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1 Introduction 

Common subexpression elimination, partia] redundancy elimination and loop invariant code motion, 

are all instances of the same general run-time optimization problem: how to optimally place com- 

putations within a program. In [SKR1] we presented a modular algorithm for this problem, which 

optimally moves computations within programs wrt Herbrand equivalence. In this paper we consider 

two elaborations of this algorithm~ which are dealt with in Part I and Part II, respectively. 

Part I deals with the problem that the full variant of the algorithm of [SKR1] may excessively 

introduce trivial redefinitions of registers in order to cover a single computation. Rosen, Wegman 

• and Zadeck avoided such a too excessive introduction of trivial redefinitions by means of some 

practically oriented restrictions, and they proposed an effffcient algorithm, which optimally moves 

the computations of acyclic flow graphs under these additional constraints (the algorithm is "RWZ- 
optimal" for acyclic flow graphs) [I~WZ]. Here we adapt our algorithm to this notion of optimaiity. 

The result is a modular and efficient algorithm, which avoids a too excessive introduction of trivial 

redefinitions along the hnes of [RWZ], and is RWZ-optimal for arbitrary flow graphs. 

Part II modularly extends the algorithm of [SKR1] in order to additionally cover strength reduc- 

tion. This extension generalizes and improves all classical techniques for strength reduction in that 

it overcomes their structural restrictions concerning admissible program structures (e.g. previously 

determined loops) and admissible term structures (e.g. terms built of induction variables and region 

constants). Additiona~y, the program transformation obtained by our algorithm is guaranteed to be 

safe and to improve run-time efficiency. Both properties are not guaranteed by previous techniques. 

S t r u c t u r e  of  t he  Paper 

After the prehminary definitions in Section 2, the paper splits into the following two parts, one for 

efficient code motion and one for strength reduction. 

P a r t  I starts with a motivation of our approach to efficient code motion in Section 3. Afterwards, 

we follow the structure of our code motion algorithm in Sections 4 and 5. Section 6 sketches the 

remaining part of the algorithm, which has already been presented in detail in [SKR1], and states 

our optimality result. Subsequently, Section 7 shows the complexity analysis of our algorithm. 

P a r t  I I  starts with a motivation of our extension to strength reduction in Section 8. This extension 

is illustrated by means of a small example in Section 9. Afterwards, we follow the structure of our 

strength reduction algorithm in Sections 10 and 11 and their subsections. Subsequently, we discuss 

the relationship to other approaches to strength reduction in Section 12. 

Finally, Section 13 contains our conclusions. 
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2 P r e l i m i n a r i e s  

This section contains the preliminary defimtions for both parts. It is recommended to read the 

motivating sections of these parts first. 

We consider terms t • T, which are inductively built from variables v • V,  constants c • C 

and operators op • Op. To keep our notation simple, we assume that all operators are binary. The 

semantics of terms of T is induced by the Herbrand interpretation H = ( D,H0 ), where D=afT  

denotes the non empty data domain and H0 the function, which maps every constant c C C to 

the datum H0(c) = c • D and every operator op • Op to the total function H0(op) : D x D --~ D, 

which is defined by H0(op)(tl, t2)=d/(op, tl ,  t2) for all t~, t2 • D. E = { a [ g :  V --* D } denotes the 

set of all Herbrand states and g0 the distinct start state, which is the identity on V ( this choice 

of a0 reflects the fact that we do not assume anything about the context of the program being 

optimized ). The semantics of terms t • T is given by the Herbrand semantics H : T --* (E ~ D), 

which is inductively defined by: Vg • E V t • T. 

{ g(,)  

H(t)(g) =dr H0(c) 
Ho(op) (H( t l ) (a ) ,  H(t:)(a)) 

if t = v • V  

if t = c • C  

if t = (op, t~, t2) 

As usual, we represent imperative programs as directed flow graphs G = (N, E, s, e) with node set N 

and edge set E. Nodes n • N represent parallel assignments of the form (Xl,., x~) := (t~,., t~), edges 

(n, m) • E the nondeterministic branching structure of G, and s and e denote the unique start 

node and end node of G, which axe assumed to possess no predecessors and successors, respectively. 

Furthermore, we assume that s and e represent the empty statement skip, and that every node 

n • N lies on a path from s to e. 

For every node n -= (xx,., x~) : -  (tx,., t ,) of a flow graph G we define two functions 

6.: T-~  T by 6.(t)=~ t[t~,., t . / .~,. ,  ~,] for all t • T, 

where t[tx,., t r /~ l , . ,  z~] stands for the simultaneous replacement of all occurrences of :~i by t~ in t, 

i • {1, . ,r},  and 8,~ : E--~E, defined by: Vcr • E Y y  • V .  

{ rI(t,)(g) if v = ~,, i • {1,.,r} 
e"(g)(Y)=~ g(y) otherwise 

~n realizes the backward substitution~ and 0~ the state transformation caused by the assignment of 

node n. Additionally, let T(n)  denote the set of all terms, which occur in the assignment represented 

by n. 

A finite path of G is a sequence (n~,.., nq) of nodes such that (nj, nj+~) • E for j • { 1,., q -  1 }. 

P Ira, n] denotes the set of all finite paths from m to n, and P[m, n) the set of all finite paths from m 

to a predecessor of n. Additionally, ";" denotes the concatenation of two paths. Now the backward 

substitution functions 5,, : T--* T and 

cover finite paths as well. For each path 

by 

A T =~! { 
and O T:E--~E by 

the state transformations 8, : E - *  E can be extended to 

p = (m ~ n l , . . . ,  n~ = n) • P[m,n],  we define A T : T --* T 

6,~ if q = 1 

A(m...,,_~) o 6n, otherwise 

{ 8  m if q = 1 

Op ----4f ®(,=..,~q) o 0nl otherwise 

The set of all possible states at a node n E N,  E,,  is given by 

z .  =~  {g • ~[3p • P[s,~) : eT(g0) = ~} 
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Now, we can define: 

Definition 2.1 (Herbrand Equivalence) 
Let tl , t2 E T and n E N .  Then ~l and t2 are Herbrand equivalent at node n i f f  

Va E E~. H(t~)(a) = H(t2)(g) 

In order to deal with redundant computations this notion of equivalence must be generalized in order 

to cover terms occurring at different nodes. 

Definition 2.2 (Partial Herbrand R e d u n d a n c y )  

Le~ tl , t2 E T ,  m , n  E N, pl E P[s,m),  P2 E P[m,n),  and P--dtP~;P2. Then a computation of tl at 

m is p-equivalent to a computation of t: a~ n i f f  H(~i)(@p, (cr0)) = H(t2)(@p(~r0)). A computation 

of t~ at n is partiMly Herbrand redundant wrt a computation of tl at m i f f  there is a path 

p" E P[m,n)  such that for all paths p' E P[s ,m)  the computations ti and t2 are p';p"-equivaIent. 

In this case, ti and t2 are also called globally Herbrand equivalent 1. 

We conclude this section with a technicality, which, however, is typical for code motion (cf. [I:LWZ]). 

Given an arbitrary flow graph G = (N, E, s, e) ,  edges of G, leading from a node with more than one 

successor to a node with more than one predecessor are critical, since they may cause a "deadlock" 

during the code motion process, as can be seen in Figure 2.3(a): 

\ \ b) \ \ 

1[ a+b [ ~ / ] llh:=a+b ~4[h:=a+bl2[// \[ 

31 a+b I 31 h I 
Figu re  2.3 

Here the computation of ~a + b" at node 3 is partially redundant wrt to the computation of Ca + b" 

at node 1. However, this partial redundancy cannot safely be eliminated by moving the computation 

of "a + b" to its preceding nodes, because this may introduce a new computation on a path which 

leaves node 2 on the right branch. On the other hand, it can safely be eliminated after the insertion 

of a synthetic node in the critical edge, as illustrated in Figure 2.3(b). We therefore assume that 

in the flow graph G = (N, E, s, e ) ,  which we consider as to be given for the formal development 

in this paper, a synthetic node has been inserted into every edge leaving a node with more than 

one successor. This certainly implies that all critical edges are eliminated. Moreover, it simplifies 

the analysis of the placement process, because one can now prove that all computation points are 

synthetic nodes, where it does not matter  whether the initializations are inserted at the beginning 

or at the end (cf. Section 11). 

1Note, global Herbrand equivalence is in general not an equivalence relation. 
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P a r t  I: E f f i c i en t  C o d e  M o t i o n  2 

3 M o t i v a t i o n  

Common subexpression elimination ([Kil, Ki2]), partial redundancy elimination ([MR, Kil ,  Ki2]) 

and loop invariant code motion ([FKU]) are all instances of the same general run-time optimization 

problem: how to optimally place computations within a program. This can be illustrated by the 

following example: 

F igure  3.1 

I(a,b,c) := (=,Y,x Y)] 
I , 

1 L 
I (x,y, z) := (a, b,a + b) I 

J I 

Here, the computation of "x + y" in the left hand block is globally equivalent to the computation of 

"a + b" in the right hand block. This justifies a placement of the computations, as it is shown below: 

Figure 3.2 

L 
I h : : ~ + y l  I h : ~ a ÷ b l  

J 1 

Two properties of this optimization are exceptional: 

* It deals with arbitrary loop structures: note, the fragment above is not even reducible. 

• It requires interrelated initialization statements that use syntactically different terms. 

Two algorithms have been proposed to deal with code placement on this level of generality, which 

both abstract from costs of trivial redefinitions 3 as it is usual for code motion. First, an algorithm 

(eL [SKRt]) that  optimally moves computations wrt Herbrand equivalence 4. However, this algorithm 

may introduce an arbitrary number of trivial redefinitions, just in order to cover a single computation 

of the program being optimized. Second, a more practically oriented algorithm (cf. [RWZ]), which 

is tailored to deal with a modified notion of optimality that we call RWZ-optimality. This algorithm 

avoids a too excessive introduction of trivial redefinitions by means of some practically oriented 

restrictions. However, it is structurally restricted: it is constrained to reducible flow graphs s, and it 

is RWZ-optimal only for loop-free programs, i.e. it misses important optlmizations in loop contexts, 

like for example the one presented above 6. 

In this paper we will present a modification of the algorithm of [SKR1], which avoids a too 

excessive introduction of trivial redefinitions in the same way as the algorithm of [RWZ] does, but 

which is RWZ-optimal for arbitrary flow structures. Moreover, the algorithm is efficient, cleanly 

structured, and it allows a modular extension of its analysis and transformation power. 

Essentially, this algorithm is obtained by splitting and reorganizing the first stage of the algorithm 

presented in [SKR1], which results in a three stage structure. As before, the algorithm depends on 

the Value Flow Graph, which serves as an interface between the second and third stage: 

2[SKR2] is an extended version of Part I. 
SA redefinition is called trivial if it is of the form a : :  b, where a and b are both variables (of. [RWZ]). 
4tterbrand equivalence is called transparent equivalence in [RWZ]. 
sWe were told that their algorithm can be modified to overcome this constraint. 
SA detailed illustration of the introductory example is given in [SKR2]. 
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1. Determination of relevant terms: this step computes for every program point a finite set of "rel- 

evant" terms, which is sufficiently large in order to guarantee RWZ-optimality of our algorithm. 

(Section 4). 

2. Computation of term equivalences: 

(i) Local equivalences: determining at every program point the Herbrand equivalence class 

for every relevant term by means of a modification of Kildali's algorithm (Section 5.1). 

(it) Global equivalences: globahzing the local equivalence information determined in the pre- 

vious step to an explicit representation of global term equivalences by constructing the 

value flo~, graph (Section 5.2). 

3. RWZ-optimal placement of computations (Section 6): 

(i) Determining the optima] computation points by means of a modification of Morel/- 

Kenvoise's algorithm. Our modification works on value flow graphs, which explicitly 

incorporate global equivalence information. This allows us to generalize Moret/Renvoise's 

technique, which only deals with term identity~ to wort~ for term equivalence (e.g. Her- 

brand equivalence). 

(it) Placing the computations. 

The worst case time complexity of our algorithm is limited by O(n4), where n is the number of 

nodes in the flow graph being optimized. This complexity is given by the Kildall-like step 2(i) of 

our algorithm, which is well-behaved in practice and therefore accepted for practical use. The other 

steps are of third order. In comparison, the worst case time complexity of the structurally restricted 

algorithm of [I~WZ] is O(n3). Thus, except for its standard Kildall-like part, our algorithm is of the 

same worst case time complexity as the one proposed by t~osen~ Wegman and Zadeck. As usual these 

estimations are based on the assumption of constant branching and constant t evrn depth, i.e. on the 

assumption that the maximal number of successors of a node and the maximal depth of a program 

term is bounded by a constant. 

Experience with an implementation of our algorithm, done in a joint project with the Norsk Data 

company, shows its practicality. In particular, all examples given are computed by means of this 

implementation. 

An interesting feature of program transformations are their second order effects. Consider for exam- 

ple: 

a) If t b) lfh,:=o+bf c)  Jhl:=o+bf 
) t, J t,, J L 

L ) h2:=hl h~:=hl i z : = h i  
"l t" c J t 

Figure 3.3 1 

Here the computation of "a + b" in node 5 of Figure 3.3(a) cannot safely be moved to node 4, 

because this may introduce a new computation on the path leaving node 4 on the right branch. 
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However, after the program transformation displayed in Figure 3.3(b), which simultaneously moves 

the computations of "c + b" at node 4 and of "a + b" at node 3 to node 1, the computation of 

"a + b" at node 5 can be replaced by a reference to the auxiliary variable hl as it is illustrated in 

Figure 3.3(c). 

Steffen [St] and Rosen, Wegman and Zadeck [RWZ] were the first who proposed algorithms dealing 

with such effects. Our algorithm here captures all second order effects in the sense of [RWZ]. 

4 C o m p u t a t i o n  o f  R e l e v a n t  T e r m s  

The first stage of our algorithm computes for every program point a finite set of relevan~ terms. 

Essentially, a term t is relevant at a program point if its value mus~ be computed on every con- 

tinuation of a program execution passing this point. The equivalences wrt these terms are already 

sufficient for our placement procedure to determine a superset of the optimal computation points 

(cf. [SKR2]). However, the transformed program may still contain some full redundancies. This can 

be illustrated by means of Figure 3.3(a). The flow graph there would only be transformed into the 

one of Figure 3.3(b), missing to eliminate the redundancy of "a + b" at node 5. In order to capture 

these redundancies as well, we subsequently enlarge the term closures mentioned above by means of 

a procedure which resembles the question propagation process of [RWZ]. 

This combined closure 7 guarantees that the placement procedure results in a RWZ-optimal flow 

graph. Moreover, it can be shown that the resulting placement is at least as good as a placement 

obtained by the techniques of Rosen, Wegman and Zadeck [RWZ], because the second closure step 

covers their question propagation completely. 

5 C o m p u t a t i o n  o f  G l o b a l  T e r m  E q u i v a l e n c e s  

5.1 Determining Local Term Equivalences 

The semantic analysis of the first step of the second stage determines for every program point all 

Herbrand equivalence classes that contain (at least) one of the terms that have been associated with 

this point in the first stage (1. Optimality Theorem 5.5). Here, term equivalences are expressed by 

means of structured partition DACs (cp. [FKU]). -To  define the notion of a structured partition 

DAC precisely, let 7~/,,=d] { T[TC_(VU CU Op) A [ T[ e w\{0} }: 

Definit ion 5.1 A structured partition DAG is a triple D = (No, ED, LD), where 

• (ND, ED) is a directed acyclic multigraph with node set Nz) and edge set EDCND×ND. 

• LD : ND --*'Pti~ is a labelling fanctionj which satisfies 

1. v7 e g~. I z~(7)\Vl ___ 1 and 

2. VT, 7' e No. 7 ¢ 7' ~ LD(7)NLD(7') CC_ Op 

• Leaves of D are the nodes 7 E ND with LD(7)AOp = O. 

• An inner node 7 of  D possesses ezactly two successors, which we denote by l(7 ) and r(7 ). 

• V7,7' E N/~. LD(7)ALD(7')AOp ~ 0 A l(7 ) = l (7 '  ) A r ( 7 ) = r ( 7 '  ) =~ 7 = 7 ' .  

Additionally, D is called a minimal structured partition DAG, i f  aU its root nodes satisfy t LD(7) 1 --> 

2, and it is called a finite structured partition DAG, i f  ND is finite. The set of  all structured partition 
DA Gs is denoted by 7979. 

"tAn algorithm for its construction is given in [SKR2], 
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A node 7 END of a structured partition DAG is meant to represent an equivalence class of program 

terms: 

TD("/) = ((VU C)¢3LD(7))U {(op, ~, t') [op e (OpVILD(V)) A (t, Z') e TD (l(7)) × TD (r(7))} 

'Then given a structured partition DAG two terms are equivalent iff they are represented by the same 

node of the DAG. This can be illustrated as follows: 

parti£ion ,~ 

[a + b,a+ y ,x  + b,x + y ,z  ! 

Figure 5.2 
a,~l b,y] 

, DAG 

+,z 

a , ~ y  

Structured partition DAGs characterize the domain which is necessary to compute all term equiva- 

lences which do not depend on specific properties of the term operators. Moreover, they allow us to 

compute the effects of assignments essentially by updating the position of the left hand side variable: 

pre-DA G assignment post-DA G 

Figure 5.4 

+,z +,z,b 

a, ,y a,x y 

We have8: 

Theo rem 5.5 (1. Opt imal i ty  Theorem)  

Given an arbitrary flow graph, the analysis for determining local semantic equivalences 9 terminates 

with an annotation of finite structured partition DAGs, which syntactically characterize all Herbrand 

equivalence classes containing a relevant term. 

R e m a r k  5.6 Note that the corresponding algorithm of [SKR.1], which determines a characterization 

of all Herbrand equivalence classes (rather than just the relevant ones), terminates with a different 

annotation. There we used minimal finite structured partition DAGs in order to reduce the complex- 

ity of the analysis. In fact, these DAGs provide the most concise DAG reprcsentation of Herbrand 

equivalence relations. In contrast, in this paper the complexity is limited by restricting the anal- 

ysis to relevant equivMencc classes (cf. Section 4). This restriction is essential for the complexity 

estirnation in Section 7. 

SThe proof of this theorem is based on the Coincidence Theorem of [Ki2, KU]. 
9The corresponding algorithm is given in [SKR2]. 

Thus a full DAG represents a partition (or equivalence relation) on: 

Viewing DAGs as equivalence relations as it is suggested by Figure 5.2 makes the set of all structured 

partition DAGs a complete lattice, with inclusion defined set theoretically as usual. This guarantees 

the existence and well definedness of 7-/(D) in: 

Definition 5.3 Let D E 7)7D. Then 

1. 7~(D) is the smallest structured partition DAG with DC_~(D) and T(7~(D)) = T. 

2. tl, ~2 E T are syntactically D-equivalentj iff D possesses a node 7 with tl, ~2 E To(v).  

3. tl, t2 E T are semantically D-equivalent, iff they are syntactically ~ (  D )-equivaIent. 
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5.2 The V a l u e  F l o w  Graph 

The value flow graph (see Definition 5.7) represents global equivalence information explicitly. Essen- 

tially, its nodes represent term equivalence classes and its edges the data flow. For technical reasons, 

the nodes of a value flow graph are defined as pairs of equivalence classes. However, identifying these 
pairs with their second component leads back to the original intuition. 

In the following let us assume that every node n of G is annotated by a pre-DAG pre(n)  and a 

post-DAO post (n)  according to the results of Section 5.1. For the sake of readability we abbreviate 

U (Npre(~) x Npost(n)) by P, and denote the flow graph node corresponding to a pair (%'1') E F 
h E N  

by A/'(% 71). This allows to define the backward substitution relation ~ C_C_ P by: 

D i V(')',')/) E r'. ")' ae-~-'),' ¢=:=>d] TpreCN'(,,.F))(')')_ #Ar(-n.F)(TpostCAfC.wF))("/)) 

where (% 71) E ~ is abbreviated by 7J-#--7 I. 

Let now ® denote a new symbol, and pred¢ and auccc functions that map a node of G to its 

set of predecessors and successors, respectively. Then the formal definition of the value flow graph 
for the DAG annotation under consideration is as follows (cf. [St, SKR1]): 

Defini t ion 5.7 A value flow graph VFG is a pair (VFN, VFE) consisting of 

,, a set of nodes VFN C 0..( (Npre(n)U {e})  x (NposKn)U {®} ) )1 where 
n 

f 
v = ("h,72) E VFN ¢==~dt I 

• a set of edges VFE C VFN × VFb~ where 

5 
71~----% if 71 ~ Q A %  ~ (i) 

5 
flTa.71~---Ta if 71 ¢ (~)A"Y2=(:) 

5 
flTa.Ta~----Ta if 71 = Q A 3'2 ¢ @ 

(v, v ~) E VFE ¢:==~dl .hf(v I) E succa(.hf(v)) A 

Wpre(At(~,')) (vl~ 1) C_ Tpost(Af(~)) (P'.~2) 

where "J,l" and "J,2" denote the projection of a node v to its first and second component, respec- 
tively, and .h/'(v) the node of the flow graph that is related to v. 

Thus, nodes v of the value flow graph are pairs (71,72), where 71 is a node of the pre-DAG and 

72 a node of the post-DAG of a node n of G, such that 71 and 72 represent the same value, i.e. 

satisfy the inclusion Tpre(n)(71) D {t[3t '  C Tpost(n)(72). t = 6n(t')). Edges of the value flow graph 

are pairs (u, v'), such that Af(v) is a predecessor of Af(u') and values are maintained along the 

connecting edge, i.e. Tpre(ec(~,))(u'll)C_Tpost(aC(~))(v~2). Thus, edges of the value flow graph model 

the value flow along the branching structure of G and nodes the value flow over a single assignment 
statement. This is illustrated in Figure 5.8, which shows the important part of the value flow graph 
belonging to our introductory example. 

Nodes of the value flow graph represent the value flow over the nodes of the flow graph: the 

term "x+y" ( " a + b ' )  which is represented by the first projection of the left (right) value flow graph 

node has the same value before the execution of the left (right) assignment as the terms which are 

represented by the second projection of the left (right) value flow graph node after the execution of 
this assignment. 

Edges of the value flow graph represent the value flow along the edges of the flow graph: the 
terminal nodes of the two edges of the value flow graph below have first components "{x + y}" 

("{a + b}"), which are contained in the second components of their initial nodes "{a + b, ~ + b, a + 

y,~ +y,z}" ("{a + ~,z + b,a + y,~ + y,c}") 
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1 (a 
b 

l 

b,y 

F i g u r e  5.8 

6 RWZ-Optimal P l a c e m e n t  of Computa t ions  

The placement procedure of our three stage algorithm is exactly the same as the one introduced 

in [SKR1] 1°. It places computations in a program relative to the equivalence information provided 

by a value flow graph. In this section we are going to show that  the value flow graphs constructed 

in Section 5.2 lead to a placement satisfying an optimality criterion which was first considered in 

[l~WZ] 11. 

D e f i n i t i o n  6.1 A flow graph G satisfies the RWZ-criterion iff every redundancy of a computation 

tl at a node w wrt a Herbrand equivalent computation t~ at a node u on a path p E Pin ,  w] is o/ 

one of the following two kinds: 

1. path p goes through a node v and there emist two f~rther paths: the first, Pl, from the start 

node through v to a predecessor o / w  along which no computation is performed that is Pl- 

equivalent to the computation of tl a t  w, and the second from v to the end node of G that 

does not contain a computation equivalent to that of tl at w, 

2. path p goes through a node v and there exists another path from u to w through v on which 

the computation of tl at w is Herbrand equivalent to a computation of t3 at v, and on neither 

path are the computations of t3 at v and of tz at u Herbrand equivalent. 

The RWZ-criterion was introduced in [RWZ] in order to establish a notion of optimality for a place- 

ment procedure: a placement is "optimal" if the resulting program satisfies this criterion. Whereas 

the elimination of redundancies of the second kind may require an excessive introduction of trivial 

redefinitions, redundancies of the first kind cannot be eliminated without violating safety. However, 

there are programs, which cannot be improved by means of safe transformations and do not satisfy 

the RWZ-criterion: 

1°It can also be found in [SKR2]. 
lZHowever, the definition of optimality there is erroneous. It does not cover the right intuitions, and in cases cannot 

be met without violating safety. 
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1 

i 
F i g u r e  6.2 

1 

i 
In both diagrams of Figure 6.2 the computat ion of " a +  b" at node 4 is partially Herbrand redundant 

wrt the computat ion of " c +  b" at node 2 and neither the first nor the second condition of Definition 

6.1 holds. In fact, the second picture shows that  the defect cannot be explained in terms of necessary 

computations on program paths: although the value of the computat ion "a + b" at node 4 is 

computed on every path through this program, no program path can safely be improved without 

impairing some other program paths. Thus, we need to consider a weaker notion of optimality, which 

we obtain by replacing the first condition of Definition 6.1 by the following: 

• path p goes through a node v, and 

- there exists a further path  pl from the start  node through v to a predecessor of w along 

which no computat ion is performed that  is pl-equivalent to the computat ion of tl at w, 

and 

- a computat ion of the value of tl  at v is not statically safe. 

Intuitively, a computat ion t is statically safe at a node n, if every successor m of n satisfies: 

• the value of t is computed at m or 

• there is a te rm t I, which is partially Herbrand redundant wrt t at n, whose computation at 

m is statically safe 1~. 

In fact, in contrast to the optimality result of [t~WZ], the algori thm proposed there only satisfies 

this (meaningful) weaker notion of optimality on DAGs, which we call RWZ-optimality. In fact-our 

algorithm satisfies this notion of optimality for arbitrary flow graphs. 

T h e o r e m  6.3 (RWZ-Optimallty) 

Every flow graph transformed by our three stage algorithm is RWZ-optimal. 

? Complexity 

We estimate the worst case t ime complexity independently for every stage. As usual this estima- 

tion is based on the assumption of constant branching and constant term depth, and depends on the 

following three parameters: the number of nodes of a flow graph n, the complexity of computing 

the meet of two equivalence informations ra, and the maximal number of value flow graph nodes, 

which are associated with a single node of the underlying flow graph,/z.  Note that  n * # is an upper 

approximation of the number of nodes in the value flow graph, which we will abbreviate by u. This 

12Note, in both diagrams of Figure 6.2, a computation of ~a + b" at node 3 is not statically saf% since its value is 
not computed at node 5 and neither a computation of "a + b" nor "c + b" is statically safe at node 5. 
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yields for the complexity of the five steps of our algorithm13: 

1. Determination of relevant terms: O(n3). Using our assumption of constant branching and con- 

stant term depth, it can be shown that in the worst case the maximal number of terms a single 

flow graph node is annotated with is of order O(n2). Thus, the estimation by O(n 3) is based on 

the very pessimistic assumption that this worst case occurs at every flow graph node. In practice, 

however, the set of relevant terms is much smaller. This should be kept in mind, because all the 

other estimations are based on this worst case assumption. 

2. Computation of term equivalences: 

(i) Local equivalences: O(n 2*m). Here, "n 2" reflects the maximal length o£ a descending chain 

of annotations of a flow graph. In fact~ the number of analysis steps to determine the local 

equivalences is linear in this chain length. This is achieved by adding those nodes to a workset 

whose annotations have been changed (rather than their successors). Then processing a worklist 

entry consists of updating the annotations of all its successors just wrt the change of anrrotation 

at the node being the entry. This can be done in O(ra) becailse of our assumption of constant 

branching. 

(ii) Global equivalences: O(n*#). This estimation for the costs of constructing the value flow graph 

is based on two facts. First, if there exists an edge in the value flow graph between two nodes 

~'1 and ~2 then the corresponding nodes A/'(vl) and .h/(~,2) of the flow graph are connected as 

well. Thus every edge of the value flow graph is associated with an edge of the original flow 

graph. Second, the effort to construct all edges of the value flow graph that correspond to a 

single edge (n, rn) in the original flow graph is linear in the number of value flow graph nodes 

that annotate r~, which can be estimated by O(/~). 

3. Optimal placement of the computations: 

(i) Determination of the computation points: O(v). The argument needed here is based on that of 

the first step, however, two additional problems arise. First, we do not have constant branching, 

and the algorithm here is bidirectional. Second, the predicates associated with a node contain a 

disjunction of properties of their successors 14. However, using a "counted or" for this predicate, 

all nodes of the value flow graph can be updated once by executing only two constant time 

operations per edge of the value flow graph. Moreover, the number of edges of a value flow 

graph can be estimated by the number of its nodes O(v) aswell. Thus, the determination of 

the optimal computation points is linear in the number of nodes of the value flow graph. 

(ii) Placing the computations: O(v). This is straightforward for our algorithm. 

Using the fact that the maximal size of a set of relevant terms a single flow graph node is annotated 

with can be estimated by O(nZ), we obtain that both ra and /z can be approximated by O(n 2) as 

well. While this is straightforward for the estimation of #, the estimation for ra exploits the fact 

that the meet of two structured partition DAGs can be computed essentially linearily in the size of 

the resulting DAG. This yields a worst case time complexity of O(n 4) for the Kildall-like first step 

of the second stage of our algorithm, and of O(n 3) for all other steps. Note that this estimation of 

the Kildall-like step is rendered possible only by its restriction to compute the Herbrand equivalence 

classes solely for relevant terms. However, even the standard approach, which we conjecture to be 

exponential in its worst case, is well-behaved in practice and therefore accepted for practical use. 

Of independent interest is the estimation of the complexity of the third stage, yielding that the 

placement process is linear in the size of the value flow graph. The argumentation used here also 

applys to the classical algorithm of Morel and l~envoise [MR], showing that their algorithm is linear 
in the size of the flow graph. This improves all previous estimations we know of. 

13The complete algorithms are given in [SKR2]. 
14See PPOUTin Equation System 11.1. 
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Part  II: S t r e n g t h  R e d u c t i o n  15 

8 M o t i v a t i o n  

Strength reduction is a powerful technique for the optimization of loops, which improves run-time 

efficiency by reducing "expensive" operations, e.g. "*", to less expensive ones, e.g. "+'. Its essence 

can be sketched as follows: 

Let z * y be a multiplication occurring in a loop L. Then try to eliminate all calculations of 

x * y in L by performing the following three steps: 

• Initialize a unique auxiliary variable h with z * y before entering L. 

, Insert assignments of the form h := d=t: e in L that update h according to the redefinitions of 

x and y. 

• Replace nil occurrences of x * y in L by h. 

Note, if no updating assignments are inserted, this three step procedure performs loop invariant code 
motion. In fact, a clean realization of it should transform the flow graph of Figure 8.1(a) into the 

one displayed in Figure 8.1(b)16: 

11 1 
I 

1 1 ( 
( ~, ;bl 71o:= +112~  to:=o+11  lp:=o, o+11  lo:=o 

L, JtL. ) t. J 
Figu re  8.1 

l[(hl'h2):=(a*b'k/l) I h 3  :--- h2 * b 

7to:=o+11 

h_.h~6 a := h2 
hi :=q+b 

L 

In this part of the paper we present such a clean realization. It evolves as a uniform extension 

of the two stage algorithm of [SKRI], which optimally moves computations within programs wrt 

Herbrand equivalence (cf. Section 2). In fact, this extension does not affect the structure of the 

underlying algorithm at all. It only requires two conceptual changes in the steps l(ii)  and 2(i), and 

a straightforward modification of step 2(it): 

1. Construction of a value flow graph (Section 10): 

(i) Determining all Herbrand equivalences. 

(it) Computing for every program point a finite set of "relevant" terms that allows to syntac- 

tically represent enough term equivalences in order to perform strength reduction. 

(iii) Constructing the corresponding value flow graph. 

2. Placement of the computations: 

(i) Determining the computation points and computation forms wrt the value flow graph 

obtained in step l(iii) (Section 11.11. 

(ii) Placing the computations (Section 11.2). 

Is[KS] is an extended version of Part IL 

16However, to the best of our knowledge, all the published algorithms for strength reduction would fail this test. 
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This algorithm performs strength reduction based on an optimal movement of the computations wrt 

Herbrand equivalence. The point of this approach is that it reduces strength reduction completely to 

the availability of values at the computation points. This Mlows to overcome all restrictions concern- 

ing admissible program structures (e.g. previously detected loops) and admissible term structures 

(e.g. terms built of induction variables and region constants) that are required by previous strength 

reduction techniques (cf. Section 12). Moreover, it is the key for proving that program transfor- 

mations bbtained by our algorithm are guarantee¢l to be safe and to improve run-time et~ciency. 

Both properties can be violated by previous techniques (cf. Section 12). The power of our algorithm 

that generalizes and improves the classical algorithms for strength reduction, common subexpression 

elimination, partial redundancy elimination, and loop invariant code motion is illustrated in the ex- 

ample of Figure 8.1(a), where to the best of the authors' knowledge the algorithm presented here is 

unique in performing the optimization displayed in Figure 8.1(b). 

9 Discussion of a Small Example 

In this section we discuss the effects of the five steps of our two stage algorithm by means of the 

example of Figure 9.1(a), which will be transformed into the flow graph displayed in Figure 9.1(b): 

a) 1[ I b3 1 [ (hl,h~) := (a, b,c, b) l 

 la:=a+cl 21P:--a'hi 51a:=a+c l  p:=hi I 

l 1 l I 
41 I 3[q:=c*bl  ' lh l :=p+al  3 I q:=h2 [ 

Figure 9.1 

The semantic analysis of step l(i) annotates the flow graph with partitions lr that characterize all 

equivalences between terms wrt the Herbrand interpretation, i.e. all equivalences that are valid 

independently of specific properties of the term operators (Figure 9.2). In particular, this analysis 

detects the equivalence of p and a * b and of q and c * b after the execution of node 3 (cf. Section 

10). 

Figure  9.2 

J_ 

± 

[blcIq, c ,b  ] _L 

=[o:--o+c I = :--- a, I 
[alblclp,  a * b l q , ~ *  b] lair 'Iv, a* b] 

l 1 
[alblclp, a*blq, c*b] [alblp, a*  b] 

[alblclp, a,bl  , c , b ]  [alblclp, a*blq, c ,b  ] 

lrPartitions are repreeented by means of structured partition DAGs (see Section 5.1 and 10). 
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Afterwards, step l(i i)  computes for every program point a finite set of "relevant" terms, which 

contains a representation system of those equivalence classes that  express all necessary equivalences 

syntactically (cf. Section 10), and extends the node annotat ion computed in step 1(i) accordingly. 

This (straightforward) extension is necessary, because the placement process of the second stage only 

refers to term equivalences that are explicit in the value flow graph under consideration, i.e. two 

terms are equivalent at a program point if they are commonly represented by a node of the value 

flow graph at this point. In addition to the corresponding step of the algorithm of [SKR1], strength 

reduction requires to consider terms as relevant that  arise from an application of arithmetic laws. 

The essence of classical strength reduction is to exploit the distributive law for sums and products: 

(u + v) * w = u *  w + v * w. Therefore, whenever a term of the form (u + v) • w is relevant, the terms 

u * w and v * w are also relevant is. 

( 
[ a i b l c  a*b plq, c*b] 

5 ~:=~+c] 
[~lblcla+cl(~+c)*blp,~*blq, c*b] 

[Plalblcla* btc* blq] 

11 I 
[plal klein* blc* blq] 

[Plalblcla* blc* blq] 
2[p:--a*b I 

[alblclp, a*blc*blq] 

1 
Ialbleta+ el(a+ e)* btp,~* blq, c* b] ['~tbletp, a*blc* btq] 

4 l I 31q:=c*bl 
[~lblcla+cl a+c)*blp, a*blq, c,b] [alblclp, a*btq, c*b] 

t Jl 
F i g u r e  9.3 

Step l(iii) produces the corresponding value flow graph (cf. Section 10), whose relevant part  is 

displayed in Figure 9.4: 

 lolblcl N Iql 
iI ///A N 

[a]b]c,a-t-c, [ a ] b , c ] ~ , ~ ] q ]  

[alb]cl~+cl [~lblcl ~ 1 ~  

F i g u r e  9.4 

Cain the example, (a + ¢) * b makes a * b and c * b relevant. In the special situation here these terms arose already 
after step 1(i). 
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Applying a modification of Morel/Renvoise's algorithm (step 2(i), cf. Section 11.1) to the value flow 

graph above yields the computation points and computation forms. In addition to the corresponding 

step of the algorithm of [SKI~I], the determination of computation forms here needs to exploit the 

distributive law in order to capture strength reduction. This is achieved by adding the predicate 

D I S T R  to the equation system (cf. Section 11.1). After this preparation, the placement procedure 

of step 2(ii) results in the following flow graph (cf. Section 11.2)19: 

Figure 9.5 

1 [ (h i ,h2) :=  (a*b,c*b) 
(h4,hs) := (hi,h2) ] 

5 [ (a ,  h 4 ) : = ( a + c ,  hs) l 2[ p : = h 4  [ 

1 1 

Subsequent variable subsumption [Ch, CACCHM] yields the desired result (Figure 9.1(b)). 

10 C o n s t r u c t i o n  o f  a V a l u e  F l o w  G r a p h  

In this section we follow [SKR1] in that we first compute all Herbrand equivalences and subsequently 

build an appropiate problem dependent term closure. This is in contrast to the approach of Part I, 

where the problem dependent term closure was computed first in order to gain efficiency. 

1. Determining all Herbrand equivalences. 

2. Computing for every program point a finite set of "relevant" terms that allows to syntactically 

represent enough Herbrand equivalences in order to perform strength reduction. 

3. Constructing the corresponding value flow graph. 

Since the procedures of the first and third step are essentially the same as the corresponding steps 

of Part I and [SKR1], we concentrate on the second step here2°: 

C o m p u t a t i o n  of  Re levan t  Terms  

The placement process of our algorithm (Section 11.1) considers the pre-DAGs and post-DAGs of 

a flow graph annotation as purely syntactical objects, i.e. terms are considered equivalent iff they 

are syntactically equivalent (Definition 5.3(2)). Thus we need to extend the flow graph annotation 

constructed in the first step of the first stage, which characterizes Herbrand equivalence semantically 

(Definition 5.3(3)), to a sufficiently large syntactic representation. As in Section 4 and [SKR1], this 

is achieved by computing for every node n of G a finite set of relevant terms T,=y(n ) that contains 

a representative of all equivalence classes that are necessary at node n. However, in order to capture 

(classical) strength reduction, we additionally need to exploit algebraic laws. Remember, classical 
strength reduction essentially replaces computations of the form u * (v + w) by (u * v) + (u * w). 

This is safe and profitable, whenever the vMues of u * v and u * w are available. Therefore, we 

consider a term (u* v) + (u* w) and its subterms as relevant here, whenever the term u * (v + w) is 

mNote, also for the computation "a + c" at node 5 an auxiliary variable will be initialized at node 4, a fact which 
we neglect here in order to keep the example simple. 

2°Details can be found in [KS]. 
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relevant in the sense of [SKR1]. Moreover, commutativity and associativity are necessary in order to 

evaluate subterms with constant operands, whose values can be computed already at compile time 

and therefore enlarge the number of available expressions. 

Technically, this is realized by enhancing the strategies of [SKR1] for computing relevant terms 

by means of the closure operator q,: ~ (T) - - ,  79(T), which is defined by: 

V T C T :  +(T)=. {~' [ St E T. t=__:t ' } 

where -~ C T x T denotes a convertibility relation between terms: ~1 ~ t2 if and only if tx and t2 

can be deduced from each other by means of the commutative, associative and distributive law for 

" + " and " * ", together with the evaluation of subterms with constant operands. 

Here we consider the basic strategy of [SKR1] for computing relevant terms, which determines for 

every program point the set of all terms whose value must be computed on every continuation of a 

program execution passing this point. Enhancing this strategy by means of the closure operator @ it 

is already sufficient to uniformly capture the known strength reduction algorithms ~. The complete 

closure algorithm can be found in [KS]. 

11 Placement of Computations 

11.1 D e t e r m i n a t i o n  o f  C o m p u t a t i o n  Points  a n d  F o r m s  

The determination of computation points is split into two steps. The first step coincides with the 

corresponding step of [SKR1]. It determines the computation points wrt the equivalence information 

that is expressed by the value flow graph under consideration. The second step, however, had to be 

extended. It determines the computation forms for the computation points computed in the first 

step. This has been trivial in [SKR1], where computation forms are simply minimal representatives of 

the Herbrand equivalence classes associated with the computation points. In the context of strength 

reduction, however, the choice of the computation forms is much more elaborate, because semantic 

equations need to be exploited to take care of replacing "expensive" by "cheap" operations (cf. 
Theorem 11.2). 

C o m p u t a t i o n  Points 

The point of this step is the solution of the Boolean equation system 11.1, which was introduced 

in [SKR1]. It is tailored to work on value flow graphs rather than flow graphs directly, in order to 

capture semantic equivalence (cf. [SKR1] and Part I). Following [MR], the names of the predicates 

are acronyms for the properties "local an~icipability ~', "availability" and "placemen~ posaible". Fur- 

thermor% the formal presentation of the equation system needs the following notation: given a value 
flow graph VFG, let 

VFNs=df { v I Af(predvFv(V) ) # predc( N(v )  ) V N(v )  = s } 

and 

VFNo = .  { ~ fie(s~ccvFc(~) ) # s~cc~( H ( . )  ) v ,r(~)  = e } 

where predvFG and succvFc denote functions that map a node of VFG to its set of predecessors 
and successors, respectively. This allows: 

~1Of course, the same is true for the other, more complex strategies. 
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Equation System 11.1 (Boolean Equation System) 

• The Frame Conditions (Local Properties): 

ANTLOC(~) , = .  Tpro(~c(~))(~h)n ~(N(~)) # 0 

AVIN(v) =false if v E VFN. A Tpre(Ar(v))(v.~l) ~ C 

P P OUT(v )  =false if v E VFNe 

• The Fixed Point Equations (Global Properties): 

AVIN(v) ~ I I  AVOUT(v')  
,; E pred(v) 

AVOUT(v) ~=~ AVIN(v) V PPOUT(v)  

PPIN(v)  ¢==~ AVIN(v) A(ANTLOC(v)  V P P O U T ( v ) )  

PPOVT(v)  ¢=~ I I  ~ PPIN(v ' )  
me s~c(]cCv)) ~' e .... ¢,,) 

The greatest solution of this system 22 determines the computation points by means of 

INSERT(v)=aS PPOUT(v)  A -~PPIN(v) 

Computation Forms 

In this step we determine for every value flow graph node v satisfying the predicate INSERT an 

initialization term (computation form), i.e. a term with "minimal" executions costs that represents 

the value of the equivalence class v~2. In the case of the Herbrand interpretation an initialization 

term is just a minimal representative of vJ.2 (cf. [KS, SKR1, SKI~2]). However, in order to capture 

the effects of strength reduction a more careful choice is necessary. We therefore introduce a new 

predicate D I S T R  ("Distributivity") that establishes a relationship between candidates for strength 

reduction (given by terms of "vI~2" having "*"  as top most operator) and values (given by terms 

of "v2~.2" and "va~2"), whose sum is equivalent to the value of the candidate: 

DISTR(v l ,v2 ,  u3) ¢=~ .h f (v i )=N(v2)=H(va)  A 

INSERT(vx) h AVOUT(v2) h AVOUT(v3) h 

Lpost(a'(,,~))(vl~2) = {*} A 

3 t2 E Tpoat(zf(v~))(v2J~2) 3 *3 E Tpost(2d'(v,))(P3*2). 

(+, *2, ta) E ¢(Tpost(2C(~t))(vl*2)) 

For notational convenience we introduce the predicate S1ZINS which is derived from DISTR:  

SRINS(v) <=.  3 v~, v~ E VFN. DISTR(v,  v~, v2) 

2~An algorithm for determining this solution is ~vcn in [KS]. 
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The intuitive meaning of the predicate SR.INS ( "Strength Reduction Insertion") is the following: 

whenever a node v of the value flow graph satisfies the predicate S R I N S ,  then there exist two 

further nodes t/z and t/z, which represent values, whose sum equals the value represented by t/~2. 

This allows us to choose as an initialization term a term having " + " as top most operator and 

initialization terms of t/1 and t/9. as operands, instead of the "standard" minimal representative of 

v~2, which has "*" as top most operator. Not% due to the availability of t/1 and ~2 this choice can 

be proved to be safe and to improve the efficiency, i.e..there is no path on which a new computation 

is introduced as a consequence of this replacement. In fact, we have: 

T h e o r e m  11.2 The computation forms (initialization terms) are optimal wrt the convertibility 

relation and the local equivalence inforvnation expressed by the value flow graph under consideration. 

Every flow graph transformed by our two stage algorithm has the same computation points as the 

flow graph that results from the algorithm of [SKR1] applied to the same value flow graph. The 

transformed flow graphs differ only in the form and the computation costs of the initialization terms. 

This difference, which arises from the greater flexibility in the choice of the initialization terms here, 

leads to second order effects: replacing multiplications by summations according to the distributive 

law may introduce (partial) redundancies in the program. This is due to the fact, that  the specific 

properties of " + " and " * " are considered only by the second stage of the algorithm, but not 

during the semantic analysis of the first stage. Whereas a heuristic approach to this problem can be 

found in [KS], a systematic treatment is under investigation. 

1 1 . 2  P l a c i n g  t h e  C o m p u t a t i o n s  

The placement procedure is a straightforward adaption of the placement procedure of [SKI~I]. Es- 

sentially, it performs the following steps: 

• Initializing auxiliary variables for every value flow graph node satisfying the predicate I N S E R T  

by means of an initialization term with minimal computation costs. 

• Propagating the values of these auxiliary variables to the locations of original program terms 

and replacing them by references to their corresponding auxiliary variables. 

The detailed placement procedure is given in [KS]. 

12 R e l a t e d  W o r k  

Strength reduction was pioneered by Cocke and Kennedy [CK] 2s and later on generalized and im- 

proved in particular by Allen, Cocke and Kennedy lACK], and Joshi and Dhamdhere [JD1, JD2]. 

All these approaches, which characterize the state of the art, are: 

• Syntactic: they optimize term by term, without exploiting semantic equivalences between 

syntactically different terms. 

• Locally updating: they insert update assignments whenever an operand of a candidate expression 

for strength reduction is redefined, without investigating the global context for the necessity of 

this update. This may introduce terms, whose values are not computed in the original program. 

Thus, the resulting program transformation cannot be guaranteed to be safe or to improve 
run-time efficiency. 

~3An efficient, hash-free solution to the strength reduction transformation of [CK] is presented in [CP]. 
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* Siructurally restricied: [CK, ACK] work only for previously detected loops and terms built 

from induction variables and region constants, which excludes the optimization of more general 

program structures. In contrast, [JDI~ JD2] work for arbitrary control flow structures and terms 

composed of variables and program constants. They pay for their ability to deal with general 

program structures by requiring an unnecessarily strong notion of admissible term structure. 

In contrast, our algorithm is: 

, Semantic : it exploits semantic equivalence between syntactically different terms. 

* Globally updating : update assignments are only inserted, if they are required by the global 

context. This guarantees that the resulting program transformation is safe and that it improves 

the run-time efficiency of the original program. 

, General: it works for arbitrary program structures without requiring additional constraints 

concerning admissible term structures 24. 

To our knowledge, none of these points has been realized in a strength reduction algorithm before. In 

fact, also the (significantly different) approach of [Pa2, PK], the finite differencing, fails these points. 

Its major achievement is the generalization of strength reduction to non-numerical applications, 

which we do not consider here. 

Whereas the predicates "syntactic", %emantic' ,  "structurally restricted" and "general" are self- 

explaining, "locally updating" and "globally updating" need some more explanation. We will there- 

fore illustrate these two predicates by means of a simplified version of an example given in [JD1]:- 

x := t 

slj:=i-71 Ij:=j+3l 
[ =J*31 

 lJ--J+51 l IJ:= /zl 
] lp:--J,31 l 

l j J l 0i J 
Figure  12.1 

In the flow graph above the computation of j * 3 in node 2 and 3 is a candidate expression for 

strength reduction. Local updating means to insert for every redefinition of an operand of a candidate 

expression e a redefinition of the auxiliary variable h storing the value of e to preserve the value 

of e in h. Therefore, the only nontrivial transformation a local updating algorithm can do to the 

flow graph above results in the flow graph shown in Figure 12.2(a) 2s. Note that local updating 

introduces a computation whose value is not computed in the original program, namely the value 

of the computation of p + 15 at node 6. Hence, the transformation is unsafe. Moreover, it even 

impairs the run-time efficiency: on path (3, 5, 7, 9) one multiplication is saved, but a multiplication 

and an addition is inserted. And on path (2,4, 6,8) a multiplication is saved on the costs of two 

~We do not even need region constants, because strength reduction k~ completely reduced to the availability of 
values in our algorithm. 

2~This transformation is realized by the algorithms of [JDI~ Pal, Pa2, PK], whereas the structurally restricted 
algorithms of [ACK~ CK, CP] leave the flow graph unchanged, because j is due to the assignment j := raft in node 
7 not an induction variable (cf. [CK]). 
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inserted additions, whose added computation costs may exceed those of the saved multiplication 2s. 

Our algorithm produces the flow graph of Figure 12.2(b). 

a) Locally Updating b) Globally Updating 

1 "(q,h)h '  := m/: ] 1 ,(q, h '  := m/l * 3) 
:= ( 3 . h , J . 3 )  h) := ( 3 .  h ' , j  

t ij:=j+31 s l J : =  - 

4 | I s F  I 41h:--P- l I | | lSIh:--q+01 

T 

Figu re  12.2 

1 3  C o n c l u s i o n  

Based on the code motion algorithm of [SKR1], which optimally moves computations within programs 

wrt Herbrand equivalence, we developed two elaborations: first, an efficient algorithm for code motion 

that achieves the effect of the (in a sense optimal) algorithm of [RWZ] for arbitrary flow graphs, and 

second, a uniform extension to strength reduction. 

The algorithm of [SKR1] may excessively introduce trivial redefinitions of variables in order to 

cover a single computation. This effect is limited along the lines of [RWZ] by the algorithm presented 

in Part  I. The point of our algorithm is that it is RWZ-optima~ without any restrictions on the flow 

structure of the flow graph being optimized, rather than just for DAGs, and that it is almost as 

efficient as the structurally restricted algorithm of [RWZ]. 

The algorithms of [SKR1] and Part  I generalize and improve previous techniques for common 

subexpression elimination, partial redundancy elimination, and loop invariant code motion. In addi- 

tion, the algorithm presented in Part  II also improves on all classical techniques for strength reduction 

in that it overcomes their restrictions concerning admissible program structures (previously detected 

loops) and admissible term structures (built of induction variables and program constants). 

The development of both algorithms profited from the modular structure of the underlying code 

motion algorithm (cf. [SKR1]). This modularity, which is due to the strict separation of the local 

and global equivalence analysis, the computation of relevant terms, and the placement procedure, 

has been maintained. Thus further extensions are supported. For example, both algorithms can be 

extended to cover further optimization goals like constant propagation and constant folding ([SK]) by 

strengthening the capacity of determining local equivalences between terms. 

2OThe algorithm of [JD2] deals with these problems using a machine dependent heuristic: assumed that the com- 
putation costs of two additions are less expensive than those of a multiplication, it would insert within the loop the 
assignments h:= j * 3 on the edge leaving node 9, h:= h - 21 at node 8, and h:-= h + 15 at node 6. This trans- 
formation would improve the "left" part of the loop construct. However, without this assumption it would insert the 
assignment h := j * 3 at node 4 instead of the insertions at node 6 and 8. And in this case, there would be no positive 
effect on the run-time efficiency at all. 
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