
Efficient Code Motion and

an Adaption to Strength Reduction

Bernhard Steffen * Jens Knoop t Oliver Riithing t

1 Introduction

Common subexpression elimination, partia] redundancy elimination and loop invariant code motion,

are all instances of the same general run-time optimization problem: how to optimally place com-

putations within a program. In [SKR1] we presented a modular algorithm for this problem, which

optimally moves computations within programs wrt Herbrand equivalence. In this paper we consider

two elaborations of this algorithm~ which are dealt with in Part I and Part II, respectively.

Part I deals with the problem that the full variant of the algorithm of [SKR1] may excessively

introduce trivial redefinitions of registers in order to cover a single computation. Rosen, Wegman

• and Zadeck avoided such a too excessive introduction of trivial redefinitions by means of some

practically oriented restrictions, and they proposed an effffcient algorithm, which optimally moves

the computations of acyclic flow graphs under these additional constraints (the algorithm is "RWZ-
optimal" for acyclic flow graphs) [I~WZ]. Here we adapt our algorithm to this notion of optimaiity.

The result is a modular and efficient algorithm, which avoids a too excessive introduction of trivial

redefinitions along the hnes of [RWZ], and is RWZ-optimal for arbitrary flow graphs.

Part II modularly extends the algorithm of [SKR1] in order to additionally cover strength reduc-

tion. This extension generalizes and improves all classical techniques for strength reduction in that

it overcomes their structural restrictions concerning admissible program structures (e.g. previously

determined loops) and admissible term structures (e.g. terms built of induction variables and region

constants). Additiona~y, the program transformation obtained by our algorithm is guaranteed to be

safe and to improve run-time efficiency. Both properties are not guaranteed by previous techniques.

S t r u c t u r e of t he Paper

After the prehminary definitions in Section 2, the paper splits into the following two parts, one for

efficient code motion and one for strength reduction.

P a r t I starts with a motivation of our approach to efficient code motion in Section 3. Afterwards,

we follow the structure of our code motion algorithm in Sections 4 and 5. Section 6 sketches the

remaining part of the algorithm, which has already been presented in detail in [SKR1], and states

our optimality result. Subsequently, Section 7 shows the complexity analysis of our algorithm.

P a r t I I starts with a motivation of our extension to strength reduction in Section 8. This extension

is illustrated by means of a small example in Section 9. Afterwards, we follow the structure of our

strength reduction algorithm in Sections 10 and 11 and their subsections. Subsequently, we discuss

the relationship to other approaches to strength reduction in Section 12.

Finally, Section 13 contains our conclusions.

*Lehrstuhl ffir Informatik II, Rheinisch-Westf'alische Technische Hochschule Aachen, 1)-5100 Aachen
tInstitut ffir Informatik und Praktische Mathematik, Christian-Albrechts-Universit&t, 1)-2300 Kiel I-The authors

are supported by the Deutsche Forschungsgerneinschaft grant La 426/9-2

395

2 P r e l i m i n a r i e s

This section contains the preliminary defimtions for both parts. It is recommended to read the

motivating sections of these parts first.

We consider terms t • T, which are inductively built from variables v • V, constants c • C

and operators op • Op. To keep our notation simple, we assume that all operators are binary. The

semantics of terms of T is induced by the Herbrand interpretation H = (D,H0), where D=afT

denotes the non empty data domain and H0 the function, which maps every constant c C C to

the datum H0(c) = c • D and every operator op • Op to the total function H0(op) : D x D --~ D,

which is defined by H0(op)(tl, t2)=d/(op, tl , t2) for all t~, t2 • D. E = { a [g : V --* D } denotes the

set of all Herbrand states and g0 the distinct start state, which is the identity on V (this choice

of a0 reflects the fact that we do not assume anything about the context of the program being

optimized). The semantics of terms t • T is given by the Herbrand semantics H : T --* (E ~ D),

which is inductively defined by: Vg • E V t • T.

{ g(,)

H(t)(g) =dr H0(c)
Ho(op) (H(t l) (a) , H(t:)(a))

if t = v • V

if t = c • C

if t = (op, t~, t2)

As usual, we represent imperative programs as directed flow graphs G = (N, E, s, e) with node set N

and edge set E. Nodes n • N represent parallel assignments of the form (Xl,., x~) := (t~,., t~), edges

(n, m) • E the nondeterministic branching structure of G, and s and e denote the unique start

node and end node of G, which axe assumed to possess no predecessors and successors, respectively.

Furthermore, we assume that s and e represent the empty statement skip, and that every node

n • N lies on a path from s to e.

For every node n -= (xx,., x~) : - (tx,., t ,) of a flow graph G we define two functions

6.: T-~ T by 6.(t)=~ t[t~,., t . / .~,. , ~,] for all t • T,

where t[tx,., t r /~ l , . , z~] stands for the simultaneous replacement of all occurrences of :~i by t~ in t,

i • {1, . ,r}, and 8,~ : E--~E, defined by: Vcr • E Y y • V .

{ rI(t,)(g) if v = ~,, i • {1,.,r}
e"(g)(Y)=~ g(y) otherwise

~n realizes the backward substitution~ and 0~ the state transformation caused by the assignment of

node n. Additionally, let T(n) denote the set of all terms, which occur in the assignment represented

by n.

A finite path of G is a sequence (n~,.., nq) of nodes such that (nj, nj+~) • E for j • { 1,., q - 1 }.

P Ira, n] denotes the set of all finite paths from m to n, and P[m, n) the set of all finite paths from m

to a predecessor of n. Additionally, ";" denotes the concatenation of two paths. Now the backward

substitution functions 5,, : T--* T and

cover finite paths as well. For each path

by

A T =~! {
and O T:E--~E by

the state transformations 8, : E - * E can be extended to

p = (m ~ n l , . . . , n~ = n) • P[m,n], we define A T : T --* T

6,~ if q = 1

A(m...,,_~) o 6n, otherwise

{ 8 m if q = 1

Op ----4f ®(,=..,~q) o 0nl otherwise

The set of all possible states at a node n E N, E,, is given by

z . =~ {g • ~[3p • P[s,~) : eT(g0) = ~}

396

Now, we can define:

Definition 2.1 (Herbrand Equivalence)
Let tl , t2 E T and n E N . Then ~l and t2 are Herbrand equivalent at node n i f f

Va E E~. H(t~)(a) = H(t2)(g)

In order to deal with redundant computations this notion of equivalence must be generalized in order

to cover terms occurring at different nodes.

Definition 2.2 (Partial Herbrand R e d u n d a n c y)

Le~ tl , t2 E T , m , n E N, pl E P[s,m), P2 E P[m,n), and P--dtP~;P2. Then a computation of tl at

m is p-equivalent to a computation of t: a~ n i f f H(~i)(@p, (cr0)) = H(t2)(@p(~r0)). A computation

of t~ at n is partiMly Herbrand redundant wrt a computation of tl at m i f f there is a path

p" E P[m,n) such that for all paths p' E P[s ,m) the computations ti and t2 are p';p"-equivaIent.

In this case, ti and t2 are also called globally Herbrand equivalent 1.

We conclude this section with a technicality, which, however, is typical for code motion (cf. [I:LWZ]).

Given an arbitrary flow graph G = (N, E, s, e) , edges of G, leading from a node with more than one

successor to a node with more than one predecessor are critical, since they may cause a "deadlock"

during the code motion process, as can be seen in Figure 2.3(a):

\ \ b) \ \

1[a+b [~ /] llh:=a+b ~4[h:=a+bl2[// \[

31 a+b I 31 h I
Figu re 2.3

Here the computation of ~a + b" at node 3 is partially redundant wrt to the computation of Ca + b"

at node 1. However, this partial redundancy cannot safely be eliminated by moving the computation

of "a + b" to its preceding nodes, because this may introduce a new computation on a path which

leaves node 2 on the right branch. On the other hand, it can safely be eliminated after the insertion

of a synthetic node in the critical edge, as illustrated in Figure 2.3(b). We therefore assume that

in the flow graph G = (N, E, s, e) , which we consider as to be given for the formal development

in this paper, a synthetic node has been inserted into every edge leaving a node with more than

one successor. This certainly implies that all critical edges are eliminated. Moreover, it simplifies

the analysis of the placement process, because one can now prove that all computation points are

synthetic nodes, where it does not matter whether the initializations are inserted at the beginning

or at the end (cf. Section 11).

1Note, global Herbrand equivalence is in general not an equivalence relation.

397

P a r t I: E f f i c i en t C o d e M o t i o n 2

3 M o t i v a t i o n

Common subexpression elimination ([Kil, Ki2]), partial redundancy elimination ([MR, Kil , Ki2])

and loop invariant code motion ([FKU]) are all instances of the same general run-time optimization

problem: how to optimally place computations within a program. This can be illustrated by the

following example:

F igure 3.1

I(a,b,c) := (=,Y,x Y)]
I ,

1 L
I (x,y, z) := (a, b,a + b) I

J I

Here, the computation of "x + y" in the left hand block is globally equivalent to the computation of

"a + b" in the right hand block. This justifies a placement of the computations, as it is shown below:

Figure 3.2

L
I h : : ~ + y l I h : ~ a ÷ b l

J 1

Two properties of this optimization are exceptional:

* It deals with arbitrary loop structures: note, the fragment above is not even reducible.

• It requires interrelated initialization statements that use syntactically different terms.

Two algorithms have been proposed to deal with code placement on this level of generality, which

both abstract from costs of trivial redefinitions 3 as it is usual for code motion. First, an algorithm

(eL [SKRt]) that optimally moves computations wrt Herbrand equivalence 4. However, this algorithm

may introduce an arbitrary number of trivial redefinitions, just in order to cover a single computation

of the program being optimized. Second, a more practically oriented algorithm (cf. [RWZ]), which

is tailored to deal with a modified notion of optimality that we call RWZ-optimality. This algorithm

avoids a too excessive introduction of trivial redefinitions by means of some practically oriented

restrictions. However, it is structurally restricted: it is constrained to reducible flow graphs s, and it

is RWZ-optimal only for loop-free programs, i.e. it misses important optlmizations in loop contexts,

like for example the one presented above 6.

In this paper we will present a modification of the algorithm of [SKR1], which avoids a too

excessive introduction of trivial redefinitions in the same way as the algorithm of [RWZ] does, but

which is RWZ-optimal for arbitrary flow structures. Moreover, the algorithm is efficient, cleanly

structured, and it allows a modular extension of its analysis and transformation power.

Essentially, this algorithm is obtained by splitting and reorganizing the first stage of the algorithm

presented in [SKR1], which results in a three stage structure. As before, the algorithm depends on

the Value Flow Graph, which serves as an interface between the second and third stage:

2[SKR2] is an extended version of Part I.
SA redefinition is called trivial if it is of the form a : : b, where a and b are both variables (of. [RWZ]).
4tterbrand equivalence is called transparent equivalence in [RWZ].
sWe were told that their algorithm can be modified to overcome this constraint.
SA detailed illustration of the introductory example is given in [SKR2].

398

1. Determination of relevant terms: this step computes for every program point a finite set of "rel-

evant" terms, which is sufficiently large in order to guarantee RWZ-optimality of our algorithm.

(Section 4).

2. Computation of term equivalences:

(i) Local equivalences: determining at every program point the Herbrand equivalence class

for every relevant term by means of a modification of Kildali's algorithm (Section 5.1).

(it) Global equivalences: globahzing the local equivalence information determined in the pre-

vious step to an explicit representation of global term equivalences by constructing the

value flo~, graph (Section 5.2).

3. RWZ-optimal placement of computations (Section 6):

(i) Determining the optima] computation points by means of a modification of Morel/-

Kenvoise's algorithm. Our modification works on value flow graphs, which explicitly

incorporate global equivalence information. This allows us to generalize Moret/Renvoise's

technique, which only deals with term identity~ to wort~ for term equivalence (e.g. Her-

brand equivalence).

(it) Placing the computations.

The worst case time complexity of our algorithm is limited by O(n4), where n is the number of

nodes in the flow graph being optimized. This complexity is given by the Kildall-like step 2(i) of

our algorithm, which is well-behaved in practice and therefore accepted for practical use. The other

steps are of third order. In comparison, the worst case time complexity of the structurally restricted

algorithm of [I~WZ] is O(n3). Thus, except for its standard Kildall-like part, our algorithm is of the

same worst case time complexity as the one proposed by t~osen~ Wegman and Zadeck. As usual these

estimations are based on the assumption of constant branching and constant t evrn depth, i.e. on the

assumption that the maximal number of successors of a node and the maximal depth of a program

term is bounded by a constant.

Experience with an implementation of our algorithm, done in a joint project with the Norsk Data

company, shows its practicality. In particular, all examples given are computed by means of this

implementation.

An interesting feature of program transformations are their second order effects. Consider for exam-

ple:

a) If t b) lfh,:=o+bf c) Jhl:=o+bf
) t, J t,, J L

L) h2:=hl h~:=hl i z : = h i
"l t" c J t

Figure 3.3 1

Here the computation of "a + b" in node 5 of Figure 3.3(a) cannot safely be moved to node 4,

because this may introduce a new computation on the path leaving node 4 on the right branch.

399

However, after the program transformation displayed in Figure 3.3(b), which simultaneously moves

the computations of "c + b" at node 4 and of "a + b" at node 3 to node 1, the computation of

"a + b" at node 5 can be replaced by a reference to the auxiliary variable hl as it is illustrated in

Figure 3.3(c).

Steffen [St] and Rosen, Wegman and Zadeck [RWZ] were the first who proposed algorithms dealing

with such effects. Our algorithm here captures all second order effects in the sense of [RWZ].

4 C o m p u t a t i o n o f R e l e v a n t T e r m s

The first stage of our algorithm computes for every program point a finite set of relevan~ terms.

Essentially, a term t is relevant at a program point if its value mus~ be computed on every con-

tinuation of a program execution passing this point. The equivalences wrt these terms are already

sufficient for our placement procedure to determine a superset of the optimal computation points

(cf. [SKR2]). However, the transformed program may still contain some full redundancies. This can

be illustrated by means of Figure 3.3(a). The flow graph there would only be transformed into the

one of Figure 3.3(b), missing to eliminate the redundancy of "a + b" at node 5. In order to capture

these redundancies as well, we subsequently enlarge the term closures mentioned above by means of

a procedure which resembles the question propagation process of [RWZ].

This combined closure 7 guarantees that the placement procedure results in a RWZ-optimal flow

graph. Moreover, it can be shown that the resulting placement is at least as good as a placement

obtained by the techniques of Rosen, Wegman and Zadeck [RWZ], because the second closure step

covers their question propagation completely.

5 C o m p u t a t i o n o f G l o b a l T e r m E q u i v a l e n c e s

5.1 Determining Local Term Equivalences

The semantic analysis of the first step of the second stage determines for every program point all

Herbrand equivalence classes that contain (at least) one of the terms that have been associated with

this point in the first stage (1. Optimality Theorem 5.5). Here, term equivalences are expressed by

means of structured partition DACs (cp. [FKU]). -To define the notion of a structured partition

DAC precisely, let 7~/,,=d] { T[TC_(VU CU Op) A [T[e w\{0} }:

Definit ion 5.1 A structured partition DAG is a triple D = (No, ED, LD), where

• (ND, ED) is a directed acyclic multigraph with node set Nz) and edge set EDCND×ND.

• LD : ND --*'Pti~ is a labelling fanctionj which satisfies

1. v7 e g~. I z~(7)\Vl ___ 1 and

2. VT, 7' e No. 7 ¢ 7' ~ LD(7)NLD(7') CC_ Op

• Leaves of D are the nodes 7 E ND with LD(7)AOp = O.

• An inner node 7 of D possesses ezactly two successors, which we denote by l(7) and r(7).

• V7,7' E N/~. LD(7)ALD(7')AOp ~ 0 A l(7) = l (7 ') A r (7) = r (7 ') =~ 7 = 7 ' .

Additionally, D is called a minimal structured partition DAG, i f aU its root nodes satisfy t LD(7) 1 -->

2, and it is called a finite structured partition DAG, i f ND is finite. The set of all structured partition
DA Gs is denoted by 7979.

"tAn algorithm for its construction is given in [SKR2],

400

A node 7 END of a structured partition DAG is meant to represent an equivalence class of program

terms:

TD("/) = ((VU C)¢3LD(7))U {(op, ~, t') [op e (OpVILD(V)) A (t, Z') e TD (l(7)) × TD (r(7))}

'Then given a structured partition DAG two terms are equivalent iff they are represented by the same

node of the DAG. This can be illustrated as follows:

parti£ion ,~

[a + b,a+ y ,x + b,x + y ,z !

Figure 5.2
a,~l b,y]

, DAG

+,z

a , ~ y

Structured partition DAGs characterize the domain which is necessary to compute all term equiva-

lences which do not depend on specific properties of the term operators. Moreover, they allow us to

compute the effects of assignments essentially by updating the position of the left hand side variable:

pre-DA G assignment post-DA G

Figure 5.4

+,z +,z,b

a, ,y a,x y

We have8:

Theo rem 5.5 (1. Opt imal i ty Theorem)

Given an arbitrary flow graph, the analysis for determining local semantic equivalences 9 terminates

with an annotation of finite structured partition DAGs, which syntactically characterize all Herbrand

equivalence classes containing a relevant term.

R e m a r k 5.6 Note that the corresponding algorithm of [SKR.1], which determines a characterization

of all Herbrand equivalence classes (rather than just the relevant ones), terminates with a different

annotation. There we used minimal finite structured partition DAGs in order to reduce the complex-

ity of the analysis. In fact, these DAGs provide the most concise DAG reprcsentation of Herbrand

equivalence relations. In contrast, in this paper the complexity is limited by restricting the anal-

ysis to relevant equivMencc classes (cf. Section 4). This restriction is essential for the complexity

estirnation in Section 7.

SThe proof of this theorem is based on the Coincidence Theorem of [Ki2, KU].
9The corresponding algorithm is given in [SKR2].

Thus a full DAG represents a partition (or equivalence relation) on:

Viewing DAGs as equivalence relations as it is suggested by Figure 5.2 makes the set of all structured

partition DAGs a complete lattice, with inclusion defined set theoretically as usual. This guarantees

the existence and well definedness of 7-/(D) in:

Definition 5.3 Let D E 7)7D. Then

1. 7~(D) is the smallest structured partition DAG with DC_~(D) and T(7~(D)) = T.

2. tl, ~2 E T are syntactically D-equivalentj iff D possesses a node 7 with tl, ~2 E To(v).

3. tl, t2 E T are semantically D-equivalent, iff they are syntactically ~ (D)-equivaIent.

401

5.2 The V a l u e F l o w Graph

The value flow graph (see Definition 5.7) represents global equivalence information explicitly. Essen-

tially, its nodes represent term equivalence classes and its edges the data flow. For technical reasons,

the nodes of a value flow graph are defined as pairs of equivalence classes. However, identifying these
pairs with their second component leads back to the original intuition.

In the following let us assume that every node n of G is annotated by a pre-DAG pre(n) and a

post-DAO post (n) according to the results of Section 5.1. For the sake of readability we abbreviate

U (Npre(~) x Npost(n)) by P, and denote the flow graph node corresponding to a pair (%'1') E F
h E N

by A/'(% 71). This allows to define the backward substitution relation ~ C_C_ P by:

D i V(')',')/) E r'. ")' ae-~-'),' ¢=:=>d] TpreCN'(,,.F))(')')_ #Ar(-n.F)(TpostCAfC.wF))("/))

where (% 71) E ~ is abbreviated by 7J-#--7 I.

Let now ® denote a new symbol, and pred¢ and auccc functions that map a node of G to its

set of predecessors and successors, respectively. Then the formal definition of the value flow graph
for the DAG annotation under consideration is as follows (cf. [St, SKR1]):

Defini t ion 5.7 A value flow graph VFG is a pair (VFN, VFE) consisting of

,, a set of nodes VFN C 0..((Npre(n)U {e}) x (NposKn)U {®}))1 where
n

f
v = ("h,72) E VFN ¢==~dt I

• a set of edges VFE C VFN × VFb~ where

5
71~----% if 71 ~ Q A % ~ (i)

5
flTa.71~---Ta if 71 ¢ (~)A"Y2=(:)

5
flTa.Ta~----Ta if 71 = Q A 3'2 ¢ @

(v, v ~) E VFE ¢:==~dl .hf(v I) E succa(.hf(v)) A

Wpre(At(~,')) (vl~ 1) C_ Tpost(Af(~)) (P'.~2)

where "J,l" and "J,2" denote the projection of a node v to its first and second component, respec-
tively, and .h/'(v) the node of the flow graph that is related to v.

Thus, nodes v of the value flow graph are pairs (71,72), where 71 is a node of the pre-DAG and

72 a node of the post-DAG of a node n of G, such that 71 and 72 represent the same value, i.e.

satisfy the inclusion Tpre(n)(71) D {t[3t ' C Tpost(n)(72). t = 6n(t')). Edges of the value flow graph

are pairs (u, v'), such that Af(v) is a predecessor of Af(u') and values are maintained along the

connecting edge, i.e. Tpre(ec(~,))(u'll)C_Tpost(aC(~))(v~2). Thus, edges of the value flow graph model

the value flow along the branching structure of G and nodes the value flow over a single assignment
statement. This is illustrated in Figure 5.8, which shows the important part of the value flow graph
belonging to our introductory example.

Nodes of the value flow graph represent the value flow over the nodes of the flow graph: the

term "x+y" (" a + b ') which is represented by the first projection of the left (right) value flow graph

node has the same value before the execution of the left (right) assignment as the terms which are

represented by the second projection of the left (right) value flow graph node after the execution of
this assignment.

Edges of the value flow graph represent the value flow along the edges of the flow graph: the
terminal nodes of the two edges of the value flow graph below have first components "{x + y}"

("{a + b}"), which are contained in the second components of their initial nodes "{a + b, ~ + b, a +

y,~ +y,z}" ("{a + ~,z + b,a + y,~ + y,c}")

402

1 (a
b

l

b,y

F i g u r e 5.8

6 RWZ-Optimal P l a c e m e n t of Computa t ions

The placement procedure of our three stage algorithm is exactly the same as the one introduced

in [SKR1] 1°. It places computations in a program relative to the equivalence information provided

by a value flow graph. In this section we are going to show that the value flow graphs constructed

in Section 5.2 lead to a placement satisfying an optimality criterion which was first considered in

[l~WZ] 11.

D e f i n i t i o n 6.1 A flow graph G satisfies the RWZ-criterion iff every redundancy of a computation

tl at a node w wrt a Herbrand equivalent computation t~ at a node u on a path p E Pin , w] is o/

one of the following two kinds:

1. path p goes through a node v and there emist two f~rther paths: the first, Pl, from the start

node through v to a predecessor o / w along which no computation is performed that is Pl-

equivalent to the computation of tl a t w, and the second from v to the end node of G that

does not contain a computation equivalent to that of tl at w,

2. path p goes through a node v and there exists another path from u to w through v on which

the computation of tl at w is Herbrand equivalent to a computation of t3 at v, and on neither

path are the computations of t3 at v and of tz at u Herbrand equivalent.

The RWZ-criterion was introduced in [RWZ] in order to establish a notion of optimality for a place-

ment procedure: a placement is "optimal" if the resulting program satisfies this criterion. Whereas

the elimination of redundancies of the second kind may require an excessive introduction of trivial

redefinitions, redundancies of the first kind cannot be eliminated without violating safety. However,

there are programs, which cannot be improved by means of safe transformations and do not satisfy

the RWZ-criterion:

1°It can also be found in [SKR2].
lZHowever, the definition of optimality there is erroneous. It does not cover the right intuitions, and in cases cannot

be met without violating safety.

403

1

i
F i g u r e 6.2

1

i
In both diagrams of Figure 6.2 the computat ion of " a + b" at node 4 is partially Herbrand redundant

wrt the computat ion of " c + b" at node 2 and neither the first nor the second condition of Definition

6.1 holds. In fact, the second picture shows that the defect cannot be explained in terms of necessary

computations on program paths: although the value of the computat ion "a + b" at node 4 is

computed on every path through this program, no program path can safely be improved without

impairing some other program paths. Thus, we need to consider a weaker notion of optimality, which

we obtain by replacing the first condition of Definition 6.1 by the following:

• path p goes through a node v, and

- there exists a further path pl from the start node through v to a predecessor of w along

which no computat ion is performed that is pl-equivalent to the computat ion of tl at w,

and

- a computat ion of the value of tl at v is not statically safe.

Intuitively, a computat ion t is statically safe at a node n, if every successor m of n satisfies:

• the value of t is computed at m or

• there is a te rm t I, which is partially Herbrand redundant wrt t at n, whose computation at

m is statically safe 1~.

In fact, in contrast to the optimality result of [t~WZ], the algori thm proposed there only satisfies

this (meaningful) weaker notion of optimality on DAGs, which we call RWZ-optimality. In fact-our

algorithm satisfies this notion of optimality for arbitrary flow graphs.

T h e o r e m 6.3 (RWZ-Optimallty)

Every flow graph transformed by our three stage algorithm is RWZ-optimal.

? Complexity

We estimate the worst case t ime complexity independently for every stage. As usual this estima-

tion is based on the assumption of constant branching and constant term depth, and depends on the

following three parameters: the number of nodes of a flow graph n, the complexity of computing

the meet of two equivalence informations ra, and the maximal number of value flow graph nodes,

which are associated with a single node of the underlying flow graph,/z. Note that n * # is an upper

approximation of the number of nodes in the value flow graph, which we will abbreviate by u. This

12Note, in both diagrams of Figure 6.2, a computation of ~a + b" at node 3 is not statically saf% since its value is
not computed at node 5 and neither a computation of "a + b" nor "c + b" is statically safe at node 5.

404

yields for the complexity of the five steps of our algorithm13:

1. Determination of relevant terms: O(n3). Using our assumption of constant branching and con-

stant term depth, it can be shown that in the worst case the maximal number of terms a single

flow graph node is annotated with is of order O(n2). Thus, the estimation by O(n 3) is based on

the very pessimistic assumption that this worst case occurs at every flow graph node. In practice,

however, the set of relevant terms is much smaller. This should be kept in mind, because all the

other estimations are based on this worst case assumption.

2. Computation of term equivalences:

(i) Local equivalences: O(n 2*m). Here, "n 2" reflects the maximal length o£ a descending chain

of annotations of a flow graph. In fact~ the number of analysis steps to determine the local

equivalences is linear in this chain length. This is achieved by adding those nodes to a workset

whose annotations have been changed (rather than their successors). Then processing a worklist

entry consists of updating the annotations of all its successors just wrt the change of anrrotation

at the node being the entry. This can be done in O(ra) becailse of our assumption of constant

branching.

(ii) Global equivalences: O(n*#). This estimation for the costs of constructing the value flow graph

is based on two facts. First, if there exists an edge in the value flow graph between two nodes

~'1 and ~2 then the corresponding nodes A/'(vl) and .h/(~,2) of the flow graph are connected as

well. Thus every edge of the value flow graph is associated with an edge of the original flow

graph. Second, the effort to construct all edges of the value flow graph that correspond to a

single edge (n, rn) in the original flow graph is linear in the number of value flow graph nodes

that annotate r~, which can be estimated by O(/~).

3. Optimal placement of the computations:

(i) Determination of the computation points: O(v). The argument needed here is based on that of

the first step, however, two additional problems arise. First, we do not have constant branching,

and the algorithm here is bidirectional. Second, the predicates associated with a node contain a

disjunction of properties of their successors 14. However, using a "counted or" for this predicate,

all nodes of the value flow graph can be updated once by executing only two constant time

operations per edge of the value flow graph. Moreover, the number of edges of a value flow

graph can be estimated by the number of its nodes O(v) aswell. Thus, the determination of

the optimal computation points is linear in the number of nodes of the value flow graph.

(ii) Placing the computations: O(v). This is straightforward for our algorithm.

Using the fact that the maximal size of a set of relevant terms a single flow graph node is annotated

with can be estimated by O(nZ), we obtain that both ra and /z can be approximated by O(n 2) as

well. While this is straightforward for the estimation of #, the estimation for ra exploits the fact

that the meet of two structured partition DAGs can be computed essentially linearily in the size of

the resulting DAG. This yields a worst case time complexity of O(n 4) for the Kildall-like first step

of the second stage of our algorithm, and of O(n 3) for all other steps. Note that this estimation of

the Kildall-like step is rendered possible only by its restriction to compute the Herbrand equivalence

classes solely for relevant terms. However, even the standard approach, which we conjecture to be

exponential in its worst case, is well-behaved in practice and therefore accepted for practical use.

Of independent interest is the estimation of the complexity of the third stage, yielding that the

placement process is linear in the size of the value flow graph. The argumentation used here also

applys to the classical algorithm of Morel and l~envoise [MR], showing that their algorithm is linear
in the size of the flow graph. This improves all previous estimations we know of.

13The complete algorithms are given in [SKR2].
14See PPOUTin Equation System 11.1.

405

Part II: S t r e n g t h R e d u c t i o n 15

8 M o t i v a t i o n

Strength reduction is a powerful technique for the optimization of loops, which improves run-time

efficiency by reducing "expensive" operations, e.g. "*", to less expensive ones, e.g. "+'. Its essence

can be sketched as follows:

Let z * y be a multiplication occurring in a loop L. Then try to eliminate all calculations of

x * y in L by performing the following three steps:

• Initialize a unique auxiliary variable h with z * y before entering L.

, Insert assignments of the form h := d=t: e in L that update h according to the redefinitions of

x and y.

• Replace nil occurrences of x * y in L by h.

Note, if no updating assignments are inserted, this three step procedure performs loop invariant code
motion. In fact, a clean realization of it should transform the flow graph of Figure 8.1(a) into the

one displayed in Figure 8.1(b)16:

11 1
I

1 1 (
(~, ;bl 71o:= +112~ to:=o+11 lp:=o, o+11 lo:=o

L, JtL.) t. J
Figu re 8.1

l[(hl'h2):=(a*b'k/l) I h 3 :--- h2 * b

7to:=o+11

h_.h~6 a := h2
hi :=q+b

L

In this part of the paper we present such a clean realization. It evolves as a uniform extension

of the two stage algorithm of [SKRI], which optimally moves computations within programs wrt

Herbrand equivalence (cf. Section 2). In fact, this extension does not affect the structure of the

underlying algorithm at all. It only requires two conceptual changes in the steps l(ii) and 2(i), and

a straightforward modification of step 2(it):

1. Construction of a value flow graph (Section 10):

(i) Determining all Herbrand equivalences.

(it) Computing for every program point a finite set of "relevant" terms that allows to syntac-

tically represent enough term equivalences in order to perform strength reduction.

(iii) Constructing the corresponding value flow graph.

2. Placement of the computations:

(i) Determining the computation points and computation forms wrt the value flow graph

obtained in step l(iii) (Section 11.11.

(ii) Placing the computations (Section 11.2).

Is[KS] is an extended version of Part IL

16However, to the best of our knowledge, all the published algorithms for strength reduction would fail this test.

406

This algorithm performs strength reduction based on an optimal movement of the computations wrt

Herbrand equivalence. The point of this approach is that it reduces strength reduction completely to

the availability of values at the computation points. This Mlows to overcome all restrictions concern-

ing admissible program structures (e.g. previously detected loops) and admissible term structures

(e.g. terms built of induction variables and region constants) that are required by previous strength

reduction techniques (cf. Section 12). Moreover, it is the key for proving that program transfor-

mations bbtained by our algorithm are guarantee¢l to be safe and to improve run-time et~ciency.

Both properties can be violated by previous techniques (cf. Section 12). The power of our algorithm

that generalizes and improves the classical algorithms for strength reduction, common subexpression

elimination, partial redundancy elimination, and loop invariant code motion is illustrated in the ex-

ample of Figure 8.1(a), where to the best of the authors' knowledge the algorithm presented here is

unique in performing the optimization displayed in Figure 8.1(b).

9 Discussion of a Small Example

In this section we discuss the effects of the five steps of our two stage algorithm by means of the

example of Figure 9.1(a), which will be transformed into the flow graph displayed in Figure 9.1(b):

a) 1[I b3 1 [(hl,h~) := (a, b,c, b) l

 la:=a+cl 21P:--a'hi 51a:=a+c l p:=hi I

l 1 l I
41 I 3[q:=c*bl ' lh l :=p+al 3 I q:=h2 [

Figure 9.1

The semantic analysis of step l(i) annotates the flow graph with partitions lr that characterize all

equivalences between terms wrt the Herbrand interpretation, i.e. all equivalences that are valid

independently of specific properties of the term operators (Figure 9.2). In particular, this analysis

detects the equivalence of p and a * b and of q and c * b after the execution of node 3 (cf. Section

10).

Figure 9.2

J_

±

[blcIq, c ,b] _L

=[o:--o+c I = :--- a, I
[alblclp, a * b l q , ~ * b] lair 'Iv, a* b]

l 1
[alblclp, a*blq, c*b] [alblp, a* b]

[alblclp, a,bl , c , b] [alblclp, a*blq, c ,b]

lrPartitions are repreeented by means of structured partition DAGs (see Section 5.1 and 10).

407

Afterwards, step l(i i) computes for every program point a finite set of "relevant" terms, which

contains a representation system of those equivalence classes that express all necessary equivalences

syntactically (cf. Section 10), and extends the node annotat ion computed in step 1(i) accordingly.

This (straightforward) extension is necessary, because the placement process of the second stage only

refers to term equivalences that are explicit in the value flow graph under consideration, i.e. two

terms are equivalent at a program point if they are commonly represented by a node of the value

flow graph at this point. In addition to the corresponding step of the algorithm of [SKR1], strength

reduction requires to consider terms as relevant that arise from an application of arithmetic laws.

The essence of classical strength reduction is to exploit the distributive law for sums and products:

(u + v) * w = u * w + v * w. Therefore, whenever a term of the form (u + v) • w is relevant, the terms

u * w and v * w are also relevant is.

(
[a i b l c a*b plq, c*b]

5 ~:=~+c]
[~lblcla+cl(~+c)*blp,~*blq, c*b]

[Plalblcla* btc* blq]

11 I
[plal klein* blc* blq]

[Plalblcla* blc* blq]
2[p:--a*b I

[alblclp, a*blc*blq]

1
Ialbleta+ el(a+ e)* btp,~* blq, c* b] ['~tbletp, a*blc* btq]

4 l I 31q:=c*bl
[~lblcla+cl a+c)*blp, a*blq, c,b] [alblclp, a*btq, c*b]

t Jl
F i g u r e 9.3

Step l(iii) produces the corresponding value flow graph (cf. Section 10), whose relevant part is

displayed in Figure 9.4:

 lolblcl N Iql
iI ///A N

[a]b]c,a-t-c, [a] b , c] ~ , ~] q]

[alb]cl~+cl [~lblcl ~ 1 ~

F i g u r e 9.4

Cain the example, (a + ¢) * b makes a * b and c * b relevant. In the special situation here these terms arose already
after step 1(i).

408

Applying a modification of Morel/Renvoise's algorithm (step 2(i), cf. Section 11.1) to the value flow

graph above yields the computation points and computation forms. In addition to the corresponding

step of the algorithm of [SKI~I], the determination of computation forms here needs to exploit the

distributive law in order to capture strength reduction. This is achieved by adding the predicate

D I S T R to the equation system (cf. Section 11.1). After this preparation, the placement procedure

of step 2(ii) results in the following flow graph (cf. Section 11.2)19:

Figure 9.5

1 [(h i ,h2) := (a*b,c*b)
(h4,hs) := (hi,h2)]

5 [(a , h 4) : = (a + c , hs) l 2[p : = h 4 [

1 1

Subsequent variable subsumption [Ch, CACCHM] yields the desired result (Figure 9.1(b)).

10 C o n s t r u c t i o n o f a V a l u e F l o w G r a p h

In this section we follow [SKR1] in that we first compute all Herbrand equivalences and subsequently

build an appropiate problem dependent term closure. This is in contrast to the approach of Part I,

where the problem dependent term closure was computed first in order to gain efficiency.

1. Determining all Herbrand equivalences.

2. Computing for every program point a finite set of "relevant" terms that allows to syntactically

represent enough Herbrand equivalences in order to perform strength reduction.

3. Constructing the corresponding value flow graph.

Since the procedures of the first and third step are essentially the same as the corresponding steps

of Part I and [SKR1], we concentrate on the second step here2°:

C o m p u t a t i o n of Re levan t Terms

The placement process of our algorithm (Section 11.1) considers the pre-DAGs and post-DAGs of

a flow graph annotation as purely syntactical objects, i.e. terms are considered equivalent iff they

are syntactically equivalent (Definition 5.3(2)). Thus we need to extend the flow graph annotation

constructed in the first step of the first stage, which characterizes Herbrand equivalence semantically

(Definition 5.3(3)), to a sufficiently large syntactic representation. As in Section 4 and [SKR1], this

is achieved by computing for every node n of G a finite set of relevant terms T,=y(n) that contains

a representative of all equivalence classes that are necessary at node n. However, in order to capture

(classical) strength reduction, we additionally need to exploit algebraic laws. Remember, classical
strength reduction essentially replaces computations of the form u * (v + w) by (u * v) + (u * w).

This is safe and profitable, whenever the vMues of u * v and u * w are available. Therefore, we

consider a term (u* v) + (u* w) and its subterms as relevant here, whenever the term u * (v + w) is

mNote, also for the computation "a + c" at node 5 an auxiliary variable will be initialized at node 4, a fact which
we neglect here in order to keep the example simple.

2°Details can be found in [KS].

409

relevant in the sense of [SKR1]. Moreover, commutativity and associativity are necessary in order to

evaluate subterms with constant operands, whose values can be computed already at compile time

and therefore enlarge the number of available expressions.

Technically, this is realized by enhancing the strategies of [SKR1] for computing relevant terms

by means of the closure operator q,: ~ (T) - - , 79(T), which is defined by:

V T C T : +(T)=. {~' [St E T. t=__:t ' }

where -~ C T x T denotes a convertibility relation between terms: ~1 ~ t2 if and only if tx and t2

can be deduced from each other by means of the commutative, associative and distributive law for

" + " and " * ", together with the evaluation of subterms with constant operands.

Here we consider the basic strategy of [SKR1] for computing relevant terms, which determines for

every program point the set of all terms whose value must be computed on every continuation of a

program execution passing this point. Enhancing this strategy by means of the closure operator @ it

is already sufficient to uniformly capture the known strength reduction algorithms ~. The complete

closure algorithm can be found in [KS].

11 Placement of Computations

11.1 D e t e r m i n a t i o n o f C o m p u t a t i o n Points a n d F o r m s

The determination of computation points is split into two steps. The first step coincides with the

corresponding step of [SKR1]. It determines the computation points wrt the equivalence information

that is expressed by the value flow graph under consideration. The second step, however, had to be

extended. It determines the computation forms for the computation points computed in the first

step. This has been trivial in [SKR1], where computation forms are simply minimal representatives of

the Herbrand equivalence classes associated with the computation points. In the context of strength

reduction, however, the choice of the computation forms is much more elaborate, because semantic

equations need to be exploited to take care of replacing "expensive" by "cheap" operations (cf.
Theorem 11.2).

C o m p u t a t i o n Points

The point of this step is the solution of the Boolean equation system 11.1, which was introduced

in [SKR1]. It is tailored to work on value flow graphs rather than flow graphs directly, in order to

capture semantic equivalence (cf. [SKR1] and Part I). Following [MR], the names of the predicates

are acronyms for the properties "local an~icipability ~', "availability" and "placemen~ posaible". Fur-

thermor% the formal presentation of the equation system needs the following notation: given a value
flow graph VFG, let

VFNs=df { v I Af(predvFv(V)) # predc(N(v)) V N(v) = s }

and

VFNo = . { ~ fie(s~ccvFc(~)) # s~cc~(H (.)) v ,r(~) = e }

where predvFG and succvFc denote functions that map a node of VFG to its set of predecessors
and successors, respectively. This allows:

~1Of course, the same is true for the other, more complex strategies.

410

Equation System 11.1 (Boolean Equation System)

• The Frame Conditions (Local Properties):

ANTLOC(~) , = . Tpro(~c(~))(~h)n ~(N(~)) # 0

AVIN(v) =false if v E VFN. A Tpre(Ar(v))(v.~l) ~ C

P P OUT(v) =false if v E VFNe

• The Fixed Point Equations (Global Properties):

AVIN(v) ~ I I AVOUT(v')
,; E pred(v)

AVOUT(v) ~=~ AVIN(v) V PPOUT(v)

PPIN(v) ¢==~ AVIN(v) A(ANTLOC(v) V P P O U T (v))

PPOVT(v) ¢=~ I I ~ PPIN(v ')
me s~c(]cCv)) ~' e ¢,,)

The greatest solution of this system 22 determines the computation points by means of

INSERT(v)=aS PPOUT(v) A -~PPIN(v)

Computation Forms

In this step we determine for every value flow graph node v satisfying the predicate INSERT an

initialization term (computation form), i.e. a term with "minimal" executions costs that represents

the value of the equivalence class v~2. In the case of the Herbrand interpretation an initialization

term is just a minimal representative of vJ.2 (cf. [KS, SKR1, SKI~2]). However, in order to capture

the effects of strength reduction a more careful choice is necessary. We therefore introduce a new

predicate D I S T R ("Distributivity") that establishes a relationship between candidates for strength

reduction (given by terms of "vI~2" having "*" as top most operator) and values (given by terms

of "v2~.2" and "va~2"), whose sum is equivalent to the value of the candidate:

DISTR(v l ,v2 , u3) ¢=~ .h f (v i)=N(v2)=H(va) A

INSERT(vx) h AVOUT(v2) h AVOUT(v3) h

Lpost(a'(,,~))(vl~2) = {*} A

3 t2 E Tpoat(zf(v~))(v2J~2) 3 *3 E Tpost(2d'(v,))(P3*2).

(+, *2, ta) E ¢(Tpost(2C(~t))(vl*2))

For notational convenience we introduce the predicate S1ZINS which is derived from DISTR:

SRINS(v) <=. 3 v~, v~ E VFN. DISTR(v, v~, v2)

2~An algorithm for determining this solution is ~vcn in [KS].

411

The intuitive meaning of the predicate SR.INS ("Strength Reduction Insertion") is the following:

whenever a node v of the value flow graph satisfies the predicate S R I N S , then there exist two

further nodes t/z and t/z, which represent values, whose sum equals the value represented by t/~2.

This allows us to choose as an initialization term a term having " + " as top most operator and

initialization terms of t/1 and t/9. as operands, instead of the "standard" minimal representative of

v~2, which has "*" as top most operator. Not% due to the availability of t/1 and ~2 this choice can

be proved to be safe and to improve the efficiency, i.e..there is no path on which a new computation

is introduced as a consequence of this replacement. In fact, we have:

T h e o r e m 11.2 The computation forms (initialization terms) are optimal wrt the convertibility

relation and the local equivalence inforvnation expressed by the value flow graph under consideration.

Every flow graph transformed by our two stage algorithm has the same computation points as the

flow graph that results from the algorithm of [SKR1] applied to the same value flow graph. The

transformed flow graphs differ only in the form and the computation costs of the initialization terms.

This difference, which arises from the greater flexibility in the choice of the initialization terms here,

leads to second order effects: replacing multiplications by summations according to the distributive

law may introduce (partial) redundancies in the program. This is due to the fact, that the specific

properties of " + " and " * " are considered only by the second stage of the algorithm, but not

during the semantic analysis of the first stage. Whereas a heuristic approach to this problem can be

found in [KS], a systematic treatment is under investigation.

1 1 . 2 P l a c i n g t h e C o m p u t a t i o n s

The placement procedure is a straightforward adaption of the placement procedure of [SKI~I]. Es-

sentially, it performs the following steps:

• Initializing auxiliary variables for every value flow graph node satisfying the predicate I N S E R T

by means of an initialization term with minimal computation costs.

• Propagating the values of these auxiliary variables to the locations of original program terms

and replacing them by references to their corresponding auxiliary variables.

The detailed placement procedure is given in [KS].

12 R e l a t e d W o r k

Strength reduction was pioneered by Cocke and Kennedy [CK] 2s and later on generalized and im-

proved in particular by Allen, Cocke and Kennedy lACK], and Joshi and Dhamdhere [JD1, JD2].

All these approaches, which characterize the state of the art, are:

• Syntactic: they optimize term by term, without exploiting semantic equivalences between

syntactically different terms.

• Locally updating: they insert update assignments whenever an operand of a candidate expression

for strength reduction is redefined, without investigating the global context for the necessity of

this update. This may introduce terms, whose values are not computed in the original program.

Thus, the resulting program transformation cannot be guaranteed to be safe or to improve
run-time efficiency.

~3An efficient, hash-free solution to the strength reduction transformation of [CK] is presented in [CP].

412

* Siructurally restricied: [CK, ACK] work only for previously detected loops and terms built

from induction variables and region constants, which excludes the optimization of more general

program structures. In contrast, [JDI~ JD2] work for arbitrary control flow structures and terms

composed of variables and program constants. They pay for their ability to deal with general

program structures by requiring an unnecessarily strong notion of admissible term structure.

In contrast, our algorithm is:

, Semantic : it exploits semantic equivalence between syntactically different terms.

* Globally updating : update assignments are only inserted, if they are required by the global

context. This guarantees that the resulting program transformation is safe and that it improves

the run-time efficiency of the original program.

, General: it works for arbitrary program structures without requiring additional constraints

concerning admissible term structures 24.

To our knowledge, none of these points has been realized in a strength reduction algorithm before. In

fact, also the (significantly different) approach of [Pa2, PK], the finite differencing, fails these points.

Its major achievement is the generalization of strength reduction to non-numerical applications,

which we do not consider here.

Whereas the predicates "syntactic", %emantic' , "structurally restricted" and "general" are self-

explaining, "locally updating" and "globally updating" need some more explanation. We will there-

fore illustrate these two predicates by means of a simplified version of an example given in [JD1]:-

x := t

slj:=i-71 Ij:=j+3l
[=J*31

 lJ--J+51 l IJ:= /zl
] lp:--J,31 l

l j J l 0i J
Figure 12.1

In the flow graph above the computation of j * 3 in node 2 and 3 is a candidate expression for

strength reduction. Local updating means to insert for every redefinition of an operand of a candidate

expression e a redefinition of the auxiliary variable h storing the value of e to preserve the value

of e in h. Therefore, the only nontrivial transformation a local updating algorithm can do to the

flow graph above results in the flow graph shown in Figure 12.2(a) 2s. Note that local updating

introduces a computation whose value is not computed in the original program, namely the value

of the computation of p + 15 at node 6. Hence, the transformation is unsafe. Moreover, it even

impairs the run-time efficiency: on path (3, 5, 7, 9) one multiplication is saved, but a multiplication

and an addition is inserted. And on path (2,4, 6,8) a multiplication is saved on the costs of two

~We do not even need region constants, because strength reduction k~ completely reduced to the availability of
values in our algorithm.

2~This transformation is realized by the algorithms of [JDI~ Pal, Pa2, PK], whereas the structurally restricted
algorithms of [ACK~ CK, CP] leave the flow graph unchanged, because j is due to the assignment j := raft in node
7 not an induction variable (cf. [CK]).

413

inserted additions, whose added computation costs may exceed those of the saved multiplication 2s.

Our algorithm produces the flow graph of Figure 12.2(b).

a) Locally Updating b) Globally Updating

1 "(q,h)h ' := m/:] 1 ,(q, h ' := m/l * 3)
:= (3 . h , J . 3) h) := (3 . h ' , j

t ij:=j+31 s l J : = -

4 | I s F I 41h:--P- l I | | lSIh:--q+01

T

Figu re 12.2

1 3 C o n c l u s i o n

Based on the code motion algorithm of [SKR1], which optimally moves computations within programs

wrt Herbrand equivalence, we developed two elaborations: first, an efficient algorithm for code motion

that achieves the effect of the (in a sense optimal) algorithm of [RWZ] for arbitrary flow graphs, and

second, a uniform extension to strength reduction.

The algorithm of [SKR1] may excessively introduce trivial redefinitions of variables in order to

cover a single computation. This effect is limited along the lines of [RWZ] by the algorithm presented

in Part I. The point of our algorithm is that it is RWZ-optima~ without any restrictions on the flow

structure of the flow graph being optimized, rather than just for DAGs, and that it is almost as

efficient as the structurally restricted algorithm of [RWZ].

The algorithms of [SKR1] and Part I generalize and improve previous techniques for common

subexpression elimination, partial redundancy elimination, and loop invariant code motion. In addi-

tion, the algorithm presented in Part II also improves on all classical techniques for strength reduction

in that it overcomes their restrictions concerning admissible program structures (previously detected

loops) and admissible term structures (built of induction variables and program constants).

The development of both algorithms profited from the modular structure of the underlying code

motion algorithm (cf. [SKR1]). This modularity, which is due to the strict separation of the local

and global equivalence analysis, the computation of relevant terms, and the placement procedure,

has been maintained. Thus further extensions are supported. For example, both algorithms can be

extended to cover further optimization goals like constant propagation and constant folding ([SK]) by

strengthening the capacity of determining local equivalences between terms.

2OThe algorithm of [JD2] deals with these problems using a machine dependent heuristic: assumed that the com-
putation costs of two additions are less expensive than those of a multiplication, it would insert within the loop the
assignments h:= j * 3 on the edge leaving node 9, h:= h - 21 at node 8, and h:-= h + 15 at node 6. This trans-
formation would improve the "left" part of the loop construct. However, without this assumption it would insert the
assignment h := j * 3 at node 4 instead of the insertions at node 6 and 8. And in this case, there would be no positive
effect on the run-time efficiency at all.

414

A c k n o w l e d g e m e n t s

The presentation in this paper profited from discussions with Torben Hagerup, Mark Jerrum, Robert

Paige, Barry Rosen and Ken Zadeck.

R e f e r e n c e s

lACK] F.E. Allen, J. Cocke and K. Kennedy. "Reduction of Operator Strength". In: St. S. Muchnick

and N. D. Jones, editors. "Program Flow Analysis: Theory and Applications", Prentice Hall,

Inc., Englewood Cliffs, New Jersey, 1981

[Ch] C . J . Chaitin. "Register Allocation and Spilling via Graph Coloring". SIGPLAN Notices,

17(6):98-105, 1982

[CACCHM] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins and P. W.

Markstein. "Register Allocation via Coloring". Computer Languages Vol. 6, 47 - 57, 1981

[CK] J. Cocke and K. Kennedy. "An Algorithm for Reduction of Operator Strength". Communi-

cations of the ACM, 20(11):850-856, 1977

[CP] J. Cai and R. Paige. "Look Ma, No Hashing, And No Arrays Neither". 18 ta POPL, Orlando,

Florida, 1991

[FKU] A. Fong, J. B. Kam and J. D. Ullma~. "Application of Latgce Algebra to Loop Optimization".

2 "d POPL, Polo Alto, California, 1 - 9, 1975

[JD1] S.M. Joshi and D. M. Dhamdhere. ",4 Composite Hoisting-Strength Reduction Transforma-

tion for Global Program Optimization - Part I". Internat. J. Computer Math. 11, 21 - 41,

1982

[JD2] S.M. Joshi and D. M. Dhamdhere. ",4 Composite Hoisting-Strength Reduction Transforma-

tion for Global Program Optimization - Part H". Internat. J. Computer Math. 11, 11t - 126,

1982

[Kil] G.A. Kildall. "Global Expression Optimization during Compilation". Technical Report No.

72-06-02, University of Washington, Computer Science Group, Seattle, Washington, 1972

[Ki2] G .A. Kildall. 'CA Unified Approach to Global Program Optimization". 1 a POPL, Boston,
Massachusetts, 194 - 206, 1973

[KS] J. Knoop and B. Steffen. "Strength Reduction based on Code Motion: A Uniform Approach".

Extended version of Part II of this paper. Bericht Nr. 9103, Institut fiir Informatik und

Praktische Mathematik, Christian-Albrechts-Universit£t Kiet, Germany, 1991

[KU] J .B. Kam and J. D. Ullman. "Monotone Data Plow Analysis Frameworks". Acta Informatica

7, 309 - 317, 1977

[MR] E. Morel and C. Renvoise. "Global Optimization by Suppression of Partial Redundancies".

Communications of the ACM, 22(2):96-103, 1979

[Pall R. Paige. "Formal Differentiation - A Program Synthesis Technique". UMI Research Press,

1981.

[Pa2] R. Paige. "Transformational Programming - Applications to Algorithms and Systems". 10 th

POPL, Austin, Texas, 73 - 87, 1983

415

[PK]

[aWZ]

[St]

[SKI

[SKRI]

[SKR2]

R. Paige and S. Koenig. "Finite Differencing of Computable Ezpressions". ACM Transactions

on Programming Languages and Systems, Vol. 4, No. 3,402 - 454, 1982

B. K. Rosen, M. N. Wegman and F. K. Zadeck. "Global Value Numbers and Redundant

Computations". 15 ta POPL, San Diego, California, 12 - 27, 1988

B. Steffen. "Optimal Run Time Optimization. Proved by a New Look at Abstract Interpreta-

tions'. 2 "a TAPSOFT, Pisa, Italy, LNCS 249, 52 - 68, 1987

B. Steffen and J. Knoop. "Finite Constants: Characterizations of a New Decidable Set of

Constants". 14 th MFCS, Por!~bka-Kozubnik, Poland, LNCS 379, 481 - 491, 1989 - An ex-

tended version is to appear in TCS 80(1), April 1991

B. Steffen, J. Knoop and O. P~iithing. "The Value Flow Graph: A Program Representation

for Optimal.Program Transformations". 3 r~t ESOP, Copenhagen, Denmark, LNCS 432, 389

- 405, 1990 - Extended version available as: Bericht Nr. 9004, Institut ffir Informatik und

Praktische Mathematik, Christian-Albrechts-Universit£t Kiel, Germany, 1990

B. Steffcn, J. Knoop and O. Riithing. "Optimal Code Motion within Flow Graphs: A Prac-

tical Approach". Extended version of Part I of this paper. Bericht Nr. 9102, Institut fiir In-

formatik und Praktische Mathematik, Christian-Albrechts-Universit£t Kiel, Germany, 1991

