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Abstract. We present an optimized implementation of the Fan-Vercauteren
variant of Brakerski’s scale-invariant homomorphic encryption scheme.
Our algorithmic improvements focus on optimizing decryption and ho-
momorphic multiplication in the Residue Number System (RNS), using
the Chinese Remainder Theorem (CRT) to represent and manipulate
the large coefficients in the ciphertext polynomials. In particular, we
propose efficient procedures for scaling and CRT basis extension that
do not require translating the numbers to standard (positional) rep-
resentation. Compared to the previously proposed RNS design due to
Bajard et al. [3], our procedures are simpler and faster, and introduce
a lower amount of noise. We implement our optimizations in the PAL-
ISADE library and evaluate the runtime performance for the range of
multiplicative depths from 1 to 100. For example, homomorphic multi-
plication for a depth-20 setting can be executed in 62 ms on a modern
server system, which is already practical for some outsourced-computing
applications. Our algorithmic improvements can also be applied to other
scale-invariant homomorphic encryption schemes, such as YASHE.
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1 Introduction

Homomorphic encryption has been an area of active research since the first
design of a Fully Homomorphic Encryption (FHE) scheme by Gentry [9]. FHE
allows performing arbitrary secure computations over encrypted sensitive data
without ever decrypting them. One of the potential applications is to outsource
computations to a public cloud without compromising data privacy.
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A salient property of contemporary FHE schemes is that ciphertexts are
“noisy”, where the noise increases with every homomorphic operation, and de-
cryption starts failing once the noise becomes too large. This is addressed by
setting the parameters large enough to accommodate some level of noise, and
using Gentry’s “bootstrapping” technique to reduce the noise once it gets too
close to the decryption-error level. However, the large parameters make homo-
morphic computations quite slow, and so significant effort was devoted to con-
structing more efficient schemes. Two of the the most promising schemes in
terms of practical performance have been the BGV scheme of Brakerski, Gentry
and Vaikuntanathan [6], and the Fan-Vercauteren variant of Brakerski’s scale-
invariant scheme [5,8], which we call here the BFV scheme. Both of these schemes
rely on the hardness of the Ring Learning With Errors (RLWE) problem.

Both schemes manipulate elements in large cyclotomic rings, modulo integers
with many hundreds of bits. Implementing the necessary multi-precision modular
arithmetic is expensive, and one way of making it faster is to use a “Residue
Number System” (RNS) to represent the big integers. Namely, the big modulus q
is chosen as a smooth integer, q =

∏

i qi, where the factors qi are same-size,
pairwise coprime, single-precision integers (typically of size 30-60 bits). Using
the Chinese Remainder Theorem (CRT), an integer x ∈ Zq can be represented
by its CRT components {xi = x mod qi ∈ Zqi}i, and operations on x in Zq can
be implemented by applying the same operations to each CRT component xi in
its own ring Zqi .

Unfortunately, both BGV and BFV feature some scaling operations that can-
not be directly implemented on the CRT components. In both schemes there is
sometimes a need to interpret x ∈ Zq as a rational number (say in the interval
[−q/2, q/2)) and then either lift x to a larger ring ZQ for Q > q, or to scale
it down and round to get y = ⌈δx⌋ ∈ Zt (for some δ ≪ 1 and accordingly
t≪ q). These operations seem to require that x be translated from its CRT rep-
resentation back to standard “positional” representation, but computing these
translations back and forth will negate the gains from using RNS to begin with.

While implementations of the BGV scheme using CRT representation are
known (e.g., [10,12]), implementing BFV in this manner seems harder. One dif-
ference is that BFV features more of these scaling operations than BGV. Another
is that in BGV numbers are typically scaled by just single-precision factors, while
in BFV these factors are often big, of order similar to the multi-precision mod-
ulus q. An implementation of the BFV scheme using CRT representation was
recently reported by Bajard et al. [3], featuring significant speedup as compared
to earlier implementations such as in [15]. This implementation, however, uses
somewhat complex procedures, and moreover these procedures incur an increase
in the ciphertext noise.

In the current work we propose simpler procedures for the CRT-based scaling
and lifting as compared to the procedures in [3]. Our procedures also have a lower
computational complexity and introduce a lower additional noise. The same
techniques are also applicable to other scale-invariant homomorphic encryption
schemes, such as YASHE and YASHE’ [4].
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We implemented our procedures in the PALISADE library [18]. We evaluate
the runtime performance of decryption and homomorphic multiplication in the
range of multiplicative depths from 1 to 100. For example, the runtimes for depth-
20 decryption and homomorphic multiplication are 3.1 and 62 ms, respectively,
which can already support outsourced-computing applications with latencies up
to few seconds, even without bootstrapping.

1.1 Our contributions

We propose new techniques for CRT basis extension and scaling in RNS using
floating-point arithmetic for some intermediate computations. Our CRT basis
extension and scaling procedures have a low probability of introducing small ap-
proximation errors, but in the context of homomorphic operations these errors
are inconsequential. As we explain in Section 4.5, they increase the ciphertext
noise after homomorphic multiplications by at most 2 bits for any depth of the
multiplication circuit (typically significantly less than 1 bit), and those contri-
butions were not observable in our experiments. We apply these techniques to
develop:

– A BFV decryption procedure in RNS that supports CRT moduli up to 59
bits, using extended precision floating-point arithmetic natively available in
x86 architectures.4

– A BFV homomorphic multiplication procedure that has practically the same
noise requirements as the textbook BFV.

– A multi-threaded CPU implementation of our BFV RNS variant in PAL-
ISADE.

We show that our procedures are not only simpler, but also have lower com-
putational complexity and noise growth than the procedures presented in [3].

2 Notations and Basic Procedures

For an integer n ≥ 2, we identify below the ring Zn with its representation
in the symmetric interval Z ∩ [−n/2, n/2). For an arbitrary real number x, we
denote by [x]n the reduction of x into that interval (namely the real number
x′ ∈ [−n/2, n/2) such that x′ − x is an integer divisible by n). We also denote
by ⌊x⌋, ⌈x⌉, and ⌈x⌋ the rounding of x to an integer down, up, and to the
nearest integer, respectively. We denote vectors by boldface letters, and extend
the notations ⌊x⌋, ⌈x⌉, ⌈x⌋ to vectors element-wise.

Throughout this paper we fix a set of k co-prime moduli q1, . . . , qk (all integers

larger than 1), and let their product be q =
∏k

i=1 qi. For all i ∈ {1, ..., k}, we
also denote

q∗i = q/qi ∈ Z and q̃i = q∗i
−1 (mod qi) ∈ Zqi , (1)

4 Larger CRT moduli can be supported using “double double” floating-points.
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namely, q̃i ∈
[
− qi

2 ,
qi
2

)
and q∗i · q̃i = 1 (mod qi).

Complexity measures. In our setting we always assume that the moduli qi are
single-precision integers (i.e. |qi| < 263), and that operations modulo qi are in-
expensive. We assign unit cost to mod-qi multiplication and ignore additions,
and analyze the complexity of our routines just by counting the number of mul-
tiplications. Our procedures also include floating-point operations, and here too
we assign unit cost to floating-point multiplications and divisions (typically in
“double float” format as per IEEE 754) and ignore additions.

2.1 CRT Representation

We denote the CRT representation of an integer x ∈ Zq relative to the CRT basis
{q1, . . . , qk} by x ∼ (x1, . . . , xk) with xi = [x]qi ∈ Zqi . The formula expressing x

in terms of the xi’s is x =
∑k

i=1 xi · q̃i · q∗i (mod q). This formula can be used
in more than one way to “reconstruct” the value x ∈ Zq from the xi’s. In this
work we use in particular the following two facts:

x =
(

k∑

i=1

[xi · q̃i]qi · q∗i
︸ ︷︷ ︸

∈Zq

)
− υ · q for some υ ∈ Z, (2)

and x =
(

k∑

i=1

xi · q̃i · q∗i
︸ ︷︷ ︸

∈[−
qiq

4
,
qiq

4
)

)
− υ′ · q for some υ′ ∈ Z. (3)

2.2 CRT Basis Extension

Let x ∈ Zq be given in CRT representation (x1, . . . , xk), and suppose we want
to extend the CRT basis by computing [x]p ∈ Zp for some other modulus p > 1.

Using Eq. 2, we would like to compute [x]p =
[(∑k

i=1[xi · q̃i]qi · q∗i
)
− υ · q

]

p
.

The main challenge here is to compute υ (which is an integer in Zk). The formula
for υ is:

υ =

⌈

(
k∑

i=1

[xi · q̃i]qi · q∗i
)
/q

⌋

=

⌈
k∑

i=1

[xi · q̃i]qi ·
q∗i
q

⌋

=

⌈
k∑

i=1

[xi · q̃i]qi
qi

⌋

.

To get υ, we compute for every i ∈ {1, . . . , k} the element yi := [xi · q̃i]qi (using
single-precision integer arithmetic), and next the rational number zi := yi/qi
(in floating-point). Then we sum up all the zi’s and round them to get υ. Once
we have the value of υ, as well as all the yi’s, we can directly compute Eq. 2

modulo p to get [x]p =
[(∑k

i=1 yi · [q∗i ]p
)
− υ · [q]p

]

p
.

In our setting p and the qi’s are parameters that can be pre-processed. In
particular we pre-compute all the values [q∗i ]p’s and [q]p, so the last equation
becomes just an inner-product of two (k + 1)-vectors in Zp.
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Complexity analysis. The computation of υ requires k single-precision integer
multiplications to compute the yi’s, then k floating-point division operations to
compute the zi’s, and then some additions and one rounding operation. In total
it takes k integer and k+1 floating-point operations. When p is a single-precision
integer, the last inner product takes k + 1 integer multiplications, so the entire
procedure takes 2k + 1 integer and k + 1 floating-point operations.

For larger p we may need to do k + 1 multi-precision multiplications, but

we may be able to use CRT representation again. When p =
∏k′

j=1 pj for single-
precision co-prime pj ’s, we can compute υ only once and then compute the last
inner product for each pi (provided that we pre-computed [q∗i ]pj

’s and [q]pj
for

all i and j). The overall complexity in this case will be kk′ + k + k′ integer
operations and k + 1 floating-point operations.

Correctness. The only source of errors in this procedure is the floating-point
operations when computing υ: Instead of the exact values zi = yi/qi, we compute
their floating-point approximations z∗i (with error ǫi), and so we obtain υ∗ =
⌈∑i(zi + ǫi)⌋ which may be different from υ = ⌈∑i zi⌋.

Since the zi’s are all in [− 1
2 ,

1
2 ), then using IEEE 754 double floats we have

that the ǫi’s are bounded in magnitude by 2−53, and therefore the overall magni-
tude of the error term ǫ :=

∑
ǫi is bounded, |ǫ| < k · 2−53. If we assume k ≤ 32,

this gives us |ǫ| < 2−48. (Similarly, if we use single floats we get |ǫ| < 2−19.)
When applying the procedure above, we should generally check that the

resulting υ∗ that we get is outside the possible-error region Z+ 1
2 ± ǫ. If υ∗ falls

in the error region, we can re-run this procedure using higher precision (and
hence smaller ǫ) until the result is outside the error region.

It turns out that for our use cases, we do not need to check for these error
conditions, and can often get by with a rather low precision for this computation.
One reason for this is that for our uses, even if we do incur a floating-point
approximation error, it only results in a small contribution to ciphertext noise,
which has no practical significance.

Moreover, we almost never see these approximation errors, because the value
∑

i zi that we want to approximate equals x/q modulo 1. When we use that
procedure in our implementation, we sometimes have (pseudo)random values of
x ∈ Zq, in which case the probability that the result falls in the error region
is bounded by 2|ǫ|. In other cases, we even have a guarantee that |x| ≪ q (say
|x| < q/4), so we know a-priori that the value will always fall outside of the error
region. For more details, see Sections 2.4 and 4.5.

Comparison to other approaches for computing υ. Two exact approaches
for computing υ are presented in [22] and [14]. The first approach introduces an
auxiliary modulus and performs the CRT computations both for p and the extra
modulus, thus significantly increasing the number of integer operations and also
increasing the implementation complexity [22]. The second approach computes
successive fixed-point approximations until the computed value of υ is outside the
error region (in one setting) or computes the exact value (in another setting with
higher complexity) [14]. Both of these techniques incur higher computational
costs than our method.
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2.3 Simple scaling in CRT representation

Let x ∈ Zq be given in CRT representation (x1, . . . , xk), and let t ∈ Z be an
integer modulus t ≥ 2. We want to “scale down” x by a t/q factor, namely to
compute the integer y = ⌈t/q · x⌋ ∈ Zt. We do it using Eq. 3, as follows:

y :=

⌈
t

q
· x

⌋

=

⌈

(
k∑

i=1

xi · q̃i · q∗i ·
t

q

)
− υ′ · q · t

q

⌋

=

⌈

(
k∑

i=1

xi · (q̃i ·
t

qi
)
)

⌋

− υ′ · t =

[⌈

(
k∑

i=1

xi · (q̃i ·
t

qi
)
)

⌋]

t

.(4)

The last equation follows since the two sides are congruent modulo t and are
both in the interval [−t/2, t/2), hence they must be equal.

In our context, t and the qi’s are parameters that we can pre-process (while
the xi’s are computed on-line). We pre-compute the rational numbers tq̃i/qi ∈
[−t/2, t/2), separated into their integer and fractional parts:

tq̃i/qi = ωi + θi, with ωi ∈ Zt and θi ∈ [− 1
2 ,

1
2 ).

With the ωi’s and θi pre-computed, we take as input the xi’s, compute the two
sums w := [

∑

i xiωi]t and v := ⌈∑i xiθi⌋ , (using integer arithmetic for w and
floating-point arithmetic for v), then output [w + v]t.

Complexity analysis. The procedure above takes k floating-point multiplica-
tions, some additions, and one rounding to compute v, and then an inner product
mod t between two (k+1)-vectors: the single-precision vector (x1, . . . , xk, 1) and
the mod-t vector (ω1, . . . , ωk, v). When the modulus t is a single-precision inte-
ger, the ωi’s are also single-precision integers, and hence the inner product takes
k integer multiplications. The total complexity is therefore k + 1 floating-point
operations and k integer modular multiplications.

For a larger t we may need to do O(k) multi-precision operations to compute
the inner product. But in some cases we can also use CRT representation here:

For t =
∏k′

j=1 tj (with the tj ’s co-prime), we can represent each ωi ∈ Zt in the
CRT basis ωi,j = [ωi]tj . We can then compute the result y in the same CRT basis,
yj = [y]tj by setting wj = [

∑

i xiωi,j ]tj for all j, and then yj = [v+wj ]tj . This will

still take only k + 1 floating-point operations, but kk′ modular multiplications.

Correctness. The only source of errors in this routine is the computation of
v := ⌈∑i xiθi⌋: Since we only keep the θi’s with limited precision, we need to

worry about the error exceeding the precision. Let θ̃i be the floating-point values
that we keep, while θi are the exact values (θi = tq̃i/q−ωi) and ǫi are the errors,
ǫi = θ̃i − θi. Since |θ̃i| ≤ 1

2 , then for IEEE 754 double floats we have |ǫi| < 2−53.
The value that our procedure computes for v is therefore ṽ := ⌈∑i xi(θi + ǫi)⌋,
which may be different from v := ⌈∑i xiθi⌋.

We can easily control the magnitude of the error term
∑
xiǫi by limiting

the size of the qi’s: Since |xi| < qi/2 for all i, then |∑i xiǫi| < 2−54 ·∑i qi. For
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example, if k < 32, as long as all our moduli satisfy qi ≤ 247 < 254/4k, we are
ensured that |

∑
xiǫi| < 1/4.

If we use the extended double floating-point precision (“long double” in
C/C++) natively supported by x86 architectures, which stores 64 bits in the
significand as compared to 52 bits in the IEEE 754 double float, we can increase
the upper bound for the moduli up to qi ≤ 259.

When using the scaling procedure for decryption, we can keep y′ = ⌈t/q · x⌋
close to an integer by controlling the ciphertext noise. For example, we can
ensure that y′ (and therefore also v) is within 1/4 of an integer, and thus if we
also restrict the size of the qi’s as above, then we always get the correct result.
Using the scaling procedure in other settings may require more care, see the next
section for a discussion.

2.4 Complex scaling in CRT representation

The scaling procedure above was made simpler by the fact that we scale by a t/q
factor, where the original integer is in Zq and the result is computed modulo t.
During homomorphic multiplication, however, we have a more complicated set-
ting: Over there we have three parameters t, p, q, where q =

∏k
i=1 qi as before,

we similarly have p =
∏k′

j=1 pj , and we know that p is co-prime with q and p≫ t.
The input is x ∈ Z ∩ [−qp/2t, qp/2t) ⊂ Zqp, represented in the CRT basis

{q1, . . . , qk, p1, . . . , pk′}. We need to scale it by a t/q factor and round, and we
want the result modulo q in the CRT basis {q1, . . . , qk}. Namely, we want to
compute y :=

[
⌈t/q · x⌋

]

q
. This complex scaling is accomplished in two steps: 5

1. First we essentially apply the CRT scaling procedure from Section 2.3 using
q′ = qp and t′ = tp, computing y′ := [⌈tp/qp · x⌋]p (which we can think of as
computing y′ modulo tp and then discarding the mod-t CRT component).
Note that since x ∈ [−qp/2t, qp/2t) then ⌈tp/qp · x⌋ ∈ [−p/2, p/2). Hence
even though we computed y′ modulo p, we know that y′ = ⌈t/q · x⌋ without
modular reduction.

2. Having a representation of y′ relative to CRT basis {p1, . . . , pk′}, we ex-
tend this basis using the procedure from Section 2.2, adding [y′]qi for all
the qi’s. Then we just discard the mod-pj CRT components, thus getting a
representation of y = [y′]q.

The second step is a straightforward application of the procedure from Sec-
tion 2.2, but the first step needs some explanation. The input consists of the CRT
components xi = [x]qi and x

′
j = [x]pj

, and we denote Q := qp, Q∗
i := Q/qi = q∗i p,

Q′
j
∗
:= Q/pj = qp∗j , and also Q̃i = [(Q∗

i )
−1]qi and Q̃′

j = [(Q′
j
∗
)−1]pj

. Then by
Eq. 3 we have

t

q
·x =

t

q

(
k∑

i=1

xiQ̃iQ
∗

i +

k′

∑

j=1

x′jQ̃
′
jQ

′

j
∗−υ′Q

)
=

k∑

i=1

xi ·
tQ̃ip

qi
+

k′

∑

j=1

x′j ·tQ̃′
jp

∗

j−tυ′p.

5 A somewhat different complex scaling procedure with similar complexity is presented
in Appendix A.1, which can handle arbitrary x ∈ Zqp. However we did not implement
that other procedure.
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Reducing the above expression modulo any one of the pj ’s, all but one of the
terms in the second sum drop out (as well as the term tυ′p), and we get:

[⌈t/q · x⌋]pj
=

[⌈
∑k

i=1 xi · tQ̃ip
qi

⌋

+ x′j · [tQ̃′
jp

∗
j ]pj

]

pj

.

As in Section 2.3, we pre-compute all the values tQ̃ip
qi

, breaking them into their

integral and fractional parts, tQ̃ip
qi

= ω′
i + θ′i with ω

′
i ∈ Zp and θ′i ∈ [− 1

2 ,
1
2 ). We

store all the θ′i’s as double (or extended double) floats, for every i, j we store
the single-precision integer ω′

i,j = [ω′
i]pj

, and for every j we also store λj :=

[tQ̃′
jp

∗
j ]pj

. Then given the integer x, represented as x ∼ (x1, . . . , xk, x
′
1, . . . , x

′

k′),
we compute

v := ⌈∑i θ
′
ixi⌋ , and for all j wj :=

[
λjx

′
j +

∑

i ω
′
i,jxi

]

pj
and y′j :=

[
v + wj ]pj

.

Then we have y′j = [⌈t/q · x⌋]pj
, and we return y′ ∼ {y′1, . . . , y′k′} ∈ Zp.

Correctness. When computing the value v = ⌈∑i θ
′
ixi⌋, we can bound the

floating-point inaccuracy before rounding below 1/4, just as in the simple scal-
ing procedure from Section 2.3. However, when we use complex scaling during
homomorphic multiplication, we do not have the guarantee that the exact value
before rounding is close to an integer, and so we may encounter rounding errors
where instead of rounding to the nearest integer, we will round to the second
nearest. Contrary to the case of decryption, here such “rounding errors” are
perfectly acceptable, as the rounding error is only added to the ciphertext noise.

We remark also that in the second CRT basis extension (from Zp to Zpq,
before discarding the mod-p components), we regain the guarantee that the exact
value before rounding is close to an integer: This is because the value that we
seek before rounding is v = x/p (mod 1), we have the guarantee that |x| ≤ q/2,
and our parameter choices imply that p > q (by a substantial margin). Since
|xp | ≤

q
2p ≪ 1

2 , we are ensured to land outside of the error region of Z + 1
2 ± ǫ.

See Section 4.5 for more details of our parameter choices.

Complexity analysis. The complexity of the first step above where we compute
y′ = [⌈t/q · x⌋]p, is similar to the simple scaling procedure from Section 2.3.
Namely we have k + 1 floating-point operations when computing v, and then
for each modulus pj we have k + 1 single-precision modular multiplications to
compute wj . Hence the total complexity of this step is k + 1 floating-point
operations and k′(k + 1) modular multiplications.

The complexity of the CRT basis extension, as described in Section 2.2,
is k + 1 floating-point operations and k′(k + 1) + k single-precision modular
multiplications. Hence the total complexity of complex scaling is 2(k+1) floating-
point operations and 2k′(k + 1) + k modular multiplications.

3 Background: Scale-Invariant Homomorphic Encryption

For self-containment we briefly sketch Brakerski’s “scale-invariant” homomor-
phic encryption scheme from [5]. Then we discuss the Fan-Vercauteren variant
of the scheme and some optimizations due to Bajard et al. [3].
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3.1 Brakerski’s Scheme

The starting point for Brakerski’s scheme is Regev’s encryption scheme [21], with
plaintext space Zt for some modulus t > 1, where secret keys and ciphertexts are
dimension-n vectors over Z

n
q for some other modulus q ≫ t. (Throughout this

section we assume for simplicity of notations that q is divisible by t. It is well
known that this condition in superfluous, however, and replacing q/t by ⌈q/t⌋
everywhere works just as well.)

The decryption invariant of this scheme is that a ciphertext ct, encrypting a
message m ∈ Zt relative to secret key sk, satisfies

[〈sk, ct〉]q = m · q/t+ e, for a small noise term |e| ≪ q/t,

where 〈·, ·〉 denotes inner product. Decryption is therefore implemented by set-

ting m :=
[ ⌈

t
q · [〈sk, ct〉]q

⌋ ]

t
. 6 Homomorphic addition of two ciphertext vec-

tors ct1, ct2 consists of just adding the two vectors over Zq, and has the effect
of adding the plaintexts and also adding the two noise terms. Homomorphic
multiplication is more involved, consisting of the following parts:

Key generation. In Brakerski’s scheme, the secret key sk must also be small,
namely ‖sk‖ ≪ q/t. Moreover, the public key includes a “relinearization gadget”,

consisting of log q matrices Wi ∈ Z
n×n2

q . Denoting the tensor product of sk with

itself (over Z) by sk∗ = sk⊗ sk ∈ Z
n2

, the relinearization matrices satisfy

[sk×Wi]q = 2isk∗ + e∗i , for a small noise term ‖e∗i ‖ ≪ q/t.

Homomorphic multiplication. Let ct1, ct2 be two ciphertexts, satisfying the
decryption invariant [〈sk, cti〉]q = mi · q/t + ei. Homomorphic multiplication
consists of:

1. Tensoring. Taking the tensor product ct1 ⊗ ct2 without modular reduction,
then scaling down by t/q, hence getting ct∗ :=

[
⌈t/q · ct1 ⊗ ct2⌋

]

q
.

2. Relinearization. Decomposing ct∗ into bits ct∗i ∈ {0, 1}n
2

(where ct∗ =
∑

i 2
ict∗i ), then setting ct× := [

∑

iWi × ct∗i ]q.

To see that ct× is indeed an encryption of the product m1m2 relative to sk,
denote the rational vector before rounding by ct′ = t/q · ct1 ⊗ ct2, and the
rounding error by ǫ (so ct∗ = ǫ+ ct′ + q · something), and we have

〈sk∗, ct′〉 =
〈

sk⊗ sk, t
qct1 ⊗ ct2

〉

= t/q · (〈sk, ct1〉 · 〈sk, ct2〉
= t/q · (m1 · q/t+ e1 + k1q)(m2 · q/t+ e2 + k2q)

= m1m2 · q/t+ e1m2 +m1e2 + e1e2t/q + t(k1e2 + k2e1)
︸ ︷︷ ︸

e′≪q/t

+q · something.

6 We ignore the encryption procedure in this section, since it is mostly irrelevant for
the current work. For suitable choices, Regev proved that this encryption scheme is
CPA-secure under the LWE assumption.
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Including the rounding error, and since sk is small (and hence so is sk∗), we get

〈sk∗, ct∗〉 = 〈sk∗, ǫ+ ct′ + k∗q〉 = m1m2 · q/t+ e′ + 〈sk∗, ǫ〉
︸ ︷︷ ︸

e′′≪q/t

+q · something,

(5)
so ct∗ encrypts m1m2 relative to sk∗. After relinearization, we have

〈
sk, ct×

〉
= sk×

∑

i

Wi × ct∗i =
∑

i

〈
(2isk∗ + e∗i ), ct

∗

i

〉

=
〈
sk∗,

∑

i

2ict∗i
〉
+
∑

i

〈e∗i , ct∗i 〉 = m1m2 · q/t+ e′′ +
∑

i

〈e∗i , ct∗i 〉
︸ ︷︷ ︸

ẽ

(mod q).

Since the ct∗i ’s are small then so is the noise term ẽ, as needed.

3.2 The Fan-Vercauteren Variant

In [8], Fan and Vercauteren ported Brakerski’s scheme to the ring-LWE setting,
working over polynomial rings rather than over the integers. Below we let R =
Z[X]/〈f (X)〉 be a fixed ring, where f ∈ Z[X] is a monic irreducible polynomial of
degree n (typically an m-th cyclotomic polynomial Φm (x) of degree n = φ (m)).
We use some convenient basis to represent R over Z (most often just the power
basis, i.e., the coefficient representation of the polynomials). Also, let Rt = R/tR
denote the quotient ring for an integer modulus t ∈ Z, represented in the same
basis.

The plaintext space of this variant is Rt for some t > 1 (i.e., a polynomial
of degree at most n − 1 with coefficients in Zt), the secret key is a 2-vector
sk = (1, s) ∈ R2 with ‖s‖ ≪ q/t, ciphertexts are 2-vectors ct = (c0, c1) ∈ R2

q

for another modulus q ≫ t, and the decryption invariant is the same as in

Brakerski’s scheme, namely [
⌈
t
q [〈sk, ct〉]q

⌋

]t = [
⌈
t
q [c0 + c1s]q

⌋

]t = m · qt + e for

a small noise term e ∈ R, ‖e‖ ≪ q/t.
For encryption, the public key includes a low-noise encryption of zero, ct0 =

(ct00, ct
0
1), and to encrypt m ∈ Rt they choose low-norm elements u, e1, e2 ∈ R

and set Encct0(m) := [u · ct0 + (e0, e1) + (∆m, 0)]q, where ∆ = ⌊q/t⌋. Ho-
momorphic addition just adds the ciphertext vectors in R2

q , and homomorphic
multiplication is the same as in Brakerski’s scheme, except (a) the special form
of sk lets them optimize the relinearization “matrices” and use vectors instead,
and (b) they use base-w decomposition (for a suitable word-size w) instead of
base-2 decomposition. 7 In a little more detail:

(a) For the secret-key vector sk = (1, s), the tensor product sk ⊗ sk can be
represented by the 3-vector sk∗ = (1, s, s2). Similarly, for the two ciphertexts
cti = (ci0, c

i
1) (i = 1, 2), it is sufficient to represent the tensor ct1 ⊗ ct2 by

the 3-vector ct∗ = (c∗0, c
∗
1, c

∗
2) = [c10c

2
0, (c

1
0c

2
1 + c11c

2
0), c

1
1c

2
1]q.

7 Fan and Vercauteren described in [8] a second relinearization procedure, using a
technique of Gentry et al. from [10]. We ignore this alternative procedure here.
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(b) For the relinearization gadget, all they need is to “encrypt” the single element
s2 using sk. When using a base-w decomposition, they have vectors (rather
than matrices) Wi = (βi, αi), with uniform αi’s and βi = [wis2 − αis+ ei]q
(for low-norm noise terms ei).
After computing the three-vector ct∗ = (c∗0, c

∗
1, c

∗
2) as above during ho-

momorphic multiplication, they decompose c∗2 into its base-w digits, c∗2 =
∑

i w
ic∗2,i. Then computing ct× =

∑

iWi × ct∗i only requires that they set

c̃0 := [

k∑

i=1

βic
∗

2,i]q, c̃1 := [

k∑

i=1

αic
∗

2,i]q, and then ct× := [(c∗0 + c̃0, c
∗

1 + c̃1)]q.

3.3 CRT representation and optimized relinearization

Bajard et al. described in [3] several optimizations of the Fan-Vercauteren vari-
ant, centered around the use of CRT representation of the large integers involved.
(They called it a Residue Number System, or RNS, but in this writeup we prefer
the term CRT representation.) Specifically, the modulus q is chosen as a product

of same-size, pairwise coprime, single-precision moduli, q =
∏k

i=1 qi, and each
element x ∈ Zq is represented by the vector (xi = [x]qi)

k
i=1.

One significant optimization from [3] relates to the relinearization step in
homomorphic multiplication. Recall that in that step we decompose the cipher-
text ct∗ into low-norm components ct∗i , such that reconstructing ct∗ from the
ct∗i ’s is a linear operation, namely ct∗ =

∑

i τict
∗

i for some known coefficients τi.
Instead of decomposing ct∗ into bit or digits, Bajard et al. suggested to use its
CRT components ct∗i = [ct∗q̃i]qi and secret key components s2i = [s2 q∗i ]q when
computing the relinearization key, and rely on the reconstruction from Eq. 3
(which is linear).

We remark that it is more efficient to use the CRT components ct∗i = [ct∗]qi
and secret key components s2i = [s2q̃iq

∗
i ]q. The latter corresponds to [s2]qi for

the i-th modulus and 0’s for all other moduli. This optimization removes one
scalar multiplication in each ct∗i term (as compared to [3]) and eliminates the
need for any precomputed parameters in the relinearization procedure.

As in [3], we also apply digit decomposition to the residues, thus allowing a
more granular control of noise growth at small multiplicative depths. A detailed
discussion of this technique is provided in Appendix B.1 of [3].

4 Our Optimizations

4.1 The scheme that we implemented

The scheme that we implemented is the Fan-Vercauteren variant of Braker-
ski’s scheme (we refer to this variant as the “BFV scheme”), with a modified
CRT-based relinearization step of Bajard et al. We begin with a concrete stand-
alone description of the functions that we implemented, then describe our sim-
pler/faster CRT-based implementation of these functions.
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Parameters. Let t,m, q ∈ Z be parameters (where the single-precision t deter-
mines the plaintext space, and m, |q| depend on t and the security parameter),

such that q =
∏k

i=1 qi for same-size, pairwise coprime, single-precision moduli qi.
Let n = φ(m), and let R = Z[X]/Φm(X) be the m-th cyclotomic ring, and

denote by Rq = R/qR and Rt = R/tR the quotient rings. In our implemen-
tation we represent elements in R,Rq, Rt in the power basis (i.e., polynomial
coefficients), but note that other “small bases” are possible (such as the decod-
ing basis from [17]), and for non-power-of-two cyclotomics they could sometimes
result in better parameters. We let χe, χk be distributions over low-norm ele-
ments in R in the power basis, specifically we use discrete Gaussians for χe and
the uniform distribution over {−1, 0, 1}n for χk.

Key generation. For the secret key, choose a low-norm secret key s← χk and
set sk := (1, s) ∈ R2. For the public encryption key, choose a uniform random
a ∈ Rq and e← χe, set b := [−(as+ e)]q ∈ Rq, and compute pk := (b, a).

Recall that we denote q∗i = q
qi

and q̃i =
[
q∗i

−1
]

qi
. For relinearization, choose

a uniform αi ∈ Rq and ei ← χe, and set βi = [q̃iq
∗
i s

2 − αis + ei]q for each
i = 1, . . . , k. The public key consists of pk and all the vectors Wi := (βi, αi).

Encryption. To encrypt m ∈ Rt, choose u ← χk and e′0, e
′
1 ← χe and output

the ciphertext ct := [u · pk+ (e′0, e
′
1) + (∆m, 0)]q, where ∆ = q/t.

Decryption. For a ciphertext ct = (c0, c1), compute x := [〈sk, ct〉]q = [c0+c1s]q
and output m := [⌈x · t/q⌋]t.
Homomorphic Addition. On input ct1, ct2, output [ct1 + ct2]q.

Homomorphic Multiplication. Given cti = (ci0, c
i
1)i=1,2, do the following:

1. Tensoring: Compute c′0 := c10c
2
0, c

′
1 := c10c

2
1 + c11c

2
0, c

′
2 := c11c

2
1 ∈ R without

modular reduction, then set c∗i = [⌈t/q · c′i⌋]q for i = 0, 1, 2.
2. Relinearization: Decompose c∗2 into its CRT components c∗2,i = [c∗2]qi , set

c̃0 := [
∑k

i=1 βic
∗
2,i]q, c̃1 := [

∑k
i=1 αic

∗
2,i]q, output ct

× := [(c∗0 + c̃0, c
∗
1 + c̃1)]q.

4.2 Pre-computed values

When setting the parameters, we pre-compute some tables to help speed things
up later. Specifically:

– We pre-compute and store all the values that are needed for the simple
CRT scaling procedure in Section 2.3: For each i = 1, . . . , k, we compute
the rational number tq̃i/qi, split into integral and fractional parts. Namely,

ωi :=
⌈

t · q̃iqi
⌋

∈ Zt and θi := t·q̃i
qi
− ωi ∈ [− 1

2 ,
1
2 ). We store ωi as a single-

precision integer and θi as a double (or long double) float.
– We also choose a second set of single-precision coprime numbers {pj}k

′

j=1

(coprime to all the qi’s), such that p :=
∏

j pj is bigger than q by a large

enough margin. Specifically we will need to ensure that for c10, c
1
1, c

2
0, c

2
1 ∈ R

with coefficients in [−q/2, q/2), the element c∗ := c10c
2
1 + c11c

2
0 ∈ R (without

modular reduction) has coefficients in the range [−qp/2t, qp/2t). For our
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setting of parameters, where all the qi’s and pj ’s are 55-bit primes and t is
up to 32 bits, it is sufficient to take k′ = k + 1. For smaller CRT primes or
larger values of t, a higher value of k′ may be needed.
Below we denote for all j, p∗j := p/pj and p̃j := [(p∗j )

−1]pj
. We also denote

Q := qp, and for every i, j we have Q∗
i := Q/qi = q∗i p, Q

′
j
∗
:= Q/pj = qp∗j ,

and also Q̃i = [(Q∗
i )

−1]qi and Q̃′
j = [(Q′

j
∗
)−1]pj

.
– We pre-compute and store all the values that are needed in the procedure

from Section 2.2 to extend the CRT basis {q1, . . . , qk} by each of the pj ’s,
as well the values that are needed to extend the CRT basis {p1, . . . , pk′}
by each of the qi’s. Namely for all i, j we store the single-precision integers
µi,j = [q∗i ]pj

and νi,j = [p∗j ]qi , as well as φj = [q]pj
and ψi = [p]qi .

– We also pre-compute and store all the values that are needed for the complex
CRT scaling procedure in Section 2.4. Namely, we pre-compute all the values
tQ̃ip
qi

, breaking them into their integral and fractional parts, tQ̃ip
qi

= ω′
i + θ′i

with ω′
i ∈ Zp and θ

′
i ∈ [− 1

2 ,
1
2 ). We store all the θ′i’s as double (or long double)

floats, for every i, j we store the single-precision integer ω′
i,j = [ω′

i]pj
, and

for every j we also store λj := [tQ̃′
jp

∗
j ]pj

.

4.3 Key-generation and encryption

The key-generation and encryption procedures are implemented in a straightfor-
ward manner. Small integers such as noise and key coefficients are drawn from χe

or χk and stored as single-precision integers, while uniform elements in a← Zq

are chosen directly in the CRT basis by drawing uniform values ai ∈ Zqi for all i.
Operations in Rq are implemented directly in CRT representation, often re-

quiring the computation of the number-theoretic-transform (NTT) modulo the
separate qi’s. The only operations that require computations outside of Rq are
decryption and homomorphic multiplications, as described next.

4.4 Decryption

Given the ciphertext ct = (c0, c1) and secret key sk = (1, s), we first compute the
inner product in Rq, setting x := [c0 + c1s]q. We obtain the result in coefficient
representation relative to the CRT basis q1, . . . , qk. Namely for each coefficient
of x (call it xℓ ∈ Zq) we have the CRT components xℓ,i = [xℓ]qi , i = 1, . . . , k, ℓ =
0, . . . , n− 1.

We then apply to each coefficient xℓ the simple scaling procedure from Sec-
tion 2.3. This yields the scaled coefficients mℓ = [⌈t/q · xℓ⌋]t, representing the
element m = [⌈t/q · x⌋]t ∈ Rt, as needed.

As we explained in Section 2.3, in the context of decryption we can ensure
correctness by controlling the noise to guarantee that each t/q · xℓ is within 1/4
of an integer, and limit the size of the qi’s to 59 bits to ensure that the error is
bounded below 1/4.

Decryption complexity. The dominant factor in decryption is NTTs modulo
the individual qi’s, that are used to compute the inner product x := [c0+c1s]q ∈
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Rq. Specifically we need 2k of them, k in the forward direction (one for each [c1]qi)
and k inverse NTTs (one for each [c1s]qi). These operations require O(kn log n)
single-precision modular multiplications, where n = φ(m) is the degree of the
polynomials and k is the number of moduli qi. Once this computation is done,
the simple CRT scaling procedure takes (k + 1)n floating-point operations and
kn integer multiplications modulo t.

4.5 Homomorphic Multiplication

The input to homomorphic multiplication is two ciphertexts ct1 = (c10, c
1
1), ct

2 =
(c20, c

2
1), where each c

a
b ∈ Rq is represented in the power basis with each coefficient

represented in the CRT basis {qi}ki=1. The procedure consists of three steps,
where we first compute the “double-precision” elements c′0, c

′
1, c

′
2 ∈ R, then scale

them down to get c∗i := [⌈t/q · c′i⌋]q, and finally apply relinearization.

Multiplication with double precision.We begin by extending the CRT basis
using the procedure from Section 2.2. For each coefficient x in any of the cab ’s, we
are given the CRT representation (x1, . . . , xk) with xi = [x]qi and compute also
the CRT components (x′1, . . . , x

′

k′) with x′j = [x]pj
. This gives us a representation

of the same integer x, in the larger ring Zqp, which in turn yields a representation
of the cab ’s in the larger ring Rqp.

Next we compute the three elements c′0 := [c10c
2
0]pq, c

′
1 := [c10c

2
1 + c11c

2
0]pq and

c′2 := [c11c
2
1]pq, where all the operations are in the ring Rqp. By our choice of

parameters (with p sufficiently larger than q), we know that there is no modular
reduction in these expressions, so in fact we obtain c′0, c

′
1, c

′
2 ∈ R. These elements

are represented in the power basis, with each coefficient x ∈ Zqp represented by
(x1, . . . , xk, x

′
1, . . . , x

′

k′) with xi = [x]qi and x′j = [x]pj
.

Scaling back down to Rq. By our choice of parameters, we know that all the
coefficients of the c′ℓ’s are integers in the range [−qp/2t, qp/2t), as needed for
the complex CRT scaling procedure from Section 2.4. We therefore apply that
procedure to each coefficient x ∈ Zqp, computing x∗ = [⌈t/q · x⌋]q. This gives
us the power-basis representation of the elements c∗ℓ = [⌈t/q · c′ℓ⌋]q ∈ Rq for
ℓ = 0, 1, 2.

Relinearization. For relinearization, we use a modification of the technique
by Bajard et al. [3] discussed in Section 3.3. Namely, at this point we have the
elements c∗0, c

∗
1, c

∗
2 ∈ Rq in CRT representation, c∗ℓ,i = [c∗ℓ ]qi (for ℓ = 0, 1, 2 and

i = 1, . . . , k). To relinearize, we use the relinearization gadget vectors (βi, αi)
that were computed during key generation. For each qi, we first compute c̃0,i :=
[∑k

j=1[βj ]qi ·c∗2,j
]

qi
and c̃1,i :=

[∑k
j=1[αj ]qi ·c∗2,j

]

qi
, and then c×0,i := [c∗0,i+c̃0,i]qi

and c×1,i := [c∗1,i + c̃1,i]qi .

This gives the relinearized ciphertext ct× = (c×0 , c
×

1 ) ∈ R2
q , which is the

output of the homomorphic multiplication procedure.

Correctness. Correctness of the CRT basis-extension and complex scaling pro-
cedures was discussed in Sections 2.2 and 2.4, respectively. Though both CRT
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basis extension and scaling procedures may introduce some approximation er-
rors due to the use of floating-point arithmetic, these errors only increase the
ciphertext noise by a small (practically negligible) amount.

To illustrate the small contribution of approximation errors, consider the
noise estimate for the original Brakerski’s scheme described in Section 3.1. (Sim-
ilar arguments apply to any other scale-invariant scheme, including BFV and
YASHE.) The approximation error in the CRT basis extension before the tensor
product can change the value of υ at most by one, with probability ≈ 2−48. This
means that the value of k1 or k2 may grow by one with the same probability, thus
increasing the noise term t(k1e2 + k2e1) in Eq. 5 to t((k1 + ǫ1)e2 + (k2 + ǫ2)e1),
where ǫi ∈ {0, 1} and Pr[ǫi 6= 0] ≈ 2−47+logn. Recall that ki ≈ ⌈〈sk, cti〉 /q⌋, so
‖ki‖∞’s are at least

√
n. As n in all practical cases is typically above 1024 (and

often much higher), the difference between k1e2+k2e1 and (k1+ǫ1)e2+(k2+ǫ2)e1
is less than 3% (and even this only occurring with probability 2−47+logn). In our
experiments we never noticed this effect.

To study the effect of the approximation error introduced by scaling, we
replace the term ct∗ = ǫ+ct′+q ·something for Brakerski’s scheme (Section 3.1)
with ct∗ = ǫ+ǫs+ct′+q ·something, where ǫs is the scaling error. To ensure that
the noise growth is not impacted, it suffices to ensure that the added noise term
|sk2 ·ǫs| (corresponding to the term 〈sk∗, ǫs〉 in the description from Section 3.1)
is smaller than the previous noise term of t(k1e2+ k2e1). This is always the case
if we have ‖ǫs‖∞ < 1/4 (as we do for decryption), but in some cases we can also
handle larger values of ǫs (e.g., later in the computation where the terms e1, e2
are already larger, or when working with a large plaintext-space modulus t).

Finally, we note that the floating-point arithmetic in the second CRT-basis
extension (inside complex scaling) does not produce any errors. This is because
we use p ≫ q (to ensure that all the coefficients before scaling fit in the range
[−pq/2t,+pq/2t]). The analysis from Section 2.2 then tells us that when com-
puting the CRT basis extension from mod-p to mod-pq we never end up in the
error region.

Multiplication complexity. As for decryption, here too the dominant factor
is the NTTs that we must compute when performing multiplication operations
in Rq and Rqp. Specifically we need to transform the four elements cab ∈ Rqp

after the CRT extension in order to compute the three c′ℓ ∈ Rqp, then transform
back the c′ℓ’s before scaling them back to Rq to get the c∗ℓ ’s. For relinearization
we need to transform all the elements c∗2,i ∈ Rq before multiplying them by the
αi’s and βi’s, and also transform c∗0, c

∗
1 before we can add them. Each transform

in Rq takes k single-precision NTTs, and each transform in Rqp takes k + k′

NTTs, so the total number of single-precision NTTs is k2+9k+7k′. Each trans-
form takes O(n log n) multiplications, so the NTTs take O(k2n log n) modular
multiplications overall. In our experiments, these NTTs account for 58-77% of
the homomorphic multiplication running time.

In addition to these NTTs, we spend 4(k + k′)n modular multiplications
computing the c′ℓ’s in the transformed domain and 2k2n modular multiplica-
tions computing the products c∗2,iβi and c∗2,iβi in the transformed domain. We
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also spend 4n(kk′ + k + k′) modular multiplications and 4(k + 1)n floating-
point operations in the CRT-extension procedure in Section 4.5, and additional
3n(2k′(k+1)+k) modular multiplications and 3(k′+k+2)n floating-point oper-
ations in the complex scaling in Section 4.5. Hence other than the NTTs, we have
a total of (7k+3k′+10)n floating-point operations and (2k2+10kk′+11k+14k′)n
modular multiplications.

5 Comparison with the RNS variant by Bajard et al. [3]

The section demonstrates that our decryption and homomorphic multiplication
procedures have lower noise growth and computational complexity, as compared
to the procedures proposed in [3].

In particular, our variant adds at most 2 extra bits of noise to the textbook
BFV variant for a computation of any depth, whereas the Bajard et al. adds at
least 22 bits of extra noise for specific (depth-5) parameters considered in [3].
We remark that the additional noise in the Bajard et al. variant increases with
depth.

Our scaling procedure in the decryption operation requires 3 times less modu-
lar multiplications. Our complex scaling operation requires about 25% less mod-
ular multiplications operations (for k = 5; the improvement factor is higher for
smaller k and lower for larger k). We want to remark that both BFV decryption
and homomorphic multiplication operations are dominated by NTTs, and both
variants require the same number of NTTs. This implies that the experimen-
tal runtime improvements of full decryption and homomorphic multiplication
procedures for our variant are expected to be lower than these estimates.

5.1 Noise growth

Textbook BFV. The worst-case noise bound for correct decryption using text-
book BFV is written as [15]:

‖v‖
∞
< (∆− rt(q)) /2, (6)

where rt(q) = t (q/t−∆).
The initial noise in [c0 + c1s]q is bounded by Be (1 + 2δ ‖s‖

∞
), where Be

is the effective (low-probability) upper bound for Gaussian errors, and δ is the
polynomial multiplication expansion factor sup {‖ab‖∞/‖a‖∞‖b‖∞ : a, b ∈ R}.
The initial noise is the same in all three BFV variants as the first RNS procedure
is introduced at the scaling step of decryption.

The noise bound for binary tree multiplication of depth L is given by [15]

‖vmult‖∞ < CL
1 V + LCL−1

1 C2, (7)

where ‖v1‖∞ , ‖v2‖∞ < V and

C1 = (1 + ǫ2) δ
2t ‖s‖

∞
, ǫ2 = 4 (δ ‖s‖

∞
)
−1
, (8)
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C2 = δ2 ‖s‖
∞

(
‖s‖

∞
+ t2

)
+ δℓw,qwBe. (9)

Here ℓw,q is the number of base-w digits in q.

Our RNS variant. Our RNS variant has the following requirement for correct
decryption:

‖v′‖
∞
< (∆− rt(q)) /4. (10)

Here the denominator is 4 (rather than 2 in the textbook BFV) because we need
to guarantee that the simple scaling procedure does not approach the possible-
error region Z + 1

2 ± ǫ. This adds at most 1 bit of noise to the textbook BFV
bound.

The low-probability (around 2−48 in our implementation) approximation er-
ror in CRT basis extension before computing the tensor product without modular
reduction simply changes the value of ǫ2 to 5 (δ ‖s‖

∞
)
−1

, which can be easily
shown using the same procedure as in Appendix I of [4] for the YASHE’ scheme
and the same logic as described for Brakerski’s scheme in Section 4.5. Note that
the value of ǫ2 ≪ 1, which implies that the change of the factor from 4 to 5
should have no practical effect, especially considering the low probability of this
approximation error. We did not observe any practical noise increase due to this
error in our experiments.

The effect of the scaling approximation error can be factored into the existing
term δ2 ‖s‖2

∞
in C2, which corresponds to the error in rounding t/q · ct1 ⊗ ct2.

In our case, we need to multiply this term by (1 + 2 ‖ǫs‖∞), as explained in
Section 4.5. As ‖ǫs‖∞ < 1/4 when we use the same floating-point precision as in
decryption, this term is smaller than C ′

1V in all practical settings, including the
case of fresh ciphertexts at t = 2 (see Section 4.5 for a more detailed discussion).
We add 1 more bit to the textbook BFV noise to account for the potential extra
noise during first-level multiplications, especially if larger values of ‖ǫs‖∞ are
selected to use a lower precision for floating-point arithmetic. For homomorphic
multiplications at higher levels, we will always have ‖ǫs‖∞ ≪ C ′

1V .
The relinearization term δℓw,qwBe in the textbook BFV expression gets re-

placed with δℓw,2νwkBe, where ν is the CRT moduli bit size, which is the same
as for the Bajard et al. variant and the same as for the textbook BFV variant if
w ≤ ν.

In summary, the binary tree multiplication noise constraint for our RNS
variant is given by

‖v′mult‖∞ < C ′L
1 V + LC ′L−1

1 C ′
2, (11)

where
C ′

1 = (1 + ǫ′2) δ
2t ‖s‖

∞
, ǫ′2 = 5 (δ ‖s‖

∞
)
−1
, (12)

C ′

2 = δ2 ‖s‖
∞

(
{1 + 2 ‖ǫs‖∞} ‖s‖∞ + t2

)
+ δℓw,2νwkBe. (13)

RNS variant by Bajard et al. To estimate the additional noise growth in the
Bajard et al. variant, we use Table 1 and noise bounds given by Eq. (20) in [3].
If we look at the parameters for n = 212 and t = 2 in Table 1 of [3], we observe
that the worst-case bound for correct decryption is increased by a factor of 13.
Then for each multiplication, the dominant term in C1 is increased by a factor
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of 12 for each level. This means that the first multiplication requires 8 extra bits
of noise. As these parameters correspond to a depth-5 circuit, we get at least
22 extra bits of noise as compared to the textbook BFV variant. Table 1 also
shows that this extra noise is enough to change the supported depth from 6 (in
the textbook BFV case) to 5.

We also remark that the binary tree multiplication correctness constraint for
the RNS variant of Bajard et al. introduces several new auxiliary parameters
that have to be selected properly during parameter generation. This increases
the implementation complexity as compared to our variant.

5.2 Computational Complexity

Tables 1 and 2 summarize the computational complexity of decryption and ho-
momorphic multiplication for our and the Bajard et al. [3] variants. We derived
the complexity estimates for the Bajard et al. variant using the same k and k′

as used in our work, which implies we incremented k′ as needed when additional
auxiliary moduli are introduced. Three main metrics are used to measure the
complexity: number of NTTs, number of integer modular multiplications, and
number of floating-point operations. While these metrics ignore regular modular
reductions and modular additions/subtractions, the integer modular multiplica-
tions are the dominant factor in CRT basis extension and scaling operations in
both variants.

Table 1: Comparison of computational complexity for decryption
RNS variant #-NTTs #-integer-mult #-floating-point-oper
Bajard et al. 2k 3(k + 1)n 0
Our work 2k kn (k + 1)n

Table 2: Computational complexity for homomorphic multiplication
RNS variant #-NTT #-integer-mult #-floating-point-oper
Bajard et al. k2 + 9k + 7k′ + 7 (21 + 10kk′ + 2k2 + 25k + 28k′)n 0
Our work k2 + 9k + 7k′ (10kk′ + 2k2 + 11k + 14k′)n (7k + 3k′ + 10)n

The number of NTTs in the decryption procedure is the same for both vari-
ants, but Bajard et al. use three times as many integer modular multiplications
(due to the operations using an auxiliary modulus). The extra cost that our
variant has is (k + 1)n floating-point multiplications (either using double or ex-
tended double precision). Our experiments indicate that this is faster than kn
integer modular multiplications. Hence our decryption procedure is expected to
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have a lower runtime, which is confirmed by the experimental CPU and GPU
results for both variants presented in [2].

We remark that Bajard et al. also discuss in Section 3.5 [3] a possible op-
timization of their decryption procedure by using some floating-point precom-
putations. However, even that optimized variant requires 2kn integer modular
multiplications.8

Table 2 shows that the homomorphic multiplication procedures of both vari-
ants have almost the same number of NTTs and same coefficients for quadratic
kk′ and k2 terms. However, the coefficients for the k, k′ and constant terms
are significantly larger in the Bajard et al. variant. For instance, when k = 5
the total number of integer multiplications for our variant is 489 n vs. 664 n
multiplications for the Bajard et al. variant, which is 26% less.

The higher numbers of integer modular multiplications in the Bajard et al.
variant are caused by two auxiliary moduli introduced in the procedures. The
profiling of our implementation code showed that the cost of floating-point op-
erations in this case is much smaller than the cost of additional integer modular
multiplications the Bajard et al. variant introduces. In other words, our homo-
morphic multiplication procedure is expected to have a lower runtime, which
is confirmed by the experimental CPU and GPU results for both variants pre-
sented in [2]. More granular comparison of the computational complexity for
both variants is presented in [2].

6 Implementation Details and Performance Results

6.1 Parameter Selection

Tighter heuristic (average-case) noise bounds. The polynomial multipli-
cation expansion factor δ in Eqs. 8 and 9 is typically selected as δ = n for the
worst-case scenario [3,15]. However, our experiments for the textbook BFV, our
BFV variant, and products of discrete Gaussian and ternary generated poly-
nomials showed that we can select δ = C

√
n for practical experiments, where

C is a constant close to one (for the case of power-of-two cyclotomics). This
follows from the Central Limit Theorem (or rather subgaussian analysis), since
all dominant polynomial multiplication terms result from the multiplication of
polynomials with zero-centered random coefficients.

The highest experimental value of C for which we observed decryption fail-
ures was 0.9. We also ran numerous experiments at n varying from 210 to 217

for the cases of (1) multiplying a discrete Gaussian polynomial by a ternary uni-
form polynomial and (2) multiplying a discrete uniform polynomial by a ternary
uniform polynomial, which cover the dominant terms in the noise constraints
for BFV. The highest experimental value of C (observed for the product of a
discrete Gaussian polynomial by a ternary uniform polynomial at n = 1024) was

8 We ignore the option of lazy modular reduction as it can be equally applied to both
techniques.
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1.75. In view of the above, we selected C = 2 for our experiments, i.e., we set
δ = 2

√
n.

Security. To choose the ring dimension n, we ran the LWE security esti-
mator9 (commit f59326c) [1] to find the lowest security levels for the uSVP,
decoding, and dual attacks following the standard homomorphic encryption se-
curity recommendations [7]. We selected the least value of the number of security
bits λ for all 3 attacks on classical computers based on the estimates for the BKZ
sieve reduction cost model.

The secret-key polynomials were generated using discrete ternary uniform
distribution over {−1, 0, 1}n. In all of our experiments, we selected the minimum
ciphertext modulus bitwidth that satisfied the correctness constraint for the
lowest ring dimension n corresponding to the security level λ ≥ 128.

Other parameters.We set the Gaussian distribution parameter σ to 8/
√
2π

[7], the error bound Be to 6σ, and the lower bound for p to 2tnq. For the digit de-
composition of residues in the relinearization procedure, we used the base w of 30
bits for the range of multiplicative depths from 1 to 10. For larger multiplicative
depths, we utilized solely the CRT decomposition.

6.2 Implementation Details

Software Implementation. The BFV scheme based on the decryption and ho-
momorphic multiplication algorithms described in this paper was implemented
in PALISADE10, a modular C++11 lattice cryptography library that supports
several SHE and proxy re-encryption schemes based on cyclotomic rings [19].
The results presented in this work were obtained for a power-of-two cyclotomic
ring Z[x]/ 〈xn + 1〉, which supports efficient polynomial multiplication using ne-
gacylic convolution [16]. For efficient modular multiplication implementation in
NTT, scaling, and CRT basis extension, we used the Number Theory Library
(NTL)11 function MulModPrecon, which is described in Lines 5-7 of Algo-
rithm 2 in [13]. All single-precision integer computations were done in unsigned
64-bit integers. Floating-point computations were done in IEEE 754 double-
precision and extended double-precision floating-point formats.

Our implementation of the BFV scheme is publicly accessible (included in
PALISADE starting with version 1.1).

Loop parallelization. Multi-threading in our implementation is achieved via
OpenMP12. The loop parallelization in the scaling and CRT basis extension
operations is applied at the level of single-precision polynomial coefficients (w.r.t.
n). The loop parallelization for NTT and component-wise vector multiplications
(polynomial multiplication in the evaluation representation) is applied at the
level of CRT moduli (w.r.t. k).

9 https://bitbucket.org/malb/lwe-estimator
10 https://git.njit.edu/palisade/PALISADE
11 http://www.shoup.net/ntl/
12 http://www.openmp.org/
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Experimental setup.We ran the experiments in PALISADE version 1.1, which
includes NTL version 10.5.0 and GMP version 6.1.2. The evaluation environment
for the single-threaded experiments was a commodity desktop computer system
with an Intel Core i7-3770 CPU with 4 cores rated at 3.40GHz and 16GB of
memory, running Linux CentOS 7. The compiler was g++ (GCC) 5.3.1. The
evaluation environment for the multi-threaded experiments was a server system
with 2 sockets of 16-core Intel Xeon E5-2698 v3 at 2.30GHz CPU (which is a
Haswell processor) and 250GB of RAM. The compiler was g++ (GCC) 4.8.5.

6.3 Results

Single-threaded mode. Table 3 presents the timing results for the range of
multiplicative depths L from 1 to 100 for the single-threaded mode of operation.
It also demonstrates the contributions of CRT basis extension, scaling, and NTT
to the homomorphic multiplication time (excluding the relinearization).

Table 3 suggests that the relative contribution of CRT basis extension and
scaling operations to the homomorphic multiplication runtime (without relin-
earization) first declines from 42% at L = 1 to 37% at L = 10, and then grows
up to 50% at L = 100. The remaining execution time is dominated by NTT
operations. Our complexity and profiling analysis indicated that the initial de-
cline is caused by a decreasing contribution (w.r.t. to modular multiplications in
NTTs) of the linear terms of k and k′ to the computational complexity of homo-
morphic multiplication as k increases from 1 to 4 (see Table 2). The subsequent
increase in relative execution time is due to the O(k2n) modular multiplications
needed for CRT basis extension and scaling operations, which start contributing
more than the O(kn log n) modular multiplications in the NTT operations for
polynomial multiplications as k further increases.

Our profiling analysis showed that the contributions of floating-point opera-
tions to CRT basis extension and scaling were always under 5% and 10% (under
5% for k > 5), respectively. This corresponded to at most 2.5% of the total ho-
momorphic multiplication time (typically the value was closer to 1%). This result
justifies the practical use of our much simpler algorithms, as compared to [3],
considering that our approach has lower computational complexity (significantly
more than by 5%, as shown in Section 5.2).

Table 3 also shows that the contribution of the relinearization procedure to
the total homomorphic multiplication time grows from 11% (L = 1) to 57%
(L = 100) due to the quadratic dependence of the number of NTTs in the
relinearization procedure on the number of coprime moduli k.

The profiling of the decryption operation showed that only 8% (L = 100)
to 18% (L = 1) was spent on CRT scaling while at least 60% was consumed
by NTT operations and up to 10% by component-wise vector products. This
supports our analysis, asserting that the decryption operation is dominated by
NTT, and the effect of the scaling operation is insignificant.

Multi-threaded mode. Table 4 illustrates the runtimes for L = 20 on a 32-core
server system when the number of threads is varied from 1 to 32. The highest

21



Table 3: Timing results for decryption, homomorphic multiplication, and relin-
earization in the single-threaded mode; t = 2, log2 qi ≈ 55, λ ≥ 128

L n log2 q k Dec. [ms] Mul. [ms] Relin. [ms]
Multiplication [%]

CRT ext. Scaling NTT
1 211 55 1 0.15 3.16 0.41 34 8 52
5 212 110 2 0.49 10.1 2.58 29 9 56
10 213 220 4 1.89 38.9 18.7 27 10 56
20 214 440 8 8.3 174 78.3 27 14 54
30 215 605 11 25.8 555 332 27 15 52
50 216 1,045 19 95.8 2,368 2,066 30 20 46
100 217 2,090 38 409 12,890 16,994 30 20 46

Table 4: Timing results with multiple threads for decryption, multiplication, and
relinearization, for the case of L = 20, n = 214, k = 8 from Table 3

# of threads Dec. [ms] Mul. [ms] Relin. [ms] Mul. + Relin. [ms]
1 9.83 178.6 95.8 274.4
2 5.90 114.1 53.8 168.0
3 4.93 79.5 49.6 129.1
4 3.92 66.3 37.4 103.7
5 3.95 58.7 38.8 97.5
6 4.07 52.2 40.2 92.4
7 4.01 49.9 38.9 88.8
8 3.13 43.3 29.2 72.5
9 3.17 38.0 31.4 69.5

16 3.37 34.9 32.7 67.6
17 3.46 32.0 33.2 65.2

32 3.47 29.2 33.1 62.4

runtime improvement factors for decryption and homomorphic multiplication
(with relinearization) are 3.1 and 4.4, respectively.

The decryption runtime is dominated by NTT, and the NTTs are paral-
lelized at the level of CRT moduli (parameter k, which is 8 in this case). Ta-
ble 4 shows that the maximum improvement is indeed achieved at 8 threads.
Any further increase in the number of threads increases the overhead related to
multi-threading without providing any improvement in speed. The theoretical
maximum improvement factor of 8 is not reached most likely due to the distri-
bution of the load between the cores of two sockets in the server. A more careful
fine-tuning of OpenMP thread affinity settings would be needed to achieve a
higher improvement factor, which is beyond the scope of this work.

The runtime of homomorphic multiplication (without relinearization) shows
a more significant improvement with increase in the number of threads: it contin-
ues improving until 32 threads and reaches the speedup of 6.1 compared to the
single-threaded execution time. This effect is due to the CRT basis extension and
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scaling operations, which are parallelized at the level of polynomial coefficients
(parameter n = 214). However, as the contribution of NTT operations is high
(nearly 70% for the single-threaded mode, as illustrated in Table 3), the bene-
fits of parallelization due to CRT basis extension and scaling are limited (their
relative contribution becomes smaller as the number of threads increases).

The relinearization procedure is NTT-bound and, therefore, shows approxi-
mately the same relative improvement as the decryption procedure, i.e., a factor
of 2.9, which reaches its maximum value at 8 threads.

In summary, our analysis suggests that the proposed CRT basis extension
and scaling operations parallelize well (w.r.t. ring dimension n) but the over-
all parallelization improvements of homomorphic multiplication and decryption
largely depend on the parallelization of NTT operations. In our implementa-
tion, no intra-NTT parallelization was applied and thus the overall benefits of
parallelization were limited.

7 Conclusion

In this work we described simpler alternatives to the CRT basis extension and
scaling procedures of Bajard et al. [3], and implemented them in the PALISADE
library [18]. These procedures are based on the use of floating-point arithmetic
for certain intermediate computations. Our analysis demonstrates that these
procedures are not only simpler, but also have lower computational complexity
and noise growth than the procedures proposed in [3].

Our single-threaded and multi-threaded experiments suggest that the main
bottleneck of the implementation of our BFV variant is the NTT operations.
In other words, the cost of the CRT maintenance procedures, i.e., CRT basis
extension and scaling, is relatively small. Therefore, further impovements in the
BFV runtimes can be achieved by optimizing the NTT operations, focusing on
their parallelization.

We have shown that our procedures can be applied to any scale-invariant
homomorphic encryption scheme based on the original Brakerski’s scheme, in-
cluding YASHE. The CRT basis extension and scaling procedures may also be
utilized in other lattice-based cryptographic constructions; for instance, scaling
is a common technique used in many lattice schemes based on dual Regev’s
cryptosystem [11,20].
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A Appendices

A.1 Alternative variant of complex scaling in CRT representation

This section presents an alternative variant of complex scaling in CRT represen-
tation. This variant has a reduced size requirement for p (by a factor of t) and
very similar computational complexity.

The input is x ∈ Zqp, represented in the CRT basis {q1, . . . , qk, p1, . . . , pk′}.
We need to scale it by t/q and round, and we want the result modulo q in the
CRT basis {q1, . . . , qk}. Namely, we want to compute

[
⌈t/q · x⌋

]

qi
for all i. We

combine techniques from the procedures in Sections 2.2 and 2.3, computing the
ratio υ as in Section 2.2, then computing Eq. 3 modulo each of the qi’s similarly
to Section 2.3. Let us denote: Q := qp, Q∗

i := Q/qi = q∗i p, Q
′
j
∗
:= Q/pj = qp∗j ,

and also Q̃i = [(Q∗
i )

−1]qi and Q̃′
j = [(Q′

j
∗
)−1]pj

. Then by Eq. 3 we have

t

q
· x =

t

q

(
k∑

i=1

[xiQ̃i]qiQ
∗

i +

k′

∑

j=1

[x′jQ̃
′
j ]pj

Q′

j
∗ − υQ

)

=

k∑

i=1

[xiQ̃i]qi · tp/qi +
k′

∑

j=1

[x′jQ̃
′
j ]pj
· tp∗j − υtp, (14)

and the ratio υ is computed as

υ =

⌈∑k
i=1[xiQ̃i]qiQ

∗
i +

∑k′

j=1[x
′
jQ̃

′
j ]pj

Q′
j
∗

Q

⌋

=







k∑

i=1

[xiQ̃i]qi
qi

+
k′

∑

j=1

[x′jQ̃
′
j ]pj

pj




 .

We thus compute yi := [xiQ̃i]qi and zi = yi/qi for all i, and y
′
j := [x′jQ̃

′
j ]pj

and

z′j = y′j/pj for all j, and set υ :=
⌈
∑

i zi +
∑

j z
′
j

⌋

.

As in Section 2.3, we pre-compute all the values tp/qi
qi

, breaking them into

their integral and fractional parts, tp
qi

= ω′
i+θ

′
i with ω

′
i ∈ Ztp and θ

′
i ∈ [− 1

2 ,
1
2 ). We

store all the θ′i’s as double floats, and for every i, i′ we store the single-precision
integer ω′

i,i′ = [ω′

i′ ]qi . In addition, and for every i, j we store ζi,j = [tp∗j ]qi , and
for every i we store λj := [tp]qi .

On inputs (x1, . . . , xk, x
′
1, . . . , x

′

k′) we compute υ and all the yi’s and y
′
j ’s as

above, then compute Eq. 14 modulo each of the qi’s, by setting

v′ := ⌈
∑

i θ
′
iyi⌋ , and for all i w′

i :=
[∑

i′ yi′ω
′

i,i′ +
∑

j y
′
jζi,j + υλj

]

qi
.

The complex scaling procedure returns [⌈t/q · x⌋]qi = [v′ + w′
i]qi for all i.

Correctness. The correctness details are essentially the same as for the complex
scaling in Section 2.4.

Complexity analysis. Computing υ and the yi’s and y
′
j ’s takes k+k

′ modular
multiplications and k+k′+1 floating point operations. Then computing v′ takes
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k + 1 more floating-point operations, and computing each w′
i takes k + k′ + 1

modular multiplications. In total, complex CRT scaling therefore takes 2k +
k′ + 2 floating point operations and kk′ + k2 + 2k + k′ single-precision modular
multiplications.
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