
Efficient Code Distribution in Wireless Sensor Networks

Niels Reijers ∗

N.Reijers@its.tudelft.nl
Koen Langendoen

K.G.Langendoen@its.tudelft.nl
Faculty of Information Technology and Systems

Delft University of Technology
The Netherlands

ABSTRACT
The need to reprogramme a wireless sensor network may arise from
changing application requirements, bug fixes, or during the appli-
cation development cycle. Once deployed, it will be impractical at
best to reach each individual node. Thus, a scheme is required to
wirelessly reprogramme the nodes. We present an energy-efficient
code distribution scheme to wirelessly update the code running in
a sensor network. Energy is saved by distributing only the changes
to the currently running code. The new code image is built using
an edit script of commands that are easy to process by the nodes.
A small change to the programme code can cause many changes to
the binary code because the addresses of functions and data change.
A naive approach to building the edit script string would result in
a large script. We describe a number of optimisations and present
experimental results showing that these significantly reduce the edit
script size.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications; C.2.3 [Network Oper-
ations]: Network Management—Reprogramming; E.4.1 [Coding
and Information Theory]: Data Compaction and Compression—
String distance

General Terms
Design, Performance

Keywords
wireless, sensor networks, code distribution, reprogramming, com-
pression, string distance

1. INTRODUCTION
Wireless sensor networks hold the promise for a wide range of

new applications. These include intrusion detection, wildlife habi-
tat monitoring [7], disaster management, and many military ap-
plications. The underlying technology that drives the emergence

∗Supported by NWO (Dutch National Science Foundation) in the
CONSENSUS project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSNA’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-764-8/03/0009 ...$5.00.

of sensor applications is the rapid development in the integration
of digital circuitry, which will bring us small, cheap, autonomous
sensor nodes in the near future. The capabilities of individual nodes
are very limited, and since they are battery operated, energy con-
servation is a major concern.

1.1 Motivation
There are many reasons nodes occasionally have to be repro-

grammed. Application requirements change, and when nodes be-
come cheap enough, it is possible that generic nodes will be in-
tegrated into roads, buildings, and other structures. These nodes
can then be reprogrammed for a specific task when the need arises.
Bug fixes and code updates are common to any software, and in
the application development cycle one goes through a number of
design-implement-test iterations.

It is clear that it is impractical at best to physically reach all nodes
in a network, so a wireless reprogramming scheme is required. In
this paper we present such a scheme, aimed at the requirements and
restrictions specific to sensor networks.

Requirements
The limited capabilities of sensor nodes make cross-layer optimisa-
tions necessary. We expect the operating system and application to
be more integrated than usual. These optimisations are necessary
for power conservation and to squeeze the best performance out of
very limited hardware.

This leads us to the first of our list of requirements:

1. The code distribution scheme should be able to update all
code on the sensor node, including itself and the operating
system. Also, it should not restrict the size of the programmes
that can run on the nodes significantly, compared to when
they are manually uploaded.

2. The scheme should be resilient to losing some packets dur-
ing the process since nodes may operate in noisy conditions,
have very simple radios, and cannot afford expensive trans-
mission schemes.

3. Since communication is expensive in terms of energy, the
code distribution scheme must limit communication as much
as possible. Often changes to the code will be small. In those
cases little communication should be required to distribute
the new code.

4. Resources on the sensor nodes are scarce. The part of the
distribution scheme running on the nodes should not require
excessive processing, and should use little memory.

5. Finally, when updating code, we want the application to be
stopped for only a short period of time.

60

Figure 1: An EYES sensor node.

1.2 Related work
The need to reprogramme (wired) network nodes has also sur-

faced in other domains, in particular, in distributed systems (‘mo-
bile code’) and active networks. The implementations of mobile
code are based on virtual machines to guarantee some form of se-
curity and robustness [2, 11]. In the case of active networks people
have experimented with virtual machines [8] as well as with native
code [9]. None of the systems, however, supports modifying (parts
of) the operating system, which is one of our main requirements.

We are aware of three systems in sensor networks that allow new
applications to be loaded onto the nodes. In all three cases, code
can be loaded onto a node, and this code then replicates itself onto
other nodes by calling functions provided by the system.

SensorWare [1] allows users to programme the nodes using a
scripting language. It provides a rich run-time environment. The
scripting language is based on Tcl, extended with a number of com-
mands to access the SensorWare functions. SensorWare is targeted
at nodes that are much more powerful than ours.

A system aimed at very resource constrained sensor nodes was
introduced as ‘Maté’ [6], and was later renamed ‘Bombilla’ and
included in Tiny-OS. Bombilla is a stack-based virtual machine
(VM), which provides a safe execution environment. To control
the memory footprint of the VM, the programmer is limited to eight
functions, called ‘capsules’, of at most 24 instructions. Although
the instructions are quite powerful, this severely limits the sort of
applications that can be built [1]. For instance, we were unable to
implement the basic DV-Hop/Min-max localisation algorithm [5].
The algorithm does not fit into the eight functions Bombilla allows
and the amount of variables is barely sufficient to hold the list of
nodes with known locations.

The Berkeley Tiny-OS motes, models ‘mica1’ and below, for
which Bombilla was developed require such an approach because
the nodes cannot write to their own programme memory, but only
to RAM. The scheme presented in this paper was designed for the
EYES nodes, which do have the capability to update their Flash
memory (code segment). This allows us to use native code instead
of a VM making our scheme more flexible (i.e. updating OS code)
and saves energy (i.e. interpretation overhead).

The Pushpin Computing System [4] is also aimed at resource
constrained nodes. The Pushpin nodes can write to their own Flash
memory. The basic blocks of application code are called a ‘frag-
ments’. Fragments contain native code and are restricted to 2KB of
code and 445 bytes of state. Nodes communicate using a bulletin
board system.

While all three systems allow new applications to be loaded, they
cannot replace the underlying operating system.

1.3 The EYES nodes
The EYES nodes we used to implement our system on, shown

in Figure 1, have a Texas Instruments MSP430F149 processor with
2KB RAM and 60KB of Flash memory to store code. The Flash

0x1000

0x0A00

0xFFFF

0x0200
0x0000I/O

GAP

RAM

0xFFE0
INT VEC

FLASH

Figure 2: Layout of the address space layout of the EYES
nodes.

memory can be programmed by the processor itself, or externally
using a JTAG interface. The processor runs at a variable clock rate,
with a maximum of 5MHz. Nodes communicate using a 115kbps
radio (RFM TR1001 868.35 hybrid transceiver), and are equipped
with an EEPROM memory module, which consists of four sectors
of 64KB for a total of 256KB. The sectors can be erased indepen-
dently. The Flash memory consist of 512 byte segments, that can
also be erased independently. Figure 2 shows the layout of the
address space on the EYES nodes.

We use an operating system that includes support for writing to
Flash and EEPROM memory, as well as an energy efficient MAC
protocol designed specifically for sensor networks [12]. The maxi-
mum message payload is set to 64 bytes.

2. CODE DISTRIBUTION
The envisioned procedure for code distribution consists of four

stages (our current implementation is somewhat simpler):

1. Initialisation

2. Code image building

3. Verification

4. Loading

The procedure starts with an initialisation phase, informing the
nodes that a reprogramming cycle has begun. Nodes make prepa-
rations like clearing the area where the new code should be build.
In the second phase, a series of messages are sent to actually build
the new code image. Once this is done, a verification step is used to
check that each node has built the image correctly. Recovery from
errors, like missed phase-2 packets, is done here. Finally, nodes are
given the command to load the image and start running the updated
code.

Of course, these four phases can be combined. Multiple phases
can be dealt with in a single network packet.

2.1 Updating the running code
The requirement that we should be able to update all code on the

node presents us with the problem that we need to overwrite the
code that is currently running. We describe three options to do this.
Which one is most appropriate depends on the available hardware.

61

Halve memory
For some applications, using halve of the available memory may
be sufficient. In this case we can split the memory in an upper
and lower halve, and, with the current code running in the upper
halve, build the new code image in the lower one. Once the image
is built, we place a small piece of code in RAM, and execute this
to copy the bottom halve to the top halve and to reboot the node on
completion. Since the processor is running code from RAM, there
is no problem in overwriting the old code.

2-phase approach
The previous approach can be extended to use all available mem-
ory. We split the code into two halves, and place all the critical
code required for our code distribution scheme in the bottom halve.
The rest of the bottom, and the whole top halve can be used for
application code. In the initialisation phase, we must now stop the
application and clear the top memory halve. The critical code in
the bottom halve keeps running. We then use the first approach
to update the bottom halve containing the critical code. Once this
is done, the new critical code is used to build the new top halve
containing the rest of the application code. Only when this is done
can we restart the application.

This approach has a number of drawbacks. Firstly, the appli-
cation will be stopped during the whole process, instead of just
during the copying of the new image. Secondly, we need to do
the verification step for both halves, increasing the overhead of this
approach. Finally, this approach is only possible if the critical code
is smaller than halve of the memory, which should not be a problem
in most cases.

Build in EEPROM
In our implementation we use the external EEPROM memory. We
simply build the new code image in one of the EEPROM sectors,
and use a small piece of code in RAM, as in the first option, to load
the image into Flash memory. An added advantage of this is that
once built, we can have multiple images stored in EEPROM, and
load them when necessary.

2.2 Missed packet recovery
Since wireless sensor nodes may operate in noisy conditions,

have simple radios, and do not have the resources for expensive
communication protocols, it is likely that some nodes will miss one
or more of the packets needed to build the new code image. Recov-
ery from missed packets in the other phases is relatively straight-
forward since they contain less information and can be resent by a
neighbour.

Each phase-2 packet contains all information needed to build a
number of bytes of the new code image. Note that this area may be
much longer than the length of the packet, because of the diff-like
techniques described in sections 3 and 4. The packets are processed
sequentially, building the new code image bottom up.

In Figure 3, we see that when a node receives packet n, it builds
the code that packet n describes at the point where packet n − 1
stopped. Instead of a sequence number to detect missed packets,
we include the address of the first byte to be built in each packet.

For packet n, this is address x, which matches the address where
the node stopped building after receiving the previous packet, n −
1. But when the node receives packet m, it will find address z,
while it expects address y. The node now knows that it has missed
the packets that describe the area between y and z, and can record
this information for later use. Because m contains all information
needed to build the code at address z, the node can just continue
building code from z.

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

0xF000

z

y

x

0x0000

Built using packet n

Described by packet m

Built using packet n−1

Figure 3: Missing a phase-2 packet.

If the missed packets are received at a later stage, the gap can be
filled. If not, the node can ask its neighbours for the missing pieces
of code during the verification phase. A neighbour node then sends
a binary copy of the requested data, because the corresponding
phase-2 packet will have been discarded long ago.

Since a node can process a packet immediately after receiving it and
discard the buffer, the amount of state we need to store in RAM is
minimised. This complies with our fourth requirement.

3. TRAFFIC REDUCTION
The third requirement was to be energy efficient by reducing the

necessary communication. Since communication is very expensive
compared to processing, we can afford to do some processing on
the nodes if this reduces communication. At the same time, the
amount of RAM is very limited. This rules out many decompres-
sion algorithms as they require too much RAM to store state.

3.1 A diff-like approach
Our code distribution scheme is based on the assumption that in

many cases changes to the binary code will be small. Even when a
whole new application needs to be loaded, it is likely that parts
of the operating system and library functions will be present in
both code images. This leads us to a solution similar to the diff
command present in UNIX-like operating systems.

The UNIX diff system is based on finding the shortest string
edit script from a source string to a destination string [10]. The
operations that are allowed are insertion, deletion, and substitution
of characters. Our scheme also finds such a shortest edit script, but
using different operations.

Because of the limited commands in UNIX diff, the edit script
from a string aaaaabbbbbb to bbbbbbaaaaa, is rather long.
The a’s have to be deleted from the first string, and inserted after
the b’s. Our command set contains two basic commands: insert
and copy, leaving the deletes implicit. Using these commands, the
string edit script would be:

copy 6 bytes from position 5
copy 5 bytes from position 0

The motivation for this different approach is that we expect pieces
of code to move around from one version to another, and generic

62

Command Opcode Parameters Cost
(in bytes)

insert 110xxxxx xxxxx:len, data 1 + len
11110000 byte:len, data 2 + len
11110001 word:len, data 3 + len

copy 0xxxxxxx xxxxxxx:len, word:from addr 3
11110010 byte:len, word:from addr 4
11110011 word:len, word:from addr 5

repair 10xxxxxx xxxxxx:offset, word:value 3
11110100 byte:offset, word:value 4
11110101 word:offset, word:value 5

repair dbl 11110110 byte:offset, long:value 6
11110111 word:offset, long:value 7

patch list 11111000 byte:count, {word:from addr word:to addr word:shift by}* 2 + 6len

Table 1: Edit script opcodes.

pieces of code to appear in both source and destination image (for
instance pushing and popping certain registers at the start of a func-
tion). Being able to copy these parts of code, regardless of the order
in which they appear, will reduce the edit script length, and thus
reduce the communication cost.

We also expect that some pieces in the source and destination
will be similar, but not identical (for instance a different operand in
some generic sequence of instructions). We introduce a third com-
mand: repair, that operates on a copy command by replacing
one or two words at a certain offset within the copied data. Using
this will be shorter than a copy, insert, copy sequence.

3.1.1 Opcodes
We designed a set of binary opcodes to describe the edit scripts

as efficiently as possible. The full set is shown in Table 1. The
patch list command will be explained in Section 4.3. Differ-
ent opcodes are available for most commands. This allows us to use
a shortened version for small values of the operands. To increase
the number of cases in which the operand value is low enough for
a shortened version, we specify the length and offset operands in
words, and store the actual length minus one. For instance, if the
length of the data in an insert command is 64 bytes, the value
stored in the length operand will be 64

2
− 1 = 31, which is the

maximum value we can encode in the opcode. Since our maximum
message payload is 64 bytes, we will in practice always be able to
use this one-byte version of the insert command.

3.2 Edit script generation
Finding the shortest edit script for our command set is a non-

trivial task. It is complicated by the facts that we have to consider
copying non-perfect matches, and that the length, or cost, of a
command depends on the value of its operands.

At the moment we use an optimal algorithm somewhat similar to
the algorithm used in UNIX diff. Let the destination string D be
{d0, d1, ..., dn}, and Dm be the prefix {d0, d1, ..., dm} of D, with
m ≤ n. The algorithm starts by determining the cheapest way to
build all prefixes of D, using either a single insert, or a single
copy together with the required repairs.

This gives us the cheapest way of building D0, and an initial
upper bound on the cost for all other prefixes of D. Using this value
of D0, we then repeat the process to determine the cheapest way of
building D1, and try to improve the remaining upper bounds.

We check for all Dk, with k ≥ 1, whether the current upper
bound is higher than the cost of building D0, plus the cost of build-
ing the rest of Dk using a single insert or a copy with the

required repairs. If that is the case, we have found a better upper
bound for Dk. For D1, this is also the final cost, since there is no
other way to build it and improve on its upper bound. We now
know the cheapest way to build both D0 and D1.

We repeat this process until we find the lowest possible cost to
build the whole of D, as well as the corresponding edit script.

We use a suffix tree data structure [3], which is a tree of all
suffixes of the source string, to search for matching substrings.
Because we have to look for non-perfect matches as well, we have
to follow multiple parallel paths down the tree. A string with length
n produces a tree that is O(n) deep. The worst case number of par-
allel paths we have to follow is O(n). Since we perform a traversal
of the tree for each position of the string, the total complexity is
O(n3).

On a 266MHz Pentium II it takes about four minutes to generate
the edit script for a difficult case using binary images of about
20KB. An easy case of similar size takes roughly forty seconds.
We expect this can be improved significantly by optimising the
algorithm.

Splitting into packets
After the edit script has been generated, we need to split it into
64-byte packets. This causes some overhead because it should be
possible to process each packet independently. We simply split
insert commands when they do not fit in a packet. This costs
one extra byte per split. We also need to split copy commands
when a copy together with all its repairs does not fit. In that
case we split the copy into two or more copy commands, and
store each in a packet together with all the repairs that apply to
the corresponding piece of copied data.

4. FURTHER OPTIMISATION
The scheme described so far already significantly reduces traffic

compared to simply distributing the whole binary, but the script size
is still larger than expected.

4.1 Address shifts
The large script size is caused by the fact that when we make

(small) changes to the source code, the addresses of functions and
data may shift. The compiled code from which the edit script is
generated will differ in many positions because each reference to
the shifted code or data now addresses a different memory loca-
tion. This is illustrated in Figure 4, where a group of functions has
moved from address k to address m because new code was inserted.
This means that each call to f will be a call instruction to address

63

INSERTED
CODE

OLD CODE NEW CODE

0K0K

60K 60K

k

CALL k CALL m

m

FUNC h

FUNC h

FUNC f

FUNC g
FUNC f

FUNC g

Figure 4: Address shifts due to inserted code.

m instead of address k in the new binary, and the corresponding
instruction will have to be repaired in the edit script.

This problem is not limited to functions. Objects that may shift
are functions and constant data, which are located in Flash, and
global or local static variables, located in RAM. To assess the ex-
tent of the problem, we examined how many instructions in our
operating system can be affected by address shifts of these objects.
The results are shown in Table 2.

While function calls form the largest group, there are also many
instructions that operate on an address in RAM. Only 291 out of
422 of these are mov instructions. The rest is made up of a variety
of different instructions (add, bic, etc.). Further, we found many
movs of constant values to registers, and some push instructions,
pushing constant values onto the stack. As Table 2 shows, these are
mostly addresses. This means they too have to be repaired when
the address changes.

In total, Table 2 shows us that 1073 out of 6707 instructions
(16%) potentially have to be repairs when code or data they refer
to, shifts.

4.2 Padding
The code on a node is often a collection of somewhat separate

parts. Usually, changes will be limited to a few of these. A very
simple way to reduce the address shift problem is to leave some
empty space in between these parts, so that they can grow and
shrink without moving the other parts. This can be applied both
to data and code. Doing so limits the problem to references to the
part that has changed, and no longer affects the rest of the code.

The use of this technique is limited. Once the space between
parts runs out, we still have to move the part that is in the way, and
once space for padding runs out all together, this technique can no
longer be applied. The granularity at which the code is broken into
parts, and the amount of padding space to leave between parts must
be chosen wisely for this to work well.

Although padding does not solve the problem sufficiently, it may
be a useful addition to the address patching technique described
below.

4.3 Address patching
We can reduce the number of repairs due to address shifts by

patching the address in, for instance, CALL instructions automati-
cally. Since changes to the code are likely to be localised, groups
of functions or data are moved together by the same offset (see

Instruction type Count Percentage

call instructions 475 7.1%
RAM access 422 6.3%
mov instructions 291 4.3%

RAM as source 141 2.1%
RAM to register 99 1.5%

RAM as destination 159 2.4%
register to RAM 65 0.96%

mov constant to register 193 2.9%
constant value is an address 158 2.4%

push constant onto stack 18 0.27%
constant value is an address 18 0.27%

Total number of instructions 6707 100%
Vulnerable to address shifts 1073 16%

Table 2: Number of instructions affected by address shifts in
our operating system application (20KB code).

f, g, and h in Figure 4). Also, typically, a function is called
more than once (if not, it would be in-lined by the compiler), and
data addresses are used more than once. This means that many
instructions are affected by the same shift. If nodes know about
these shifts, they can patch the address of many of these instructions
automatically when executing a copy command. We described the
shifts by a list of {begin address, end address, offset}-tuples, and
send these to the nodes using the patch list command shown
in Table 1. For simplicity we want the entire patch list to fit into a
single packet, limiting us to ten patches.

The format of the MSP430 instructions makes it easy to recog-
nise instructions. Each instruction has a one word opcode, op-
tionally followed by one or two words for operands. Now when
executing a copy command, a node checks for each word that it
copies if the previous word is the opcode of a patchable instruction.
If so, and if the copied word, which is the used address, lies in the
range covered by one of the entries in the patch list, we add the
corresponding offset to the word value, and the instruction will use
the right address.

The instructions we have considered for patching are:

1. function calls

2. loading a constant word value into a register

3. pushing a constant word value onto the stack

4. loading a word from memory into a register

5. storing a word from a register into memory

This set was determined during testing by selecting instructions
that caused many repair commands in the edit script, and were
suitable for patching. The second and third are commonly used to
load the address of code or (constant) data.

Edit script generation with patching
When we use the address patching optimisation, we need to antici-
pate the patches the node will do when we generate the edit script.
Therefore, we first apply the list of patches to the entire source
image, in the same way as the nodes do. If the patching works well,
this should reduce the number of differences between the source
and destination image. Next, we run the edit script generation al-
gorithm using the patched source and the normal destination image.
This is shown in Figure 5.

64

GENERATE EDIT SCRIPT

GENERATE PATCHES

APPLY PATCHES

SCRIPT
EDIT

PATCHED
SOURCE

PATCH
LIST

SRC DEST

Figure 5: Patch list and edit script generation.

We do not check whether or not the recognised word is actually
an opcode. It could also be a piece of constant data, or an operand
of another instruction. Also, when we recognise an instruction that
moves a constant into a register, the constant may not be an address
at all. In these cases, nodes will incorrectly patch the following
word if it matches an entry in the patch list.

These ’mispatches’ cause more, instead of less, differences be-
tween the source and destination image. Since the edit script is
generated using the patched source, it will contain repairs to
correct them. While mispatches cause some extra bytes to be used,
they do not affect the correctness of the generated script.

4.4 Patch list generation
The generation procedure for the patch list is simple. We use gcc

to build an ELF executable from which we read the symbol table
to determine the addresses of all FUNC and OBJECT type symbols,
as well as the addresses of library functions. Once we have this list
for both source and destination, we sort the source list on address,
and try to find contiguous spans of symbols that appear in both lists
and are shifted by the same amount. Each of these spans becomes
a patch list entry. We then examine the disassembled code, and
count for each patch list entry the number of instructions it applies
to. Finally, we select the ten patches (if that many exist) that cover
the most instruction. We also require a patch to cover at least two
instructions, because patches that affect only one instruction can be
handled more efficiently by a single repair.

5. EXPERIMENTAL RESULTS
We did several experiments to evaluate the performance of our

scheme. The measure by with we compare the different optimisa-
tions is the length of the generated edit script, before splitting it into

packets. Since the overhead incurred when splitting the script into
packets depends on the packet length, we decided not to include
this in the evaluation of our edit script algorithms.

Note that with our scheme, we can always use insert com-
mands to build the entire image. In that case the overhead per
packets is two bytes for storing the start address of the packet, and
one byte for the insert opcode. At a packet length of 64 bytes,
this is less than 5 percent overhead, which is the worst case scenario
for our scheme.

For our experiments we used four different scenarios. The base
code image is the latest version of our operating system, which
includes some test applications. The base source code has 5027
lines of code, resulting in a binary image of 20308 bytes, including
some libraries. The operating system consists of four main parts:
kernel, networking, I/O, and application containing 1112, 1411,
694, and 1810 lines of code respectively.

5.1 ‘Code shift’ and ‘Data shift’ scenarios
In the first two scenarios we generate the edit script from the

base image to a slightly altered version to test the effectiveness of
the address patching. For the first scenario we insert a single noop
instruction at the lowest possible address to shift all code up by two
bytes. This also shifts constant data, which is in the same segment.
For the second scenario we shift the .data segment up by two
bytes. This shifts all global and static local variables up by two
bytes.

Patch and repair optimisations
Table 3 shows the result of generating the edit script with only
insert and copy commands, with the repair and address patch-
ing optimisations turned on separately, and the result with both
turned on.

We see that both the repair command and address patching
significantly reduce the edit script size. For example, both opti-
misations combined improve the initial result for ‘code shift’ by
92%, and for ‘data shift’ by 60%. Address patching is especially
successful when code moves, and much less when data moves. The
reason for this is that patching calls, constant to register moves, and
push constant instructions covers most of the instructions that con-
tain addresses of code or constant data. The number of instructions
addressing global data is much larger, as was shown previously in
Table 2.

In both scenarios, using repairs allows us to repair the instruc-
tions that were not patched more cheaply than using an insert
and a copy. Thus the result of both options combined is sig-
nificantly better than the result obtained when just using address
patching.

Set of patched instructions
In Table 4, we compare the result of patching for each instruction
individually, by patching only that instruction and comparing the
script length to the length of the script without any patching. Re-
pairs are used in all cases. The cost of the patch list command
in the edit script is listed separately and excluded from the individ-
ual cases since it is only incurred once when multiple instructions
are patched.

We see that in the ‘code shift’ scenario, we benefit from patching
calls, constant to register moves and push constant instructions.
The ‘code shift’ scenario benefits from patching push constant in-
structions because the constant is usually a function pointer. Patch-
ing instructions that move data from memory into a register or back
does not help in the ‘code shift’ case because RAM addresses do
not change. The cost for the patch list is eight bytes. This is the two

65

Scenario Copy/Insert Repairs Patching Repairs and Patching

Code shift 4117 2640 429 326
Data shift 2920 1886 1720 1154
Small change 1649 1107 754 540
Major upgrade 9618 7722 7608 6308

Table 3: Resulting script size in bytes when applying repairs and/or patches.

Scenario no patching calls const to reg push const mem to reg all cost of
reg to mem patch list

Code shift 2640 -1586 -598 -53 0 -2322 +8
Data shift 1886 0 -166 0 -571 -740 +8
Small change 1107 -177 -153 0 -233 -581 +14
Major upgrade 7722 -864 -308 0 -260 -1476 +62

Table 4: Effect on script size of patching different opcodes.

bytes for the patch list command, plus six for a single patch
list entry.

In the ‘data shift’ scenario, we benefit mostly from patching
instructions that move data from memory into a register or back,
as expected. Nothing is gained by patching calls or pushes. Both
scenarios benefit from patching constant to register moves, since
these are often either addresses of constant data, located in between
code in Flash memory, or addresses in RAM.

The reason that improvement reported in the final column, when
all patching options are turned on, is not the exact sum of the
previous columns is related to the fact that we a repair with a small
offset is cheaper than a repair with a large offset. This causes
the script generation algorithm to split large pieces of copied code
into several copy commands so a small instruction format for the
repairs can be used (the offset within the copy is smaller).
When more patches are done and less repairs are necessary, the
need for this copy splitting is reduced, and we gain that on top of
being able to drop the individual repair commands.

5.2 ‘Small change’ and ‘Major upgrade’ sce-
narios

The next two scenarios represent more realistic use of our code
distribution scheme. For the first, we made a small change to the
base code by adding 17 lines to our application code, including a
static local variable. The application code is at the top of our binary
image, so most of the code does not shift. When using our scheme
it is best to keep the code that changes most frequently at the top of
the image to reduce address shifting. Doing this does not require
much effort from the programmers side.

In the ‘major upgrade’ scenario we took an older version of our
operating system, and generated the edit script from that to the
current base code. The source code of the old version we used
contained 4328 lines of code (101KB), compared to 5027 lines
in the base code (115KB). The changes from the old to the base
version include adding ports to the network layer, adding some
new test applications, and adding the code for our code distribution
scheme. As an indication: the UNIX diff of the source codes
produces a diff file of 48KB. The binary image of the old version
was 16KB, compared to 20KB for the new one.

Patch and repair optimisations
The results in Table 3 again show that patching and repairs help
improve the result, but not by as much as in the previous two cases.
This is because in the previous two cases, none of the code actually
changed, and we would ideally be able to copy everything. In the

‘small change’ and ‘major upgrade’ scenarios new code has been
added, which cannot be copied. This is particularly clear in the
‘major upgrade’ scenario. In this scenario the destination binary
was 4KB larger than the source. So a resulting edit script of 6KB
seems acceptable since this includes both the 4KB of new code,
quite some changes to the old code, as well as the overhead for
moving data and code.

The resulting script size in the ‘small change’ scenario is small
compared to the previous two scenarios, considering the fact that
in this scenario both code and data shift. Because the changes were
made at a location at the top of the image, less code and data was
affected by this, which explains the small script size.

Set of patched instructions
Looking at the results for the different patch options in Table 4, we
basically see the results of the previous two scenarios combined.
Again, the results of patching push constant instructions are poor.
The other options all result in a shorter edit script.

5.3 Current implementation
The current implementation we use on our nodes is somewhat

simpler than the planned final result we describe here. However, the
most important parts of the scheme have been implemented. What
remains are a number of improvements that need to be implemented
in order to build the complete scheme described here.

The edit script generation algorithm has been completely imple-
mented. The distribution of the edit script however, is less sophis-
ticated than it should be. We have not yet implemented a flooding
algorithm. Currently, we use node to node communication with
acknowledgements to transfer the edit script. We use only two
nodes where one reprogrammes the other.

As an indication, in experiments with real nodes we found that,
with the script loaded into EEPROM, the time needed for a node
to build and load a new image was in the order of a few seconds.
The bottleneck in this test is mainly the time needed to write to
EEPROM and Flash memory. The script interpretation overhead is
low. Of course in a real application flooding the script messages,
which are then interpreted on-the-fly instead of stored in EEPROM
first, will dominate the update time.

6. CONCLUSIONS
We presented a scheme to distribute code in wireless sensor net-

works. The scheme is simple to implement, and requires few re-
sources on the sensor nodes. Different options were presented
that allow the scheme to be used on nodes with various hardware.

66

The scheme is resilient to missing packets in that it can continue
processing the following packets and start a recovery procedure in
a later phase.

Updating all software on the nodes is possible, including the op-
erating system and the code distribution scheme itself. The scheme
distributes binary native code, so the programmer is not bound to
a virtual machine, but can do all low level optimisations necessary
when programming for wireless sensor networks.

A diff-like algorithm and two optimisations were presented (re-
pairing and patching) that reduce the necessary communication,
especially when the currently running code is similar to the code
that is to be distributed. Experimental results were presented, show-
ing that these significantly reduce the amount of communication
compared to simply transferring the binary code. Other experi-
ments showed that the application only has to be stopped for a few
seconds when distributing new code.

Most of our scheme has been implemented and has been used to
update code on real sensor nodes.

Future work
There are many opportunities to further improve our scheme. The
opcodes of the edit script commands can be tuned further to re-
duce script size. Also, more work needs to be done on the script
generation algorithm. The speed of the algorithm needs to be im-
proved, and it may be worth looking into good heuristics to replace
the optimal algorithm. Also it would help to consider the packet
boundaries when generating the edit script to reduce the overhead
incurred when splitting the script. The address patching may be
improved by expanding the set of patchable instructions. Finally, a
flooding algorithm needs to be implemented to do code distribution
to multiple nodes, and the recovery procedure for missed packets
needs to be developed.

7. REFERENCES
[1] A. Boulis, C.-C. Han, and M. B. Srivastava. Design and

Implementation of a Framework for Efficient and
Programmable Sensor Networks. Proceedings of the First
International Conference on Mobile Systems, Applications,
and Services (MobiSys), May 2003.

[2] A. Carzaniga, G. Picco, and G. Vigna. Designing distributed
applications with a mobile code paradigm. In ICSE, pages
22–32, Boston, MA, May 1997.

[3] D. Gusfield. Algorithms on Strings, Trees and Sequences,
chapter 6.1: Linear-Time Construction of Suffix Trees,
Ukkonen’s linear-time suffix tree algorithm. Cambridge
University Press, June 1997.

[4] J. Lifton, D. Seetharam, M. Broxton, and J. Paradiso.
Pushpin Computing System Overview: A Platform for
Distributed, Embedded, Ubiquitous Sensor Networks.
Proceedings of the International Conference on Pervasive
Computing, August 2002.

[5] K. Langendoen and N. Reijers. Distributed localization in
wireless sensor networks: A quantitative comparison.
Computer Networks, special issue on Wireless Sensor
Networs, August (accepted for publication), 2003.

[6] P. Levis and D. Culler. Mate: A tiny virtual machine for
sensor networks. In ACM ASPLOS, pages 85–95, San Jose,
CA, October 2002.

[7] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderso. Wireless sensor networks for habitat monitoring.
In First ACM Int. Workshop on Wireless Sensor Networks
and Application (WSNA), pages 88–97, Atlanta, GA,
September 2002.

[8] J. Moore, M. Hicks, and S. Nettles. Practical programmable
packets. In IEEE INFOCOM, pages 41–50, Anchorage,
Alaska, April 2001.

[9] E. Nygren, S. Garland, and F. Kaashoek. PAN: A
high-performance active network node supporting multiple
mobile code systems. In IEEE OpenArch, pages 78–89, New
York, NY, March 1999.

[10] G. A. Stephen. String searching algorithms. In D.T. Lee,
editor, Lectures Notes Series on Computing, volume 3,
chapter 3, String Distance and Common Sequences, pages
39–86. World Scientific, Singapore, 1994.

[11] P. Tullmann and J. Lepreau. Nested Java processes: OS
structure for mobile code. In ACM SIGOPS European
Workshop, pages 111–117, Sintra, Portugal, September 1998.

[12] T. van Dam and K. Langendoen. An adaptive
energy-efficient MAC protocol for wireless sensor networks.
In 1st ACM Conf. on Embedded Networked Sensor Systems
(SenSys 2003), Los Angeles, CA, November (accepted for
publication), 2003.

67

