
Efficient Cloth Modeling and Rendering

Katja Daubert
�
, Hendrik P. A. Lensch

�
, Wolfgang Heidrich

✁
, and Hans-Peter Seidel

�✂ ✄
Max-Planck-Institut für Informatik, ☎ ✄

The University of British Columbia 1

Abstract. Realistic modeling and high-performance rendering of cloth and
clothing is a challenging problem. Often these materials are seen at distances
where individual stitches and knits can be made out and need to be accounted
for. Modeling of the geometry at this level of detail fails due to sheer complexity,
while simple texture mapping techniques do not produce the desired quality.
In this paper, we describe an efficient and realistic approach that takes into ac-
count view-dependent effects such as small displacements causing occlusion and
shadows, as well as illumination effects. The method is efficient in terms of mem-
ory consumption, and uses a combination of hardware and software rendering to
achieve high performance. It is conceivable that future graphics hardware will be
flexible enough for full hardware rendering of the proposed method.

1 Introduction

Fig. 1. Woolen sweater rendered using our ap-
proach (knit and perl loops).

One of the challenges of modeling and
rendering realistic cloth or clothing is
that individual stitches or knits can of-
ten be resolved from normal viewing dis-
tances. Especially with coarsely wo-
ven or knitted fabric, the surface cannot
be assumed to be flat, since occlusion
and self-shadowing effects become sig-
nificant at grazing angles. This rules out
simple texture mapping schemes as well
as bump mapping. Similarly, model-
ing all the geometric detail is prohibitive
both in terms of the memory require-
ments and rendering time. On the other
hand, it is probably possible to compose
a complex fabric surface from copies of
individual weaving or knitting patterns
unless the viewer gets close enough to
the fabric to notice the periodicity. This leads to approaches like virtual ray-tracing [5],
which are more feasible in terms of memory consumption, but still result in long ren-
dering times.

In this paper we present a fast and memory-efficient method for modeling and ren-
dering fabrics that is based on replicating weaving or knitting patterns. While the ren-
dering part currently makes use of a combination of hardware and software rendering,
it is conceivable that future graphics hardware will be flexible enough for full hardware
rendering.

Our method assumes we have one or a small number of stitch types, which are
repeated over the garment. Using a geometric model of a single stitch, we first compute

1Part of this work was done during a research visit of the first author to the University of British Columbia



the lighting (including indirect lighting and shadows) using the methods described in
[3]. By sampling the stitch regularly within a plane we then generate a view dependent
texture with per-pixel normals and material properties.

Before we cover the details of this representation in Section 3, we will briefly sum-
marize related work in Section 2. We then describe acquisition and fitting of data from
modeled micro-geometry in Sections 4, and 5. After discussing the rendering algorithm
in Section 6 we finally present our results in Section 7.

2 Related Work

In order to efficiently render replicating patterns such as cloth without explicitly repre-
senting the geometry at the finest level, we can choose between several different rep-
resentations. The first possibility is to compose global patterns of parts with precom-
puted illumination, such as light fields [13] and Lumigraphs [6]. However, these ap-
proaches assume fixed illumination conditions, and expanding them to arbitrary illumi-
nation yields an 8-dimensional function (which has been called the reflectance field [4])
that is too large to store for practical purposes.

Another possibility is to model the patterns as volumes [7, 14] or simple geome-
try (for example, height fields) with a spatially varying BRDF. Hardware accelerated
methods for rendering shadowing and indirect illumination in height fields have been
proposed recently [8, 16], as well as hardware algorithms for rendering arbitrary uni-
form [9, 10] and space-variant materials [11]. However, the combination of space-
variant materials with bump- or displacement maps is well beyond the capabilities of
current graphics hardware. This would require an excessive number of rendering passes
which is neither practical in terms of performance nor in terms of numerical precision.

For high-performance rendering we therefore need to come up with more efficient
representations that allow us to simulate view-dependent geometric effects (shadowing
and occlusion) as well as illumination effects (specularity and interreflection) for space-
variant materials in a way that is efficient both in terms of memory and rendering time.

In work parallel to ours, Xu et al. [18] developed the lumislice, which is a rendering
method for textiles that is more tailored for high-quality, off-line rendering, whereas
our method uses more precomputation to achieve near-interactive performance. In fact,
the lumislice could be used as a way to precompute the data structures we use.

The method we propose is most closely related to bidirectional texture functions [2]
and virtual ray-tracing [5]. As we will discuss below, our representation is, however,
more compact and is easy to filter for correct anti-aliasing. Our approach is also re-
lated to image based rendering with controllable illumination, as described by Wong et
al. [17]. Again, our representation is more compact, easier to filter and lends itself to
partial use of graphics hardware. Future hardware is likely to have enough flexibility
to eliminate the remaining software steps, making the method suitable for interactive
applications.

3 Data Representation

Our representation of cloth detail is based on the composition of repeating patterns (in-
dividual weaves or knits) for which efficient data structures are used. In order to capture
the variation of the optical properties across the material, we employ a spatially varying
BRDF representation. The two spatial dimensions are point sampled into a 2D array.
For each entry we store different parameters for a Lafortune reflection model [12], a



lookup table, as well as the normal and tangent.

An entry’s BRDF ✆ ✝ ✞ ✟✠ ✡ ✟☛ ☞ for the light direction ✟✠ and the viewing direction ✟☛ is
given by the following equation:✆ ✝ ✞ ✟✠ ✡ ✟☛ ☞✍✌✏✎ ✞ ✟☛ ☞✒✑ ✆ l ✞ ✟✠ ✡ ✟☛ ☞ ✡ (1)

where ✆ l ✞ ✟✠ ✡ ✟☛ ☞ denotes the Lafortune model and
✎ ✞ ✟☛ ☞ is the lookup table 2.

The Lafortune model itself consists of a diffuse part ✓ and a sum of lobes 3:✆ l ✞ ✟✠ ✡ ✟☛ ☞✒✌ ✠ ✔ ✑ ✕✖✗ ✓✙✘✛✚ ✜✣✢✤ ✞ ✠ ✥✦ ✡ ✠ ✥✧ ✡ ✠ ✥✔ ☞★✑★✩✫✪ ✦ ✬✮✭✯✭✭ ✪ ✧ ✬✮✭✭✰✭ ✪ ✔ ✬✲✱ ✑
✕✗ ☛ ✥✦☛ ✥✧☛ ✥✔✴✳✵✷✶✸✒✹ ✬ ✳ ✺✵ (2)

Each lobe’s shape and size is defined by its four parameters ✪ ✦ ✡ ✪ ✧ ✡ ✪ ✔ , and ✻ . Since ✆ l
is wavelength dependent, we represent every parameter as a three-dimensional vector,
one dimension per color channel. Before evaluating the lobe we transform the light and
viewing direction into the local coordinate system given by the sampling point’s average

normal and tangent, yielding ✟✠ ✥ and ✟☛ ✥ . In order to account for area foreshortening we
multiply by

✠ ✔
.

The lookup table
✎ ✞ ✟☛ ☞ stores color and alpha values for each of the original viewing

directions. It therefore closely resembles the directional part of a light field. Values for
directions not stored in the lookup table are obtained by interpolation. Although general
view-dependent reflection behavior including highlights etc., could be described by a
simple Lafortune BRDF, we introduce the lookup table to take more complex properties
like shadowing and masking (occlusion) into account that are caused by the complex
geometry of the underlying cloth model.

Like in redistribution bump mapping [1], this approach aims at simulating the oc-
clusion effects that occur in bump maps at grazing angles. In contrast to redistribution
bump mapping, however, we only need to store a single color value per viewing direc-
tion, rather than a complete normal distribution. Figure 5 demonstrates the effect of the
modulation with the lookup table. The same data, acquired from the stitch model shown
in the middle, was used to fit a BRDF model without a lookup table, only consisting
of several cosine lobes (displayed on the left cloth in Figure 5) and a model with an
additional lookup table (cf. Figure 5 on the right). Both images were rendered using
the same settings for light and viewing direction. Generally, without a lookup table,
the BRDF tends to blur over the single knits. Also the BRDF without the lookup table
clearly is not able to capture the color shifts to red at grazing angles, which are nicely
visible on the right cloth.

The alpha value stored in the lookup table is used to evaluate the transparency. It
is not considered in the multiplication with ✆ l, but used as described in Section 6 to
determine if there is a hole in the model at a certain point for a given viewing direction.
The alpha values are interpolated similarly to the color values.

4 Data Acquisition

After discussing the data structure we use for representing the detail of the fabrics, we
now describe how to obtain the necessary data from a given 3D model.

2Both ✼✒✽ ✾✿ ❀ and ❁ l are defined for each color channel, so ❂ denotes the component-wise multiplication of
the color channels.

3The operator ❃ ❄ is defined to return zero if ❃❆❅❈❇ .



We model the base geometry of our knits and weaves using implicit surfaces, the
skeletons of which are simple Bézier curves. By applying the Marching Cubes algo-
rithm we generate triangle meshes, which are the input for our acquisition algorithm.

Now we can obtain the required data. As mentioned in Section 3, the spatial varia-
tions of the fabric pattern are stored as a 2D array of BRDF models. Apart from radi-

ance samples ❉ ✞ ✟✠ ✡ ✟☛ ☞
for all combinations of viewing and light directions, we also need

an average normal, an average tangent, and an alpha value for each viewing direction
for each of these entries.

We use an extension of Heidrich et al.’s algorithm ([8]) to triangle meshes ([3]),
which allows us to compute the direct and indirect illumination of a triangle mesh for a
given viewing and light direction per vertex in hardware (for details see [3]). In order
to account for masking and parts of the repeated geometry being visible through holes,
we paste together multiple copies of the geometry.

Fig. 2. Computing the sampling locations for the radiance values.
Left: top view, middle: projection, right: resulting sampling loca-
tions, discarding samples at holes.

Now we need to
collect the radiance data
for each sampling point.
We obtain the 2D sam-
pling locations by first
defining a set of evenly
spaced sampling points
on the top face of the
model’s bounding box,
as can be seen on the
left in Figure 2. Then we project these points according to the current viewing di-
rection (see Figure 2 in the middle) and collect the radiance samples from the surface
visible through these 2D projections (see Figure 2 right), similarly to obtaining a light
field.

Note that, due to parallax effects, for each entry we combine radiance samples from
a number of different points on the actual geometry. Like in [17], we will use this
information from different surface points to fit a BRDF for the given sampling location.

for each ✾✿ {
ComputeSamplingPoints();
RepeatScene(vertex color=normals);
StoreNormals();
StoreAlpha();

for each ✾❊ {
ComputeLighting();
RepeatScene(vertex color=lighting);
StoreRadiance();

}
}
AverageNormals();

Fig. 3. Pseudo code for the acquisition procedure.

As the stitch geometry can have
holes, there might be no surface vis-
ible at a sampling point for a certain
viewing direction. We store this in-
formation as a boolean transparency
in the alpha channel for that sample.
Multiple levels of transparency values
can be obtained by super-sampling,
i.e. considering the neighboring pix-
els.

In order to compute the normals,
we display the scene once for each
viewing direction with the normals
coded as color values. An average nor-

mal is computed by adding the normals separately for each sampling point and aver-
aging them at the end. We can construct a tangent from the normal and the bi-normal,
which in turn we define as the vector perpendicular to both the normal and the ❋ -axis.
Figure 3 shows how the steps are put together in the acquisition algorithm.



5 Fitting Process

Once we have acquired all the necessary data, we use it to find an optimal set of pa-
rameters for the Lafortune model for each entry in the array of BRDFs. This fitting
procedure can be divided into two major steps which are applied alternately. At first,
the parameters of the lobes are fit. Then, in the second step, the entries of the lookup
table are updated. Now the lobes are fit again and so on.

Given a set of all radiance samples and the corresponding viewing and light direc-
tions acquired for one sampling point, the fitting of the parameters of the Lafortune
model ✆ l requires a non-linear optimization method. As proposed in [12], we applied
the Levenberg-Marquardt algorithm [15] for this task.

The optimization is initiated with an average gray BRDF with a moderate specular
highlight and slightly anisotropic lobes, e.g. ✪ ✦ ✌❍● ■ ❏ ❏▲❑ ✪ ✧ for the first and ✪ ✧ ✌● ■ ❏ ❏▼❑ ✪ ✦ for the second lobe if two lobes are fit. For the first fitting of the BRDF the
lookup table

✎ ✞ ✟☛ ☞ is ignored, i.e. all its entries are set to white.
After fitting the lobe parameters, we need to adapt the sampling point’s lookup table✎ ✞ ✟☛ ☞ . Each entry of the table is fit separately. This time only those radiance samples

of the sampling point that correspond to the viewing direction of the current entry are
considered. The optimal color for one entry minimizes the following set of equations:◆ ❉ ✞ ✟✠ ❖ ✡ ✟☛ ☞ ✡ ❉ ✞ ✟✠ P ✡ ✟☛ ☞ ✡ ■ ■ ■ ✡ ❉ ✞ ✟✠ ◗✍✡ ✟☛ ☞ ❘❚❙❯✌✏✎ ✞ ✟☛ ☞ ◆ ✆ l ✞ ✟✠ ❖ ✡ ✟☛ ☞ ✡ ✆ l ✞ ✟✠ P ✡ ✟☛ ☞ ✡ ■ ■ ■ ✡ ✆ l ✞❱✟✠ ◗✍✡ ✟☛ ☞ ❘❚❙ (3)

where ❉ ✞ ✟✠ ❖ ✡ ✟☛ ☞ ✡ ■ ■ ■ ✡ ❉ ✞ ✟✠ ◗❆✡ ✟☛ ☞ are the radiance samples of the sampling point with the

common viewing direction ✟☛ and the distinct light directions ✟✠ ❖ ✡ ■ ■ ■ ✡ ✟✠ ◗ . The currently

estimated lobes are evaluated for every light direction yielding ✆ l ✞ ✟✠ ✜ ✡ ✟☛ ☞ . Treating the
color channels separately, Equation 3 can be rewritten by replacing the column vector

on its left side by ✟❉ ✞ ✟☛ ☞ , the vector on its right side by ✟✆★✞ ✟☛ ☞ , yielding ✟❉ ✞ ✟☛ ☞✍✌✏✎ ✞ ✟☛ ☞❲✑ ✟✆★✞ ✟☛ ☞ .
The least squares solution to this equation is given by✎ ✞ ✟☛ ☞✍✌❨❳ ✟✆★✞ ✟☛ ☞ ❩ ✟❉ ✞ ✟☛ ☞ ❬❳ ✟✆★✞ ✟☛ ☞ ❩ ✟✆★✞ ✟☛ ☞ ❬ (4)

where ❳ ✑ ❩ ✑ ❬ denotes the dot product. This is done separately for every color channel and
easily extends to additional spectral components.

To further improve the result we alternately repeat the steps of fitting the lobes
and fitting the lookup table. The iteration stops as soon as the average difference of
the previous lookup table’s entries to the new lookup table’s entries is below a certain
threshold.

In addition to the color, each entry in the lookup table also contains an alpha value
indicating the opacity of the sample point. This value is fixed for every viewing di-
rection and is not affected by the fitting process. Instead it is determined through ray-
casting during the data acquisition phase.

Currently, we also derive the normal and tangent at each sample point directly from
the geometric model. However, the result of the fitting process could probably be further
improved by also computing a new normal and tangent to best fit the input data.

5.1 Mip-Map Fitting

The same fitting we have done for every single sample point can also be performed
for groups of sample points. Let a sample point be a texel in a texture. Collecting all



radiance samples for four neighboring sample points, averaging the normals, fitting the
lobes and the entries of the lookup table then yields the BRDF corresponding to a texel
on the next higher mip-map level.

By grouping even more sample points, further mip-map levels can be generated.
The overall effort per level stays the same since the same number of radiance samples
are involved at each level.

6 Rendering

After the fitting process has been completed for all sampling points we are ready to
apply our representation of fabric patterns to a geometric model. We assume the given
model has per vertex normals and valid texture coordinates ❭✴❪ ✭ ■ ■ ❫ ✹❆❴ P , where

❫ ✹ is the
number of times the pattern is to be repeated across the whole cloth geometry. Further-
more, we assume the fabric patterns are stored in a 2D array, the dimensions of which
correspond to the pattern’s spatial resolution ✞ res ✦ ✡ res ✧ ☞ . Our rendering algorithm then
consists of four steps:

1. Interpolate per pixel normals

2. Compute indices into the pattern array, yielding a BRDF ✆❲✝
3. Evaluate ✆ ✝ with light and view mapped into geometry’s local coordinate system

4. Write result to framebuffer

The goal of Step 1 is to estimate a normal for each visible point on the object. We do
this by color coding the normals at the vertices and rendering the scene using Gouraud
shading. Each framebuffer value with an alpha value ❵✌ ✭ now codes a normal.

The next step is to find out which BRDF we need to evaluate in order to obtain the
color for each pixel. In order to do this we first generate a texture with the resolution✞ res ✦ ✡ res ✧ ☞ in which the red and green channel of each pixel encode its position. Note
that this texture has to be generated only once and can be reused for other views and
light directions. Using hardware texture mapping with the above mentioned texture
coordinates, the texture is replicated

❫ ✹ times across the object. Now the red and green
channel of each pixel in the framebuffer holds the correct indices into the 2D array of
BRDFs for this specific fabric pattern.

Once we know which BRDF to evaluate, we map the light and viewing direction
into the geometry’s local coordinate system, using the normals obtained in Step 1 and
a tangent constructed as described in Section 4. Note that two mappings need to take
place: this one, which maps the world view and light to the cloth geometry’s local

coordinate system (yielding ✟✠ and ✟☛ ), and another when evaluating the BRDF, which

transforms these values to the pattern’s local coordinate system (yielding ✟✠ ✥ , ✟☛ ✥ ).
The software evaluation of the BRDF model (see Section 3) returns three colors and

an alpha value from the lookup table, which we then write to the framebuffer.
The presented rendering technique utilizes hardware as far as possible. However,

the BRDF model is still evaluated in software, although mapping this onto hardware
should be feasible with the next generation of graphics cards.

6.1 Mip-Mapping

As described in Section 5.1, we can generate several mip-map levels of BRDFs. We
will now explain how to enhance the above algorithm to correctly use different mip-
map levels, thereby exploiting OpenGL mip-mapping.



First we modify Step 2 and now generate one texture per mip-map level. Each tex-
ture’s resolution corresponds to the BRDF’s spatial resolution at this level. As before,
the red and green channel code the pixel’s location in the texture. Additionally, we now
use each pixel’s blue channel to code the mip-map level of the corresponding texture.
For example, if we have ❛ levels, all pixel’s blue values are ✭ in texture 0, ✭ ■ ❏ in texture
1, ✭ ■ ❜ in texture 2 and so on.

If we set up OpenGL mip-mapping with these textures specified for the correct
levels, the blue channel of each pixel will tell us which texture to use, while the red and
green channel still code the indices into the array of BRDFs at this level.

Blending between two mip-map levels is also possible. As we do not want to blend
the texture coordinates in the red and green channels, however, we need two passes to
do so. The first pass is the same as before. However, in the second pass we setup the
mip-map technique to linearly interpolate between two levels. We avoid overwriting
the values in the red and green channels by using a color mask. Now the value of the
blue channel

☛ ❝
codes between which levels to blend (in the above example between

levels
✠ ❞★❡ ❢ ✌❤❣ ☛ ❝ ✐ ✭ ■ ❏ ❥ and

✠ ❞✒❦ ❧ ✌❤♠ ☛ ❝ ✐ ✭ ■ ❏ ♥ ) and also tells us the blending factor (here✞ ☛ ❝✒♦ ✠ ❞✒❡ ❢ ✑ ✭ ■ ❏ ☞ ✐ ✭ ■ ❏ ).
7 Results and Applications

We implemented our algorithms on a PC with an AMD Athlon 1GHz processor and
a GeForce 2 GTS graphics card. To generate the images in this paper we applied the
acquired fabric patterns to cloth models we modeled with the 3D Studio Max plug-
ins Garment Maker and Stitch. Our geometric models for the knit or weave patterns
consist of 1300–23000 vertices and 2400–31000 triangles. The computation times of
the acquisition process depend on the number of triangles, as well as the sampling
density for the viewing and light directions, but generally vary from 15 minutes to
about 45 minutes. We typically used 32 ♣ 32 or 64 ♣ 64 viewing and light directions,
uniformly distributed over the hemisphere, generating up to 4096 radiance samples per
sampling point on the lowest level. We found a spatial resolution of 32 ♣ 32 samples to
be sufficient for our detail geometry, which results in 6 mip-map levels and 1365 BRDF
entries. The parameter fitting of a BRDF array of this size takes about 2.5 hours. In
our implementation each BRDF in the array (including all the mip-map levels) has the
same number of lobes. We found out that generally one or two lobes are sufficient to
yield visually pleasing results. The threshold mentioned in Section 5 was set to 0.1 and
we noted that convergence was usually achieved after 2 iterations. Once all parameters
have been fit we need only 4 MB to store the complete data structure for one type of
fabric, including all mip-map levels and the lookup tables with 64 entries per point.

The rendering times e.g. for Figure 1 are about 1 frame per second for a resolution
of q r ✭ ♣ ❜ ✭ ✭ pixels. The bulk of this time is spent on reading back the framebuffer
contents in order to evaluate the BRDF for every pixel. We therefore expect that with
the advent of more flexible hardware, which will allow us to implement the rendering
part of this paper without such a software component, the proposed method will become
feasible for interactive applications.

The dress in Figure 4(a) displays a fabric pattern computed with our method. In
Figure 4(b) we compare the results of a mip-mapped BRDF to a single level one. As
expected the mip-mapping nicely gets rid of the severe aliasing clearly visible in the
not mip-mapped left half of the table. Figure 5 illustrates how even complex BRDFs
with color shifts can be captured using our model. Figure 1 and Figure 6 show different
fabric patterns displayed on the same cloth geometry.



8 Conclusions

In this paper we have presented a memory-efficient representation for modeling and
rendering fabrics that is based on replicating individual weaving or knitting patterns. We
have demonstrated how our representation can be generated by fitting samples from a
global illumination simulation to it. In a similar fashion it should be possible to acquire
a fitted representation from measured image data. Our model is capable of capturing
color variations due to self-shadowing and self-occlusion as well as transparency. In
addition, it naturally lends itself to mip-mapping, thereby solving the filtering problem.

Furthermore we presented an efficient rendering algorithm which can be used to
apply our model to any geometry, achieving near-interactive frame rates with a combi-
nation of hardware and software rendering. With the increasing flexibility of upcoming
generations of graphics boards, we expect to be able to implement the rendering algo-
rithm completely in hardware soon. This would make the approach suitable for fully
interactive and even real time applications.

References

1. B. Becker and N. Max. Smooth Transitions between Bump Rendering Algorithms. In SIGGRAPH ’93

Proceedings, pages 183–190, August 1993.

2. K. Dana, B. van Ginneken, S. Nayar, and J. Koenderink. Reflectance and Texture of Real World Surfaces.
ACM Transactions on Graphics, 18(1):1–34, January 1999.

3. K. Daubert, W. Heidrich, J. Kautz, J.-M. Dischler, and Hans-Peter Seidel. Efficient Light Transport
Using Precomputed Visibility. Technical Report MPI-I-2001-4-003, Max-Planck-Institut für Informatik,
2001.

4. P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar. Acquiring the reflectance
field of a human face. In SIGGRAPH 2000 Proceedings, pages 145–156, July 2000.

5. J.-M. Dischler. Efficiently Rendering Macro Geometric Surface Structures with Bi-Directional Texture
Functions. In Proc. of Eurographics Workshop on Rendering, pages 169–180, June 1998.

6. S. Gortler, R. Grzeszczuk, R. Szelinski, and M. Cohen. The Lumigraph. In SIGGRAPH ’96 Proceedings,
pages 43–54, August 1996.

7. E. Gröller, R. Rau, and W. Straßer. Modeling textiles as three dimensional textures. In Proc. of Euro-

graphics Workshop on Rendering, pages 205–214, June 1996.

8. W. Heidrich, K. Daubert, J. Kautz, and H.-P. Seidel. Illuminating Micro Geometry Based on Precom-
puted Visibility. In SIGGRAPH ’00 Proceedings, pages 455–464, July 2000.

9. W. Heidrich and H.-P. Seidel. Realistic, Hardware-accelerated Shading and Lighting. In SIGGRAPH

’99 Proceedings, August 1999.

10. J. Kautz and M. McCool. Interactive Rendering with Arbitrary BRDFs using Separable Approximations.
In Proc. of Eurographics Workshop on Rendering, pages 247 – 260, June 1999.

11. J. Kautz and H.-P. Seidel. Towards interactive bump mapping with anisotropic shift-variant BRDFs. In
2000 Eurographics/SIGGRAPH Workshop on Graphics Hardware, pages 51–58, August 2000.

12. E. Lafortune, S. Foo, K. Torrance, and D. Greenberg. Non-Linear Approximation of Reflectance Func-
tions. In SIGGRAPH ’97 Proceedings, pages 117–126, August 1997.

13. M. Levoy and P. Hanrahan. Light Field Rendering. In SIGGRAPH ’96 Proceedings, pages 31–42,
August 1996.

14. F. Neyret. Modeling, Animating, and Rendering Complex Scenes Using Volumetric Textures. IEEE

Transactions on Visualization and Computer Graphics, 4(1), January – March 1998.

15. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C: The Art of Scientific

Computing (2nd ed.). Cambridge University Press, 1992. ISBN 0-521-43108-5.

16. P. Sloan and M. Cohen. Hardware Accelerated Horizon Mapping. In Proc. of Eurographics Workshop

on Rendering, pages 281–286, June 2000.

17. Tien-Tsin Wong, Pheng-Ann Heng, Siu-Hang Or, and Wai-Yin Ng. Image-based Rendering with Con-
trollable Illumination. In Proc. of Eurographics Workshop on Rendering, pages 13–22, 1997.

18. Y.-Q. Xu, Y. Chen, S. Lin, H. Zhong, E. Wu, B. Guo, and H.-Y. Shum. Photo-realistic rendering of
knitwear using the lumislice. In Computer Graphics (SIGGRAPH ’01 Proceedings), 2001. to be pub-
lished.



(a) (b)

Fig. 4. (a) A dress rendered with BRDFs consisting of only one lobe. (b) Left: Aliasing artifacts
are clearly visible if no mip-mapping is used. Right: using several mip-mapping layers.

Fig. 5. The fabric patterns displayed on the models (left and right) were both computed from the
micro geometry in the middle. In contrast to the right BRDF model, the left one does not include
a lookup table. Clearly this BRDF is not able to capture the color shift to red for grazing angles,
nicely displayed on the right.

Fig. 6. Different fabric patterns on the same model. Left: plain knit, middle: loops with different
colors, right: perl loops.


