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ABSTRACT

In this paper the equalization problem is treated as a clas-
sification task. No specific (linear or nonlinear) model is
required for the channel or for the interference and the
noise. Training is achieved via a supervised learning scheme.
Adopting Mahalanobis distance as an appropriate distance
metric, decisions are made on the basis of minimum distance
path. The proposed equalizer operates on a sequence mode
and implements the Viterbi searching Algorithm. The ro-
bust performance of the equalizer is demonstrated for a hos-
tile environment in the presence of CCI and non linearities,
and it is compared against the performance of the MLSE and
a symbol by symbol RBF equalizer. Suboptimal techniques
with reduced complexity are discussed. The operation of the
proposed equalizer in a blind mode is also considered.

1 INTRODUCTION

Intersymbol Interference (ISI) is a major impairment in to-
days high bit rate Communications Systems. Channel equal-
izers, used in the receiver part, aim to suppress the effect of
IST [1]. The presence of channel nonlinearities as well as Co
- Channel Interference (CCI) further degrade systems’ per-
formance. Equalization under such hostile environments is a
difficult task, which channel equalizers have to cope with.

Maximum Likelihood Sequence Estimation (MLSE) is
a robust way to combat ISI leading to enhanced perfor-
mance compared to symbol by symbol equalizers (i.e., Linear
Transversal Equalizer (LTE), Decision Feedback Equalizer
(DFE), Radial Basis Function Equalizer (RBF)). However,
MLSE performance is seriously degraded in the presence of
CCI [2]. The reason is twofold. CCI is neither Gaussian
nor white. Thus the Euclidean metric used in the classical
Maximum Likelihood (ML) equalizers no more approximates
reality. Furthermore, the channel estimates using standard
Least Square Techniques are no more BLUE (Best Linear
Unbiased Estimates) in the presence of non white interfer-
ence [3]. Moreover, when nonlinearities are present, non lin-
ear modeling of the channel is required, which for severe
nonlinearities is not always a straightforward task.

All the equalizers mentioned in the previous paragraph
adopt specific models for the channel, the noise and the inter-
ference - either by explicitly estimating the channel (MLSE)
or by modeling the decision boundary as a specific function
(symbol by symbol equalizers). A different view to the equal-
ization was adopted in [4]. According to this approach the
equalizer is treated as a classifier, thus freeing itself from
the need of an explicit adoption of specific models both for
channel and interferences. This equalizer is named Cluster-
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ing Based Sequence Equalizer (CBSE) and is described in
paragraph 3.

In CBSE (as in every Viterbi type equalizer) the com-
plexity is exponentially dependent on the channel length [5].
Thus, for long channels, CBSE complexity can be very high.
In paragraph 4 three techniques are described for CBSE
complexity reduction. In the first technique, a suboptimal
methodology, called ”Selection of Clusters through Per Sur-
vivor Processing”, is proposed in order to reduce complex-
ity. Complexity reduction of the second method is achieved
through the use of M-Algorithm. The third one is based on
grouping the clusters together, resulting in a smaller number
of clusters.

Furthermore, in paragraph 5 performance results of CBSE
in a hostile environment are described. CBSE performance
is compared to the performance of the MLSE as well as the
recently suggested method of [2]. The results demonstrate
the robustness of the proposed approach with respect to the
nature of interference, noise and channel. Moreover, simula-
tions show that with the incorporation of the three reduction
techniques mentioned above, low complexity is achieved with
only little sacrifice in the CBSE performance.

Finally, the issue of operation of CBSE in blind mode is
studied in paragraph 6. The operation of CBSE in blind
mode exploits the fact that all information, needed to per-
form the equalization task, is hidden in the structure of the
received data and in the allowable transitions between them.

2 SYSTEM DESCRIPTION
Consider the signal s(¢) at the output of the channel :

n

s(t) =Y h(i)I(t—1i) (1)

1=0

where I(t) is an equipropable sequence of bipolar data (+1)
and h(z) is the impulse response of the channel. When non-
linearities exist in the channel the transmitted signal takes
the form of a polynomial :

(1) =Y Ai(s(t)i=0,1,.. (2)
The received signal is :
g(t) = r(t) + w(t) +c(t) (3)

where w(t) is the noise sequence and ¢(¢) the Co Channel
Interference component, given by:

()= > (i)t i) (4)

j=1 =0



with k being the number of interferers and J;(¢) the se-
quences of bipolar data applied to the interfering sources.
Symbols I(t) and J;(t) are considered to be statistically in-
dependent. In the following k is assumed to be equal to 1,
a valid assumption for a mature telecommunications system
[6].

The general model of a data transmission system in the
presence of noise, CCI and nonlinearities is shown in Figure
1. The values of the gain coefficients D1, ..., Dy,_1 determine
the severity of the nonlinear distortion.

The Signal to Noise Ratio (SNR) and the Signal to Inter-

ference Ratio (SIR) are determined as:

o2 o2
SNR =~ SIR= (5)

with o2 the variance of the noise, 02 = E[s?(k)] and o2 =
E[c*(k)], where E[] is the expectation operator.

3 CBSE

According to this approach no specific modeling is required
both for the channel as well as the interferences. That is,
instead of trying to adopt a specific model for the decision
boundary (equivalently the channel, the noise and the in-
terference) the method focuses on the clusters, which the
received data form. The received data are clustered around
specific points, whose number and constellation shape is de-
termined by the spread of the channel and the impairments
characteristics. Let us consider, for simplicity, two succes-
sively received samples, in the absence of any distortion, as
a point in the two dimensional space. The randomness of
noise leads to the formation of a cluster around this point,
formed by the possible positions of these two symbols. The
variance of the noise determines the radius of the cluster.
The existence of ISI causes a movement and an increase of
the number of clusters. Specificly, if n is the number of sym-
bols over which ISI is spread, then the number of clusters is
multiplied by 2". CCI causes a further movement and in-
crease of the number of clusters (for each of the clusters we
have 22171 new ones, where n1 + 1 1s the number of taps
of the interfering channel) [2]. When on top of the previous
impairments there is also nonlinear distortion, each of the
clusters moves to a new position, depending on the form of
the nonlinearities.

The CBSE scheme stems from the above observations. Let
us assume that ISI spreads over n symbols and received sam-
ples are treated, for simplicity, in groups of two. We de-
note by g = [¢(t), g(t — 1)] the vector of received data and
ci = [ci(t), ci(t — 1)] the vectors of clusters’ centers (which
correspond to the noise free outcomes of the channel) for
t=1,2,...,N. If the span of the channel over the transmit-
ted symbols I(t) is n + 1 then

ci(t) = SfU@),.... I(t=n)],
ci(t—1) JU(t=1),... I(t—=n—1)]  (6)

where ¢+ = 1,...,N and f is a nonlinear mapping. It is
obvious from (6) that clusters, where successive samples re-
side, are not independent, due to the n common transmitted
symbols shared between two successive samples. Hence only
specific transitions among the different clusters are possible.
Thus a Viterbi type procedure for a minimum path search
can be constructed, with (¢t —1),...,I(t — n — 1) being the
states, provided a distance metric is adopted.

A popular distance metric in classification problems is the
Mahalanobis distance defined as

Di=(g—c)"S7 (g —ci) (7)
where X; is the covariance matrix of each cluster defined as
S = El(g — ci)(g — ¢i)'] (8)

The non diagonal choice of 3; takes care of the underlying
correlation in the presence of non white interference [4]. Fur-
thermore, when for reasons of reducing complexity or even
when the exact spread of the channel is unknown, the num-
ber of adopted clusters is smaller than the true one, then a
grouping of clusters takes place. Thus the resulting clusters
have no more spherical distribution, even in the case of white
Gaussian noise. So, the use of non diagonal ¥; permits the
exploitation of the underlying shape of the clusters [7].

Training of the centers (cl) is equivalent to label them as
+1 or -1 and it is achieved during the training period. Matrix
23 can be similarly estimated and adapted. In the sequel we
have assumed that the covariance matrix is independent on
the specific cluster, that is : ¥; = X, Vi. Adaptation is also
possible during the decision directed mode [4].

4 COMPLEXITY REDUCTION TECHNIQUES

The major drawback of sequence equalizers is their com-
plexity, due to the exponential dependence on the channel
spread. Thus for binary data and a channel length of n + 1
the complexity of CBSE is of order 2"1!, which is the number
of states in CBSE. For channels with long impulse response
the complexity of CBSE becomes too high. In the follow-
ing, three methods for reducing the complexity of CBSE are
described. All these techniques are suboptimal and com-
putational savings are obtained by reducing the number of
states, through which the trellis searching is evolved.

The technique of Per Survivor Processing has been suc-
cessfully used in modulated data transmission systems sub-
ject to ISI and in systems which employ Trellis Coded Modu-
lation, for complexity reduction [8]. The idea of Per Survivor
Processing is adopted here for CBSE complexity reduction.
In particular, it is suggested that fewer states are used than
the number of clusters suggests. That is instead of searching
among all possible clusters (2"7?), we reduce the searching
to a smaller group of clusters (2"+2_m), by assuming that a
number m of symbols in the history of each surviving path
is correctly identified. In other words we use the history of
each surviving path to make up for the reduced number of
states assumed. Let us take for example, a channel of length
n+ 1 = 5, leading to 64 clusters in the two dimensional
space. We assume a trellis structure with 8 states (instead
of 32). Thus each trellis branch is related to 4 transmitted
data (I(¢),1(t—1),1(t—2),1(t—3)) but there is no informa-
tion about the two remaining data (I(¢t —4), I(¢t —5)) which
are also needed to uniquely define a cluster in the received
signal constellation. Compensation for the lack of these two
unknown information bits comes from the survivor path cor-
responding to that branch.

In the second method the M-Algorithm is used for com-
plexity reduction. Basically, the M-Algorithm is a modified
Viterbi Algorithm, which instead of searching the full trel-
lis and keeping one survivor path per state, it keeps only
the M best surviving paths [9]. Thus, the complexity of M-
Algorithm is related to the number M of surviving paths,
and therefore , for M < 2"t (2"*! the number of states),



a significant reduction in complexity is obtained. The same
idea has been adopted in our case for the CBSE technique.

The third method for reducing complexity of CBSE has
been exploited in [10] and has already been mentioned in
paragraph 3. According to this method instead of assuming
the true number of clusters (= 22 for the two dimensional
case) formed by the received samples, we assume fewer num-
ber of clusters : 29 < 2"*2. Thus, cluster grouping takes
place. In this way complexity of CBSE reduces to 297! |
which is the new number of states, or equivalently the num-
ber of survivor paths (one survivor path to each state).

5 PERFORMANCE RESULTS

A channel widely used in the literature has been adopted for
the simulations :

H(z)=0.3482 4 0.87042 7" +0.348227° (9)
The interfering channel is assumed to be [2]
H(z)=06+082"" (10)

The SIR is chosen low in order to account for the augmented
levels of CCI in modern communication systems [6].

The receivers studied are : a)The new Clustering Based
Sequence Equalizer, b)The conventional MLSE implemented
with the Viterbi Algorithm and ¢)The RBF based equalizer
described in [2]. The RBF and the proposed equalizer as-
sume in every case 227" cluster centers, or equivalently 2"*!
states. The corresponding states of the MLSE are 2". The
function of channel nonlinearities used for the purposes of
our simulation is [4], (fig.1)

r(t) = s(t) + 0.15(s(1))” 4+ 0.01(s(t))’ (11)

Figure 2 presents the results from simulations on the as-
sumed channel with nonlinearities and SIR =10db. From
the figure, the robust performance of CBSE in such a hostile
environment is verified. In contrast it is shown that MLSE
and RBF performance is substantially degraded in the pres-
ence of CCI, and channel nonlinearities. It should be noted
that the performance of MLSE can be improved by adopting
nonlinear models for the channel. However, our aim here is
to demonstrate that CBSE need not to bother about such a
modeling and the whole procedure is the same independent
of the presence or not of nonlinearities. In the same figure
appears the effect of clusters grouping on the performance
of CBSE.

For the same channel and impairments as above, Figure 3
summarizes the loss of performance versus complexity when
Per Survivor Processing (PSP) is used with CBSE. From
the figure it is apparent that the performance of CBSE with
PSP (4 and 2 states) is close to the optimum (c1) and is
substantially better compared to the performance of CBSE
with clusters grouping for the same number of states.

Figure 4 highlights the results of implementation of M-
Algorithm to CBSE. From these curves is verified that the
performance of CBSE with the M-Algorithm is very close to
the optimum, even for a very low complexity (2,4 states).

The above results have also been verified for a number of
different channels. All the results presented above demon-
strate the enhanced performance possibilities offered by the
CBSE. The fact that no explicit assumptions about the notse,
interference and channel are required, provides the scheme
with extra degrees of freedom to be able to learn the environ-
ment and to perfom robust equalization. Moreover, the prob-
lem of CBSE complexity can efficiently be solved by means
of the reduction complexity techniques examined.

6 BLIND CBSE

In this section we approach blind equalization problem from
the clustering point of view, in an unsupervised mode of
operation. Since no training sequence is available, labeling
of each of the clusters is not possible in a direct way. The
method we propose here constitutes of the following steps :

a) The clusters are identified via an unsupervised cluster-
ing technique, i.e. isodata [7]. b) The received samples are
grouped as feature vectors, two dimensional in our case, and
are allocated to the clusters according to the minimum dis-
tance, based on an adopted distance measure, i.e. Euclidean
or Mahalanobis. Due to the interdependence of successively
received samples, only specific jumps, among clusters, can
take place. Thus, a table is formed providing the informa-
tion of the jumps which take place among the identified clus-
ters. This information can be used for the identification of
the clusters. Let us consider for example the simple channel

H(z)=1+05z"" (12)

If we group together two successively received samples
(g(t),g(t-1)), then the possible jumps from the cluster cor-
responding, say, to (I(t-2),I(t-1),I(t)) = (1,1,1) can only be
to clusters corresponding to (1,1,1) and (1,1,-1). Figure 5
demonstrates the possible jumps in a parent-child tree de-
pendency. A table, which records the possible jumps for each
one of the clusters, is constructed by recording the jumps
over a period of observations. For example, we can record
that once in cluster A, the next observation will cluster ei-
ther to A or to B, and so on. Since errors are inevitable,
the decision about the children clusters (to which jumps are
made) of a parent cluster (from which jumps are made), is
based on a winner criterion rule. In our case was the two
most probable ones, that is the two clusters to which most
of the jumps had been done from the parent cluster. The
observation period is obviously problem dependent and the
SNR is a major factor. For example, for the above men-
tioned two taps channel, we found that 80 observations were
enough to reveal the parent-child pattern for an SNR=10db.

Having constructed the parent-child table for each of the
clusters, labeling for each of them can take place. First, we
identify the one (of the two) clusters which is a child of itself
(i.e. jumps to itself), say cluster A. This must be either (+1
+1+41)or(-1-1-1). Assuming that it is (-1 -1 -1), then B
(its other child) is (-1 -1 +1) (figure 5). Then exploiting the
parent-child relationships and the fact that the other cluster
that jumps to itself (H) (fig.5) will necessarily be the (+1 +1
—|—1), it is not difficult to see that labeling all the clusters in a
tree is trivial. The ambiguity between (+1 +1 +1) or (-1 -1
-1) is not important, because it results to a mirror sequence
and can be surmounted by Differential Coding [11]. Once
labeling has been completed, a Viterbi type algorithm can
be used.
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Figure 3: Channel H(z) = 0.3482 + 0.870427" 4 0.3482272
interfering channel H(z) = 0.6 + 0.857!, SIR=10db and
nonlinear impairments.a:RBF-16 centers, b1:MLSE-4 states,
c1:CBSE-8 states, ¢2:CBSE-4 states, c3:CBSE-2 states,
d1:CBSE-PSP-4 states, d2:CBSE-PSP-2 states
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Figure 4: Channel H(z) = 0.3482 + 0.870427" 4 0.3482277
interfering channel H(z) = 0.6 + 0.857!, SIR=10db and
nonlinear impairments.a:RBF-16 centers, b1:MLSE-4 states,
c1:CBSE-8 states, ¢2:CBSE-4 states, c3:CBSE-2 states,
el:CBSE-M.A .-4 states, e2:CBSE-M.A.-2 states
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Figure 5: Label of Clusters and parent-child relationship.




