits of communication.

With regards to (b), for the size of the hints in the OPPRF construction
we use the values given in Tab. 2. These numbers represent the communication
when using mega-bins, and are slightly larger than the ideal communication of
K · n coefficients of size γ bits each, that would have been achieved by using
a single polynomial for all values. However, it is preferable to use mega-bins
since their usage substantially improves the computation complexity as described
in §4.3, while the total communication for the hints is at most 3% of the total
communication. (This also shows that any improvements of the size of the hints
will have only a negligible effect on the total communication.)

With regards to (c), the circuit compares B elements of bitlength γ, and hence
requires B · (γ − 1) AND gates. With 256 bits per AND gate [ALSZ13, ZRE15]
this yields B · (γ − 1) · 256 bits of communication.

With regards to (d), the final circuit consists of s·n comparisons of bitlength σ.
This requires sn(σ − 1) · 256 bits of communication.

24

Table 3. Communication in MB for circuit-based PSI on n elements of fixed bitlength
σ = 32 (left) and arbitrary bitlength hashed to σ = 40 + 2 log2(n)− 1 bits (right). The
numbers for previous protocols are based on the circuit sizes given in [PSWW18, Tab. 3]
with 256 bit communication per AND gate. The best values are marked in bold.

σ = 32 Arbitrary σ

Protocol n = 212 216 220 212 216 220

SCS [HEK12] 104 2 174 42 976 205 4 826 106 144
Circuit-Phasing [PSSZ15] 130 1 683 21 004 320 5 552 97 708
Hashing + SCS [FNO18] - 1 537 21 207 - 3 998 72 140
2D CH [PSWW18] 51 612 6 582 115 1 751 25 532

Ours Basic §4.1 41 550 8 123 65 870 12 731
Ours Advanced §5 35 604 10 277 35 604 10 277

Ours No-Stash §5.2 9 149 2 540 9 149 2 540

Breakdown:
OPRF 0.3 (3%) 5 (3%) 72 (3%) 0.3 (3%) 5 (3%) 72 (3%)
Sending polynomials 0.1 (1%) 2 (1%) 30 (1%) 0.1 (1%) 2 (1%) 30 (1%)
Circuit 9 (96%) 142 (96%) 2 438 (96%) 9 (96%) 142 (96%) 2 438 (96%)

Improvement factor 5.7x 4.1x 2.6x 12.8x 11.8x 10.1x

We now analyze the communication complexity of our O(n) protocol described
in §5. The main difference compared to the basic protocol analyzed above is that
a different method is used for comparing the elements of the stash, i.e., replacing
step (d) above. The new method replaces this step by letting P2 use Cuckoo
hashing of its n elements into B bins and then evaluating OPRF for each of these
bins. This requires B · 450 bits of communication plus B comparisons of γ bit
values. Overall, this amounts to B · (450+(γ−1) ·256) bits of communication. For
simplicity, we omit the communication for comparing the elements for phase 3
which compares the elements on the two stashes, as it is negligible.

Comparison to Previous Work. In Tab. 3, we compare the resulting com-
munication of our protocols to those of previous circuit-based PSI protocols
of [HEK12, PSSZ15, PSWW18, FNO18]. As can be seen from this table, our
protocols improve communication by an integer factor, where the main advan-
tage of our protocols is that their communication complexity is independent of
the bitlength of the input elements. Namely, for arbitrary input bitlengths, our
no-stash protocol improves the communication over the previous best protocol of
[PSWW18] by a factor of 12.8x for n = 212 to a factor of 10.1x for n = 220. For
fixed bitlength of σ = 32 bits, our no-stash protocol improves communication
over [PSWW18] by a factor of 5.7x for n = 212 to a factor of 2.6x for n = 220.

Circuit Depth. For some secure circuit evaluation protocols like GMW [GMW87]
the round complexity depends on the depth of the circuit. In Tab. 4, we de-
pict the circuit depths for concrete parameters of our protocols and previous
work, and show that our circuits have about the same low depth as the best
previous works [PSSZ15, PSWW18]. In more detail, the Sort-Compare-Shuffle
(SCS) circuit of [HEK12] has depth log2 σ · log2 n when using depth-optimized

25

Table 4. Circuit depth for circuit-based PSI on n elements of fixed bitlength σ = 32 (left)
and arbitrary bitlength hashed to σ = 40 + 2 log2(n)− 1 bits (right).

σ = 32 Arbitrary σ

Protocol n = 212 216 220 212 216 220

SCS [HEK12] 60 80 100 72 98 126
Circuit-Phasing [PSSZ15] 5 5 5 6 7 7
Hashing + SCS [FNO18] - 42 36 - 54 51
2D CH [PSWW18] 5 5 5 6 7 7

Our Protocols 6 6 6 6 7 7

comparison circuits. The protocols of [PSSZ15, PSWW18] have depth log2 σ.
A depth-optimized SCS circuit for the construction in [FNO18] has depth
log2(σ − log2(n/b)) · log2((1 + δ)b), where concrete parameters for n, δ, b are
given in [FNO18, Table 1]. Our protocols consist of circuits for comparing the
elements on the stash of bitlength σ and the outputs of the OPPRFs of length γ
and therefore have depth max(log σ, log γ) = max(log σ, log2(40 + 2 log2(n)− 1)).

7.4 Runtime Comparison

In this section we compare the runtimes of different PSI protocols. In §7.2 we
conducted experiments for polynomial interpolation, the main new part of our
protocol, and we show below that this step takes only a small fraction of the total
runtime. We also implemented our most efficient protocol (see §5.2).8 In addition,
we estimate the runtime of our less efficient basic protocol (see §4.1) and the
protocol with linear communication overhead (see §5) based on the experiments
of the interpolation procedure and rigorous estimations from previous works.

Previous Work. As we have seen in the analysis of the communication overhead
in §7.3, our protocols provide better improvements to performance in the case
of arbitrary bitlengths. The previous work of [PSWW18] gave runtimes only for
fixed bitlength of 32 bits in [PSWW18, Tab. 4]. Therefore, we extrapolate the
runtimes of the previous protocols from fixed bitlength to arbitrary bitlength
based on the circuit sizes given in [PSWW18, Tab. 3]. The estimated runtimes
are given in Tab. 5. The LAN setting is a 1 Gbit/s network with round-trip time
of 1 ms and the WAN setting is a 100 Mbit/s network with round-trip time of
100 ms. Runtimes were not presented in [FNO18], but since their circuit sizes and
depths are substantially larger than those of [PSWW18] (cf. Tab. 3 and Tab. 4),
their runtimes will also be substantially higher than those of [PSWW18].

Our Implementation. We implemented and benchmarked our most efficient
no-stash OPPRF-based PSI protocol (see §5.2) on two commodity PCs with an
Intel Core i7-4770K CPU. We instantiated our protocol with security parameter

8 Our implementation is available at https://github.com/encryptogroup/OPPRF-PSI.

26

https://github.com/encryptogroup/OPPRF-PSI

Table 5. Total run-times in ms for PSI variant protocols on n elements of arbitrary
bitlength using GMW [GMW87] for secure circuit evaluation and one thread. Numbers
for all but our protocols are based on [PSWW18]. The best values for generic circuit-
based PSI protocols are marked in bold.

Network LAN WAN

Protocol n = 212 216 220 212 216 220

Special-purpose PSI protocols (as baseline)

DH/ECC PSI [Sha80, Mea86, DGT12] 3 296 49 010 7 904 054 4 082 51 866 8 008 771
BaRK-OPRF [KKRT16] 113 295 3 882 540 1 247 14 604

Generic circuit-based PSI protocols

Circuit-Phasing [PSSZ15] 7 825 67 292 1 126 848 37 380 327 976 4 850 571
2D CH [PSWW18] 5 031 25 960 336 134 22 796 129 436 1 512 505

Ours Basic §4.1 (estimated) 2 908 13 767 182 204 12 934 63 861 752 695
Ours Advanced §5 (estimated) 1 674 9 763 148 436 7 372 43 675 597 885

Ours No-Stash §5.2, Total 1 199 8 486 120 731 5 910 22 134 261 481

Breakdown:
OPRF 724 (60%) 1 097 (13%) 5 844 (5%) 2 867 (49%) 4 164 (19%) 26 121 (10%)
Polynomial interpolation 183 (15%) 2 809 (33%) 45 335 (38%) 183 (3%) 2 809 (13%) 45 335 (17%)
Polynomial transmission 16 (1%) 145 (2%) 667 (0%) 816 (13%) 1 079 (5%) 4 012 (2%)
Polynomial evaluation 58 (5%) 1 344 (16%) 21 768 (18%) 58 (1%) 1 344 (6%) 21 768 (8%)
Circuit 218 (18%) 3 091 (36%) 47 117 (39%) 1 986 (34%) 12 738 (57%) 164 245 (63%)

Improvement over [PSWW18] 4.2x 3.1x 2.8x 3.9x 5.8x 5.8x

κ = 128 bits, K = 3 hash functions, B = 1.27n bins, and no stash (see §5.2). Our
OPPRF implementation is based on the OPRF protocol of [PSZ18].9 For the
secure circuit evaluation, we used the ABY framework [DSZ15]. The run-times
are averaged over 50 executions. The results are described in Tab. 5.

Comparison with PSI Protocols. As a baseline, we compare our performance
with specific protocols for computing the intersection itself. (However, as is
detailed in §1.2, our protocol is circuit-based and therefore has multiple advantages
compared to specific PSI protocols.) Our best protocol is slower by a factor of
41x than today’s fastest PSI protocol of [KKRT16] for n = 220 elements in the
WAN setting (cf. Tab. 5).

Comparison with Public Key-based PSI Variant Protocols. Our circuit-
based protocol is substantially faster than previous public key-based protocols
for computing variants of PSI, although they have similar asymptotic linear
complexity. As an example, consider comparing whether the size of the intersection
is greater than a threshold (PSI-CAT). In our protocol, we can compute the
PSI-CAT functionality by extending the PSI circuit of Tab. 5 with a Hamming
distance circuit (which, using the size-optimal construction of [BP06], adds less
than n AND gates). The final comparison with the threshold adds another log2 n
AND gates [BPP00] which are negligible as well. For the PSI-CAT functionality,
[ZC17] report runtimes of 779 seconds for n = 211 elements, [HOS17] report
runtimes of 728 seconds for n = 211 elements, and [ZC18] report runtimes of
at least 138 seconds for n = 100 elements, whereas our protocol requires 0.52

9 This OPRF protocol has communication that is higher by 10% to 15% than the
communication of the OPRF protocol of [KKRT16]. But since OPRF requires less
than 3% of the total communication, this additional cost is negligible in our protocol.

27

seconds for n = 211 elements and 0.34 seconds for n = 100 elements. Hence, we
improve over [ZC17] by a factor of 1 498x, over [HOS17] by a factor of 1 400x,
and over [ZC18] by a factor of 405x. As an example for computing PSI-CAT with
larger set sizes, our protocol requires 124 seconds for n = 220 elements.

The protocol described by Google for computing ad revenues [Yun15, Kre17]
(see §1.2) is based on the DH-based PSI protocol which is already 65x slower
than our protocol for n = 220 elements over a LAN (cf. Tab. 5) and leaks the
intersection cardinality as an intermediate result. Here, too, our circuit would be
only slightly larger than the PSI circuit of Tab. 5.

Comparison with Circuit-based PSI Protocols. As can be seen from Tab. 5,
our no-stash protocol from §5.2 is substantially more efficient than our basic pro-
tocol and our linear asymptotic overhead protocol from §4.1 and §5, respectively.
It improves over the best previous circuit-based PSI protocol from [PSWW18] by
factors of 4.2x to 2.8x in the LAN setting, and by factors of 5.8x to 3.9x in the
WAN setting. From the micro-benchmarks in Tab. 5, we also observe that the
runtimes for the polynomial interpolation are a significant fraction of the total
runtimes of our protocols (3% to 33% for the interpolation and 1% to 18% for the
evaluation). Since polynomials are independent of each other, the interpolation
and evaluation can be trivially parallelized for running with multiple threads,
which would give this part of the computation a speed-up that is linear in the
number of physical cores of the processor.

Acknowledgements. We thank Ben Riva and Udi Wieder for valuable discus-
sions about this work. This work has been co-funded by the DFG within project
E4 of the CRC CROSSING and by the BMBF and the HMWK within CRISP,
by the BIU Center for Research in Applied Cryptography and Cyber Security
in conjunction with the Israel National Cyber Bureau in the Prime Minister’s
Office, and by a grant from the Israel Science Foundation.

References

ADN+13. N. Asokan, A. Dmitrienko, M. Nagy, E. Reshetova, A.-R. Sadeghi, T. Schnei-
der, and S. Stelle. CrowdShare: Secure mobile resource sharing. In ACNS,
2013.

ALSZ13. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient
oblivious transfer and extensions for faster secure computation. In CCS,
2013.

BP06. J. Boyar and R. Peralta. Concrete multiplicative complexity of symmetric
functions. In MFCS, 2006.

BPP00. J. Boyar, R. Peralta, and D. Pochuev. On the multiplicative complexity of
Boolean functions over the basis (∧,⊕, 1). TCS, (1), 2000.

CADT14. H. Carter, C. Amrutkar, I. Dacosta, and P. Traynor. For your phone only:
custom protocols for efficient secure function evaluation on mobile devices.
Security and Communication Networks, 7(7), 2014.

CO18. M. Ciampi and C. Orlandi. Combining private set-intersection with secure
two-party computation. In SCN, 2018.

28

DC17. A. Davidson and C. Cid. An efficient toolkit for computing private set
operations. In ACISP, 2017.

DD15. S. K. Debnath and R. Dutta. Secure and efficient private set intersection
cardinality using Bloom filter. In ISC, 2015.

DGT12. E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and private computation
of cardinality of set intersection and union. In CANS, 2012.

DKT10. E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set
intersection protocols secure in malicious model. In ASIACRYPT, 2010.

DSMRY09. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust
private set intersection. In ACNS, 2009.

DSZ15. D. Demmler, T. Schneider, and M. Zohner. ABY – a framework for efficient
mixed-protocol secure two-party computation. In NDSS, 2015.

DT10. E. De Cristofaro and G. Tsudik. Practical private set intersection protocols
with linear complexity. In FC, 2010.

Dwo06. C. Dwork. Differential privacy. In ICALP, 2006.
EFLL12. Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell. SCAPI: The secure

computation application programming interface. Cryptology ePrint Archive,
Report 2012/629, 2012.

FHNP16. M. J. Freedman, C. Hazay, K. Nissim, and B. Pinkas. Efficient set in-
tersection with simulation-based security. Journal of Cryptology, 29(1),
2016.

FIPR05. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search
and oblivious pseudorandom functions. In TCC, 2005.

FNO18. B. H. Falk, D. Noble, and R. Ostrovsky. Private set intersection with linear
communication from general assumptions. Cryptology ePrint Archive,
Report 2018/238, 2018.

FNP04. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and
set intersection. In EUROCRYPT, 2004.

GM11. M.T. Goodrich and M. Mitzenmacher. Privacy-preserving access of out-
sourced data via oblivious ram simulation. In ICALP, 2011.

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In STOC,
1987.

Gon81. G. H. Gonnet. Expected length of the longest probe sequence in hash code
searching. Journal of the ACM, 28(2), 1981.

HCE11. Y. Huang, P. Chapman, and D. Evans. Privacy-preserving applications on
smartphones. In Hot topics in Security (HotSec), 2011.

HEK12. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS, 2012.

HEKM11. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security, 2011.

HN10. C. Hazay and K. Nissim. Efficient set operations in the presence of malicious
adversaries. In PKC, 2010.

HOS17. P. Hallgren, C. Orlandi, and A. Sabelfeld. PrivatePool: Privacy-preserving
ridesharing. In Computer Security Foundations Symposium (CSF), 2017.

IKN+17. M. Ion, B. Kreuter, E. Nergiz, S. Patel, S. Saxena, K. Seth, D. Shanahan,
and M. Yung. Private intersection-sum protocol with applications to
attributing aggregate ad conversions. Cryptology ePrint Archive, Report
2017/738, 2017.

IKNP03. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In CRYPTO, 2003.

29

KKRT16. V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In CCS, 2016.

KLS+17. Á. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas. Private set
intersection for unequal set sizes with mobile applications. PoPETs, 2017(4),
2017.

KM18. E. Kushilevitz and T. Mour. Sub-logarithmic distributed oblivious RAM
with small block size. CoRR, abs/1802.05145, 2018.

KMP+17. V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu. Practical
multi-party private set intersection from symmetric-key techniques. In
CCS, 2017.

KMW09. A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo
hashing with a stash. SIAM Journal on Computing, 39(4), 2009.

Kre17. B. Kreuter. Secure multiparty computation at Google. In RWC, 2017.
Kre18. Benjamin Kreuter. Techniques for Scalable Secure Computation Systems.

PhD thesis, Northeastern University, 2018.
KS08. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates

and applications. In ICALP, 2008.
LWN+15. C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A program-

ming framework for secure computation. In S&P, 2015.
Mea86. C. Meadows. A more efficient cryptographic matchmaking protocol for use

in the absence of a continuously available third party. In S&P, 1986.
MR95. R. Motwani and P. Raghavan. Randomized algorithms. 1995.
PR01. R. Pagh and F. F. Rodler. Cuckoo hashing. In European Symposium on

Algorithms (ESA), 2001.
PSSZ15. B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set

intersection using permutation-based hashing. In USENIX Security, 2015.
PSWW18. B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient circuit-based

PSI via Cuckoo hashing. In EUROCRYPT, 2018.
PSZ14. B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection

based on OT extension. In USENIX Security, 2014.
PSZ18. B. Pinkas, T. Schneider, and M. Zohner. Scalable private set intersection

based on OT extension. TOPS, 21(2), 2018.
RA18. A. C. D. Resende and D. F. Aranha. Faster unbalanced private set inter-

section. In FC, 2018.
RR17a. P. Rindal and M. Rosulek. Improved private set intersection against

malicious adversaries. In EUROCRYPT, 2017.
RR17b. P. Rindal and M. Rosulek. Malicious-secure private set intersection via

dual execution. In CCS, 2017.
Sha80. A. Shamir. On the power of commutativity in cryptography. In ICALP,

1980.
SZ13. T. Schneider and M. Zohner. GMW vs. Yao? Efficient secure two-party

computation with low depth circuits. In FC, 2013.
Yao86. A. C. Yao. How to generate and exchange secrets. In FOCS, 1986.
Yun15. M. Yung. From mental poker to core business: Why and how to deploy

secure computation protocols? In CCS, 2015.
ZC17. Y. Zhao and S. S. M. Chow. Are you the one to share? Secret transfer

with access structure. PoPETs, 2017(1), 2017.
ZC18. Y. Zhao and S. S. M. Chow. Can you find the one for me? Privacy-preserving

matchmaking via threshold PSI. In WPES, 2018.
ZRE15. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole: Reducing

data transfer in garbled circuits using half gates. In EUROCRYPT, 2015.

30

	Efficient Circuit-based PSI with Linear Communication

