
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998 21

Efficient Collision Detection Using
Bounding Volume Hierarchies of k-DOPs
James T. Klosowski, Martin Held, Joseph S.B. Mitchell, Henry Sowizral, and Karel Zikan

Abstract—Collision detection is of paramount importance for many applications in computer graphics and visualization. Typically,
the input to a collision detection algorithm is a large number of geometric objects comprising an environment, together with a set of
objects moving within the environment. In addition to determining accurately the contacts that occur between pairs of objects, one
needs also to do so at real-time rates. Applications such as haptic force-feedback can require over 1,000 collision queries per second.

In this paper, we develop and analyze a method, based on bounding-volume hierarchies, for efficient collision detection for
objects moving within highly complex environments. Our choice of bounding volume is to use a “discrete orientation polytope”
(“k-dop”), a convex polytope whose facets are determined by halfspaces whose outward normals come from a small fixed set
of k orientations. We compare a variety of methods for constructing hierarchies (“BV-trees”) of bounding k-dops. Further, we
propose algorithms for maintaining an effective BV-tree of k-dops for moving objects, as they rotate, and for performing fast collision
detection using BV-trees of the moving objects and of the environment.

Our algorithms have been implemented and tested. We provide experimental evidence showing that our approach yields
substantially faster collision detection than previous methods.

Index Terms—Collision detection, intersection searching, bounding volume hierarchies, discrete orientation polytopes, bounding
boxes, virtual reality, virtual environments.

—————————— ✦ ——————————

1 INTRODUCTION

HE collision detection (CD) problem takes as input a
geometric model of a scene or environment (e.g., a

large collection of complex CAD models), together with a
set of one or more moving (“flying”) objects, possibly ar-
ticulated, and asks that we determine all instants in time at
which there exists a nonempty intersection between some
pair of flying objects, or between a flying object and an en-
vironment model. Usually, we are given some information
about how the flying objects are moving, at least at the cur-
rent instant in time; however, the motions may change
rapidly, depending on the evolution of a simulation (e.g.,
modeling some physics of the system), or due to input de-
vices under control of the user. In some applications, it is
important to make computations based on the geometry of
the region of intersection between pairs of colliding objects;
in these cases, we must not only detect that a collision oc-
curs, but also report all pairs of primitive geometric ele-
ments (e.g., triangles) that are intersecting at that instant.
Thus, we can distinguish between the CD problem of pure
detection and the CD problem of detect and report.

Real-time collision detection is of critical importance in
computer graphics, visualization, simulations of physical

systems, robotics, solid modeling, manufacturing, and mo-
lecular modeling. The requirement for speed in interactive
use of virtual environments is particularly challenging; e.g.,
haptic force-feedback can require on the order of 1,000 in-
tersection queries per second. One may, for example, wish
to interact with a virtual world that models a cluttered me-
chanical workspace, and ask how easily one can assemble,
access, or replace component parts within the workspace:
Can a particular subassembly be removed without colli-
sions with other parts, and while not requiring undue
awkwardness for the mechanic? When using haptic force-
feedback, the mechanic is not only alerted (e.g., audibly or
visually) about a collision, but actually feels a reactionary
force, exerted on his body by a haptic device.

A simple-minded approach to CD involves comparing
all pairs of primitive geometric elements. This method
quickly becomes infeasible as the model complexity rises to
realistic sizes. Thus, many approaches have recently been
proposed to address the issue of efficiency; we discuss these
below.

1.1 Our Contribution
In this paper, we present a new approach to CD, based on a
form of bounding volume hierarchy (“BV-tree”). Our main
contributions include:

1)�A careful study of effective methods of constructing
BV-trees, using “discrete orientation polytopes” (“k-
dops”);

2)�An effective method for applying BV-trees of k-dops
for moving (rotating) objects, as well as an efficient
algorithm, using BV-trees, for detecting collisions,

1
 as

1. Strictly speaking, we check for intersections among surfaces rather
than volumes. Thus, if one object contains another object but their surfaces
do not intersect, then “no collision” is reported by our algorithm.

1077-2626/97/$10.00 © 1997 IEEE

²²²²²²²²²²²²²²²²

•� J.T. Klosowski , M. Held, and J.S.B. Mitchell are with the Department of
Applied Mathematics and Statistics, State University of New York, Stony
Brook, NY 11794-3600.
E-mail: {jklosow, held, jsbm}@ams.sunysb.edu.

•� H. Sowizral is with Sun Microsystems, 2550 Garcia Avenue, UMPK14-
202, Mountain View, CA 94043-1100.
E-mail: henry.sowizral@eng.sun.com.

•� K. Zikan is with the Faculty of Informatics, Masaryk University, Botanicka
68a, Brno, Czech Republic, and is a consultant for Sun Microsystems.
E-mail: zikan@fi.muni.cz.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 105744.

T

22 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

objects move within a complex static environment;
and

3)�Experimental results, with real and simulated data, to
study design issues of BV-trees that are most relevant
to collision detection.

We have paid careful attention to the generation of par-
ticularly challenging and diverse datasets for algorithm
design and for comparative studies. Our tests provide ex-
perimental evidence that our methods compare quite fa-
vorably with the best previous methods.

This paper is accompanied by supplementary material
on the WWW, including additional color photos, sample
datasets, and the (soon to be released) source code; refer to
the authors’ web pages.

The remainder of the paper is organized as follows: Prior
and related work is reviewed in Section 2. Section 3 pro-
vides an introduction to BV-trees, discrete orientation
polytopes, and design choices in constructing effective BV-
trees. Section 4 highlights our collision detection algorithm
and several key issues related to it. Implementation details
and experimental results are reported in Section 5. The con-
clusion, Section 6, includes a discussion of extensions and
future work.

2 PREVIOUS WORK

Due to its widespread importance, there has been an abun-
dance of work on the problem of collision detection. Many
of the approaches have used hierarchies of bounding vol-
umes or spatial decompositions to address the problem.
The idea behind these approaches is to approximate the
objects (with bounding volumes) or to decompose the space
they occupy (using decompositions), to reduce the number
of pairs of objects or primitives that need to be checked for
contact.

Octrees [33], [35], k-d trees [24], BSP-trees [34], brep-
indices [8], [42], tetrahedral meshes [24], and (regular) grids
[19], [24] are all examples of spatial decomposition tech-
niques. By dividing the space occupied by the objects, one
needs to check for contact between only those pairs of ob-
jects (or parts of objects) that are in the same or nearby cells
of the decomposition. Using such decompositions in a hier-
archical manner (as in octrees, BSP-trees, etc.) can further
speed up the collision detection process.

Hierarchies of bounding volumes have also been a very
popular technique for collision detection algorithms. (They
have also been widely used in other areas, e.g., ray tracing
[1], [20], [29], [44].) In building hierarchies on objects, one
can obtain increasingly more accurate approximations of
the objects, until the exact geometry of the object is reached.
The choice of bounding volume has often been to use
spheres [27], [28], [37] or axis-aligned bounding boxes
(AABBs) [7], [24], due to the simplicity in checking two
such volumes for overlap (intersection). In addition, it is
simple to transform these volumes as an object rotates and
translates.

Another bounding volume that has become popular re-
cently is the oriented bounding box (OBB), which sur-
rounds an object with a bounding box (hexahedron with
rectangular facets) whose orientation is arbitrary with re-

spect to the coordinate axes; cf. Fig. 1b. This volume has the
advantage that it can, in general, yield a better (tighter)
outer approximation of an object, as its orientation can be
chosen in order to make the volume as small as possible. In
1981, Ballard [2] created a two-dimensional hierarchical
structure, known as a “strip tree,” for approximating
curves, based on oriented bounding boxes in the plane.
Barequet et al. [6] have recently generalized this work to
three dimensions (resulting in a hierarchy of OBBs known
as a “BOXTREE”), for applications of oriented bounding
boxes for fast ray tracing and collision detection. Zachmann
and Felger [45], [46] have used a similar term, “BoxTree,”
for their hierarchies of oriented boxes, which are also used
for collision detection, but are differently constructed from
the “BOXTREE” of Barequet et al.

One leading system publicly available for performing
collision detection among arbitrary polygonal models is the
“RAPID” system, which is also based on a hierarchy of ori-
ented bounding boxes, called “OBBTrees,” implemented by
Gottschalk et al. [21]. The efficiency of this method is due,
in part, to an algorithm for determining whether two ori-
ented bounding boxes overlap. This algorithm is based on
examining projections along a small set of “separating axes”
and is claimed to be an order of magnitude faster than pre-
vious algorithms. (We note that Greene [22] previously
published a similar algorithm; however, we are not aware
of any empirical comparisons between the two algorithms.)

Other approaches to collision detection have included
using space-time bounds [27] and four-dimensional ge-
ometry [9], [10] to bound the positions of objects within the
near future. By using a fourth dimension to represent the
simulation time, contacts can be pinpointed exactly; how-
ever, these methods are restrictive in that they require the
motion to be prespecified as a closed-form function of time.
Hubbard’s space-time bounds [27] do not have such a re-
quirement; by assuming a bound on the acceleration of ob-
jects, he is able to avoid missing collisions between fast-
moving objects.

There has been a collection of innovative work which
utilizes Voronoi diagrams [11], [30], [31], [32] to keep track
of the closest features between pairs of objects. One popular
system, I-COLLIDE [11], uses spatial and temporal coher-
ence in addition to a “sweep-and-prune” technique to re-
duce the pairs of objects that need to be considered for col-
lision. Although this software works well for many simul-
taneously moving objects, the objects are restricted to be
convex. More recently, Ponamgi et al. have generalized this
work to include nonconvex objects [38].

In addition to the “practical” work highlighted above,
there have also been a considerable number of “theoretical”
results on the problem of collision detection in the field of
computational geometry. In particular, the distance (and
thus intersection) between two convex polytopes can be

determined in O(log
2

n), where n is the total number of ver-

tices of the polytopes, by using the Dobkin-Kirkpatrick hi-
erarchy [15], [16], [17], which takes O(n) time and space to
construct. In the case of one convex polytope and one non-
convex polytope, the intersection detection time increases to
O(n log n) [14], [40], while actually computing the intersec-
tion [18] takes O(K log K) time, where K is the size of the

KLOSOWSKI ET AL.: EFFICIENT COLLISION DETECTION USING BOUNDING VOLUME HIERARCHIES OF K-DOPS 23

input plus output. Schömer [40] detects the intersection
between two translating “c-iso-oriented” polyhedra (non-
convex, having normals among c directions, where c is a

fixed constant) in time O(n
5/3+e

), for any fixed positive con-

stant e > 0. Schömer and Thiel [41] have recently provided
the first provably (worst case) subquadratic time algorithm
for a general collection of polyhedra in motion along fixed
trajectories. However, the result is purely of theoretical in-
terest, as the methods are based on several sophisticated
(unimplemented) techniques.

Recently, Suri et al. [43] have given theoretical results
that may help to explain the practicality of bounding vol-
ume methods, such as our own. In particular, they show
that in a collection of objects that have bounded aspect ratio
and scale factor,

2
 the number of pairs of objects whose

bounding volumes intersect is roughly proportional, as-
ymptotically, to the number of pairs of objects that actually
intersect, plus the number of objects. Suri et al. use this
result to obtain an output-sensitive algorithm for de-
tecting all intersections among a set of convex polyhedra,
having bounded aspect ratio and scale factor; their time
bound is O((n + k)log

2
 n), for n polyhedra, where k is the

number of pairs of polyhedra that actually intersect.

3 BV-TREES

We assume as input a set S of n geometric “objects,” which, for
our purposes, are generally expected to be triangles in 3D that
specify the boundary of some polygonal models. Much of our
discussion, though, applies also to more general objects.

A BV-tree is a tree, BVT(S), that specifies a bounding vol-

ume hierarchy on S. Each node, n, of BVT(S) corresponds to

a subset, Sn Õ S, with the root node being associated with
the full set S. Each internal (nonleaf) node of BVT(S) has
two or more children; the maximum number of children for
any internal node of BVT(S) is called the degree of BVT(S),

denoted by d. The subsets of S that correspond to the chil-

dren of node n form a partition of the set Sn of objects associ-

ated with n. In a complete BV-tree of S, the leaf nodes are asso-
ciated with singleton subsets of S. The total number of nodes

in BVT(S) is at most 2n - 1; the height of a complete tree is at
least log

d
n , which is achieved if the BV-tree is balanced.

Also associated with each node n of BVT(S) is a bounding vol-

ume, b(Sn), that is an (outer) approximation to the set Sn using
a smallest instance of some specified class of shapes (e.g.,
boxes, spheres, polytopes of a given class, etc.).

In most of this paper, we will be focusing on the case of a
single (rigid) object, specified by a set F of boundary primi-
tives (triangles), given in one particular position and ori-
entation, that is moving (“flying”) within an environment,
specified by a set E of “obstacle” primitives (triangles). We
refer to BVT(F) as the flying hierarchy and BVT(E) as the en-
vironment hierarchy.

2. The aspect ratio of an object is defined here to be the ratio between the
volume of a smallest enclosing sphere and a largest enclosed sphere. The
scale factor for the collection of objects is the ratio between the volume of
the largest enclosing sphere and the smallest enclosing sphere.

3.1 Design Criteria
The choice of which class (or classes) of shapes to use as
bounding volumes in a BV-tree is usually dependent upon
the application domain and the different constraints inherent
to it. In ray tracing, for example, the bounding volumes cho-
sen should tightly fit the primitive objects but also allow for
efficient intersection tests between a ray and the bounding
volumes [29]. Weghorst et al. [44] discussed making this
choice for ray tracing, and they provided a cost function to
help analyze hierarchical structures of bounding volumes.
Gottschalk et al. [21] looked at this same cost function in the
context of collision detection. Given two large input models
and hierarchies built to approximate them, the total cost to
check the models for intersection was quantified as

T = Nv ¥ Cv + Np ¥ Cp, (1)

where T is the total cost function for collision detection, Nv

is the number of pairs of bounding volumes tested for
overlap, Cv is the cost of testing a pair of bounding volumes
for overlap, Np is the number of pairs of primitives tested
for contact, and Cp is the cost of testing a pair of primitives
for contact.

While (1) is a reasonable measure of the cost associated
with performing a single intersection detection check, it
does not take into account the cost of updating the flying
hierarchy as the flying object rotates. While, for some
choices of bounding volumes (e.g., spheres), there is little or
no cost associated with updating the flying hierarchy, in
general, there will be such a cost, and, in particular, we ex-
perience an update cost for our choice (k-dops). Thus, we
propose that for collision detection in motion simulation that
the cost is best written as the sum of three component terms:

T = Nv ¥ Cv + Np ¥ Cp + Nu ¥ Cu, (2)

where T, Nv, Cv, Np, and Cp are defined as in (1), while Nu is
the number of nodes of the flying hierarchy that must be
updated, and Cu is the cost of updating each such node.

Based upon this cost function, we would like our
bounding volumes to:

1)�Approximate tightly the input primitives (to lower
Nv, Np, and Nu),

2)�Permit rapid intersection tests to determine if two
bounding volumes overlap (to lower Cv), and

3)�Be updated quickly when the primitives (and conse-
quently the bounding volumes) are rotated and
translated in the scene (to lower Cu).

Unfortunately, these objectives usually conflict, so a balance
among them must be reached.

3.2 Discrete Orientation Polytopes
Here, we concentrate on our experience with bounding
volumes that are convex polytopes whose facets are deter-
mined by halfspaces whose outward normals come from a
small fixed set of k orientations. For such polytopes, we have
coined the term discrete orientation polytopes, or “k-dops,” for
short.

3
 See Fig. 1c for an illustration in two dimensions of

3. An alternative name for what we call a “dop” is the term fixed-directions
hull [47] (FDH)—perhaps a slightly more precise term, but a harder to pro-
nounce abbreviation.

24 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

an eight-dop, whose eight fixed normals are determined
by the orientations at ±45, ±90, ±135, and ±180 degrees.
Axis-aligned bounding boxes (in 3D) are 6-dops, with ori-
entation vectors determined by the positive and negative
coordinate axes. In this paper, we concentrate on 6-dops,
14-dops, 18-dops, and 26-dops, defined by orientations
that are particularly natural; see Section 3.3.3 for more
detail.

Researchers at IBM have used the same 18-dops (which
they call “triboxes” or “T-boxes”) for visual approximation
purposes within 3DIX [12], [13]. This idea of using planes of
fixed orientations to approximate a set of primitive objects
was first introduced in the ray tracing work of Kay and Ka-
jiya [29].

Axis-aligned bounding boxes (AABBs) are often used in
hierarchies because they are simple to compute and they
allow for very efficient overlap queries. But AABBs can also
be particularly poor approximations of the set that they
bound, leaving large “empty corners”; consider, for exam-
ple, a needle-like object that lies at a 45-degree orientation
to the axes. Using k-dops, for larger values of k, allows the
bounding volume to approximate the convex hull more
closely. Of course, the improved approximation (which
tends to lower Nv, Np, and Nu) comes at the cost of increas-
ing the cost, Cv, of testing a pair of k-dops for intersection
(since Cv = O(k)) and the cost, Cu, of updating k-dops in the
flying hierarchy (since Cu = O(k

2
)).

To keep the associated costs as small as possible, we
have been using only k-dops whose discrete orientation
normals come as pairs of collinear, but oppositely oriented,
vectors. Kay and Kajiya referred to such pairs as bounding
slabs [29]. Thus, as an AABB bounds (i.e., finds the mini-
mum and maximum values of) the primitives in the x, y,
and z directions, our k-dops will also bound the primitives
but in k/2 directions. This has the advantage in that our
(conservative) disjointness test for two k-dops is essentially
as trivial as checking two AABBs for overlap: we simply
perform k/2 interval overlap tests. This test is far simpler
than checking for intersection between OBBs or between
convex hulls. Further, since the k/2 defining directions are
fixed, the memory required to store each k-dop is only k
values (one value per plane), since the orientations of the
planes are known in advance.

Bounding spheres are another natural choice to ap-
proximate an object, since it is particularly simple to test
pairs for overlap, and the update for a moving object is
trivial. However, spheres are similar to AABBs in that they
can be very poor approximations to the convex hull of the
contained object. Hence, bounding spheres yield low costs
Cv and Cu, but may result in a large number, Np, of pairs of
primitives to test. Oriented bounding boxes (OBBs) can
yield much tighter approximations than spheres and
AABBs, in some cases. Also, it is relatively simple to update
an OBB, by multiplying two transformation matrices. How-
ever, the cost Cv for determining if two OBBs overlap is
roughly an order of magnitude larger than for AABBs [21].
At the extreme, convex hulls provide the tightest possible
convex bounding volume; however, both the test for over-
lap and the update costs are relatively high.

In comparison, our choice of k-dops for bounding vol-
umes is made in hopes of striking a compromise between
the relatively poor tightness of bounding spheres and
AABBs, and the relatively high costs of overlap tests and
updates associated with OBBs and convex hulls. The pa-
rameter k allows us some flexibility too in striking a balance
between these competing objectives. For moderate values of
k, the cost Cv of our conservative disjointness test is an or-
der of magnitude faster than testing two OBBs. Also, while
updating a k-dop for a rotating object is more complex than
updating some other bounding volumes, we have devel-
oped a simple approximation approach, discussed in Sec-
tion 4.1, that works well in practice.

Fig. 1 highlights the differences in some of the typical
bounding volumes. Here, we provide a simple two-
dimensional illustration of an object and its corresponding
approximations by an axis-aligned bounding box (AABB),
an oriented bounding box (OBB), and a k-dop (where k = 8).

3.3 Design Choices
Our study has included a comparison of various design
choices in constructing BV-trees, including:

1)� the degree, d, of the tree (binary, ternary, etc.);
2)� top-down versus bottom-up construction;
3)� the choice of the k-dops; and
4)� splitting rules.

 (a) (b) (c)

Fig. 1. Approximations of an object by three bounding volumes: an axis-aligned bounding box (AABB), an oriented bounding box (OBB), and
a k-dop (where k = 8).

KLOSOWSKI ET AL.: EFFICIENT COLLISION DETECTION USING BOUNDING VOLUME HIERARCHIES OF K-DOPS 25

3.3.1 Degree of the Tree
Minimizing the height of the tree is usually a desirable
quality when building a hierarchy, so that, when searches
are performed, we can traverse the tree, from the root to a
leaf, in a small number of steps. The degree, d, specifies the
maximum number of children any node can have. Typically,
the higher the degree, the smaller the height of the tree. There
is, of course, a trade-off between trees of high and low de-
gree. A tree with a high degree will tend to be shorter, but
more work will be expended per node of the search. On the
other hand, a low-degree tree will have greater height, but
less work will be expended per node of the search.

We have chosen to use binary (d = 2) trees for all of the
experiments reported herein, for two reasons. First, they are
simpler and faster to compute, since there are fewer options
in how one splits a set in two than how one partitions a set
into three or more subsets. Second, analytical evidence sug-

gests that binary trees are better than d-ary trees, for d > 2.
In particular, if one considers balanced trees (with n leaves)

whose internal nodes have degree d ≥ 2, then the amount of
work expended in searching a single path from root to leaf
is proportional to f nd d

d
() = log . Simple calculus shows

that the function f(d) is minimized over d Œ (1, •) by setting

d = e (the base of the natural logarithm). Restricting d to

integer values greater than one, we see that f(d) is mini-

mized by d = 2. Of course, this analysis does not address the
fact that a typical search of a BV-tree will not consist of a
single root-to-leaf path. However, from our limited investi-
gation of some typical searches, we have found that our

choice of d = 2 is justified. We leave for future work the
thorough experimental investigation of the trade-offs be-

tween different values of d.

3.3.2 Top-Down Versus Bottom-Up
In constructing a BV-tree on a set, S, of input primitives, we
can do so in either a top-down or a bottom-up manner. A
bottom-up approach begins with the input primitives as the
leaves of the tree and attempts to group them together re-
cursively (taking advantage of any local information), until
we reach a single root node which approximates the entire
set S. One example of this approach is the “BOXTREE,” by
Barequet et al. [6].

A top-down approach starts with one node which ap-
proximates S, and uses information based upon the entire
set to recursively divide the nodes until we reach the leaves.
OBBTrees [21] are one example of this approach.

In all of our tests reported here, we also construct our BV-
trees in a top-down approach. While we have some limited
experience with one bottom-up method of tree construction,
we do not have enough experience yet in comparing alterna-
tives to be able to make definitive conclusions about which is
better; thus, we leave this issue for future investigation.

3.3.3 Choice of k-DOPs
Our investigations use 6-dops (AABBs), 14-dops, 18-dops,
and 26-dops. More specifically, for our choice of 14-dop, we
find the minimum and maximum coordinate values of the
vertices of the primitives along each of seven axes, defined by

the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, -1, 1), (1, 1, -1),
and (1, -1, -1). Thus, this particular k-dop uses the six half-
spaces that define the facets of an AABB, together with
eight additional diagonal halfspaces that serve to “cut off”
as much of the eight corners of an AABB as possible. Our
choice of 18-dop also derives six of its halfspaces from those
of an AABB, but augments them with 12 additional diago-
nal halfspaces that serve to cut off the 12 edges of an AABB;
these 12 halfspaces are determined by six axes, defined
by the direction vectors (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, -1, 0),
(1, 0, -1), and (0, 1, -1). Finally, our choice of 26-dop is sim-
ply determined by the union of the defining halfspaces for
the 14-dops and 18-dops, utilizing the six halfspaces of an
AABB, plus the eight diagonal halfspaces that cut off corners,
plus the 12 halfspaces that cut off edges of an AABB.

We emphasize that our choice of k-dops is strongly influ-
enced by the ease with which each of these bounding vol-
umes can be computed. In particular, the normal vectors are
chosen to have integer coordinates in the set {-1, 0, 1}, im-
plying that no multiplications are required for computing
them. We leave to future work the investigation of other
(larger) values of k, e.g., k-dops determined by normal vec-
tors having integer coordinates in the set {0, ±1, ±2}.

Fig. 4a provides an example of each of our k-dops. In the
center of the picture is the input model: a “spitfire” aircraft.
The four other images of Fig. 4a show, from left to right, and
top to bottom, the corresponding six-, 14-, 18-, and 26-dop
which approximates the spitfire. In a BV-tree of this model,
the bounding volumes shown would represent the bound-
ing volume, b(S), associated with the root node (Level 0),
for each choice of k. Similarly, Figs. 4b, c, and d depict Lev-
els 1, 2, and 5 of the corresponding BV-trees of the spitfire.

3.3.4 Splitting Rules for Building the Hierarchies
Each node n in a BV-tree corresponds to a set Sn of primitive
objects, together with a bounding volume (BV), b(Sn). In
constructing effective BV-trees, our goal is to assign subsets
of objects to each child, n ¢, of a node n, in such a way as to
minimize some function of the “sizes” of the children,
where the size is typically the volume or the surface area of
b(Sn ¢). For ray tracing applications, the objective is usually
to minimize the surface area, since the probability that a ray
will intersect a BV is proportional to its surface area. For
collision detection, though, we minimize the volume, ex-
pecting that it is proportional to the probability that it inter-
sects another object.

Since we are using binary trees, the assignment of objects

to children reduces to the problem of partitioning Sn in two.

There are 1
2

2 2
S

n -c h different ways to do this; thus, we can-

not afford to consider all partitions. Instead, we associate

each triangle of Sn with a single “representative” point (we

use the centroid), and we split Sn in two by picking a plane
orthogonal to one of the three coordinate axes, and assigning
a triangle to the side of the plane where the centroid lies. This

results in at most 3 ◊ (|Sn| - 1) different nontrivial splits,
since there are three choices of axis and, for each axis, there

are |Sn| - 1 different splits of the centroid points.

26 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

Choice of Axis. We choose a plane orthogonal to the x-, y-,
or z-axis based upon one of the following objective
functions:

Min Sum: Choose the axis that minimizes the sum of the
volumes of the two resulting children.

Min Max: Choose the axis that minimizes the larger of
the volumes of the two resulting children.

Splatter: Project the centroids of the triangles onto each of
the three coordinate axes and calculate the variance of
each of the resulting distributions. Choose the axis
yielding the largest variance.

Longest Side: Choose the axis along which the k-dop,
b(Sn), is longest.

The amount of time required to evaluate each of the
above objective functions varies greatly, and this leads to
corresponding variation in the preprocessing time to build
a BV-tree. The “longest side” method is the fastest, requir-
ing only three subtractions and two comparisons to deter-
mine which axis to choose. The next fastest is the “splatter”
method, which runs in linear time, O(|Sn|). The slowest
methods are “min sum” and “min max,” which both re-
quire that we calculate the volumes occupied by each of the
three pairs of possible children; this requires time O(k|Sn|)
to compute the six k-dops for the candidate children, plus
O(k log k) to compute the volumes of these k-dops.

4

In Section 5, we report on the results of experiments
comparing these four methods of selecting the axis. (See
Tables 4 and 5.) The default method in the current software
is the “splatter” method, which, while giving slightly worse
collision detection times than the “min sum” method, gives
a preprocessing time that is an order of magnitude less than
“min sum.”

An interesting question for future work is to investigate
the effect of allowing the axis to be chosen from a larger set,
e.g., it may be beneficial to permit the axis to be in any of
the k/2 directions that define the k-dops that we are using
in the BV-tree. Of course, any such potential improvement
in collision detection time must be weighed against the in-
creased cost of preprocessing.

Choice of Split Point. Once we have chosen the axis that
will be orthogonal to the splitting plane, we must deter-
mine the position of the splitting plane, from among the
|Sn| - 1 possibilities.

We have investigated in depth two natural choices for the
splitting point: the mean of the centroid coordinates (along
the chosen axis), or the median of the centroid coordinates.

In the prior work of Held et al. [24], the median was al-
ways used for splitting, with the rationale that one wants to
obtain the most balanced possible BV-tree.

However, here we investigated also the option of split-
ting at the mean, in case this results in a tighter fitting
bounding volume approximation, while not harming the
balance of the tree too severely. In fact, in the earlier work of
Held et al. [25], experiments showed that the total volume of

4. The volume of a k-dop can be computed by first finding the B-rep, to
identify the vertices, and, then, summing the volumes of the O(k) tetrahedra
in a tetrahedralization of the k-dop, e.g., obtained simply from the vertex
information. The B-rep of the k-dop can be found in time O(k log k), as ex-
plained in Section 4.1.

the BVs in the tree was less in the case of splitting at the
mean versus the median. Since the total volume associated
with the tree may be considered to be a good indicator of
the quality of approximation, this previous work suggested
that we should investigate the impact of this choice (median
versus mean) on the efficiency of collision detection.

For the datasets reported in Section 5.2, we compared the
number of operations required for collision detection (Nv,
Np, and Nu) when the hierarchies were built using each of
the two choices. In every test run, there were more opera-
tions performed when using the median than when using
the mean. Thus, even though the hierarchies were usually
deeper when using the mean, the overall amount of work
done during the collision detection checks was less due to
the better approximations. In addition, the average collision
detection time was also greater in every case when using the
median: the smallest increase being 1 percent, and the larg-
est increase being 35 percent. It thus became clear that the
tighter approximations provided by using the mean out-
weighed the better balanced trees produced by using the
median. For more details on these experiments, please refer
to Tables 4 and 5 in Section 5.2.

Our implementation selects between only these two pos-
sibilities (the mean or the median). We can, however, pro-
pose some alternatives for future investigation in the opti-
mizing of the splitting decision, depending on how much
preprocessing time is available for constructing the hierar-
chy: We could optimize over

1)� all |Sn| - 1 different centroid coordinates, or
2)�a random subset of these coordinates.

4 COLLISION DETECTION USING BV-TREES

We turn now to the problem of how best to use the flying
hierarchy, BVT(F), and the environment hierarchy, BVT(E),
to perform collision detection (CD) queries. In processing
these CD queries, we consider choices of:

1)� the method of updating the k-dops in the flying hier-
archy as the flying object rotates, so that they continue
to approximate the same subset of primitive objects;

2)� the algorithm for comparing the two BV-trees to de-
termine if there is a collision;

3)� the depth of the flying hierarchy; and
4)� the order in which to perform the k/2 interval overlap

tests when testing two k-dops for intersection.

4.1 Tumbling the BV-Trees
For each position of the flying object in the scene, we will
need to have a BV-tree representing the flying hierarchy, in
order to be able to perform CD queries efficiently. If the
flying object were only to translate, then the BV-tree that we
construct for its initial position and orientation would re-
main valid, modulo a translation vector, in any other posi-
tion. However, the flying object also rotates. This means that
if we were to transform (translate and rotate) each bound-
ing k-dop, b(Sn), represented at each node of the flying hier-
archy, we would have a new set of bounding k-dops,
forming a valid BV-tree for the transformed object, but the
normal vectors defining them would be a different set of

KLOSOWSKI ET AL.: EFFICIENT COLLISION DETECTION USING BOUNDING VOLUME HIERARCHIES OF K-DOPS 27

k vectors than those defining the k-dops in the environment
hierarchy (which did not rotate). This would defeat the
purpose of having k-dops as bounding volumes, since the
overlap test between two k-dops having different defining
normal vectors is far more costly than the conservative dis-
jointness test used for aligned k-dops. Thus, it is important
to address the issue of “tumbling” the bounding k-dops in
the flying hierarchy. The cost of each such updating opera-
tion has been denoted by Cu in (2).

One “brute force” approach to this issue is to recompute
the entire flying hierarchy at each step of the flight. This is
clearly too slow for consideration. A somewhat less brute
force approach is to preserve the structure of the flying hi-
erarchy, with no changes to the sets Sn, but to update the
bounding k-dops for each node of the flying hierarchy, at
each step of the flight. This involves finding the new maxi-
mum and minimum values of the primitive vertex coordi-
nates along each of the k/2 axes defining the k-dops. This is
still much too costly, both in terms of time and in terms of
storage, since we would have to store with each node the
coordinates of all primitive vertices (or at least those that
are on the convex hull of the set of vertices in Sn).

So, we considered two other methods to tumble the
nodes n, while preserving the structure of the hierarchy:

1)�A “hill climbing” algorithm that stores the B-rep
(boundary representation) of the convex hull of Sn, and
uses it to perform local updates to obtain the new (ex-
act) bounding k-dop from the bounding k-dop of Sn in
the previous position and orientation. The local up-
dates involve checking a vertex that previously was
extremal (say, maximal) in one of the k/2 directions, to
see if it is still maximal; this is done by examining the
neighbors of the vertex. If a vertex is no longer maxi-
mal, then we “climb the hill” by going to a neighboring
vertex whose corresponding coordinate value increases
the most. By its very nature, this algorithm exploits
step-to-step coherence, requiring less time for updates
corresponding to smaller rotations. The worst-case
complexity, though, is O(k

2
), and this upper bound is

tight, since each of the k extremal vertices may require
W(k) local moves on the B-rep to update.

2)�An “approximation method” that attempts only to find
an approximation (an outer approximation) to the true

bounding k-dop for the transformed Sn. This method

stores only the vertices, V(Sn), of the k-dop b(Sn), com-

puted once, in the model’s initial orientation.
5
 Then, as

Sn tumbles, we use the “brute force” method to com-
pute the exact bounding k-dop of the transformed set

V(Sn); this bounding k-dop still contains the trans-

formed Sn, but it need not be the smallest k-dop
bounding it.

Fig. 2 shows a two-dimensional example of method 2. In
this example, k = 8, and the original object and eight-dop
are shown in Fig. 2a. Fig. 2b depicts the object rotated 30
degrees (counterclockwise) and the corresponding eight-
dop. The result of tumbling the original k-dop and recom-
puting the new k-dop is shown in Fig. 2c. The dashed lines
represent the rotated (original) eight-dop, and the solid
lines show the new eight-dop that we use to approximate
the object. Ideally, we want our approximate eight-dop to
be very close to the exact eight-dop shown in Fig. 2b. Note
that a tumbled k-dop need not be strictly larger than the
exact k-dop of a rotated object (although this is typically the
case). For instance, for the eight-dop depicted in the figure,
rotating the object by 45 degrees causes the tumbled k-dop
to coincide with the exact k-dop.

Both methods 1 and 2 rely on a preprocessing step in
which we compute a B-rep. In method 1, we precompute the
convex hull of the vertices of Sn, and store the result in a sim-
ple B-rep. In method 2, we must compute the vertices in the
B-rep of the k-dop b(Sn), for the original orientation of Sn. This
means that we must compute the intersection of k halfspaces.
This is done by appealing to the following fact (see, e.g., [36]):
The intersection of a set of halfspaces can be determined by
computing the convex hull of a set of points (in 3D), each of
which is dual

6
 to one of the planes defining the halfspaces,

and then converting the convex hull back to primal space; a
vertex, edge, facet of the convex hull corresponds to a facet,
edge, vertex of the intersection of halfspaces. We compute the
convex hull of the dual points in 3D using a simple incre-
mental insertion algorithm (see [36]).

7

5. It is important that we transform the original B-rep vertices, rather than
those of the bounding k-dop at each step. Indeed, if we were to transform
the bounding k-dop, compute a new bounding k-dop, transform it, etc., the
bounding volume would grow increasingly larger with each step.

6. In one standard definition of duality, the dual point associated with the
plane whose equation is ax + by + cz = 1 is the point (a, b, c). See [39].

7. Although this algorithm has worst-case quadratic (O(k
2
)) running time,

it works well in practice, is only used during preprocessing, and k is small.
Worst-case optimal O(k log k)-time algorithms are known for this problem;
see [39].

 (a) (b) (c)

Fig. 2. Illustration of the approximation method of handling a rotating object.

28 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

We have considered some of the trade-offs between
methods 1 and 2. The nodes closest to the root of the flying
hierarchy are the most frequently visited during searching.
Thus, it is important that the bounding k-dops for these
nodes be as tightly fitting as possible, so that we can hope-
fully prune off a branch of the tree here. This suggests that
we apply method 1 at the root node, and at nodes “close” to
the root node of the flying hierarchy.

We implemented and tested our algorithm using both
methods, and conducted experiments to determine if the ex-
tra cost of method 1 was worth it for nodes near the root of
the hierarchy. In all cases, it was worthwhile spending the
time to compute the exact bounding k-dop at the root node;
the time saved due to pruning greatly outweighed the addi-
tional time spent doing the hill-climbing. We also performed
experiments in which we applied method 1 to nodes on lev-
els of the tree close to the root. However, we found that this
additional overhead was not justified; the time saved due to
additional pruning did not outweigh the extra time required
to perform the hill-climbing. In fact, the total running time
increased when using method 1 for any nodes other than the
root node. Consequently, we are currently using the ap-
proximation method 2 for all nodes in the hierarchy, except
the root node, where we perform hill-climbing 1.

An interesting future research question is also suggested
here. The flying hierarchy is constructed according to the ob-
ject’s initial position and orientation, as it is given to us. An
alternative to this is to try finding an “optimal” orientation for
the flying object, where “optimal” could possibly be inter-
preted as the orientation that minimizes the total volume of the
hierarchy or that allows for the most efficient collision checks.

4.2 Tree Traversal Algorithm
Given the environment hierarchy, BVT(E), and the flying
hierarchy, BVT(F) (after tumbling), we must traverse the
two trees efficiently to determine if any part of the flying
object collides with some part of the environment. The al-
gorithm we use is outlined in Algorithm 1. It consists of a
recursive call to TraverseTrees(nF, nE), where nF is the current
node of the flying hierarchy and nE is the current node of
the environment hierarchy. Initially, we set nF and nE to be
the root nodes of the hierarchies.

Algorithm TraverseTrees(nF, nE)
Input: A node nF of the flying hierarchy, a node nE of the
environment hierarchy
1. if b(nF) « b(nE) π ∆ then
2. if nE is a leaf then
3. if nF is a leaf then

4. for each triangle tE of S
En

5. for each triangle tF of S
Fn

6. check test triangles tE and tF for intersection
7. else
8. for each child nf of nF

9. TraverseTrees(nf, nE)
10. else
11. for each child ne of nE

12. TraverseTrees(nF, ne)
13. return

Algorithm 1: Pseudocode of the tree traversal algorithm.

At a general stage of the traversal algorithm, we test for
overlap between the bounding volume b S

Fnc h and the

bounding volume b S
Enc h . If they are disjoint, then we are

done with this call to the function. Otherwise, if nE is not a

leaf, we step down one level in the environment hierarchy,

recursively calling TraverseTrees(nF, ne) for each of the chil-

dren ne of nE. If nE is a leaf, then we check if nF is a leaf: If it

is, we do triangle-triangle intersection tests between each

triangle of nE and each triangle of nF; otherwise, we step

down one level in the flying hierarchy, recursively calling

TraverseTrees(nf, nE) for each of the children nf of nF.

For comparison purposes, we have also implemented a
variant of this traversal algorithm in which line 9 of the
algorithm is replaced by TraverseTrees(nf, root of the envi-
ronment hierarchy). The rationale for this variant is that it
may be that the bounding volume at a node nF of the flying
hierarchy intersects a large number of leaves in the envi-
ronment hierarchy, BVT(E), while the children of nF form a
much tighter approximation and intersect far fewer leaves
of BVT(E). (This is especially true for nodes of the flying
hierarchy, since our approximation method of tumbling k-
dops results in “looser” fitting bounding volumes.) Thus,
by restarting the search at the root of BVT(E), for each child
of nF, we may actually end up with fewer overlap checks in
total. We have found experimentally, though, that this vari-
ant does not perform as well in practice as what we de-
scribe in Algorithm 1. While there are cases in which this
variant is better, yielding a slightly lower (by about 5 per-
cent) average CD time, overall it usually is inferior. In par-
ticular, for the suite of experiments reported in this paper,
the variant is almost always slower, in some cases by as
much as 10-20 percent.

4.3 Depth of the Flying Hierarchy
The depth of the flying hierarchy has a significant impact
upon the total cost, T, associated with performing a colli-
sion detection query, since it can affect the values Nv, Np,
and Nu in (2). A deeper hierarchy will tend to increase the
number of bounding volume overlap tests (Nv) and the
number of nodes that have to be updated (Nu), but to de-
crease the number of pairs of primitives (triangles) which
will be checked for contact (Np). A shallower tree will tend
to have the opposite effect.

The problem of selecting the optimal depth is difficult to
address in general because it is highly data-dependent, as
well as dependent upon the costs Cv, Cp, and Cu. At the
moment, we have “hard-coded” a threshold t ; once the
number of triangles associated with a node falls below t,
we consider this node to be a leaf of the tree. For all of the
experiments reported in this paper, we used a threshold of
t = 1 for the environment hierarchy, and a threshold of t = 40
for the flying hierarchy. These values were determined to
work well on a large variety of datasets. We leave it as an
open problem to determine effective methods of automati-
cally determining good thresholds, or of allowing variable
thresholds at different nodes within a hierarchy.

KLOSOWSKI ET AL.: EFFICIENT COLLISION DETECTION USING BOUNDING VOLUME HIERARCHIES OF K-DOPS 29

4.4 Overlap and Intersection Tests
While processing a CD query, the most frequently called
function is usually that of testing whether or not two k-
dops overlap. The cost of this operation has been denoted
by Cv in (2). Recall that all our k-dops are defined by the
same fixed set of directions for any particular k. Thus, a k-
dop is completely defined by k/2 intervals describing the
extents along those directions. Two k-dops D1, D2 do not
overlap if at least one of the k/2 intervals of D1 does not
overlap the corresponding interval of D2. If the k-dops
overlap along all k/2 directions, then we conclude that
they may overlap. They may be disjoint, separated by a
plane parallel to one edge from each k-dop; however, for
efficiency, we use a conservative disjointness test based on
only the k/2 directions. Thus, we need at most k floating-
point comparisons, and no arithmetic operations, in our
overlap test.

In performing this overlap test, the order in which we
check the k/2 intervals may have an effect upon the effi-
ciency of the primitive. For example, it seems likely that, if
the intervals defined by one direction overlap, then the
intervals defined by another direction, which is fairly
“close” to the first one, will also result in an overlap. Thus,
we would like to order the interval tests so that we test in-
tervals with largely different directions (one after the other).
In doing so, we hope quickly to find a direction (if one ex-
ists) along which the given intervals do not overlap, and,
thus, exit the routine. This is an interesting question for
further study.

Finally, at the lowest level of our CD query algorithm,
we ultimately must be able to test whether or not two
primitives (triangles) intersect. The cost of this operation
has been denoted Cp; it involves arithmetic operations on
floating-point numbers. We have developed a collection of
efficient intersection tests for pairs of primitive geometric
elements; see Held [23] for details on the triangle-triangle
intersection test that we use.

5 IMPLEMENTATION AND EXPERIMENTATION

Our algorithms have been implemented in C and tested
upon a variety of platforms (SGI, Sun, PC). They run on
general polygonal models (often called “polygon soup”),
and can easily handle cracks,

8
 (self-)intersections, and other

deficiencies of the input data. We assume that the input
consists simply of a list of vertices and a list of triangles
without any adjacency information.

9

Our BV-tree construction and collision detection algo-
rithms are robust and relatively simple; they do not make
any decisions based upon the topology of the data, so can-
not run into inconsistency problems (due to floating-point
errors) when searching (or building) the BV-trees. To avoid
missing collisions between objects, we use an epsilon
threshold, e, which can be specified by the user.

In order to maintain efficiency in the implementation of
k-dops, we have “hardcoded” the logic for each of the four

8. “Cracks” are gaps on the surface of a polygonal model caused by an
edge having only one incident face.

9. For this reason, we can only report surface intersections, rather than
volumetric intersections.

choices of k. Therefore, we choose the value of k (and the
appropriate code) at compile time by means of compiler
switches.

Throughout this section, we report on some comparisons
with the system called “RAPID” (Rapid and Accurate Poly-
gon Interference Detection), which has been made publicly
available by the University of North Carolina at Chapel
Hill.

10
 This library utilizes oriented bounding box trees

(OBBTrees) [21].

Memory Requirements. For an environment dataset of n
input triangles, we store in one array (72n bytes) the verti-
ces of the triangles (whose coordinates are eight-byte
floating point numbers), and in another array (12n bytes)
the integer indices into the vertex array, indicating for
each of the n triangles which three vertices comprise it.

11

For each node of the environment hierarchy, we need to
store the k numbers that define the bounding k-dop (8k
bytes), two pointers to the children of the node (eight
bytes), and an integer index to indicate which triangle is
stored in each leaf (four bytes). Thus, we need 8k + 12 bytes
per node. There are approximately 2n (2n - 1, to be exact)
nodes in the hierarchy, since it is a complete binary tree,
with each leaf containing just one triangle.

In total, we will, therefore, need (16k + 108)n bytes to store
all n triangles of the environment, together with the hierar-
chy. Substituting k = 6, 14, 18, and 26, we see that we need
204, 332, 396, and 524 bytes per input triangle, respectively.
For comparison, it has been reported in [21] that the RAPID
implementation requires 412 bytes per input triangle.

The memory used to store a flying object of m triangles is
identical to that of storing the environment (84m bytes).
However, the memory needed for the flying hierarchy is
more difficult to put into a closed-form expression, since it
is highly data dependent. In particular, our threshold, t, for
stopping the construction of the hierarchy (as discussed in
Section 4.3), is t = 40, which means that, instead of having
2m - 1 nodes in the hierarchy, we will have 2m¢ - 1, where
m¢ denotes the number of leaves, which can vary between
one and m. Also, we need to store the original B-rep vertices
of the initial k-dops (Section 4.1) with each node, and these
numbers vary for each choice of flying object. We can, how-
ever, compute worst-case upper bounds on the number of
vertices in the B-rep of each of our k-dops: for k = 6, 14, 18,
26, the maximum possible number of vertices in a k-dop is
8, 24, 32, and 48, respectively.

For each node of the flying hierarchy, we store the k
numbers that define a k-dop (8k bytes), two pointers to the
children (eight bytes), the number of triangles bounded by
the k-dop (four bytes)—since the threshold is not one in this
case, the list of triangle indices bounded by this node, the
number of original B-rep vertices (four bytes), a list of the
B-rep vertices, and an integer to indicate when the node
was last “tumbled” (four bytes)—to avoid retumbling the
node if it is accessed more than once during the CD query
for one step of the flight.

10. The library can be found on the web at
http://www.cs.unc.edu/~geom/OBB/OBBT.html.

11. These indices are not absolutely necessary: however, since most trian-
gles do share vertices, it is more memory efficient to do so, at the expense of
appearing wasteful in our memory calculations here.

30 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

In addition, we also need to store the B-rep for the con-
vex hull associated with the root node of the flying hierar-
chy (Section 4.1). In the experiments reported here, the fly-
ing “Pipes” dataset required the most memory, almost 1.65
megabytes, to store its convex hull.

5.1 Experimental Set-Up
Our experiments have used real and simulated datasets of
various complexities, ranging from tens of triangles to a
few hundred thousand triangles. We made a special effort
to devise datasets that were particularly difficult for our
method and others. For instance, we considered “swept
volume” datasets, in which a moving object is swept
through space on a random motion, then numerous obsta-
cles are randomly placed close to, but not penetrating, the
swept volume; finally, we fly the object on the original path,
causing it to come very close to collision with thousands of
nearby obstacles, without it actually hitting any of them.
While these “challenging” datasets are unlikely to arise in
practice, a goal of our study was a systematic comparison
of alternative methods and alternative choices of parame-
ters within our own methods.

For all of the results reported here, we used a Silicon
Graphics Indigo

2
, with a single 195 MHz IP28/R10000

processor, 192 Mbytes of main memory, and a Maximum
Impact Graphics board. The code was compiled with GNU
gcc (respectively, g++ for RAPID). All timings were ob-
tained by adding the system and user times reported by the
C library function “times.” In order to smooth out minor
variations in the timings, all tests have been run repeatedly,
and we report average times.

Although we ran RAPID on the same machine and with
the same timing command, we appreciate the difficulty that
exists in making comparisons between different algorithms
implemented by different people. Many issues, such as tol-
erances (for overlaps) and what geometric primitives to use
and how they are tested for intersection, can play a crucial
role in an algorithm’s performance. Also, we do not know
to which extent RAPID has been optimized to achieve effi-
ciency. (However, RAPID does use assembler code in order
to speed up computations, which serves as an indication
that it has certainly been optimized to some extent.)

5.2 Experimental Results
5.2.1 Average Costs of Cp, Cv, and Cu

We begin by reporting results of an experiment to deter-
mine the average cost of testing two primitives (triangles)
for intersection, using our code. For 100,000 triangle-
triangle intersection queries, all of which had their
bounding boxes overlap, in order to avoid simple rejec-
tions, the average query time per test, Cp, was 0.0035 milli-
seconds (ms).

Next, we investigate how the costs Cv and Cu vary with
choice of k. In Table 1, we show experimental results com-
paring the average cost, Cv, of testing two k-dops for over-
lap. The table also shows the average time, Cu, required to
perform updates on the k-dops, using the approximating k-
dops method described in Section 4.1. The k-dops used in
these tests were taken directly from the experiments
(flights) described later in this section.

TABLE 1
AVERAGE COSTS OF Cv AND Cu (IN MS),

FOR DIFFERENT CHOICES OF k
6-dop 14-dop 18-dop 26-dop

Cv 0.0008 0.0016 0.0020 0.0028

Cu 0.0045 0.0174 0.0235 0.0509

TABLE 2
AVERAGE CD TIME (IN MS), USING OUR

“SPLATTER” SPLITTING RULE

Pipes Torus 747 Swept Interior
Env. Size
(no. tri.)

143,690 98,114 100,000 40,000 169,944

Object Size
(no. tri.)

143,690 20,000 14,646 36 404

No. of
Steps

2,000 2,000 10,000 1,000 2,528

No. of
Contacts

2,657 1,472 7,906 0 84,931

Hier.
Method
(ms per
check)
6-dop 0.487 0.294 1.639 0.582 4.375
14-dop 0.392 0.191 0.760 0.153 2.701
18-dop 0.366 0.184 0.356 0.109 2.754
26-dop 0.525 0.210 0.415 0.076 2.639
RAPID 0.934 0.242 0.494 0.556 4.375

5.2.2 Average Collision Detection Query Times
Table 2 shows timing data on four typical datasets:

1)�Pipes: an interweaving pipeline flying among a larger
copy of the same system of pipes;

2)�Torus: a deformed torus flying in the presence of sta-
lagmites;

12

3)�747: a Boeing 747 model flying among 25,000 random
disjoint tetrahedral obstacles; and

4)�Swept: an “axis-shaped” polyhedron flying through a
swept volume surrounded by 10,000 random tetrahe-
dral obstacles.

In order to simulate motion of these “flying” objects, we
implemented a form of “billiard paths”: A flying object is
moved along a random path, “bouncing” off of obstacles
that it hits in the environment. We do not attempt to simu-
late a real “bounce”; rather, we simply reverse the trajectory
when a collision occurs. For a more detailed look at accu-
rately handling collision response, please refer to the work
by Moore and Wilhelms [33], Bouma and Vanecek

((

 [8], and
the large collection of work by Baraff [3], [4], [5].

Timing results for a fifth dataset, Interior, are also listed
in Table 2. Images of this particular flight are shown in
Figs. 5a and 5b. This industrial dataset was provided to us
by The Boeing Company and models a small section of the
interior of an airplane. The flying object in this case is a
model of a “hand,” whose path was generated by an engi-
neer at Boeing, using a data-glove, as an example of how
one would like to use collision detection when immersed in a
virtual environment. Our collision detection algorithms were
applied to this flight in order to detect all of the contacts,

12. Datasets 1 and 2 were graciously provided by the University of North
Carolina at Chapel Hill.

KLOSOWSKI ET AL.: EFFICIENT COLLISION DETECTION USING BOUNDING VOLUME HIERARCHIES OF K-DOPS 31

i.e., all pairs of triangles that are in intersection, during the
flight. As seen in Table 2, there were many such contacts for
this flight, with an average of 33 contacts per step over the
2,500 steps; it was the intention of the engineer generating
the data to provide a “rigorous workout” for CD algorithms.

For comparison, we have recorded the results obtained
by using the collision detection library RAPID.

All of the timings reported here give the average CPU-
consumption per check for collision, exclusive of rendering
and of motion simulation.

Based solely upon these times, our 14-, 18-, and 26-dop
methods perform well in comparison with RAPID’s OBB
method, running faster on all five of the datasets; the only
exception being the 14-dop method during the 747’s flight
on our own generated data. As expected, the six-dop
method (i.e., axis-aligned bounding boxes) did not perform
as well as these other methods, nor as well as when using
OBBs in the RAPID implementation. Out of all of our
methods, using an 18-dop for our bounding volume in the
BV-trees, appears to be the best. In addition, most of the
collision detection times are below two milliseconds (many
are even below one millisecond), which allows us to per-
form these queries at real-time rates.

For the results in Table 2, all of our hierarchies were built
using one of our fastest construction algorithms, based
upon the “splatter” splitting rule discussed in Section 3.3.4.
We chose this algorithm because of its speed, and because
of the fast CD query times which were obtained. As our 18-
dop method appears to be the best, we have provided the
following tables which highlight the amount of preproc-
essing time required for all of the construction methods
(longest side, min sum, min max, and splatter), as well as
the CD query times which each method generated.

Table 3 highlights the amount of time (in minutes) it
takes to preprocess (build) the environment hierarchy for
our 18-dop method, for each of the four construction rules:
longest side, min sum, min max, and splatter.

13
 Our fastest

methods are clearly the “longest side” and “splatter” algo-
rithms, which are essentially equal for all of the datasets.
Likewise, the “min sum” and “min max” methods both
require about the same amount of work; however, these
two methods are typically an order of magnitude slower
than the others. The fastest method, in terms of preproc-
essing time, is RAPID, which requires only about 30-40 per-
cent of the time required by the “splatter” method. The
longest preprocessing time that we have witnessed (45
minutes) occurred when using the “min max” method on
the Interior dataset for the 26-dop method. In order to avoid
a lengthy wait each time the code is run on a standard da-
taset, our software has the option to store the environment
hierarchy to a binary file. For this dataset, having 169,944
input triangles, the binary file to store the 26-dop hierarchy
is roughly 69 megabytes in size and takes just under 10 sec-
onds to load.

In conjunction with Table 3, Table 4 highlights the corre-
sponding CD query times for each of the construction
methods. From this table, it becomes clear that the “min
sum” method is typically the best; however, unless one can

13. In each of these cases, we split at the mean rather than the median.

afford to spend a great deal of additional time preprocessing
the environments, the best choice appears to be the “splatter”
method, as it takes considerably less time to preprocess and
provides CD query times that are nearly as good.

In addition to the four construction methods that we
have been mentioning, we also discussed, in Section 3.3.4,
the option of splitting based on the mean versus the median
of the centroid coordinates along the selected axis. In the
preceding tables, we have always used the mean. To pro-
vide some justification for our using the mean by default,
we have included Table 5, which shows the average CD
query time for the 18-dop method for each of the four split-
ting rules when we use the median instead of the mean.

In comparing Tables 4 and 5, we see that using the me-
dian never results in faster query times. In quite a few
cases, the median method is at least 5 percent slower than
the mean method, and, in the “Pipes” dataset, the median
method is between 24 percent and 35 percent slower for all
of the entries. The preprocessing times required for the me-
dian method are almost identical to those of the mean. In
some cases, it is slightly faster, in others, slightly slower.

As Tables 2, 3, 4, and 5 report on (random) flight paths
which we ourselves have generated (with the exception of
the Interior flight), we have also tried to design experiments
in which other methods will perform well, in order to make
this a fair comparison. In particular, the OBBTrees in RAPID
are reported to perform especially well in situations in
which there exists “parallel close proximity” between the
models [21]. This situation occurs when many points on the
flying object come close to several points in the environ-
ment, and a large number of the nodes of the hierarchies

TABLE 3
PREPROCESSING TIME (IN MINUTES),

USING OUR 18-DOP METHOD

Construction
Method

Pipes Torus 747 Swept Interior

Longest Side 3.61 1.61 1.69 0.31 5.78
Min Sum 26.75 19.12 20.98 7.17 31.03
Min Max 28.03 19.16 20.87 7.19 31.13
Splatter 3.63 1.62 1.71 0.32 5.71
RAPID 1.05 0.69 0.71 0.26 1.31

TABLE 4
AVERAGE CD TIME (IN MS), USING OUR 18-DOP METHOD,

DIVIDING AT THE MEAN

Construction
Method

Pipes Torus 747 Swept Interior

Longest Side 0.384 0.192 0.366 0.111 3.036
Min Sum 0.356 0.185 0.330 0.108 2.667
Min Max 0.391 0.191 0.439 0.111 2.783
Splatter 0.366 0.184 0.356 0.109 2.754

TABLE 5
AVERAGE CD TIME (IN MS), USING OUR 18-DOP METHOD,

DIVIDING AT THE MEDIAN

Construction
Method

Pipes Torus 747 Swept Interior

Longest Side 0.476 0.193 0.412 0.116 3.164
Min Sum 0.450 0.192 0.359 0.111 2.822
Min Max 0.530 0.196 0.450 0.114 3.080
Splatter 0.481 0.194 0.396 0.113 2.774

32 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

will have to be searched in order to resolve all of the conflicts.
Examples of this situation are in virtual prototyping and tol-
erance analysis applications [21]. Therefore, we have run an
experiment similar to one run in [21], in order to see if our
methods based on k-dops are competitive in this situation.

We have generated datasets consisting of polygonal ap-
proximations to two concentric spheres, with the outer
sphere having radius 1.0, and the inner sphere being a
scaled copy of the outer sphere, having radius 1.0 - a, for
small positive values of a. In this “parallel close proximity”
situation, all of the points of the inner sphere are very close
to points on the outer sphere, yet there is no intersection
between the inner and the outer surfaces.

Here, as in [21], our objectives is to determine how many
bounding volume overlap queries, Nv, are required to proc-
ess the collision detection query: Does the inner surface
intersect the outer surface?

Now, as previously discussed, our default implementa-
tion uses a threshold of t = 40 to terminate the construction
of the flying hierarchies. However, RAPID uses no such
threshold; it always builds a complete binary tree. Thus, in
order to make a fair comparison, we modified our code for
this particular experiment to be consistent with RAPID, by
using a threshold t = 1 for the flying hierarchy. Then, both
methods produce trees having an identical number of inter-
nal nodes and leaf nodes. (The structures of the hierarchies,
and in particular their heights, can, of course, be different.)

Tables 6 and 7 report our results for spheres of 2,000 tri-
angles each, and spheres of 20,000 triangles each.

14
 It came

as no surprise that the RAPID implementation of OBBTrees
requires fewer bounding volume comparisons than the
axis-aligned bounding boxes (6-dops). In fact, for the
nested spheres of 20,000 triangles, the OBBs often require
over an order of magnitude fewer queries; this is consis-
tent with the conclusion drawn from the similar experi-
ment in [21].

14. For these runs, we used one of our fastest construction algorithms,
based on the “splatter” splitting rule.

Our goal here, though, was to compare the OBB method
to the k-dops methods. As the tables show, for both of the
datasets, our 14-, 18-, and 26-dop methods performed fewer
bounding volume overlap queries for the largest value of a,
0.55, when the nested spheres are relatively well separated.
For the remaining values of a, however, the OBBTrees per-
form considerably fewer overlap queries in the spheres da-
taset having 20,000 triangles. Also, OBBTrees perform fewer
queries in the smaller dataset, although not by the same
magnitude. Once a becomes small enough (0.001), which
happens when the nested spheres are very close to one an-
other, the k-dop methods start to overtake the OBB method.

5.2.3 Behavior of CD Time Over Flight
While we have compiled our results primarily using the
statistic of average-case collision detection time, it is impor-
tant in some applications to study the worst-case collision
detection time for the flight of a moving object. On a typical
flight (that of the “Pipes” being flown within the larger
system of “Pipes”), we show a plot in Fig. 3 of how the CD
time varies with position along the flight, over the 2,000
steps in the simulation. One can see that the CD time in-
creases substantially at various positions along the flight;
these correspond to when the flying object comes in very
close proximity to the environment. In this particular exam-
ple, the maximum CD query time is roughly 18 milliseconds.

Putting an upper bound on worst-case CD time is espe-
cially important in VR applications, where one needs to
perform time-critical collision detection [28]. In such situa-
tions, our algorithms can be applied, and terminated early
(according to the time budgeted for each CD test), resulting
in an answer of “maybe”: The flying object might be inter-
secting the environment at this instant. The goal, then, in
using the BV-tree is to use the information present in the
search of the BV-tree, at the time of early termination, to
obtain bounds on how much penetration there can be (if at
all) between the flying object and the environment. (See,
e.g., [47].) This problem is left for future investigations.

TABLE 6
NUMBERS OF OVERLAP QUERIES AMONG k-DOPS

OF THE 2,000-FACETED NESTED SPHERES,
FOR DIFFERENT VALUES OF ALPHA AND k

Hier. alpha
Method 0.55 0.1 0.055 0.01 0.0055 0.001 0.00055 0.0001
6-dop 388 49,494 76,506 109,086 113,200 116,340 116,710 116,948
14-dop 32 16,888 41,782 85,656 90,896 95,150 95,564 96,056
18-dop 46 11,236 34,744 79,968 86,036 91,482 92,124 92,684
26-dop 22 4,652 23,774 74,052 81,160 87,622 88,322 88,968
RAPID 121 3,333 7,479 41,645 60,327 91,983 95,717 100,047

TABLE 7
 NUMBERS OF OVERLAP QUERIES AMONG k-DOPS

OF THE 20,000-FACETED NESTED SPHERES,
FOR DIFFERENT VALUES OF ALPHA AND k

Hier. alpha
Method 0.55 0.1 0.055 0.01 0.0055 0.001 0.00055 0.0001
6-dop 278 289,126 494,278 1,129,398 1,223,900 1,320,158 1,329,154 1,337,116
14-dop 14 85,012 239,884 831,528 960,952 1,102,260 1,115,030 1,127,908
18-dop 46 55,390 194,414 762,668 903,056 1,063,346 1,079,676 1,095,868
26-dop 14 12,218 119,556 675,152 831,104 1,019,272 1,038,126 1,058,072
RAPID 117 2,441 5,495 43,589 87,071 428,027 609,843 932,561

KLOSOWSKI ET AL.: EFFICIENT COLLISION DETECTION USING BOUNDING VOLUME HIERARCHIES OF K-DOPS 33

6 CONCLUSION

We have proposed a method for efficient collision detec-
tion among polygonal models, based on a bounding vol-
ume hierarchy (BV-tree) whose bounding volumes are k-
dops (discrete orientation polytopes). Our k-dops form a
natural generalization of axis-aligned bounding boxes,
providing flexibility through the choice of the parameter
k. We have studied the problem of updating an approxi-
mate bounding k-dop for moving (rotating) objects, and
we have studied the application of BV-trees to the colli-
sion detection problem.

Our methods have been implemented and tested, for a
variety of datasets and various choices of the design pa-
rameters (e.g., k). Our results show that our methods com-
pare favorably with a leading system (“RAPID,” presented
at ACM SIGGRAPH ’96 [21]), whose hierarchy is based on
oriented bounding boxes. Further, our algorithms are ro-
bust, relatively simple to implement, and are applicable to
general sets of polygonal models. Experiments have shown
that our algorithms can perform at interactive rates on real
and simulated data consisting of hundreds of thousands of
polygons.

6.1 Extensions and Future Work
Throughout the paper, we have mentioned several possible
extensions of our work, including some alternative meth-
ods for constructing BV-trees, such as

•� using values of k larger than 26 for our k-dops (Sec-
tion 3.3.3),

•� using alternative “splitting rules” (Section 3.3.4), and
•� using a bottom-up method to construct BV-trees (Sec-

tion 3.3.2).

We have also suggested some possible future investiga-
tions that could lead to faster collision detection queries,
including

•� finding an “optimal” orientation of the initial flying
hierarchy (Section 4.1),

•� avoiding a hard-coded threshold to control the depth
of the hierarchies (Section 4.3), and

•� using a specially designed ordering when performing
interval overlap queries (Section 4.4).

In addition to these “design” alternatives, we plan to in-
vestigate further extensions of our BV-tree methods, in-
cluding:

Use of temporal coherence. From one time step to the next,
the flying object will occupy roughly the same area of our
workspace and, thus, overlap roughly the same set of nodes
of the environment hierarchy. It should be possible to give
our search algorithm a “hot start” at each step, thereby
(potentially) greatly reducing the number of bounding vol-
ume overlap calls. The use of coherence may also help ad-
dress the problem raised at the end of the last section—that
of bounding the worst-case query time, and providing an
estimate of depth of possible penetration, should the query
be terminated before completion.

Multiple flying objects. Currently, our collision detection
software is programmed to handle only one flying object.
Incorporating multiple objects is particularly trivial if we
use a brute-force approach, quadratic in the number of fly-
ing objects: Check each flying hierarchy against the envi-
ronment hierarchy, and check every pair of flying hierar-
chies. If the number of flying objects is relatively small, this
approach may be acceptable. However, if the number of
flying objects is large, one can apply a “sweep and prune”
technique, similar to the one used in [11], or, possibly, de-
sign effective new strategies.

Dynamic environments. Allowing the environment to
change via insertions and deletions of objects is an important
extension for work on environments that are constantly
being modified, e.g., a CAD model that is under develop-
ment and is being edited on a daily basis. The interesting
research issue is that of efficiently rebalancing the BV-tree
hierarchies under a sequence of insertions and deletions.

Deformable objects. In addition to allowing dynamic
environments, we would also like to extend our hierar-
chies to handle deformable objects. By “buffering” (en-
larging slightly) the k-dops in our BV-trees, we can con-
tinue to approximate the deformed objects over a short
period of time (depending on the velocity of deforma-
tion). But, rebalancing or rebuilding sections of the hierar-
chy will also be necessary over the course of time, and it is
an interesting topic for future investigation to devise effi-
cient means for doing so.

Fig. 3. Individual collision detection query times for the “Pipes” dataset.

34 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

 (a) (b)

 (c) (d)

Fig. 4. A spitfire aircraft and the corresponding k-dops.

 (a) (b)

Fig. 5. (a) A hand moving within the “Interior” dataset. (b) A Close-up of the “interior” dataset. The contact region is highlighted in red.

KLOSOWSKI ET AL.: EFFICIENT COLLISION DETECTION USING BOUNDING VOLUME HIERARCHIES OF K-DOPS 35

NC verification. Our methods may be applied to the task of
verifying tool paths in NC (Numerically Controlled) ma-
chining, where it is important to check whether a tool
penetrates (beyond a specified threshold) the surface of a
part to be machined, at any position along the tool’s mo-
tion. This problem constitutes quite a challenge for a gen-
eral-purpose CD code since, by the very nature of the tool
motion, which is designed to sculpt the part, the tool will be
in constant contact with the part’s surface. Further, this ap-
plication requires an extension of our CD code in order to be
able to handle spheres and cylinders (without using polyhe-
dral approximations), and (approximate) swept volumes.

ACKNOWLEDGMENTS

Our work has greatly benefited from the support of the VR
group at Boeing, including Jeff Heisserman, William
McNeely, and David Mizell. We also thank Cláudio Silva for
valuable assistance. We also are indebted to five anonymous
referees, whose valuable comments greatly helped in the
presentation and content of this paper.

A technical sketch of this paper appeared in the SIG-
GRAPH ’96 Visual Proceedings [26]. Some of the datasets
used during this research were provided by the University of
North Carolina at Chapel Hill and Boeing Computer Serv-
ices. Some datasets were also obtained from the ftp-site of
Viewpoint Datalabs. J.T. Klosowski and J.S.B. Mitchell are
supported by U.S. National Science Foundation grant CCR-
9504192, and by grants from Boeing Computer Services,
Bridgeport Machines, Hughes Aircraft, and Sun Microsys-
tems. J.T. Klosowski is also partially supported by a Cataco-
sinos Fellowship. M. Held is supported by U.S. National Sci-
ence Foundation grants DMS-9312098 and CCR-9504192, and
by grants from Boeing Computer Services, Bridgeport Ma-
chines, and Sun Microsystems. K. Zikan is supported in part
by a Fulbright Scholars Award.

The author’s web site addresses are:
http://www.ams.sunysb.edu/~jklosow/jklosow.html

http://www.ams.sunysb.edu/~held/held.html

http://www.ams.sunysb.edu/~jsbm/jsbm.html

REFERENCES

[1]� J. Arvo and D. Kirk, “A Survey of Ray Tracing Acceleration Tech-
niques,” An Introduction to Ray Tracing, A.S. Glassner, ed., pp. 201-
262. Academic Press, 1990.

[2]� D.H. Ballard, “Strip Trees: A Hierarchical Representation for
Curves,” Comm. ACM, vol. 24, no. 5, pp. 310-321, May 1981.

[3]� D. Baraff, “Curved Surfaces and Coherence for Non-Penetrating
Rigid Body Simulation,” Computer Graphics (SIGGRAPH ’90 Proc.),
vol. 24, pp. 19-28, Dallas, Tex., Aug. 1990.

[4]� D. Baraff, “Fast Contact Force Computation for Nonpenetrating
Rigid Bodies,” Computer Graphics (SIGGRAPH ‘94 Proc.), vol. 28,
pp. 23-34, Orlando, Fla., July 1994.

[5]� D. Baraff, “Interactive Simulation of Solid Rigid Bodies,” Com-
puter Graphics Applications, vol. 15, no. 3, pp. 63-75, May 1995.

[6]� G. Barequet, B. Chazelle, L.J. Guibas, J.S.B. Mitchell, and A. Tal,
“BOXTREE: A Hierarchical Representation for Surfaces in 3D,”
EuroGraphics ’96, J. Rossignac and F. Sillion, eds., vol. 15, no. 3,
pp. C-387–C-484. Blackwell Publishers, Eurographics Assoc., 1996.

[7]� N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The
R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 322-331, 1990.

[8]� W. Bouma and G. Vanecek
((

, Jr., “Collision Detection and Analysis
in a Physical Based Simulation,” Eurographics Workshop on Anima-
tion and Simulation, pp. 191-203, Vienna, Sept. 19, 1991.

[9]� S. Cameron, “Collision Detection by Four-Dimensional Intersec-
tion Testing,” IEEE Trans. Robotics and Automation, vol. 6, no. 3, pp.
291-302, 1990.

[10]� J. Canny, “Collision Detection for Moving Polyhedra,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 8, no. 2, pp. 200-209,
Mar. 1986.

[11]� J.D. Cohen, M.C. Lin, D. Manocha, and M.K. Ponamgi, “I-
COLLIDE: An Interactive and Exact Collision Detection System
for Large-Scale Environments,” Proc. ACM Interactive 3D Graphics
Conf., pp. 189-196, 1995.

[12]� International Business Machines Corporation, User’s Guide, IBM

3D Interaction Accelerator
TM

, version 1, release 2.0. IBM T.J. Watson

Research Center, Yorktown Heights, N.Y., Sept. 1995.
[13]� A. Crosnier and J. Rossignac, “T-BOX: The Intersection of Three

Mini-Max Boxes,” internal report, IBM T.J. Watson Research Cen-
ter, Yorktown Heights, N.Y., 1995.

[14]� D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri, “Computing
the Intersection-Depth of Polyhedra,” Algorithmica, vol. 9, pp. 518-
533, 1993.

[15]� D. Dobkin and D. Kirkpatrick, “Fast Detection of Polyhedral In-
tersection,” Theoretical Computer Science, vol. 27, pp. 241-253, 1983.

[16]� D. Dobkin and D. Kirkpatrick, “A Linear Algorithm for Deter-
mining the Separation of Convex Polyhedra,” J. Algorithms, vol. 6,
pp. 381-392, 1985.

[17]� D. Dobkin and D. Kirkpatrick, “Determining the Separation of
Preprocessed Polyhedra—A Unified Approach,” Proc. 17th Int’l
Colloquium Automata, Languages, and Programming, Lecture Notes in
Computer Science, vol. 443, pp. 400-413. Springer-Verlag, 1990.

[18]� K. Dobrindt, K. Mehlhorn, and M. Yvinec, “A Complete and Effi-
cient Algorithm for the Intersection of a General and a Convex
Polyhedron,” Proc. Third Workshop Algorithms Data Structures, Lecture
Notes in Computer Science, vol. 709, pp. 314-324. Springer Verlag,
1993.

[19]� A. Garcia-Alonso, N. Serrano, and J. Flaquer, “Solving the Colli-
sion Detection Problem,” IEEE Computer Graphics and Applications,
vol. 14, pp. 36-43, May 1994.

[20]� J. Goldsmith and J. Salmon, “Automatic Creation of Object Hier-
archies for Ray Tracing,” IEEE Computer Graphics and Applications,
vol. 7, pp. 14-20, 1987.

[21]� S. Gottschalk, M.C. Lin, and D. Manocha, “OBBTree: A Hierarchi-
cal Structure for Rapid Interference Detection,” Computer Graphics
(SIGGRAPH ‘96 Proc.), vol. 30, pp. 171-180, New Orleans, Aug. 1996.

[22]� N. Greene, “Detecting Intersection of a Rectangular Solid and a
Convex Polyhedron,” Graphics Gems IV, P.S. Heckbert, ed., pp. 74-
82. Academic Press, 1994.

[23]� M. Held, “A Library of Efficient and Reliable Intersection Rou-
tines,” technical report, Dept. of Applied Mathematics and Statis-
tics, State Univ. of New York at Stony Brook, 1997.
http://www.ams.sunysb.edu/~held/

[24]� M. Held, J.T. Klosowski, and J.S.B. Mitchell, “Evaluation of Colli-
sion Detection Methods for Virtual Reality Fly-Throughs,” Proc.
Seventh Canadian Conf. Computer Geometry, pp. 205-210, 1995.

[25]� M. Held, J.T. Klosowski, and J.S.B. Mitchell, “Speed Comparison
of Generalized Bounding Box Hierarchies,” technical report, Dept.
of Applied Math, State Univ. of New York at Stony Brook, 1995.

[26]� M. Held, J.T. Klosowski, and J.S.B. Mitchell, “Real-Time Collision
Detection for Motion Simulation Within Complex Environments,”
SIGGRAPH ’96 Visual Proc., p. 151, New Orleans, Aug. 1996

[27]� P.M. Hubbard, “Collision Detection for Interactive Graphics Ap-
plications,” IEEE Trans. Visualization and Computer Graphics, vol. 1,
no. 3, pp. 218-230, Sept. 1995.

[28]� P.M. Hubbard, “Approximating Polyhedra With Spheres for Time-
Critical Collision Detection,” ACM Trans. Graphics, vol. 15, no. 3,
pp. 179-210, July 1996.

[29]� T.L. Kay and J.T. Kajiya, “Ray Tracing Complex Scenes,” Computer
Graphics (SIGGRAPH ‘86 Proc.), vol. 20, pp. 269-278, Aug. 1986.

[30]� M. Lin, “Efficient Collision Detection for Animation and Robot-
ics,” PhD thesis, Dept. of Electrical Eng. and Computer Science,
Univ. of California, Berkeley, 1993.

[31]� M. Lin and J. Canny, “Efficient Algorithms for Incremental Dis-
tance Computation,” Proc. IEEE Int’l Conf. Robotics and Automation,
vol. 2, pp. 1,008-1,014, 1991.

36 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

[32]� M. Lin and D. Manocha, “Fast Interference Detection Between
Geometric Models,” Visual Computing, vol. 11, no. 10, pp. 542–561,
1995.

[33]� M. Moore and J. Wilhelms, “Collision Detection and Response for
Computer Animation,” Computer Graphics (SIGGRAPH ‘88 Proc.),
vol. 22, pp. 289-298, Aug. 1988.

[34]� B. Naylor, J.A. Amatodes, and W. Thibault, “Merging BSP Trees
Yields Polyhedral Set Operations,” Computer Graphics (SIGGRAPH
‘90 Proc.), vol. 24, pp. 115-124, Dallas, Tex., Aug. 1990.

[35]� H. Noborio, S. Fukuda, and S. Arimoto, “Fast Interference Check
Method Using Octree Representation,” Advanced Robotics, vol. 3,
no. 3, pp. 193-212, 1989.

[36]� J. O’Rourke. Computational Geometry in C. New York: Cambridge
Univ. Press, 1994.

[37]� I. Palmer and R. Grimsdale, “Collision Detection for Animation
Using Sphere-Trees,” Computer Graphics Forum, vol. 14, no. 2, pp. 105-
116, June 1995.

[38]� M. Ponamgi, D. Manocha, and M. Lin, “Incremental Algorithms
for Collision Detection Between General Solid Models,” Proc.
ACM SIGGRAPH Symp. Solid Modeling, pp. 293-304, 1995.

[39]� F.P. Preparata and M.I. Shamos, Computational Geometry—An In-
troduction. New York: Springer-Verlag, 1985.

[40]� E. Schömer, “Interaktive Montagesimulation mit Kollisionserken-
nung,” PhD thesis, Universität des Saarlandes, Germany, 1994.

[41]� E. Schömer and C. Thiel, “Subquadratic Algorithms for the Gen-
eral Collision Detection Problem,” Abstracts 12th European Work-
shop Computational Geometry (CG ’96), pp. 95-101, 1996.

[42]� G. Vanecek
((

, Jr., “Brep-Index: A Multidimensional Space Partition-
ing Tree,” Int’l J. Computational Geometry and Applications, vol. 1, no. 3,
pp. 243-261, 1991.

[43]� S. Suri, P.M. Hubbard, and J.F. Hughes, “Collision Detection in
Aspect and Scale Bounded Polyhedra,” Proc. Ninth ACM-SIAM
Symp. Discrete Algorithms, to appear, Jan. 1998.

[44]� H. Weghorst, G. Hooper, and D.P. Greenberg, “Improved Com-
putational Methods for Ray Tracing,” ACM Trans. Graphics, vol. 3,
no. 1, pp. 52-69, Jan. 1984.

[45]� G. Zachmann, “Exact and Fast Collision Detection,” Diploma
thesis, Fraunhofer Inst. for Computer Graphics, Technische
Hochschule Darmstadt, Fachbereich Informatik, Germany, 1994.

[46]� G. Zachmann and W. Felger, “The BoxTree: Enabling Real-Time and
Exact Collision Detection of Arbitrary Polyhedra,” Proc. SIVE ’95,
pp. 104-113, 1995.

[47]� K. Zikan and P. Konecny
(

, “Lower Bound of Distance in 3D,” Proc.
Winter School of Computer Graphics (WSCG ’97), vol. 3, pp. 640-649,
1997. Available as Technical Report FIMU-RS-97-01, Faculty of In-
formatics, Masaryk Univ., Czech Republic, Jan. 1997.
(http://www.fi.muni.cz/informatics/reports/)

James T. Klosowski received a BS in computer
science and mathematics from Fairfield Univer-
sity in 1992. He received an MS in applied
mathematics from the State University of New
York at Stony Brook, where he is currently com-
pleting his PhD. In his final year at Stony Brook,
Klosowski was awarded the Catacosinos Fellow-
ship for Excellence in Computer Science. His
research interests include computer graphics,
computational geometry, virtual reality, and the
design of algorithms and data structures.

Martin Held studied technical mathematics at
the University of Linz (Austria), where he re-
ceived his Dipl.-Ing. degree in 1987. In 1990, he
obtained his PhD from the Department of
Mathematics and Computer Science at the Uni-
versity of Salzburg (Austria). He serves on the
faculty of Computer Science at the University of
Salzburg, and is an adjunct associate professor
at the State University of New York at Stony
Brook. His research interests include algorithms
and data structures, computational geometry,

and computer graphics. Furthermore, he is actively involved in imple-
menting and testing his research results, and in bridging the gap be-
tween theory and practice by applying them to practical problems of
CAD/CAM and VR.

Joseph S.B. Mitchell received a BS in physics
and applied mathematics in 1981, and an MS in
mathematics from Carnegie-Mellon University in
1981. He received a PhD in operations research
from Stanford University in 1986, while on a
Howard Hughes doctoral fellowship and serving
on the technical staff at Hughes Research Labs.
From 1986 to 1991, Prof. Mitchell served on the
faculty of Cornell University. In 1991, he joined
the faculty of the State University of New York at
Stony Brook, where he is currently a professor of

applied mathematics and statistics and a research professor of com-
puter science. Prof. Mitchell has received various research awards
(U.S. National Science Foundation Presidential Young Investigator,
Fulbright Scholar) and numerous teaching awards, including the Presi-
dent’s and Chancellor’s Awards for Excellence in Teaching. His primary
research area is computational geometry applied to problems in com-
puter graphics, visualization, manufacturing, and geographic informa-
tion systems.

Henry A. Sowizral received a BS in information
and computer science from the University of
California, Irvine, in 1975. He received an MPhil
in 1978 and a PhD in computer science from
Yale University in 1982. Through the years, he
has been on the research staffs of the Rand
Corporation (1980-1985), Schlumberger Palo
Alto Research Center (1985-1988), The Re-
search Institute for Advanced Computer Science
(RIACS) (1988-1991), and Boeing Research and
Technology (1991-1996). He is currently with

Sun Microsystems. His primary areas of interest are computer graphics
(virtual and augmented reality), parallel and distributed systems, and
distributed simulation.

Karel Zikan received a BS in mathematics from
San Jose State University in 1983. He received
an MS in statistics in 1988 and a PhD in opera-
tions research in 1989 from Stanford University.
He was on the technical staff of the Hughes
Research Laboratories from 1985-1989, and on
the technical staff of the Research and Technol-
ogy organization of The Boeing Company from
1990-1996. He served as a Fulbright Visiting
Professor on the Faculty of Informatics, Masaryk
University, Brno, Czech Republic, from 1995-

1996. Currently, he consults for Sun Microsystems. The primary areas
of his present research interests are compute graphics, virtual and
augmented reality, and wireless communication systems.

