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Much is known about how the brain encodes sensory informa-
tion, but the question of why it has evolved to use particular cod-
ing strategies has long been debated1. In the auditory system,
cochlear nerve fibers are sharply tuned to specific frequencies
and can be characterized as performing a short-term spectral
analysis of acoustic signals2. To a first approximation, the fre-
quency and phase responses of auditory nerve fibers can be mod-
eled as a bank of linear filters that integrate auditory information
over a timescale that varies with frequency3–5. Although these fil-
tering properties resemble Fourier and wavelet transforms, this
observation alone is not an adequate explanation for the audi-
tory code. It is not clear whether these transforms, which are
derived largely from mathematical considerations, are appropri-
ate for processing the sensory stimuli experienced by an organism.
A tonal decomposition might seem like a natural choice for har-
monic sounds such as vocalizations, but the natural environment
is rich with sounds that are not harmonic. If these have equal
behavioral significance, one would expect auditory systems to be
adapted for processing a broad class of sounds. In this case the
optimal code is less obvious.

Can auditory sensory codes be explained by theoretical prin-
ciples? One view, efficient coding theory, holds that the goal of
sensory coding is to encode the maximal amount of information
about the stimulus by using a set of statistically independent fea-
tures1,6–9. Auditory nerves encode naturalistic stimuli more effi-
ciently than white noise10, but it is not known whether the
properties of the code itself can be predicted from the statistics
of the environment. Testing theoretical predictions not only offers
insight into the organization of the auditory neural code, but also
reveals how the codes of different organisms might be adapted
for different auditory environments.

Efficient coding has successfully explained the properties of
receptive fields in primary visual cortex by deriving efficient visu-
al codes from the statistics of natural images11–14. To test this the-
ory in the auditory system, we used independent component
analysis, to derive efficient codes for different classes of natural
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auditory nerve fiber tuning properties can be accounted for by adapting a population of filter
shapes to encode natural sounds efficiently. The form of the code depends on sound class,
resembling a Fourier transformation when optimized for animal vocalizations and a wavelet
transformation when optimized for non-biological environmental sounds. Only for the combined set
does the optimal code follow scaling characteristics of physiological data. These results suggest that
auditory nerve fibers encode a broad set of natural sounds in a manner consistent with information
theoretic principles.

sounds, including animal vocalizations, environmental sounds
and human speech. This predicted a theoretically optimal code
and provided an explanation for both the form of the filtering
properties of cochlear nerves and their organization as a popu-
lation. Previous explanations based on average power spectra,
which do not take temporal regularities into account, do not
accurately predict the population characteristics of cochlear nerve
fiber responses. Here, the sound class that yielded a code most
similar to physiological observations was a mixture of environ-
mental sounds and animal vocalizations. Identical results were
obtained with human speech, suggesting that its acoustic features
make efficient use of the coding capacity of the auditory system.

RESULTS
Auditory coding model
An auditory code based on the information theoretic principle
of efficient coding can be derived by assuming the signal x(t) in a
time window of length N is encoded in a set of M responses
a1(t),..., aM(t). The goal of efficient coding is to derive a set of fil-
ters h1(t),..., hM(t) that minimize the statistical dependence of
the responses6–9. The response of a particular filter i is

(1)

Any statistical dependence among the filter outputs implies
that two different channels are transmitting the same informa-
tion. Redundancy can be an advantage in the presence of noise
(arising from the auditory signal itself or from imprecise coding)
because it adds robustness. However, if the signal-to-noise ratio
is high, as in the current case, redundancy among the channels
means that the bandwidth is not optimally utilized. In theory, an
ideal code transforms the input signals so that the outputs are
statistically independent, removing all redundancy. Current
methods can only approximate this ideal within the limits of the

∑ai(t) =
N–1

τ=0
x(τ)hi(t   – τ)
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assumed model. Methods for deriving efficient codes for mod-
els of the form in equation (1) fall under the rubric of either
sparse coding11 or independent component analysis (ICA)15,16,
and are aimed at finding the features (or basis functions) that
model the statistical distribution of the pattern ensemble14.

Predicting codes for natural sounds
The notion of an efficient code cannot be separated from the
ensemble of signals that are being encoded6,17. To make predic-
tions for sensory codes, it is necessary to make conjectures about
what class of stimuli the sensory system has evolved to process.
This could range from a broad class of signals in the natural envi-

ronment to only those crucial for reproduction and survival.
Many auditory systems, such as those of barn owns and bats,
have highly-specialized adaptations. The goal here, however, was
to make predictions about less specialized, ‘general’ auditory
systems. We therefore chose to analyze three classes of sounds
as representatives of a natural auditory environment—environ-
mental sounds, animal vocalizations and human speech—with
each class containing a broad array of different sounds, animals
or speakers (see Methods). Environmental sounds, such as
rustling brush, crunching leaves and snapping twigs, call for
rapid and accurate auditory localization. These sounds are typ-
ically broadband, non-harmonic and of short duration. Animal
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Fig. 1. Auditory filters derived from efficient coding of different natural sounds classes. Individual waveforms show the entire filter in the time domain
(∼ 8 ms). The set of filter shapes is optimized to form an efficient code by maximizing the statistical independence of their response over the sound
ensemble. Each plot shows a representative subset of the total population of 128 filters, displayed in increasing order of peak resonance frequency. 
(a) Efficient coding of non-harmonic environmental sounds yields a set of filters that resemble a wavelet representation. The majority have a dominant
resonance frequency (see Fig. 2) and an amplitude envelope that is localized in time. (b) Efficient coding of animal vocalizations results in filters that
resemble a Fourier representation. All filters are sinusoidal and the majority extend over the entire length of the analysis window. The moiré-like pat-
terns visible at the highest frequencies arise from the cyclic alignment of the underlying filter resonance frequency and the sampling frequency. 
(c) Efficient coding of speech, which contains both harmonic and non-harmonic sounds (that is, vowels and consonants), yields a representation inter-
mediate between those in (a) and (b). (d) Comparison to cochlear filter shapes measured experimentally at the auditory nerve. The physiological fil-
ters are redrawn from original figures4,5. Left (from ref. 4), filters with peak resonance frequencies of 0.53, 1.0, 2.1 and 4.7 kHz from top to bottom
(note different time scales). Right (from ref. 5), measured filters (upper) and modeled functions (lower). Each waveform is 20 ms in duration; the peak
resonance frequencies are 364, 642 and 999 Hz. Like the filter shapes predicted by efficient coding, the auditory nerve filters integrate the auditory
signal over a time period that depends on frequency.
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Fig. 3. Efficient coding of a combined sound ensemble. Efficient
coding of a sound ensemble consisting of environmental sounds
and vocalizations in a 2:1 proportion yields filters similar to those
for speech, with temporal envelopes that are intermediate
between those for environmental sounds and animal vocalizations.

vocalizations, which have likely evolved to stand out from back-
ground sounds, are typically harmonic, of relatively narrow
bandwidth and of longer duration. Speech, the third distinct
class of sounds, is highly relevant to the human auditory system
and shares properties of both animal vocalizations and envi-
ronmental sounds by virtue of having both harmonic vowels
and non-harmonic consonants.

Efficient codes for each sound ensemble were derived using
a generalized independent-components algorithm (see Meth-
ods). The analysis window was limited to 128 samples. At a sam-
pling rate of 14.7 kHz for vocalizations and environmental sounds
and 16 kHz for speech (see Methods), this corresponds to a win-
dow width of approximately 8 ms. This width was chosen for
computational efficiency and because it covers the relevant time
scale for a broad range of auditory nerve fibers. This window
width also captures most of the short-range temporal correla-
tions in the sound ensembles as revealed by the auto correlation
functions (data not shown), although longer-range and higher-
order statistical relationships clearly exist. Each filter is defined
by 128 points over the analysis window, and the algorithm places
no constraints on filter shape. That is, each of the 128 points that
define the filter is a free parameter, so the filters could take on
any spectral or temporal pattern. The shapes that emerge are
determined by the statistical structure of the ensemble. For envi-
ronmental sounds, even though the ensemble consisted of non-
harmonic sounds like rustling brush and cracking twigs, the
majority of the filters have a single peak resonance frequency and
an amplitude envelope that is localized in time (Fig. 1a). Similar
filter shapes can appear at multiple temporal positions, because
the set of filters is optimized to encode the waveform over the
whole analysis window.

The properties of the filter population change with the sta-
tistical structure of the sound ensemble. The ICA filter shapes
for animal vocalizations are essentially Fourier representations,
with most filters having sinusoidal oscillations and little ampli-
tude modulation (Fig. 1b). This type of representation was
expected, as the sounds in the ensemble of animal vocalizations
were largely harmonic. The filters are not localized in time
because the statistical regularities of animal vocalizations occur
on a much larger timescale than those of environmental sounds.
A much larger analysis window would be required to show the

temporal extent of this regularity. Efficient coding of speech also
yields sinusoidal filters, but with amplitude envelopes that lie
between those for environmental sounds and animal vocaliza-
tions (Fig. 1c). Efficient coding of sounds can produce filters
that are localized in time and frequency18,22. The trade-off
between time and frequency is clearly visible in the progression
from environmental sounds to vocalizations, reflecting the cor-
relation time of the different sound ensembles (Fig. 2). This pat-
tern was not obvious from the average autocorrelation of the
three sound ensembles (unpublished data).

The filters derived from efficient coding are qualitatively
similar to filters that model the response properties of auditory
nerve fibers (Fig. 1d). The auditory nerve filters were estimated
using reverse correlation (‘revcor’ filters), which provides an
estimate of linear filters that determine both the temporal and
spectral properties of the auditory nerve response3–5. The revcor
filter shapes resemble those derived theoretically for environ-
mental sounds and human speech, and also show the depen-
dence of amplitude envelope width on frequency. Similar filter
shapes also account for the spectral analysis properties of the
human auditory system19.

These results are consistent with the notion that the
sensory code of the auditory system is efficient for a mix
of non-harmonic, broadband sounds and harmonic
vocalizations. But it is possible that the intermediate tem-
poral envelopes observed for speech arose because of a
particular acoustic property of speech, not because it con-
tains both harmonic and non-harmonic sounds. To test
this explicitly, the same analysis was performed on a com-
bined sound ensemble consisting of environmental
sounds and animal vocalizations. The relative proportion
of each ensemble could be chosen, and a 2:1 ratio of envi-
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Fig. 2. Filter power spectra. Time domain plot (upper) and correspond-
ing power spectrum (lower) of representative filters derived from envi-
ronmental sounds (a), human speech (b) and animal vocalizations (c).
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trast, is composed of filters that are localized in both time
and frequency (Fig. 6b). Because the two codes cover the
time–frequency space with the same number of functions, a
wavelet representation sacrifices frequency resolution while
improving time resolution. The tiling of time–frequency space
(that is, the partitioning of time–frequency space by the filter
set) plays a central role in the design of wavelet transforms21.
Because the individual filters derived from efficient coding
are localized in their amplitude envelope and their spectral
power, it is possible to plot how each population covers

time–frequency space. For coding purposes, the best tiling depends
on the statistical structure of the signals.

Time–frequency analysis (see Methods) of the derived filters
shows that the majority of filters are localized (Fig. 2). The
time–frequency distribution for the environmental sounds code is
similar to a wavelet representation, with bandwidth increasing
and temporal width decreasing as function of frequency (Fig. 6c).
One difference, however, is that instead of discrete increases in
bandwidth and decreases in temporal width, as is common for
many types of wavelets, bandwidth and temporal width change
gradually with frequency. For animal vocalizations, the efficient
code most closely resembles a Fourier representation, and the
bandwidths are much narrower than the codes for the other
datasets. The time–frequency distribution for the efficient code
of speech falls between the two others in both temporal extent
and filter bandwidth. Deriving an optimal code provides a solution
to the choice of how to tile time–frequency space, but it is more
general because the filters are not restricted to be localized in
time–frequency space. Harmonic structure is one example of non-
local time–frequency structure, and is obtained for an efficient
code of a single speaker22 (Fig. 5b). That the majority of the fil-
ters are localized reflects the statistical structure of the signals.

The differences between the time–frequency tiling for the
three sound classes can be summarized by plotting characteristics

Fig. 4. Principal components of natural sounds. A representative
subset of filters derived from PCA of environmental sounds are
plotted in decreasing order of captured variance. PCA, which can
only model second-order correlations, does not yield filters that
are localized in time, and only the largest are sinusoidal.

ronmental sounds to animal vocalizations yielded filters similar
to those for speech (Fig. 3).

Principal-components analysis (PCA or the Karhunen-Loéve
transform) has long been used in efficient coding of speech sig-
nals20. To contrast PCA-derived with ICA-derived predictions, a
set of filters for the same ensemble of environmental sounds was
derived using PCA (Fig. 4). The largest principal components are
sinusoidal, but most are not localized in either time or frequen-
cy and bear little resemblance to auditory filters. A Fourier-like
code would be expected for sufficiently large data ensembles,
because of the assumption of stationarity (that the statistical struc-
ture of the sound ensemble is not dependent on the temporal
position of the analysis window). PCA selects filter shapes that
decorrelate the outputs, and embodies an implicit assumption
that the outputs follow a Gaussian distribution. For the datasets
used here, however, the outputs are highly non-Gaussian, and
decorrelation, which results in a less efficient code, is not suffi-
cient to explain the auditory filter properties. Furthermore, the
PCA filters are restricted to be mutually orthogonal, which great-
ly restricts the class of filters that can be used to model structure in
the sound ensemble. This restriction is not imposed by ICA.

To check for a bias in the efficient coding algorithm giving
wavelet-like filters, the algorithm was run on a data ensemble
in which the samples were drawn independently from a sparse
distribution (p(x) ∝ exp(– x 0.5)). As expected for a data set
that contains no temporal structure, the resulting filters were
maximally localized in time, with each representing a differ-
ent temporal position (Fig. 5a). If the algorithm is run on a
single speaker from the speech dataset, the filters are not local-
ized in time and adapt to encode particular harmonics of the
speaker’s voice (Fig. 5b).

Analysis and characterization of the derived codes
How the filter populations encode the three sound classes can be
characterized using time–frequency analysis, or the distribution
of the filters in terms of their temporal envelopes and spectral
power. For example, a Fourier transform represents a signal by a
linear superposition of sinusoids. Thus, the filters are localized in
frequency but not in time (Fig. 6a). A wavelet transform, by con-

Fig. 5. Control analyses. Sinusoidal filters that are localized in frequency
are not inherently preferred by the algorithm. (a) Applying the same algo-
rithm to sparse noise, where there is no temporal structure, results in an
impulse representation where the filters are maximally localized in time.
(b) Applying the algorithm to speech from a single speaker results in non-
localized filters that are adapted to the harmonics of the speaker’s voice.
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One argument for explaining the increase in filter bandwidth
with center frequency is based on the observation that the aver-
age power spectrum for speech, music and some natural sounds
is approximately 1/f (refs. 26,27). If frequency bandwidths are
chosen so that each band has equal average power, the bandwidth
must increase linearly with frequency28. The functions of equal

power bandwidth versus center frequency derived from
the power spectra of the natural sound ensembles do
not agree as closely with physiological and psychophys-
ical observations, and differ from those derived from
efficient coding (Fig. 8). The vertical position of the
curves in Fig. 8b is arbitrary and was adjusted to best
match the range in Fig. 7a. The position is influenced
by the number of assumed frequency channels: dou-
bling the number halves the bandwidth of each chan-
nel. Auditory nerve fibers have highly overlapping

Fig. 7. Comparison of filter population characteristics to physi-
ological data. (a–c) Characteristics of the derived filters as a
function of center frequency for environmental sounds (×),
speech (O), and vocalizations (+). (a) Filter bandwidth. 
(b) Filter temporal envelope width. (c) Filter sharpness or cen-
ter frequency divided by bandwidth (Q10dB). For comparison, the
linear regression lines from the physiological data (d) are super-
imposed. The curves for a combined ensemble of environmental
sounds and animal vocalizations can be varied smoothly from
one extreme to the other by changing the relative proportion of
the two sound classes (data not shown). (d) Q10dB measured
from cat auditory nerve fibers. Lines show linear regressions of
each dataset in the range 0.5–8 kHz. Data are replotted from 
ref. 24 (5 and solid line) and ref. 25 (o and dashed line).

of the filters in time–frequency space as a function of center
frequency (Fig. 7). For comparison to auditory nerve filter-
ing properties derived physiologically and psychophysical-
ly, we analyze bandwidth, filter sharpness (center frequency
divided by bandwidth, or Q) and the temporal envelope23.
Bandwidth is measured 10 dB down from the spectral peak.
Filters that did not have a full 10 dB drop on both sides of
the spectral peak (the lowest and highest frequencies) were
omitted from the plots to avoid artifacts resulting from the
limited size of the analysis window. The filters optimized for
environmental sounds show the steepest increase in band-
width as a function of frequency, similar to a wavelet repre-
sentation (Fig. 7a). By contrast, the filters derived for
vocalizations have bandwidth that is nearly constant across
frequency, as in a Fourier representation. The curve for
speech lies intermediate between the other two. The corre-
sponding curves for the temporal envelope necessarily show
the same pattern because of the time/frequency trade-off
(Fig. 7b). The filters for all three sounds classes show an
increase in sharpness with center frequency (Fig. 7c). All
curves approximately follow a power law.

Deriving an efficient code for the combined set of envi-
ronmental sounds and animal vocalizations (Fig. 3) yields
similar bandwidth and sharpness curves. The curves for these fil-
ters can be shifted from one extreme to the other by changing
the relative proportion of the two types of sounds in the dataset
(unpublished data). The curves most consistent with physiolog-
ical measurements24,25 are those for the speech data set and the
combined sound ensembles (Fig. 7d).

Fig. 6. Time–frequency analysis. (a) The filters in a Fourier trans-
form are localized in frequency but not in time. (b) Wavelet filters
are localized in both time and frequency. (c–e) The statistical
structure of the signals determines how the filter shapes derived
from efficient coding of the different data ensembles are distrib-
uted in time–frequency space. Each ellipse is a schematic of the
extent of a single filter in time–frequency space. (c) Environmental
sounds. (d) Animal vocalizations. (e) Speech.
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bands, presumably to compensate for the limited precision of
each channel. The curves are different from those of efficient cod-
ing (Fig. 7), because the predictions derived from the average
power spectrum ignore the temporal structure of the signal.

DISCUSSION
The main insight provided by this analysis is not into the response
properties of individual cochlear fibers, but into how sound is
encoded by the specific distribution of response properties of the
population. That the filters in an efficient code of sound are local-
ized in time–frequency space is not surprising for general classes
of sounds. If particular harmonic structures do not dominate the
statistics, then one would expect localized filters. Given localized
filters, the only remaining degrees of freedom (beyond the details
of the filter form) lie in the particular trade-off between time and
frequency in the population. A common mischaracterization of
the peripheral auditory system is that it performs a Fourier analy-
sis of the auditory signal. If this were true, filter bandwidth would
remain roughly constant as a function of center frequency, which
is not observed experimentally. Another approximation of audi-
tory nerve filters is that they have constant sharpness, as in a
wavelet representation. This too is inconsistent with the experi-
mental data, which shows a sublinear power law trend of filter
sharpness versus center frequency. The results provide an expla-
nation for the distribution of cochlear tuning properties in terms
of efficient coding, and suggest that the auditory system is adapt-
ed for the efficient representation of a broad range of natural
sounds, including sounds in the natural environment and ani-
mal vocalizations.

Linear models of auditory coding based on revcor filters can
account only for cochlear nerve fiber responses to stimuli within
a limited dynamic range, and do not capture effects such as adap-
tation or two-tone inhibition4. The limitations of our simple, but
mathematically tractable, model should also be noted. First, this
model is linear, so it cannot account for dynamic aspects of audi-
tory filters, such as any form of gain control or broadening of
bandwidths for higher stimulus intensities. Second, statistical
regularities on a larger time scale (for example, phonemes) can-
not be captured because the model optimizes only the efficien-
cy of the code within the analysis window. When the

autocorrelations of the different sound ensembles were analyzed,
most of the significant temporal correlation fell within the length
of the analysis window (unpublished data). Incorporating these
factors into a model of auditory periphery would likely increase
the efficiency of the sensory code29–31.

Earlier studies of natural sounds26,27 have reported that sound
classes such as speech and music often obey a statistical regular-
ity of having approximately a 1/f power spectrum, which is due to
correlations that exist over many time scales. However, these
observations were reported for much larger time scales (0.001—
10 Hz) than those analyzed here, complementing rather than
contradicting our results. Here we provide a characterization of
the statistical regularities on a time scale (∼ 0.5—8 kHz) more
relevant to the time scales coded at the level of the auditory nerve.

The predicted filter shapes typically do not show the tempo-
ral asymmetry of the auditory nerve filters, which have a rapid
rise followed by a slower decay. This is because, for simplicity,
the model was designed to encode only the signal within the
analysis window and filters were not restricted to be causal. Deriv-
ing efficient codes for such models is beyond the scope of cur-
rent methods of ICA. A causal model in which the encoding
proceeds forward in time would lead to an asymmetry in the fil-
ters because structure preceding the current time would already
have been accounted for earlier in the coding. The filters in such
a code could presumably capture the structure of the onset or
offset envelopes of natural sounds more closely.

The result that the optimal representation changes depend-
ing on the class of sounds suggests that similar adaptations might
be used by biological systems depending on ecological niche. An
auditory system adapted to process a broad class of sounds fits
the auditory sensory code described here. If we allow that the
human cochlear nerves follow filter bandwidth and sharpness
curves similar to those measured physiologically, this analysis
also suggests that the acoustic properties of speech make efficient
use of the bandwidth available in the auditory system. Efficient
representation of speech is nearly identical to that of natural
sounds combined with vocalizations, suggesting an evolutionary
adaptation of speech to make maximally efficient use of the cod-
ing properties of a prelinguistic auditory system.

These results nicely mirror the results on efficient coding of
natural images by demonstrating that efficient coding of natural
sounds can explain many of the sensory coding properties of the
auditory system. Efficient coding of natural scenes results in a pop-
ulation of localized, oriented Gabor wavelet-like filters11,12. The
auditory equivalent is the gammatone filter, or a gamma-modu-
lated sinusoid. A prevalent form of structure in natural scenes is
an edge that can be efficiently encoded by a population of Gabor fil-
ters. Similarly, sound onsets or ‘acoustic edges’ can be efficiently
encoded by a population of filters that resembles a gammatone fil-
ter bank. In both cases, however, the interpretation offered by the
theory is not that these filters are ‘edge detectors’, but rather that
the code is optimized for a more general class of patterns: those
with edges and those that vary smoothly. These results lend fur-
ther support to the hypothesis that efficient coding is a general
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principle for sensory coding. A challenge that remains is finding
workable models that can account for the many types of non-lin-
earities and higher-order processing in perceptual systems.

METHODS
Theory. The relationship between efficient coding and statistical density
estimation can be seen by applying Shannon’s source coding theorem,
which states that the lower bound on the expected code length is the
entropy of the data, H(p) = – Σp(x) log p(x). The true probability densi-
ty p(x), however, is unknown and must be approximated by the density
q(x) assumed by the model. From this, the lower bound on expected code
length l(x) becomes

(2)

The term on the left is the entropy; the term on the right is the Kullback-
Leibler divergence between p and q and is zero if and only if p = q. Thus,
the closer q is to p, the lower the bound on the expected code length.

To obtain an expression for the likelihood of the data under the model
(1), the stimulus waveform x is expressed as a sum of basis functions φi
weighted by coefficients ai, x = Σiaiφi, where x = [x(1), . . ., x(N)]. To
obtain the filters hi, the previous equation is written in matrix form x =
[φi, . . ., φk]a = Φa. Then a = Φ–1x, yielding the (FIR) filters in the rows of
Φ–1 . The data likelihood is then p(xΦ ) = p(a)/ det Φ (ref. 32,33).

Data. The ensemble of environmental sounds were obtained from a vari-
ety of sources, including rustling brush, crunching leaves and twigs, rain,
fire, and forest and stream sounds, and was 45 s in total duration. Animal
vocalizations were selected from a collection of mammalian vocaliza-
tions34. A representative sample of 44 vocalizations was used, and periods
of silence were removed. Although the collection was recorded to isolate
the vocalizations, the background sounds of the natural habitat, typical-
ly birds and insects, were audible in many recordings. Speech was
obtained from the TIMIT continuous speech corpus using 100 male and
female speakers. To reduce the amount of computation required, the
environmental and animal vocalization stereo sounds were converted to
mono and down-sampled from 44.1 kHz to 14.7 kHz. Speech was used at
the original sampling frequency of 16 kHz. All waveforms were highpass
filtered using a cutoff equal to the sampling frequency divided by the
window size, which was 115 Hz for environmental sounds and animal
vocalizations and 125 Hz for speech. Datasets were then constructed with
128-sample segments, randomly selected from the sound ensembles.

Algorithm. The details of the basic algorithm to derive efficient codes
have been given previously12,14. Briefly, the basis matrix Φ (or, equiva-
lently, the filter set) is optimized by maximizing the likelihood of the data
ensemble under the model

(3)

where the prefactor ΦΦΤ is used for faster convergence35, and 
ϕ (a) = (log p(a))´. Independence of the coefficients is assumed, as in 
p(a) = Πi p(ai). The distribution p(ai) is typically fixed a priori, but here
we fit this distribution to the data using a generalized Gaussian36–38, 
p(a) ∝ exp(– a q). This yields ϕ (a) = –θ a –µ q–1qcσ –q, where 
θ  = sign(s) and c = [Γ(3/q)/ Γ(1/q)] q/2 (subscripts omitted for clarity).
By inferring the maximum a posteriori value of qi from the data, the
model can fit a broad range of statistical distributions, including those
assumed by both principal and independent component analysis, and
was very well matched to the distributions observed here. It should be

=�Φ ∝ ΦΦT ∂
∂Φ
— log Φ ) Φ(I – ϕ (a)aT)p(x

E[l(x)] ≥ ∑
x

p(x)log ——
1

q(x)

= ∑
x

p(x)log ——
1

p(x)
+∑

x
p(x)log ——

p(x)
q(x)

noted that the learning rule is not intended to be biologically plausible
but simply a method for deriving the theoretical predictions of efficient
coding for the ensembles of natural sounds.

In all experiments presented here, five optimizations were performed
from different random initial conditions of Φ, all yielding qualitatively
similar results. During optimization each gradient step was estimated using
a block of 640 waveform segments. The gradient step size was reduced lin-
early from 10–1 to 10–5 over 10,000 iterations and then optimized further
at the final step size for an additional 10,000 iterations. Each generalized
Gaussian parameter qi for the output distribution p(ai) was estimated
throughout optimization, after every 20,000 patterns. Instability in the gra-
dient can result from small values qi, so the contribution of the qi to the
gradient was limited to a minimum of two-thirds during optimization.

Time–frequency analysis. To determine the extent of a filter in
time–frequency space, the temporal extent was measured using the
width required to cover 95% of the filter power. Frequency width was
measured using the spectral bandwidth at 10 dB down from the peak.
Filters that were not localized (where the main spectral peak at
accounted for less than 50% of the total power) were omitted from the
plot and totaled 7, 1 and 0 out of 128 filters for environmental sounds,
vocalizations and speech, respectively.
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