
Efficient Coflow Scheduling
Without Prior Knowledge

Mosharaf Chowdhury, Ion Stoica
UC Berkeley

{mosharaf, istoica}@cs.berkeley.edu

ABSTRACT

Inter-coflow scheduling improves application-level commu-
nication performance in data-parallel clusters. However, ex-
isting efficient schedulers require a priori coflow informa-
tion and ignore cluster dynamics like pipelining, task fail-
ures, and speculative executions, which limit their applica-
bility. Schedulers without prior knowledge compromise on
performance to avoid head-of-line blocking. In this paper,
we present Aalo that strikes a balance and efficiently sched-
ules coflows without prior knowledge.

Aalo employs Discretized Coflow-Aware Least-Attained

Service (D-CLAS) to separate coflows into a small num-
ber of priority queues based on how much they have al-
ready sent across the cluster. By performing prioritization
across queues and by scheduling coflows in the FIFO order
within each queue, Aalo’s non-clairvoyant scheduler reduces
coflow completion times while guaranteeing starvation free-
dom. EC2 deployments and trace-driven simulations show
that communication stages complete 1.93× faster on aver-
age and 3.59× faster at the 95th percentile using Aalo in
comparison to per-flow mechanisms. Aalo’s performance is
comparable to that of solutions using prior knowledge, and
Aalo outperforms them in presence of cluster dynamics.

CCS Concepts

•Networks → Cloud computing;

Keywords

Coflow; data-intensive applications; datacenter networks

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom

© 2015 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787480

1 Introduction

Communication is crucial for analytics at scale [19, 8, 12,
20, 25]. Yet, until recently, researchers and practitioners have
largely overlooked application-level requirements when im-
proving network-level metrics like flow-level fairness and
flow completion time (FCT) [29, 10, 16, 8, 14]. The coflow
abstraction [18] bridges this gap by exposing application-
level semantics to the network. It builds upon the all-or-

nothing property observed in many aspects of data-parallel
computing like task scheduling [51, 12] and distributed
cache allocation [11]; for the network, it means all flows
must complete for the completion of a communication stage.
Indeed, decreasing a coflow’s completion time (CCT) can
lead to faster completion of corresponding job [20, 25, 19].

However, inter-coflow scheduling to minimize the aver-
age CCT is NP-hard [20]. Existing FIFO-based solutions,
e.g., Baraat [25] and Orchestra [19], compromise on perfor-
mance by multiplexing coflows to avoid head-of-line block-
ing. Varys [20] improves performance using heuristics like
smallest-bottleneck-first and smallest-total-size-first, but it
assumes complete prior knowledge of coflow characteristics
like the number of flows, their sizes, and endpoints.

Unfortunately, in many cases, coflow characteristics are
unknown a priori. Multi-stage jobs use pipelining between
successive computation stages [30, 22, 46, 3] – i.e., data is
transferred as soon as it is generated – making it hard to
know the size of each flow. Moreover, a single stage may
consist of multiple waves [11],1 preventing all flows within a
coflow from starting together. Finally, task failures and spec-
ulation [50, 30, 24] result in redundant flows; meaning, the
exact number of flows or their endpoints cannot be deter-
mined until a coflow has completed. Consequently, coflow
schedulers that rely on prior knowledge remain inapplicable
to a large number of use cases.

In this paper, we present a coordinated inter-coflow sched-
uler – called Coflow-Aware Least-Attained Service (CLAS)
– to minimize the average CCT without any prior knowledge
of coflow characteristics. CLAS generalizes the classic least-
attained service (LAS) scheduling discipline [45] to coflows.
However, instead of independently considering the number
of bytes sent by each flow, CLAS takes into account the total

1A wave is defined as the set of parallel tasks from the same stage of a job

that have been scheduled together.

http://dx.doi.org/10.1145/2785956.2787480

1!

2!

3!

1!

2!

3!

Ingress Ports!

(Machine Uplinks)!

Egress Ports!

(Machine Downlinks)!

DC Fabric!

3!

2! 4!

3!

(a) Datacenter fabric

C1! C2! C3!

Coflow Arrival Time! 0! 1! 0!

(b) Coflow arrival times

3! 6!

P
2!

P
1!

Time!

(c) Per-flow fairness

3! 6!

P
2!

P
1!

Time!

(d) Decentralized LAS

3! 6!

P
2!

P
1!

Time!

(e) CLAS

3! 6!

P
2!

P
1!

Time!

(f) The optimal schedule

Figure 1: Online coflow scheduling over a 3 × 3 datacenter fabric with three ingress/egress ports (a). Flows in ingress ports are organized
by destinations and color-coded by coflows – C1 in orange/light, C2 in blue/dark, and C3 in black. Coflows arrive online over time (b).
Assuming each port can transfer one unit of data in one time unit, (c)–(f) depict the allocations of ingress port capacities (vertical axis) for
different mechanisms: The average CCT for (c) per-flow fairness is 5.33 time units; (d) decentralized LAS is 5 time units; (e) CLAS with
instant coordination is 4 time units; and (f) the optimal schedule is 3.67 time units.

number of bytes sent by all the flows of a coflow. In partic-
ular, CLAS assigns each coflow a priority that is decreasing

in the total number of bytes the coflow has already sent. As
a result, smaller coflows have higher priorities than larger
ones, which helps in reducing the average CCT. Note that
for heavy-tailed distributions of coflow sizes, CLAS approx-
imates the smallest-total-size-first heuristic,2 which has been
shown to work well for realistic workloads [20].

For light-tailed distributions of coflow sizes, however, a
straightforward implementation of CLAS can lead to fine-
grained sharing,3 which is known to be suboptimal for min-
imizing the average CCT [19, 25, 20]. The optimal schedule
in such cases is FIFO [25].

We address this dilemma by discretizing coflow priorities.
Instead of decreasing a coflow’s priority based on every byte
it sends, we decrease its priority only when the number of
bytes it has sent exceeds some predefined thresholds. We call
this discipline Discretized CLAS, or D-CLAS for short (§4).
In particular, we use exponentially-spaced thresholds, where
the i-th threshold equals bi, (b > 1).

We implement D-CLAS using a multi-level scheduler,
where each queue maintains all the coflows with the same
priority. Within each queue, coflows follow the FIFO or-
der. Across queues, we use weighted fair queuing at the
coflow granularity, where weights are based on the queues’
priorities. Using weighted sharing, instead of strict priori-
ties, avoids starvation because each queue is guaranteed to
receive some non-zero service. By approximating FIFO (as
in Baraat [25]) for light-tailed coflows and smallest-coflow-

2Under the heavy-tailed distribution assumption, the number of bytes al-
ready sent is a good predictor of the actual coflow size [41].
3Consider two identical coflows, CA and CB , that start at the same time.
As soon as we send data from coflow CA, its priority will decrease, and we
will have to schedule coflow CB . Thus, both coflows will continuously be
interleaved and will finish roughly at the same time – both taking twice as
much time as a single coflow in isolation.

first (as in Varys [20]) for heavy-tailed coflows, the proposed
scheduler works well in practice.

We have implemented D-CLAS in Aalo,4 a system that
supports coflow dependencies and pipelines, and works well
in presence of cluster dynamics like multi-wave scheduling
(§5). Aalo requires no prior knowledge of coflow charac-
teristics, e.g., coflow size, number of flows in the coflow,
or its endpoints. While Aalo needs to track the total num-
ber of bytes sent by a coflow to update its priority,5 this
requires only loose coordination as priority thresholds are
coarse. Moreover, coflows whose total sizes are smaller than
the first priority threshold require no coordination. Aalo runs
without any changes to the network or user jobs, and data-
parallel applications require minimal changes to use it (§6).

We deployed Aalo on a 100-machine EC2 cluster and
evaluated it by replaying production traces from Facebook
and with TPC-DS [6] queries (§7). Aalo improved CCTs
both on average (up to 2.25×) and at high percentiles (2.93×
at the 95th percentile) w.r.t. per-flow fair sharing, which
decreased corresponding job completion times. Aalo’s av-
erage improvements were within 12% of Varys for single-
stage, single-wave coflows, and it outperformed Varys for
multi-stage, multi-wave coflows by up to 3.7× by removing
artificial barriers and through dependency-aware schedul-
ing. In trace-driven simulations, we found Aalo to perform
2.7× better than per-flow fair sharing and up to 16× bet-
ter than fully decentralized solutions that suffer significantly
due to the lack of coordination. Simulations show that Aalo
performs well across a wide range of parameter space and
coflow distributions.

We discuss current limitations and relevant future research
in Section 8 and compare Aalo to related work in Section 9.

4In Bangla, Aalo (pronounced \'ä-lō\) means light.
5As stated by Theorem A.1 in Appendix A, any coflow scheduler’s perfor-
mance can drop dramatically in the absence of coordination.

2 Motivation

Before presenting our design, it is important to understand
the challenges and opportunities in non-clairvoyant coflow
scheduling for data-parallel directed acyclic graphs (DAGs).

2.1 Background

Non-Clairvoyant Coflows A coflow is a collection of par-
allel flows with distributed endpoints, and it completes af-
ter all its flows have completed [18, 20, 19]. Jobs with
one coflow finish faster when coflows complete faster [20].
Data-parallel DAGs [30, 50, 46, 2, 3] with multiple stages
can be represented by multiple coflows with dependencies
between them. However, push-forward pipelining between
subsequent computation stages of a DAG [22, 30, 46, 3] re-
moves barriers at the end of coflows, and knowing flow sizes
becomes infeasible. Due to multi-wave scheduling [11], all
flows of a coflow do not start at the same time either.

Hence, unlike existing work [19, 20, 25], we do not as-

sume anything about a coflow’s characteristics like the num-
ber of flows, endpoints, or waves, the size of each flow, their
arrival times, or the presence of barriers.

Non-Blocking Fabric In our analysis, we abstract out the
entire datacenter fabric as one non-blocking switch [10, 15,
20, 9, 31, 26] and consider machine uplinks and downlinks
as the only sources of contention (Figure 1a). This model is
attractive for its simplicity, and recent advances in datacenter
fabrics [9, 28, 40] make it practical as well. However, we
use this abstraction only to simplify our analysis; we do not
require nor enforce this in our evaluation (§7).

2.2 Challenges

An efficient non-clairvoyant [39] coflow scheduler must ad-
dress two primary challenges:

1. Scheduling without complete knowledge: Without a
priori knowledge of coflows, heuristics like smallest-
bottleneck-first [20] are inapplicable – one cannot sched-
ule coflows based on unknown bottlenecks. Worse, re-
dundant flows from restarted and speculative tasks un-
predictably affect a coflow’s structure and bottlenecks.
While FIFO-based schedulers (e.g., FIFO-LM in Baraat
[25]) do not need complete knowledge, they multiplex to
avoid head-of-line blocking, losing performance.

2. Need for coordination: Coordination is the key to per-
formance in coflow scheduling. We show analytically
(Theorem A.1) and empirically (§7.2.1, §7.6) that fully
decentralized schedulers like Baraat [25] can perform
poorly in data-parallel clusters because local-only ob-
servations are poor indicators of CCTs of large coflows.
Fully centralized solutions like Varys [20], on the con-
trary, introduce high overheads for small coflows.

2.3 Potential Gains

Given the advantages of coflow scheduling and the inabil-
ity of clairvoyant schedulers to support dynamic coflow
modifications and dependencies, a loosely-coordinated non-
clairvoyant coflow scheduler can strike a balance between
performance and flexibility.

Local Daemon!

Local Daemon!

milliseconds!

Local Daemon!
D-CLAS!

Sender1!

Sender2! μs!

Network Interface !
Timescale!

Local/Global Scheduling!

Coordinator!

Figure 2: Aalo architecture. Computation frameworks interact with
their local Aalo daemons using a client library, and the daemons
periodically coordinate to determine the global ordering of coflows.

Consider the example in Figure 1 that compares three
non-clairvoyant mechanisms against the optimal clairvoyant
schedule. Per-flow fair sharing (Figure 1c) ensures max-min
fairness in each link, but it suffers by ignoring coflows [19,
20]. Applying least-attained service (LAS) [42, 45, 14] in a
decentralized manner (Figure 1d) does not help, because lo-
cal observations cannot predict a coflow’s actual size – e.g.,
it shares P1 equally between C1 and C3, being oblivious to
C1’s flow in P2. The FIFO-LM schedule [25] would be at
least as bad. Taking the total size of coflows into account
through global coordination significantly decreases the aver-
age CCT (Figure 1e). The optimal solution (Figure 1f) ex-
ploits complete knowledge for the minimum average CCT.
The FIFO schedule [19] would have resulted in a lower av-
erage CCT (4.67 time units) than decentralized LAS if C3

was scheduled before C1, and it would have been the same
if C1 was scheduled before C3.

This example considers only single-stage coflows with-
out egress contention. Coordinated coflow scheduling can be
even more effective in both scenarios (§7).

3 Aalo Overview

Aalo uses a non-clairvoyant coflow scheduler that optimizes
the communication performance of data-intensive applica-
tions without a priori knowledge, while being resilient to the
dynamics of job schedulers and data-parallel clusters. This
section briefly overviews Aalo to help the reader follow the
analysis and design of its scheduling algorithms (§4), mech-
anisms to handle dynamic events (§5), and design details
(§6) presented in subsequent sections.

3.1 Problem Statement

Our goal is dynamically prioritizing coflows without prior

knowledge of their characteristics while respecting coflow

dependencies. This problem – non-clairvoyant coflow

scheduling with precedence constraints – is NP-hard, be-
cause coflow scheduling with complete knowledge is NP-
hard too [20]. In addition to minimizing CCTs, we must
guarantee starvation freedom and work conservation.

3.2 Architectural Overview

Aalo uses a loosely-coordinated architecture (Figure 2), be-
cause full decentralization can render coflow scheduling
pointless (Theorem A.1). It implements global and local
controls at two time granularities:

• Long-term global coordination: Aalo daemons send
locally-observed coflow sizes to a central coordinator every
O(10) milliseconds. The coordinator determines the global
coflow ordering using the D-CLAS framework (§4) and
periodically sends out the updated schedule and globally-
observed coflow sizes to all the daemons.

• Short-term local prioritization: Each daemon sched-
ules coflows using the last-known global information. In
between resynchronization, newly-arrived coflows are en-
queued in the highest-priority queue. While flows from new
and likely to be small6 coflows receive high priority in the
short term, Aalo daemons realign themselves with the global
schedule as soon as updated information arrives. A flow that
has just completed is replaced with a same-destination flow
from the next coflow in the schedule for work conservation.

Frameworks use a client library to interact with the coor-
dinator over the network to define coflows and their depen-
dencies (§6). To send data, they must use the Aalo-provided
OutputStream. The coordinator has an ID generator that
creates unique CoflowIds while taking coflow dependencies
into account (§5.1).

We have implemented Aalo in the application layer with-

out any changes or support from the underlying network. We
have deployed it in the cloud, and it performs well even for
sub-second data analytics jobs (§7).

Fault Tolerance Aalo handles three failure scenarios that
include its own failures and that of the clients using it. First,
failure of a Aalo daemon does not hamper job execution,
since the client library automatically falls back to regular
TCP fair sharing until the daemon is restarted. Upon restart,
the daemon remains in inconsistent state only until the next
coordination step. Second, when the coordinator fails, client
libraries keep track of locally-observed size until it has been
restarted, while periodically trying to reconnect. Finally, in
case of task failures and consequent restarts, relevant flows
are restarted by corresponding job schedulers. Such flows
are treated like a new wave in a coflow, and their additional
traffic is added up to the current size of that coflow (§5.2).

Scalability The faster Aalo daemons can coordinate, the
better it performs. The number of coordination messages
is linear with the number of daemons and independent of
coflows. It is not a bottleneck for clusters with O(100) ma-
chines, and our evaluation suggests that Aalo can scale up to
O(10, 000) machines with minimal performance loss (§7.6).
Most coflows are small and scheduled through local deci-
sions; hence, unlike Varys, Aalo handles tiny coflows well.

4 Scheduling Without Prior Knowledge

In this section, we present an efficient coflow scheduler for
minimizing CCTs without a priori information. First, we dis-
cuss the complexity and requirements of such a scheduler
(§4.1). Next, we describe a priority discretization frame-
work (§4.2) that we use to discuss the tradeoffs in design-
ing an efficient, non-clairvoyant scheduler (§4.3). Based on

6For data-parallel analytics, 60% (85%) coflows are less than 100 MB (1
GB) in total size [20, 25].

our understanding, we develop discretized Coflow-Aware
Least-Attained Service (D-CLAS) – a mechanism to priori-
tize coflows and a set of policies to schedule them without
starvation (§4.4). Finally, we compare our proposal with ex-
isting coflow schedulers (§4.5).

For brevity of exposition, we present the mechanisms in
the context of single-stage, single-wave coflows. We extend
them to handle multi-stage, multi-wave coflows as well as
task failures and speculation in Section 5.

4.1 Complexity and Desirable Properties

The offline coflow scheduling problem – i.e., when all
coflows arrive together and their characteristics are known a
priori – is NP-hard [20]. Consequently, the non-clairvoyant
coflow scheduling problem is NP-hard as well.

In the non-clairvoyant setting, smallest-bottleneck-first
[20] – the best-performing clairvoyant heuristic – becomes
inapplicable. This is because the bottleneck of a coflow is re-
vealed only after it has completed. Instead, one must sched-
ule coflows based on an attribute that

1. can approximate its clairvoyant counterpart using cur-
rent observations, and

2. involves all the flows to avoid the drawbacks from the
lack of coordination (Theorem A.1).

Note that a coflow’s bottleneck can change over time and
due to task failures and restarts, failing the first requirement.

In addition to minimizing the average CCT, the non-
clairvoyant scheduler must

1. guarantee starvation freedom for bounded CCTs,

2. ensure work conservation to increase utilization, and

3. decrease coordination requirements for scalability.

Coflow-Aware Least-Attained Service (CLAS) Although
the smallest-total-size-first heuristic had been shown to per-
form marginally worse (1.14×) than smallest-bottleneck-
first in the clairvoyant setting [20], it becomes a viable op-
tion in the non-clairvoyant case. The current size of a coflow
– i.e., how much it has already sent throughout the en-
tire cluster – meets both criteria. This is because unlike a
coflow’s bottleneck, it monotonically increases with each
flow regardless of start time or endpoints. As a result, set-
ting a coflow’s priority that decreases with it’s current size
can ensure that smaller coflows finish faster, which, in turn,
minimizes the average CCT. Furthermore, it is a good indica-
tor of actual size [41], because coflow size typically follows
heavy-tailed distribution [20, 11].

We refer to this scheme as Coordinated or Coflow-Aware
Least-Attained Service (CLAS). Note that CLAS reduces
to the well-known Least-Attained Service (LAS) [42, 45]
scheduling discipline in case of a single link.

4.2 Priority Discretization

Unfortunately, using continuous priorities derived from
coflow sizes can degenerate into fair sharing (§B), which in-
creases the average CCT [19, 25, 20]. Coordination needed
to find global coflow sizes poses an additional challenge. We
must be able to preempt at opportune moments to decrease
CCT without requiring excessive coordination.

In the following, we describe a priority discretization

framework to eventually design an efficient, non-clairvoyant
coflow scheduler. Unlike classic non-clairvoyant schedulers
– least-attained service (LAS) in single links [42, 45] and
multi-level feedback queues (MLFQ) in operating systems
[23, 21, 13] – that perform fair sharing in presence of simi-
lar flows/tasks to provide interactivity, our solution improves
the average CCT even in presence of identical coflows.

Multi-Level Coflow Scheduling A multi-level coflow
scheduler consists of K queues (Q1, Q2, . . . , QK), with
queue priorities decreasing from Q1 to QK . The i-th queue

contains coflows of size within [Qlo
i , Qhi

i). Note that Qlo
1 =

0, Qhi
K = ∞, and Qlo

i+1 = Qhi
i .

Actions taken during three lifecycle events determine a
coflow’s priority.

• Arrival: New coflows enter the highest priority queue Q1

when they start.

• Activity: A coflow is demoted to Qi+1 from Qi, when its

size crosses queue threshold Qhi
i .

• Completion: Coflows are removed from their current
queues upon completion.

The first two ensure coflow prioritization based on its current
size, while the last is for completeness.

4.3 Tradeoffs in Designing Coflow Schedulers

Given the multi-level framework, a coflow scheduler can be
characterized by its information source, queue structure, and
scheduling disciplines at different granularities. Tradeoffs
made while navigating this solution space result in diverse
algorithms, ranging from centralized shortest-first to decen-
tralized FIFO [19, 20, 25] and many in between. We elabo-
rate on the key tradeoffs below.

Information Source There are two primary categories of
coflow schedulers: clairvoyant schedulers use a priori in-
formation and non-clairvoyant ones do not. Non-clairvoyant
schedulers have one more decision to make: whether to use
globally-coordinated coflow sizes or to rely on local infor-
mation. The former is accurate but more time consuming.
The latter diverges (Theorem A.1) for coflows with large
skews, which is common in production clusters [17, 20].

Queue Structure A scheduler must also determine the
number of queues it wants to use and their thresholds. On the
one hand, FIFO-derived schemes (e.g., Orchestra, Baraat)
use exactly one queue.7 FIFO works well when coflows
follow light-tailed distributions [25]. Clairvoyant efficient
schedulers (e.g., Varys), on the other hand, can be considered
to have as many queues as there are coflows. They perform
the best when coflow sizes are known and are heavy-tailed
[20]. At both extremes, queue thresholds are irrelevant.

For solutions in between, determining an ideal number of
queues and corresponding thresholds is difficult; even for
tasks on a single machine, no optimal solution exists [13].
Increasing the number of levels/queues is appealing, but

7Baraat takes advantage of multiple queues in switches to enable multiplex-
ing, but logically all coflows are in the same queue.

…

0

∞

Highest-Priority

Queue

Lowest-Priority

Queue
QK

Q2

Q1FIFO

FIFO

FIFO

E0Q1

hi

E0Q1

hi
1EQ1

hi

EK-2Q1

hi

Figure 3: Discretized Coflow-Aware Least-Attained Service. Con-
secutive queues hold coflows with exponentially larger size.

fine-grained prioritization can collapse to fair sharing when
coflow sizes are unknown and hurt CCTs. More queues also
generate more “queue-change” events and increase coordi-
nation requirements.

Scheduling Disciplines Finally, a coflow scheduler must
decide on scheduling disciplines at three different granulari-
ties: (i) across queues, (ii) among coflows in each queue, and
(iii) among flows within each coflow. The first is relevant
when K > 1, while the second is necessary when queues
have more than one coflow. In the absence of flow size infor-
mation, size-based rate allocation algorithms like WSS [19]
and MADD [20] cannot be used; max-min fairness similar to
TCP is the best alternative for scheduling individual flows.

4.4 Discretized Coflow-Aware Least-Attained Service

We propose Discretized CLAS or D-CLAS that use more
than one priority queues, i.e., K > 1, to enable prioritiza-
tion. The key challenge, however, is finding a suitable K that
provides sufficient opportunities for preemption, yet small
enough to not require excessive coordination.

To achieve our goals, each queue in D-CLAS contains
exponentially larger coflows than its immediately higher-

priority queue (Figure 3). Formally, Qhi
i+1 = E×Qhi

i , where
the factor E determines how much bigger coflows in one
queue are from that in another. Consequently, the number of
queues remains small and can be expressed as an E-based
logarithmic function of the maximum coflow size.

The final component in defining our queue structure is de-

termining Qhi
1 . Because global coordination, irrespective of

mechanism, has an associated time penalty depending on the
scale of the cluster, we want coflows that are too small to be
globally coordinated in Q1. Larger coflows reside in increas-
ingly more stable, lower-priority queues (Q2, . . . , QK).

While we typically use E = 10 and Qhi
1 = 10 MB in our

cluster, simulations show that for K > 1, a wide range of

K,E,Qhi
1 combinations work well (§7.5).

Non-Clairvoyant Efficient Schedulers D-CLAS clusters
similar coflows together and allows us to implement differ-
ent scheduling disciplines among queues and among coflows
within each queue (Pseudocode 1). It uses weighted sharing

Orchestra [19] Varys [20] Baraat [25] Aalo

On-Arrival Knowledge Clairvoyant Clairvoyant Non-clairvoyant Non-clairvoyant

Coflow Size Information Global Global Local Global Approx.

Number of Queues (K) One Num Coflows One logE(Max Size)

Queue Thresholds N/A Exact Size N/A Qhi
i+1 = E ×Qhi

i

Queue Scheduling N/A Strict Priority N/A Weighted

Coflow Scheduling in Each Queue FIFO N/A FIFO FIFO

Flow Scheduling WSS MADD Max-Min Max-Min

Work Conservation Next Coflow Next Queue Next Coflow Weighted Among Queues

Starvation Avoidance N/A Promote to Q1 N/A N/A

HOL Blocking Avoidance Multiplexing N/A Multiplexing N/A

Table 1: Qualitative comparison of coflow scheduling algorithms. Typically, E = 10 for D-CLAS.

Pseudocode 1 D-CLAS Scheduler to Minimize CCT
1: procedure RESCHEDULE(Queues Q, ExcessPolicy E(.))
2: while Fabric is not saturated do ▷ Allocate
3: for all i ∈ [1,K] do
4: for all Coflow C ∈ Qi do ▷ Sorted by CoflowId
5: for all Flow f ∈ C do
6: f.rate = Max-min fair share ▷ Fair schedule flows
7: Update Qi.share based on f.rate

8: Distribute unused Qi.share using E(.) ▷ Work conserv.

9: end procedure

10: procedure D-CLAS
11: W =

∑
Qi.weight

12: for all i ∈ [1,K] do
13: Qi.share = Qi.weight / W ▷ Weighted sharing b/n queues

14: reschedule(Q, Max-Min among Qj ̸=i)
15: end procedure

among queues, where queue weights decrease with lowered
priority; i.e., Qi.weight ≥ Qi+1.weight at line 13 in Pseu-
docode 1. Excess share of any queue is divided among unsat-
urated queues in proportion to their weights using max-min
fairness (line 14).

Within each queue, it uses FIFO scheduling (line 4) so
that coflows can proceed until they reach queue threshold or
complete. Minimizing interleaving between coflows in the
same queue minimizes CCTs, and large coflows are pre-
empted after crossing queue thresholds. Hence, D-CLAS
does not suffer from HOL blocking. As mentioned earlier,
without prior knowledge, flows within each coflow use max-
min fairness (line 6).

Starvation Avoidance Given non-zero weights to each
queue, all queues are guaranteed to make progress. Hence,
D-CLAS is starvation free. We did not observe any perpetual
starvation in our experiments or simulations either.

4.5 Summary

Table 1 summarizes the key characteristics of the sched-
ulers discussed in this section. D-CLAS minimizes the av-
erage CCT by prioritizing significantly different coflows
across queues and FIFO ordering similar coflows in the same
queue. It does so without starvation, and it approximates
FIFO schedulers for light-tailed and priority schedulers for
heavy-tailed coflow distributions.

CA! CB! CC!

CD!

CE!

CF!

Input1! Input2! Input3!

Output
!

(a) Query Plan

CA! CB! CC!

CD!

CE!

CF!

(b) Dependencies

!
C42.1! C42.1! C42.1!

C42.2!

C42.3!

C42.4!

C42.0!

(c) CoflowIDs

Figure 4: Coflow dependencies in TPC-DS query-42 [6]: (a)
Query plan generated by Shark [48]; boxes and arrows respectively
represent computation and communication stages. (b) Finishes-
Before relationships between coflows are represented by arrows.
(c) CoflowIds assigned by Aalo.

5 Handling Uncertainties

So far we have only considered “ideal” coflows from single-
stage, single-wave jobs without task failures or stragglers.
In this section, we remove each of these assumptions and
extend the proposed schedulers to perform well in realistic
settings. We start by considering multi-stage dataflow DAGs
(§5.1). Next, we consider dynamic coflow modifications due
to job scheduler events like multi-wave scheduling and clus-
ter activities like restarted and speculative tasks (§5.2).

5.1 Multi-Stage Dataflow DAGs

The primary concern in coflow scheduling in the context of
multi-stage jobs [30, 50, 3, 2] is the divergence of CCT and
job completion time. Minimizing CCTs might not always
result in faster jobs – one must carefully handle coflow de-

pendencies within the same DAG (Figure 4).
We define a coflow CF to be dependent on another coflow

CE if the consumer computation stage of CE is the producer
of CF . Depending on pipelining between successive compu-
tation stages, there can be two types of dependencies.

1. Starts-After (CE 7−→ CF): In presence of explicit barri-
ers [2], CF cannot start until CE has finished.

2. Finishes-Before (CE −→ CF): With pipelining between
successive stages [30, 22], CF can coexist with CE but
it cannot finish until CE has finished.

Note that coflows in different branches of a DAG can be un-

Pseudocode 2 Coflow ID Generation
1: NextCoflowID = 0 ▷ Initialization
2: procedure NEWCOFLOWID(CoflowId pId, Coflows P)
3: if pId == Nil then
4: newId = NextCoflowID++ ▷ Unique external id
5: return newId.0
6: else
7: sId = 1 + max

C∈P
C.sId ▷ Ordered internal id

8: return pId.sId

9: end procedure

related to each other.
Job schedulers identify coflow dependencies while build-

ing query plans (Figure 4a). They can make Aalo aware of
these dependencies all at once, or in a coflow-by-coflow ba-
sis. Given coflow dependencies, we want to efficiently sched-

ule them to minimize corresponding job completion times.

We make two observations about coflow dependencies.
First, coflows from the same job should be treated as a sin-
gle entity. Second, within each entity, dependent coflows
must be deprioritized during contention. The former ensures
that minimizing CCTs directly affect job completion times,
while the latter prevents circular dependencies. For example,
all six coflows must complete in Figure 4a, and dependent
coflows cannot complete without their parents in Figure 4b.

We simultaneously achieve both objectives by encod-
ing the DAG identifier and internal coflow dependencies
in the CoflowId. Specifically, we extend the CoflowId with
an internal component in addition to its external compo-
nent (Pseudocode 2). While the external part of a CoflowId
uniquely identifies the DAG it belongs to, the internal part
ensures ordering of coflows within the same DAG (Fig-
ure 4c). Our schedulers process coflows in each queue in the
FIFO order based on their external components, and they
break ties between coflows with the same external compo-
nent using their internal CoflowIds (line 4 in Pseudocode 1).

Note that optimal DAG scheduling is NP-hard (§9). Our
approach is similar to the Critical-Path Method [33] and re-
solves dependencies in each branch of a DAG, but it does
not provide any guarantees for the entire DAG.

5.2 Dynamic Coflow Modifications

A flow can start only after its source and destination tasks
have been scheduled. Tasks of large jobs are often scheduled
in multiple waves depending on cluster capacity [11]. Hence,
flows of such jobs are also created in batches, and waiting
for all flows of a stage to start only halts a job. Because the
number of tasks in each wave can dynamically change, Aalo
must react without a priori knowledge. The same is true for
unpredictable cluster events like failures and stragglers. Both
result in restart or replication of some tasks and correspond-
ing flows, and Aalo must efficiently handle them as well.

Aalo can handle all three events without any changes to its
schedulers. As long as flows use the appropriate CoflowId,
how much a coflow has sent always increases regardless of
multiple waves and tasks being restarted or replicated.

6 Design Details

We have implemented Aalo in about 4, 000 lines of Scala
code that provides a pipelined coflow API (§6.1) and imple-
ments (§6.2) the proposed schedulers.

6.1 Pipelined Coflow API

Aalo provides a simple coflow API that requires just
replacing OutputStreams with AaloOutputStream.
Any InputStream can be used in conjunction with
AaloOutputStream. It also provides two additional meth-
ods for coflow creation and completion – register() and
unregister(), respectively.

The InputStream-AaloOutputStream combination is
non-blocking. Meaning, there is no artificial barrier after
a coflow, and senders (receivers) start sending (receiving)
without blocking. As they send (receive) more bytes, Aalo
observes their total size, perform efficient coflow scheduling,
and throttles when required. Consequently, small coflows
proceed in the FIFO order without coordination overhead.
The entire process is transparent to applications.

Usage Example Any sender can use coflows by wrapping
its OutputStream with AaloOutputStream.

For example, for a shuffle to use Aalo, the driver first reg-
isters it to receive a unique CoflowId.

val sId = register()

Note that the driver does not need to define the number of
flows before a coflow starts.

Later, each mapper must use AaloOutputStream
for sending data. One mapper can create multiple
AaloOutputStream instances, one for each reducer con-
nection (i.e., socket sock), in concurrent threads.

val out = new AaloOutputStream(sock, sId)

Reducers can use any InputStream instances to receive
their inputs. They can also overlap subsequent computation
with data reception instead of waiting for the entire input.
Once all reducers complete, the driver terminates the shuffle.

unregister(sId)

Defining Dependencies Coflows can specify their parent(s)
during registration, and Aalo uses this information to gener-
ate CoflowIds (Pseudocode 2). In our running example, if
the shuffle (sId) depended on an earlier broadcast (bId) –
common in many Spark [50] jobs – the driver would have
defined bId as a dependency during registration as follows.

val sId = register({bId})

sId and bId will share the same external CoflowId, but sId
will have lower priority if it contends with bId.

6.2 Coflow Scheduling in Aalo

Aalo daemons resynchronize every ∆ milliseconds. Each
daemon sends the locally-observed coflow sizes to the co-
ordinator every ∆ interval. Similarly, the coordinator sends
out the globally-coordinated coflow order and corresponding

sizes every ∆ interval. Furthermore, the coordinator sends
out explicit ON/OFF signals for individual flows in order
to avoid receiver-side contentions and to expedite sender-
receiver rate convergence.

In between updates, daemons make decisions based on
current knowledge, which can be off by at most ∆ millisec-
onds from the global information. Because traffic-generating
coflows are large, daemons are almost always in sync about
their order; only tiny coflows are handled by local decisions
to avoid synchronization overheads.

Choice of ∆ Aalo daemons are more closely in sync as ∆
decreases. We suggest ∆ to be O(10) milliseconds, and our
evaluation shows that a 100-machine EC2 cluster can resyn-
chronize within 8 milliseconds on average (§7.6).

7 Evaluation

We evaluated Aalo through a series of experiments on 100-
machine EC2 [1] clusters using traces from production clus-
ters and an industrial benchmark. For larger-scale evalua-
tions, we used a trace-driven simulator that performs a de-
tailed replay of task logs. The highlights are:

• For communication-dominated jobs, Aalo improves the
average (95th percentile) CCT and job completion time
by up to 2.25× (2.93×) and 1.57× (1.77×), respec-
tively, over per-flow fairness. Aalo improvements are, on
average, within 12% of Varys (§7.2).

• As suggested by our analysis, coordination is the key to
performance – independent local decisions (e.g., in [25])
can lead to more than 16× performance loss (§7.2.1).

• Aalo outperforms per-flow fairness and Varys for multi-
wave (§7.3) and DAG (§7.4) workloads by up to 3.7×.

• Aalo’s improvements are stable over a wide range of pa-
rameter combinations for any K ≥ 2 (§7.5).

• Aalo coordinator can scale to O(10, 000) daemons with
minimal performance loss (§7.6).

7.1 Methodology

Workload Our workload is based on a Hive/MapReduce
trace collected by Chowdhury et al. [20, Figure 4] from
a 3000-machine, 150-rack Facebook cluster. The original
cluster had a 10 : 1 core-to-rack oversubscription ratio and a
total bisection bandwidth of 300 Gbps. We scale down jobs
accordingly to match the maximum possible 100 Gbps bi-
section bandwidth of our deployment while preserving their
communication characteristics.

Additionally, we use TPC-DS [6] queries from the Cloud-
era benchmark [7, 4] to evaluate Aalo on DAG workloads.
The query plans were generated using Shark [48].

Job/Coflow Bins We present our results by categorizing
jobs based on their time spent in communication (Table 2)
and by distinguishing coflows based on their lengths and
widths (Table 3). Specifically, we consider a coflow to be
short if its longest flow is less than 5 MB and narrow if it
has at most 50 flows. Note that coflow sizes, like jobs, fol-
low heavy-tailed distributions in data-intensive clusters [20].

Shuffle Dur. < 25% 25–49% 50–74% ≥ 75%

% of Jobs 61% 13% 14% 12%

Table 2: Jobs binned by time spent in communication.

Coflow Bin 1 (SN) 2 (LN) 3 (SW) 4 (LW)

% of Coflows 52% 16% 15% 17%

% of Bytes 0.01% 0.67% 0.22% 99.10%

Table 3: Coflows binned by their length (Short and Long) and their
width (Narrow and Wide).

Cluster Our experiments use extra-large high-memory
(m2.4xlarge) EC2 instances. We observed bandwidths
close to 900 Mbps per machine on clusters of 100 ma-
chines. We use a compute engine similar to Spark [50] that
uses the coflow API (§6.1) and use ∆ = 10 milliseconds,

E = K = 10, and Qhi
1 = 10 MB as defaults.

Simulator For larger-scale evaluation, we use a trace-
driven flow-level simulator that performs a detailed task-
level replay of the Facebook trace. It preserves input-to-
output ratios of tasks, locality constraints, and inter-arrival
times between jobs and runs at 10s decision intervals for
faster completion.

Metrics Our primary metric for comparison is the improve-
ment in average completion times of coflows and jobs (when
its last task finished) in the workload. We measure it as the
completion time of a scheme normalized by Aalo’s comple-
tion time; i.e.,

Normalized Comp. Time =
Compared Duration

Aalo’s Duration

If the normalized completion time of a scheme is greater
(smaller) than one, Aalo is faster (slower).

We contrast Aalo with TCP fair sharing and the open-
source8 implementation of Varys that uses a clairvoy-
ant, smallest-bottleneck-first scheduler. Due to the lack of
readily-deployable implementations of Baraat [25], we com-
pare against it only in simulation. We present Aalo’s results
for D-CLAS with Qi.weight = K − i+ 1.

7.2 Aalo’s Overall Improvements

Figure 5a shows that Aalo reduced the average and 95th per-
centile completion times of communication-dominated jobs
by up to 1.57× and 1.77×, respectively, in EC2 experiments
in comparison to TCP-based per-flow fairness. Correspond-
ing improvements in the average CCT (CommTime) were up
to 2.25× and 2.93× (Figure 5b). As expected, jobs become
increasingly faster as their time spent in communication in-
crease. Across all bins, the average end-to-end completion
times improved by 1.18× and the average CCT improved by
1.93×; corresponding 95th percentile improvements were
1.06× and 3.59×.

Varying improvements in the average CCT across bins in
Figure 5b are not correlated, as it depends more on coflow
characteristics than that of jobs. Figure 6 shows that Aalo
improved the average CCT over per-flow fair sharing regard-
less of coflow width and length distributions. We observe

8https://github.com/coflow

https://github.com/coflow

0!

1!

2!

3!

4!

5!

6!

<25%! 25-49%! 50-74%! >=75%! All Jobs!

N
o
rm

a
li

ze
d

 C
o
m

p
.
T

im
e

w
.r

.t
. A

a
lo
!

Perc. of Job Duration Spent in Communication!

Per-Flow Fairness (Avg)! Per-Flow Fairness (95th)!
Varys (Avg)! Varys (95th)!

(a) Improvements in job completion times

0!

1!

2!

3!

4!

5!

6!

<25%! 25-49%! 50-74%! >=75%! All Jobs!

N
o

rm
a

li
ze

d
 C

o
m

p
.
T

im
e

w
.r

.t
. A

a
lo
!

Perc. of Job Duration Spent in Communication!

Per-Flow Fairness (Avg)! Per-Flow Fairness (95th)!
Varys (Avg)! Varys (95th)!

(b) Improvements in time spent in communication

Figure 5: [EC2] Average and 95th percentile improvements in job
and communication completion times using Aalo over per-flow
fairness and Varys.

0!

1!

2!

3!

4!

5!

6!

Bin 1! Bin 2! Bin 3! Bin 4! ALL!N
o
rm

a
li

ze
d

 C
o
m

p
.
T

im
e

w
.r

.t
. A

a
lo
!

Coflow Types!

Per-Flow Fairness (Avg)! Per-Flow Fairness (95th)!
Varys (Avg)! Varys (95th)!

Figure 6: [EC2] Improvements in the average and 95th percentile
CCTs using Aalo over per-flow fairness and Varys.

more improvements in bin-2 and bin-4 over bin-1 and bin-3,
respectively, because longer coflows give Aalo more oppor-
tunities for better estimation.

Finally, Figure 7 presents comparative CDFs of CCTs for
all coflows. Across a wide range of coflow durations – mil-
liseconds to hours – Aalo matches or outperforms TCP fair
sharing. As mentioned earlier, Aalo’s advantages keep in-
creasing with longer coflows.

What About Clairvoyant Coflow Schedulers? To under-
stand how far we are from clairvoyant solutions, we have
compared Aalo against Varys, which uses complete knowl-
edge of a coflow’s individual flows. Figure 5 shows that
across all jobs, the average job and coflow completion times
using Aalo stay within 12% of Varys. At worst, Aalo is
1.43× worse than Varys for 12% of the jobs.

Figure 6 presents a clearer picture of where Aalo is per-
forming worse. For the largest coflows in bin-4 – sources of
almost all the bytes – Aalo performs the same as Varys; it
is only for the smaller coflows, specially the short ones in
bin-1 and bin-3, Aalo suffers from its lack of foresight.

However, it still does not explain why Varys performs

0!

0.5!

1!

0.01! 0.1! 1! 10! 100! 1000!

F
ra

ct
io

n
 o

f
C

o
fl

o
w

s!

Coflow Completion Time (Seconds)!

Varys!
Non-Clairvoyant Scheduler!
Per-Flow Fairness!

Figure 7: [EC2] CCT distributions for Aalo, Varys, and per-flow
fairness mechanism. The X-axis is in log scale.

0!

10!

20!

30!

Bin 1! Bin 2! Bin 3! Bin 4! ALL!

N
o

rm
a

li
ze

d
 C

o
m

p
.
T

im
e

w
.r

.t
. A

a
lo
!

Coflow Types!

Per-Flow Fairness!
Varys!
Uncoordinated Non-Clairvoyant!
FIFO-LM!

1!

0!

Figure 8: [Simulation] Average improvements in CCTs using
Aalo. 95th percentile results are similar.

so much better than Aalo for coflows of durations between
200ms to 30s (Figure 7) given that ∆ is only 10ms! Closer
examination revealed this to be an isolation issue [43, 36]:
Varys delays large coflows in presence of small ones and
uses explicit rates for each flow. Because Aalo cannot explic-
itly control rates without a priori information, interference
between coflows with few flows with very large coflows re-
sults in performance loss. Reliance on slow-to-react TCP for
flow-level scheduling worsens the impact. We confirmed this
by performing width-bounded experiments – we reduced the
number of flows by 10× while keeping same coflow sizes;
this reduced the gap between the two CDFs from ≤ 6× to
≤ 2× in the worst case.

Scheduling Overheads Because coflows smaller than the
first priority threshold are scheduled without coordination,
Aalo easily outperforms Varys for sub-200ms coflows (Fig-
ure 7). For larger coflows, Aalo’s average and 99th percentile
coordination overheads were 8ms and 19ms, respectively, in
our 100-machine cluster – an order of magnitude smaller
than Varys due to Aalo’ loose coordination requirements.
Almost all of it were spent in communicating coordinated
decisions. Impact of scheduling overheads on Aalo’s perfor-
mance is minimal, even at much larger scales (§7.6).

7.2.1 Trace-Driven Simulation

We compared Aalo against per-flow fairness, Varys, and
non-clairvoyant scheduling without coordination in simula-
tions (Figure 8). Similar to EC2 experiments, Aalo outper-
formed flow-level fairness with average and 95th percentile
improvements being 2.7× and 2.18×.

Figure 8 shows that Aalo outperforms Varys for smaller
coflows in bin-1 to bin-3 in the absence of any coordina-
tion overheads. However, Varys performed 1.25× better than
Aalo for coflows longer than 10s (not visible in Figure 9).

0!

1!

0.01! 0.1! 1! 10! 100! 1000!

F
ra

ct
io

n
 o

f
C

o
fl

o
w

s!

Coflow Completion Time (Seconds)!

Varys!

Non-Clairvoyant Scheduler!

Per-Flow Fairness!

Uncoordinated Non-Clairvoyant!

Figure 9: [Simulation] CCT distributions for Aalo, Varys, per-flow
fairness, and uncoordinated non-clairvoyant coflow scheduling. X-
axis is in log scale.

Number of Waves in Coflow 1 2 3 4

Max Waves = 1 100%

Max Waves = 2 90% 10%

Max Waves = 4 81% 9% 4% 6%

Table 4: Coflows binned by the number of waves.

What About Aalo Without Coordination? Given that
Aalo takes few milliseconds to coordinate, we need to un-
derstand the importance of coordination. Simulations show
that coflow scheduling without coordination can be signifi-
cantly worse than even simple TCP fair sharing. On average,
Aalo performed 15.8× better than its uncoordinated coun-
terpart, bolstering our worst-case analysis (Theorem A.1).
Experiments with increasing ∆ suggest the same (§7.6).

What About FIFO with Limited Multiplexing in Baraat

[25]? We found that FIFO-LM can be significantly worse
than Aalo (18.6×) due to its lack of coordination:
each switch takes locally-correct, but globally-inconsistent,
scheduling decisions. Fair sharing among heavy coflows fur-
ther worsens it. We had been careful – as the authors in [25]
have pointed out – to select the threshold that each switch
uses to consider a coflow heavy. Figure 8 shows the results
for FIFO-LM’s threshold set at the 80-th percentile of the
coflow size distribution; results for the threshold set to the
20-th, 40-th, 60-th, 70-th, and 90-th percentiles were worse.
Aalo and FIFO-LM performs similar for small coflows fol-
lowing light-tailed distributions (not shown).

How Far are We From the Optimal? Finding the opti-
mal schedule, even in the clairvoyant case, is an open prob-
lem [20]. Instead, we tried to find an optimistic estimation
of possible improvements by comparing against an offline

2-approximation heuristic for coflows without coupled re-
sources [37]. For bin-1 to bin-4, corresponding normalized
completion times were 0.75×, 0.78×, 1.32×, and 1.15×,
respectively. Across all bins, it was 1.19×.

7.3 Impact of Runtime Dynamics

So far we have only considered static coflows, where all
flows of a coflow start together. However, operational events
like multi-wave scheduling, task failures, and speculative
execution can dynamically change a coflow’s structure in
the runtime (§5.2). Because of their logical similarity – i.e.,
tasks start in batches and the number of active flows cannot
be known a priori – we focus only on the multi-wave case.

The number of waves in a stage depends on the number of

5
5

.8
6
!

0!

6!

12!

Bin 1! Bin 2! Bin 3! Bin 4! ALL!N
o
rm

.
C

o
m

p
.
T

im
e

w
.r

.t
. A

a
lo
!

Coflow Types!

Maximum Waves = 1!
Maximum Waves = 2!
Maximum Waves = 4!

1!

0!

Figure 10: [EC2] Average improvements in CCTs w.r.t. Varys for
multi-wave coflows.

senders (e.g., mappers in MapReduce) [11]. In these exper-
iments, we used the same coflow mix as the original trace
but varied the maximum number of concurrent senders in
each wave while keeping all the receivers active, essentially
fixing the maximum number of waves in each coflow. Ta-
ble 4 shows the fraction of coflows with different number of
waves; e.g., all coflows had exactly one wave in Section 7.2.

Figure 10 shows the importance of leveraging coflow
relationships across waves. As the number of multi-wave
coflows increased, Aalo moved from trailing Varys by 0.94×
to outperforming it by 1.21× and 7.91×. Using Varys, one
can take two approaches to handle multi-wave coflows –
(i) creating separate coflows for each wave as they become
available or (ii) introducing barriers to determine the bot-
tleneck of the combined coflow – that both result in per-
formance loss. In the former, Varys can efficiently schedule
each wave but increases the stage-level CCT by ignoring the
fact that all waves must finish for the stage to finish. The
56× improvement in bin-3 presents an extreme example:
one straggler coflow was scheduled much later than the rest,
increasing the entire stage’s runtime. In the latter, artificial
barriers decrease parallelism and network utilization. Aalo
circumvents the dilemma by creating exactly one coflow per
stage for any number of waves and by avoiding barriers.

Aalo’s improvements over per-flow fairness (not shown)
remained similar to that in Section 7.2.

7.4 Impact on DAG Scheduling

In this section, we evaluate Aalo using multi-stage jobs. Be-
cause the Facebook trace consists of only single-coflow jobs,
we used the Cloudera industrial benchmark [7, 4] consisting
of 20 TPC-DS queries. We ensured that each stage consists
of a single wave, but multiple coflows from the same job can
still run in parallel (Figure 4c).

Figure 11 shows that Aalo outperforms both per-flow fair-
ness and Varys for DAGs that have more than one levels.
Because Aalo does not introduce artificial barriers and can
distinguish between coflows from different levels of the crit-
ical path, improvements over Varys (3.7× on average) are
higher than that over per-flow fairness (1.7× on average).

7.5 Sensitivity Analysis

In this section, we first examine Aalo’s sensitivity to the
number of queues and their thresholds for heavy-tailed
coflow size distributions. Later, we evaluate Aalo’s perfor-
mance for light-tailed distributions.

The Number of Queues (K) Aalo performs increasingly
better than per-flow fairness as we increase the number of

0!

1!

2!

3!

4!

5!

N
o

rm
.
C

o
m

p
.
T

im
e

w
.r

.t
. A

a
lo
!

TPC-DS Query ID (Critical Path Length in the Coflow DAG)!

Per-Flow Fairness! Varys!

Figure 11: [EC2] Improvements in job-level communication times using Aalo for coflow DAGS in the Cloudera benchmark.

0!

1!

2!

3!

1! 2! 5! 10! 15!

N
o
rm

a
li

ze
d

C
o
m

p
.
T

im
e!

Number of Queues (K)!

(a) Qhi
1

= 10 MB; E = 10

0!

1!

2!

3!

1E6! 1E7! 1E8! 1E9! 1E10!

N
o
rm

a
li

ze
d

C
o
m

p
.
T

im
e!

Q1 Upper Limit ()!Q1
hi!

(b) K = 10; E = 10

0!

1!

2!

3!

N
o
rm

a
li

ze
d

C
o
m

p
.
T

im
e!

K, E, !Q1
hi!

(c) Exp.-Spaced Queues

0!

1!

2!

3!

N
o
rm

a
li

ze
d

C
o
m

p
.
T

im
e!

Num Queues (K), Queue Size!

(d) Equal-Sized Queues

Figure 12: [Simulation] Aalo’s sensitivity (measured as improve-
ments over per-flow fairness) to (a) the number of queues, (b) the
size of the highest-priority queue, and (c) exponential and (d) linear
queue thresholds.

queues (Figure 12a). However, we observe the largest jump
as soon as Aalo starts avoiding head-of-line blocking for
K = 2. Beyond that, we observe diminishing returns.

Queue Thresholds For more than one queues, Aalo must
carefully determine their thresholds. Because we have de-
fined queue thresholds as a function of the size of the initial

queue Qhi
1 (§4.4), we focus on its impact on Aalo’s perfor-

mance. Recall that as we increase Qhi
1 , more coflows will

be scheduled in the FIFO order in the highest-priority Q1.

Figure 12b shows that as we increase Qhi
1 up to 100 MB

and schedule almost 60% of the coflows [20, Figure 4(e)]
in the FIFO order, Aalo’s performance remains steady. This
is because all these coflows carry a tiny fraction of the total

traffic (≤ 0.1%). If we increase Qhi
1 further and start in-

cluding increasingly larger coflows in the FIFO-scheduled
Q1, performance steadily deteriorates. Finally, Figure 12c
demonstrates the interactions of E, the multiplicative factor

used to determine queue thresholds, with K and Qhi
1 . We

observe that for K > 2, Aalo’s performance is steady for a

wide range of (K, E, Qhi
1) combinations.

What About Non-Exponential Queue Thresholds? In-
stead of creating exponentially larger queues, one can cre-
ate equal-sized queues. Given the maximum coflow size of

0!

1!

2!

10MB! 100MB! 1GB! 10GB! 100GB! 1TB!

N
o
rm

a
li

ze
d

C
o
m

p
.
T

im
e!

Maximum Coflow Size!

Per-Flow Fairness!
FIFO w/o Multiplexing!

(a) Uniformly distributed coflow sizes

0!

1!

2!

10MB-! 10MB+! 1GB-! 1GB+! 100GB-! 100GB+!

N
o
rm

a
li

ze
d

C
o
m

p
.
T

im
e!

Maximum Coflow Size!

Per-Flow Fairness!
FIFO w/o Multiplexing!

(b) Fixed-size coflows

Figure 13: [Simulation] Improvements in average CCTs using
Aalo (a) when coflow sizes are uniformly distributed up to different
maximum values and (b) when all coflows have the same size.

10 TB, Figure 12d shows Aalo’s performance for varying
number of equal-sized queues – it requires orders of magni-
tude more queues to attain performance similar to exponen-
tial spacing. Although creating logical queues is inexpensive
at end hosts, more queues generate more “queue-change”
events and increase coordination costs.

Impact of Coflow Size Distributions So far we have eval-
uated Aalo on coflows that follow heavy-tailed distribu-
tion. Here, we compare Aalo against per-flow fairness and a
non-preemptive FIFO scheduler on coflows with uniformly-
distributed and fixed sizes. We present the average results of
ten simulated runs for each scenario with 100 coflows, where
coflow structures follow the distribution in Table 3.

In Figure 13a, coflow sizes follow uniform distributions
U(0, x), where we vary x. In Figure 13b, all coflows have
the same size, and we select sizes slightly smaller and big-
ger than Aalo’s queue thresholds. We observe that in both
cases, Aalo matched or outperformed the competition. Aalo
emulates the FIFO scheduler when coflow sizes are smaller
than Qhi

1 (=10 MB). As coflows become larger, Aalo per-
forms better by emulating the efficient Varys scheduler.

7.6 Aalo Scalability

To evaluate Aalo’s scalability, we emulated running up to
100, 000 daemons on 100-machine EC2 clusters. Figure 14a

8
! 1
7
!

1
1
5
!

4
9
5
!

9
9
2
!

1!

10!

100!

1000!

1
0

0
!

1
0

0
0
!

1
0

0
0

0
!

5
0

0
0

0
!

1
0

0
0

0
0
!

C
o

o
o

rd
in

a
ti

o
n

 T
im

e
(m

s)
!

(Emulated) Daemons!

(a) Overheads at Scale

0!

0.5!

1!

1.5!

2!

1
0

 m
s!

1
0

0
 m

s!

1
 s
!

1
0

 s
!

1
0

0
 s
!

N
o

rm
.
C

o
m

p
.
T

im
e!

Coordination Period (Δ)!

(b) Impact of ∆

Figure 14: [EC2] Aalo scalability: (a) more daemons require
longer coordination periods (Y-axis is in log scale), and (b) delayed
coordination can hurt overall performance (measured as improve-
ments over per-flow fairness).

presents the time to complete a coordination round averaged
over 500 rounds for varying number of emulated daemons
(e.g., 10, 000 emulated daemons refer to each machine em-
ulating 100 daemons). During each experiment, the coordi-
nator transferred scheduling information for 100 concurrent
coflows on average to each of the emulated daemons.

Even though we might be able to coordinate 100, 000 dae-
mons in 992ms, the coordination period (∆) must be in-
creased. To understand the impact of coordination on perfor-
mance, we reran the earlier experiments (§7.2) for increas-
ingly higher ∆ (Figure 14b). For ∆ = 1s, Aalo’s improve-
ments over per-flow fairness dropped slightly from 1.93× to
1.78×. For ∆ > 1s, performance started to drop faster and
plummeted at ∆ > 10s. These trends hold across coflow
bins and reinforce the need for coordination (Theorem A.1).

Because ∆ must increase for Aalo to scale, sub-∆ coflows
can further be improved if Aalo uses explicit switch/network
support [27, 25]. However, we note that tiny coflows are still
better off using Aalo than per-flow fairness schemes.

8 Discussion

Determining Optimal Queue Thresholds Finding the op-
timal number of queues and corresponding thresholds re-
mains an open problem. Recent results in determining simi-
lar thresholds in the context of flows [14] do not immediately
extend to coflows because of cross-flow dependencies. Dy-
namically changing these parameters based on online learn-
ing can be another direction of future work.

Decentralizing Aalo Decentralizing D-CLAS primarily de-
pends on the following two factors.

1. Decentralized calculation of coflow sizes, and

2. Avoiding receiver-side contentions without coordination.

Approximate aggregation schemes like Push-Sum [34] can
be good starting points to develop solutions for the former
within reasonable time and accuracy. The latter is perhaps
more difficult, because it relies on fast propagation of re-
ceiver feedbacks throughout the entire network for quick
convergence of sender- and receiver-side rates. Both can im-
prove from in-network support as used in CONGA [9].

Faster Interfaces and In-Network Bottlenecks As 10

GbE NICs become commonplace, a common concern is
that scaling non-blocking fabrics might become cost pro-
hibitive.9 Aalo performs well even if the network is not non-
blocking – for example, on the EC2 network used in the
evaluation (§7). When bottleneck locations are known, e.g.,
rack-to-core links, Aalo can be modified to allocate rack-
to-core bandwidth instead of NIC bandwidth [17]. For in-
network bottlenecks, one can try enforcing coflows inside
the network [52]. Nonetheless, designing, deploying, and en-
forcing distributed, coflow-aware routing and load balancing
solutions remain largely unexplored.

9 Related Work

Coflow Schedulers Aalo’s improvements over its clairvoy-
ant predecessor Varys [20] are threefold. First, it schedules
coflows without any prior knowledge, making coflows prac-
tical in presence of task failures and straggler mitigation
techniques. Second, it supports pipelining and dependen-
cies in multi-stage DAGs and multi-wave stages through a
simpler, non-blocking API. Finally, unlike Varys, Aalo per-
forms well even for tiny coflows by avoiding coordination.
For larger coflows, however, Varys marginally outperforms
Aalo by exploiting complete knowledge.

Aalo outperforms existing non-clairvoyant coflow sched-
ulers, namely Orchestra [19] and Baraat [25], by avoiding
head-of-line blocking unlike the former and by using global
information unlike the latter. While Baraat’s fully decentral-
ized approach is effective for light-tailed coflow distribu-
tions, we prove in Theorem A.1 that the lack coordination
can be arbitrarily bad in the general case.

Qiu et al. have recently provided the first approxima-
tion algorithm for the clairvoyant coflow scheduling prob-
lem [44]. Similar results do not exist for the non-clairvoyant
variation.

Flow Schedulers Coflows generalize traditional point-to-
point flows by capturing the multipoint-to-multipoint aspect
of data-parallel communication. While traffic managers like
Hedera [8] and MicroTE [16] cannot directly be used to opti-
mize coflows, they can be extended to perform coflow-aware
throughput maximization and load balancing.

Transport-level mechanisms to minimize FCTs, both
clairvoyant (e.g., PDQ [29], pFabric [10], and D3 [47]) and
non-clairvoyant (e.g., PIAS [14]), fall short in minimizing
CCTs as well [20].

Non-Clairvoyant Schedulers Scheduling without prior
knowledge is known as non-clairvoyant scheduling [39]. To
address this problem in time-sharing systems, Corbató et al.
proposed the multi-level feedback queue (MLFQ) algorithm
[23], which was later analyzed by Coffman and Kleinrock
[21]. Many variations of this approach exist in the literature
[42, 45], e.g., foreground-background or least-attained ser-
vice (LAS). In single machine (link), LAS performs almost
as good as SRPT for heavy-tailed distributions of task (flow)
sizes [45]. We prove that simply applying LAS through-

9A recent report from Google [5] suggests that it is indeed possible to build
full-bisection bandwidth networks with up to 100, 000 machines, each with
10 GbE NICs, for a total capacity of 1 Pbps.

out the fabric can be ineffective in the context of coflows
(Theorem A.1). The closest instance of addressing a prob-
lem similar to ours is ATLAS [35], which controls concur-
rent accesses to multiple memory controllers in chip mul-
tiprocessor systems using coordinated LAS. However, AT-
LAS does not discretize LAS to ensure interactivity, and it
does not consider coupled resources like the network.

DAG and Workflow Schedulers When the entire DAG and
completion times of each stage are known, the Critical Path
Method (CPM) [33, 32] is the best known algorithm to min-
imize end-to-end completion times. Without prior knowl-
edge, several dynamic heuristics have been proposed with
varying results [49]. Most data-parallel computation frame-
works use breadth-first traversal of DAGs to determine pri-
orities of each stage [50, 2, 3]. Aalo’s heuristic enforces the
finishes-before relationship between dependent coflows, but
it cannot differentiate between independent coflows.

10 Conclusion

Aalo makes coflows more practical in data-parallel clus-
ters in presence of multi-wave, multi-stage jobs and dy-
namic events like failures and speculations. It implements
a non-clairvoyant, multi-level coflow scheduler (D-CLAS)
that extends the classic LAS scheduling discipline to data-
parallel clusters and addresses ensuing challenges through
priority discretization. Aalo performs comparable to sched-
ulers like Varys that use complete information. Using loose
coordination, it can efficiently schedule tiny coflows and out-
performs per-flow mechanisms across the board by up to
2.25×. Moreover, for DAGs and multi-wave coflows, Aalo
outperforms both per-flow fairness mechanisms and Varys
by up to 3.7×. Trace-driven simulations show Aalo to be
2.7× faster than per-flow fairness and 16× better than de-
centralized coflow schedulers.

Acknowledgments

We thank Yuan Zhong, Ali Ghodsi, Shivaram Venkatara-
man, CCN members, our shepherd Hitesh Ballani, and the
anonymous reviewers of NSDI’15 and SIGCOMM’15 for
useful feedback, and Kay Ousterhout for generating Shark
query plans for the TPC-DS queries. This research is sup-
ported in part by NSF CISE Expeditions Award CCF-
1139158, LBNL Award 7076018, and DARPA XData Award
FA8750-12-2-0331, and gifts from Amazon Web Services,
Google, SAP, The Thomas and Stacey Siebel Foundation,
Adatao, Adobe, Apple, Inc., Blue Goji, Bosch, C3Energy,
Cisco, Cray, Cloudera, EMC2, Ericsson, Facebook, Guavus,
HP, Huawei, Informatica, Intel, Microsoft, NetApp, Pivotal,
Samsung, Schlumberger, Splunk, Virdata and VMware.

11 References

[1] Amazon EC2. http://aws.amazon.com/ec2.

[2] Apache Hive. http://hive.apache.org.

[3] Apache Tez. http://tez.apache.org.

[4] Impala performance update: Now reaching DBMS-class
speed. http://blog.cloudera.com/blog/2014/01/
impala-performance-dbms-class-speed.

[5] A look inside Google’s data center networks.

http://googlecloudplatform.blogspot.com/2015/06/
A-Look-Inside-Googles-Data-Center-Networks.html.

[6] TPC Benchmark DS (TPC-DS). http://www.tpc.org/tpcds.

[7] TPC-DS kit for Impala.
https://github.com/cloudera/impala-tpcds-kit.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In NSDI, 2010.

[9] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, F. Matus, R. Pan, N. Yadav, and
G. Varghese. CONGA: Distributed congestion-aware load
balancing for datacenters. In SIGCOMM, 2014.

[10] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. Mckeown,
B. Prabhakar, and S. Shenker. pFabric: Minimal near-optimal
datacenter transport. In SIGCOMM, 2013.

[11] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,
S. Kandula, S. Shenker, and I. Stoica. PACMan: Coordinated
memory caching for parallel jobs. In NSDI, 2012.

[12] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in
mapreduce clusters using Mantri. In OSDI, 2010.

[13] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau.
Scheduling: The multi-level feedback queue. In Operating
Systems: Three Easy Pieces. 2014.

[14] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang.
Information-agnostic flow scheduling for commodity data
centers. In NSDI, 2015.

[15] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Towards predictable datacenter networks. In SIGCOMM,
2011.

[16] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE:
Fine grained traffic engineering for data centers. In CoNEXT,
2011.

[17] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging
endpoint flexibility in data-intensive clusters. In SIGCOMM,
2013.

[18] M. Chowdhury and I. Stoica. Coflow: A networking
abstraction for cluster applications. In HotNets, 2012.

[19] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing data transfers in computer clusters with
Orchestra. In SIGCOMM, 2011.

[20] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow
scheduling with Varys. In SIGCOMM, 2014.

[21] E. G. Coffman and L. Kleinrock. Feedback queueing models
for time-shared systems. Journal of the ACM,
15(4):549–576, 1968.

[22] T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein.
Mapreduce online. In NSDI, 2010.

[23] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley. An
experimental time-sharing system. In Spring Joint Computer
Conference, pages 335–344, 1962.

[24] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[25] F. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron.
Decentralized task-aware scheduling for data center
networks. In SIGCOMM, 2014.

[26] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K.
Ramakrishnan, and J. E. van der Merive. A flexible model
for resource management in virtual private networks. In
SIGCOMM, 1999.

[27] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and
S. Krishnamurthi. Participatory networking: An API for
application control of SDNs. In SIGCOMM, 2013.

[28] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,

http://aws.amazon.com/ec2
http://hive.apache.org
http://tez.apache.org
http://blog.cloudera.com/blog/2014/01/impala-performance-dbms-class-speed
http://blog.cloudera.com/blog/2014/01/impala-performance-dbms-class-speed
http://googlecloudplatform.blogspot.com/2015/06/A-Look-Inside-Googles-Data-Center-Networks.html
http://googlecloudplatform.blogspot.com/2015/06/A-Look-Inside-Googles-Data-Center-Networks.html
http://www.tpc.org/tpcds
https://github.com/cloudera/impala-tpcds-kit

P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
scalable and flexible data center network. In SIGCOMM,
2009.

[29] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows
quickly with preemptive scheduling. In SIGCOMM, 2012.

[30] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building
blocks. In EuroSys, 2007.

[31] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the
“One Big Switch” abstraction in Software-Defined
Networks. In CoNEXT, 2013.

[32] J. E. Kelley. Critical-path planning and scheduling:
Mathematical basis. Operations Research, 9(3):296–320,
1961.

[33] J. E. Kelley. The critical-path method: Resources planning
and scheduling. Industrial scheduling, 13:347–365, 1963.

[34] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In FOCS, 2003.

[35] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS:
A scalable and high-performance scheduling algorithm for
multiple memory controllers. In HPCA, 2010.

[36] G. Kumar, M. Chowdhury, S. Ratnasamy, and I. Stoica. A
case for performance-centric network allocation. In
HotCloud, 2012.

[37] M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson,
and N. A. Uhan. Minimizing the sum of weighted
completion times in a concurrent open shop. Operations
Research Letters, 38(5):390–395, 2010.

[38] T. Moscibroda and O. Mutlu. Distributed order scheduling
and its application to multi-core DRAM controllers. In
PODC, 2008.

[39] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant
scheduling. Theoretical Computer Science, 130(1):17–47,
1994.

[40] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: A scalable fault-tolerant layer 2 data center
network fabric. In SIGCOMM, 2009.

[41] J. Nair, A. Wierman, and B. Zwart. The fundamentals of
heavy tails: Properties, emergence, and identification. In
SIGMETRICS, 2013.

[42] M. Nuyens and A. Wierman. The Foreground–Background
queue: A survey. Performance Evaluation, 65(3):286–307,
2008.

[43] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica. FairCloud: Sharing the network
in cloud computing. In SIGCOMM, 2012.

[44] Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total
weighted completion time of coflows in datacenter networks.
In SPAA, 2015.

[45] I. A. Rai, G. Urvoy-Keller, and E. W. Biersack. Analysis of
LAS scheduling for job size distributions with high variance.
ACM SIGMETRICS Performance Evaluation Review,
31(1):218–228, 2003.

[46] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly.
Dandelion: A compiler and runtime for heterogeneous
systems. In SOSP, 2013.

[47] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron.
Better never than late: Meeting deadlines in datacenter
networks. In SIGCOMM, 2011.

[48] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica. Shark: SQL and rich analytics at scale. In
SIGMOD, 2013.

[49] J. Yu, R. Buyya, and K. Ramamohanarao. Workflow
scheduling algorithms for grid computing. In Metaheuristics
for Scheduling in Distributed Computing Environments,
pages 173–214. 2008.

[50] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In NSDI, 2012.

[51] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce performance in
heterogeneous environments. In OSDI, 2008.

[52] Y. Zhao, K. Chen, W. Bai, C. Tian, Y. Geng, Y. Zhang, D. Li,
and S. Wang. RAPIER: Integrating routing and scheduling
for coflow-aware data center networks. In INFOCOM, 2015.

APPENDIX

A Coflow Scheduling w/ Local Knowledge

Theorem A.1 Any coflow scheduling algorithm where

schedulers do not coordinate, has a worst-case approxima-

tion ratio of Ω(
√
n) for n concurrent coflows.

Proof Sketch Consider n coflows C1, . . . , Cn and a net-
work fabric with m ≤ n input/output ports P1, P2, . . . , Pm.
Let us define dki,j as the amount of data the k-th coflow trans-
fers from the i-th input port to the j-th output port.

For each input and output port, consider one coflow with
just one flow that starts from that input port or is destined
for that output port; i.e., for all coflows Ck, k ∈ [1,m], let
dkk,m−k+1

= 1 and dki,j = 0 for all i ̸= k and j ̸= m−k+1.
Next, consider the rest of the coflows to have exactly k flows
that engage all input and output ports of the fabric; i.e., for
all coflows Ck, k ∈ [m + 1, n], let dki,m−i+1 = 1 for all

i ∈ [1,m] and dkl,j = 0 for all l ̸= i and j ̸= m− i+ 1. We
have constructed an instance of distributed order scheduling,
where n orders must be scheduled on m facilities [38]. The
proof follows from [38, Theorem 5.1 on page 3]. ■

B Continuous vs. Discretized
Prioritization

We consider the worst-case scenario when N identical
coflows of size S arrive together, each taking f(S) time
to complete. Using continuous priorities, one would emu-
late a byte-by-byte round-robin scheduler, and the total CCT
(Tcont) would approximate N2f(S).

Using D-CLAS, all coflows will be in the k-th priority

queue, i.e., Qlo
k ≤ S < Qhi

k . Consequently, Tdisc would be

N2f(Qlo
k) +

N(N + 1)f(S −Qlo
k)

2

where the former term refers to fair sharing until the k-th
queue and the latter corresponds to FIFO in the k-th queue.

Even in the worst case, the normalized completion time
(Tcont/Tdisc) would approach 2× from 1× as S increases

to Qhi
k starting from Qlo

k .
Note that the above holds only when a coflow’s size accu-

rately predicts it’s completion time, which might not always
be the case [20, §5.3.2]. Deriving a closed-form expression
for the general case remains an open problem.

	Introduction
	Motivation
	Background
	Challenges
	Potential Gains

	Aalo Overview
	Problem Statement
	Architectural Overview

	Scheduling Without Prior Knowledge
	Complexity and Desirable Properties
	Priority Discretization
	Tradeoffs in Designing Coflow Schedulers
	Discretized Coflow-Aware Least-Attained Service
	Summary

	Handling Uncertainties
	Multi-Stage Dataflow DAGs
	Dynamic Coflow Modifications

	Design Details
	Pipelined Coflow API
	Coflow Scheduling in Aalo

	Evaluation
	Methodology
	Aalo's Overall Improvements
	Trace-Driven Simulation

	Impact of Runtime Dynamics
	Impact on DAG Scheduling
	Sensitivity Analysis
	Aalo Scalability

	Discussion
	Related Work
	Conclusion
	References
	Coflow Scheduling w/ Local Knowledge
	Continuous vs. Discretized Prioritization

