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Abstract

An ad-hoc wireless network is a collection of wireless mobile hosts forming a temporary network
without the aid of any established infrastructure or centralized administration. This type of network
is of great importance in situations where it is very difficult to provide the necessary infrastructure,
but it is a challenging task to enable fast and reliable communication within such a network. In this
paper, we model and analyze the performance of so-called power-controlled ad-hoc wireless networks:
networks where the mobile hosts are able to change their transmission power. We concentrate on
finding schemes for routing arbitrary permutations in these networks. In general, it is NP-hard even
to find a n'~“-approximation for any constant € to the fastest possible strategy for routing a given
permutation problem on n mobile hosts. However, we here demonstrate that if we allow ourselves
to consider slightly less general problems, efficient solutions can be found.

We first demonstrate that there is a natural class of distributed schemes for handling node-
to-node communication on top of which online route selection and scheduling strategies can be
constructed such that the performance of this class of schemes can be exploited in a nearly optimal
way for routing permutations in any static power-controlled ad-hoc network. We then demonstrate
that if we restrict ourselves to the important case of routing between nodes distributed randomly in
a Euclidean space, we can route in a time that is asymptotically optimal for any routing scheme.
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1 Introduction

At the moment a dramatic growth in wireless networks can be observed. Mobile hosts and wireless
networking hardware are becoming widely available, and extensive work has been done recently in
integrating these elements into traditional networks such as the Internet. There are, however, important
scenarios in which no fixed wired infrastructure such as the Internet is available, either because it may
not be economically practical or physically possible to provide the necessary infrastructure or because
the expediency of the situation does not permit its installation (for instance, networks formed by
satellites, ships or airplanes, or networks connecting rescue teams in case of an earthquake or flood).
In such situations, a collection of mobile hosts with wireless network interfaces may form a temporary
network without the aid of any established infrastructure or centralized administration. This type of
wireless network is known as an ad-hoc network [19, 21]. Ad-hoc wireless networks have been recognized
as an important form of wireless network. The IEEE 802.11 recommended standard for wireless LANs,
for instance, requires an access protocol to have the ability to support ad-hoc networking [7].

Ad-hoc networks can be divided into two categories: simple, where the mobile hosts use fixed
transmission powers, and power-controlled, where the mobile hosts are able to change their transmission
power. Power-controlled networks have several advantages over simple ad-hoc networks:

e Contention among the hosts can be significantly reduced.
e Energy consumption can be significantly reduced.
e Security of transmissions can be increased.

The inflexibility of simple ad-hoc networks can be best demonstrated by considering human conversa-
tion. In everyday life we naturally use our ability to control our voice level in order to communicate
with other people. Imagine the problems caused if everyone could only speak with one voice level!

In this paper, we develop strategies for efficient communication in power-controlled ad-hoc networks.
The most important communication primitives for these networks are broadcasting and point-to-point
communication. We here concentrate on coordinating sets of point-to-point communication problems
that can be described as permutations. The majority of traffic on the Internet today consists of point-
to-point communication, and it is reasonable to assume that traffic on ad-hoc wireless networks will
be similar. However, to the best of our knowledge, no strategy or algorithm has been presented so far
that can solve permutation routing problems by a method better than a sequence of broadcasts. This
is a waste of communication resources, which is undesirable, since bandwidth in wireless networks is
very scarce compared to wired networks. Instead, we here demonstrate much more time- and resource-
efficient techniques that are close to optimal in certain situations.

1.1 Previous Work

Despite the advantages of allowing variable transmission powers, much of the existing work on ad-
hoc networks considers hosts that have a fixed transmission range. However, the idea of allowing
mobile hosts to vary their transmission power and transmission rate is already used in so-called power-
controlled CDMA systems, where the base station can direct mobiles to reduce their power and data
rate to reduce interference and allow more users on the system. This approach is employed in TTA
IS-95 with respect to the time-varying voice activity on cellular voice channels [22, 19]. The advantage
of adjusting the power and data rate of mobile data users to the current interference level has already
been studied experimentally (see, e. g., [22]).

To our knowledge, no results for an abstract model exist on how to select routes or schedule the
transmissions of messages for power-controlled ad-hoc networks. However, connectivity problems have



been studied for both simple ad-hoc networks [31], as well as power-controlled ad-hoc networks [39, 25].
Kirousis et al. [25] present a polynomial time algorithm for finding the minimum cost transmission
power assignment that maintains connectivity for arbitrarily distributed collinear points, where the
cost of an assignment is defined as total power usage. They also provide a 2-approximation algorithm
for finding the minimum cost assignment in the case where the hosts are arbitrarily distributed in three
dimensions.

The remainder of the previous work we discuss has studied only simple ad-hoc wireless networks.
A common model for such networks is called the packet radio network (or PRN) model. A PRN is
represented as an undirected graph G = (V| E), where two nodes i and j are connected if and only if
i is within the transmission radius of 7 and vice versa. One time step is defined as the time it takes
to transmit a packet. Since it is usually assumed that all nodes can only transmit at one frequency,
a transmission conflict occurs at node 4 if two of its neighboring nodes want to transmit at the same
time. Communication problems have been studied by many authors for both the case that a conflict
can be detected and the case that it cannot be detected.

Studies of multi-hop PRNs have mainly concentrated on broadcasting problems. Lower bounds
on this problem are considered in [1, 26, 3, 20, 6]. A number of papers also deal with constructing
efficient broadcast protocols [9, 41, 11, 3, 17, 36]. Let n denote the size, D denote the diameter,
and A denote the maximum degree of a given PRN. Bar-Yehuda et al. [3], for instance, present
a randomized distributed broadcast protocol that completes in expected O(D logn + log? n) steps.
Gaber and Mansour [17] present a centralized deterministic protocol that works in time O(D + log® n).
Point-to-point communication problems have also been studied, for instance, by Bar-Yehuda et al.
[4], who present a randomized distributed protocol that performs k point-to-point transmissions in
O((k + D)log A) time steps, on average.

Another problem that has been studied is how to schedule transmissions in a PRN to enable
neighboring nodes to successfully exchange information. For early work see, e. g., [10, 12, 32]. Recent
results can be found in [8, 5]. Also, the problem of selecting routes and updating routes when mobile
hosts move has been considered. See, e. g., [28, 23, 16] for different route selection strategies and
further references. Similar problems have been studied for various dynamic network models. See Dolev
et al. [15] for a survey of results in this area.

1.2 The Model

It is a challenging task to develop a model for wireless communication that is simple enough to enable
the design and analysis of algorithms, but is also detailed enough to ensure that efficient algorithms
derived in this model also perform well in practice. As in previous approaches such as the PRN model,
we here choose a high level of abstraction. We also note at the end of this section additional details
that could be added to the model, and how they would affect our results.

We model power-controlled ad-hoc networks with the help of the following graph:

Definition 1.1 Let a transmission graph G = (V,7) be a complete undirected graph with node set V
and edge labels determined by the function T7:V x V — IRT. For any edge {u,v}, 7({u,v}) represents
the lowest transmission power that allows u to send a message to v and vice versa.

In this paper, we only deal with static transmission graphs, i. e., the situation where the positions
of the mobile hosts and the environment do not change. Although dynamic transmission graphs are
more interesting for many wireless networking problems, static graphs are useful for scenarios where a
large amount of communication can be performed between updates to the transmission graph. This is
the case for fixed wireless networks in buildings or connecting several buildings, or low-mobility radio



networks such as networks formed by ships. A thorough understanding of static graphs also provides
a starting point for the dynamic case, for example, by providing a measure with which to compare
performance.

The remainder of the model is defined as follows:

e A packet needs one time step to make a single hop in the network, regardless of the distance to
the destination node. In many situations it is more time- and resource-efficient for a message to
perform a sequence of hops instead of one single hop to its final destination. The sequence of
nodes used for the hops is called the route of a message.

e Only one frequency is available for transmitting packets, which implies that:

— A node can send out at most one packet at a time.

— If a node v attempts to send a packet with transmission power ¢, then all nodes that need
less than ot power to receive a packet from v are blocked, where o > 1 is some fixed constant.
Any information transmitted to a blocked node is not received. Note that this means that
it is possible for no transmission during a single time step to be successful.

e A transmission conflict cannot be detected by the sending node.

e All nodes work in a synchronized way. (For simplification reasons, this paradigm is commonly
used in the design and analysis of wireless communication strategies that are robust to slight
differences in the speeds at which the nodes operate [3, 18, 37].)

As noted above, the level of abstraction of this model is high. We here address three of the above
assumptions: (a) all hops in the network take the same amount of time, (b) the cause of messages
being blocked and (c) the maximum transmission power of the mobile stations is unlimited. For (a),
in practice, signal propagation time does cause the time required for a hop to depend on the distance
traveled. However, even though incorporating this into our model does make our proofs slightly more
complicated, it does not change any of our results in a qualitative manner. For (b), we point out
that in practice, a message m can be blocked even when no single node is transmitting with enough
power to block m, but the cumulative effect of the transmissions by several nodes might block m. The
relevant measure is actually the strength of the interference caused by all possible sources of signals (the
so-called signal to interference ratio or SIR) and not only one. See, for instance, the model developed
by Ulukus and Yates [39]. However, in practice it turns out that only signals with strength above
some threshold value contribute to blocking a node, since all other signals tend to cancel each other
out rather than to add up, or may even be insignificant compared to the white Gaussian noise that
is always present. Furthermore, incorporating the SIR into our model in the manner proposed by
[39] makes our proofs considerably more complicated, but has no qualitative effect on the results of
Chapter 2 and only an insignificant qualitative effect on the results of Chapter 3. For (c), limitations
on the transmission power can be easily incorporated in Chapter 2 by restricting the class of schemes
considered accordingly. This also does not present any difficulties for the strategies considered in
Chapter 3, since they only require communication between nodes of close proximity.

1.3 On the Hardness of Routing in Ad-Hoc Networks

Several authors have already presented NP-hardness results for various wireless communication prob-
lems, such as the problem of finding an optimal broadcast schedule [9] or scheduling transmissions
in the case where every node wants to send a message to one of its neighbors [38]. With a similar
reduction from Chromatic Number, the following result can be shown.



Remark 1.2 Given a transmission graph and o collection of n routes, even finding a schedule with a
runtime that is within a factor of n'=¢ of optimal, for any constant € > 0, is NP-hard.

Hence, finding efficient communication strategies for wireless networks is much harder than for
networks with fixed node-to-node connections, even if a fixed collection of routes is already given along
which the packets have to be sent. The hardness result above also holds if we do not constrain ourselves
to specific routes. The reduction is similar.

1.4 New Results

Nearly nothing is known about how permutation routing problems can be handled in wireless commu-
nication networks, and the hardness results above do not look very promising. However, we here show
that if we allow ourselves to consider slightly less general problems, efficient solutions can be found.
We demonstrate this with two approaches: first we consider the effect of restricting the class of routing
strategies allowed, and then we restrict the class of allowed transmission graphs. Both restrictions
we consider are natural and lead to permutation routing strategies that are close to optimal for their
respective classes.

The class of strategies considered is defined by separating the routing problem into three layers: one
layer that handles the scheduling of node-to-node transmissions of packets (we follow the experimental
literature and refer to this as the medium access control, or MAC, layer [19]), one layer that is responsible
for finding efficient routes for the packets, (called the route selection layer) and one layer for selecting
which packets are to be transmitted next by the nodes (called the scheduling layer). We introduce a
class of protocols for the MAC layer called local probabilistic control protocols. These protocols allow
every node to make scheduling decisions in a randomized fashion without requiring any coordination
between the nodes. Furthermore, they ensure that each attempted transmission is successful with
constant probability.

On top of these protocols we develop schemes for the other two layers that almost optimally exploit
the power of the MAC layer protocols for any transmission graph. For this we introduce a parameter
R(G, S), similar to the routing number of [2, 30], that represents a lower bound on the expected time
required to route a random permutation in G using the MAC scheme S. We present online strategies
for the route selection layer and scheduling layer that are able to route any permutation in G using S in
time O(R(G, S) -logn), and in many cases even in time O(R(G, S) - (loglog n)?), where n is the size of
G. The techniques developed include efficient simulations of strategies for deterministic communication
models by probabilistic communication models. This might be of independent interest.

We then study the effect of restricting the class of allowed communication graphs to those rep-
resenting mobile hosts distributed in a Euclidean space. We assume that n points are distributed
uniformly and independently at random in a domain space, a convex region of IR? that is known a pri-
ori. This random distribution models the situation where each of the nodes moves within the domain
space independently and with equal probability in any direction. In the case where the domain space
is a 2 dimensional square, we show that we can route any permutation online in time O(y/n) with
probability at least 1 — O(1/n). We also demonstrate that the techniques for a square domain space
can be extended to an arbitrarily shaped convex domain space.

Furthermore, we show that in the scenario considered, it is not possible to use the ability to transmit
over long distances to perform permutation routing faster using wireless communication than it is using
an array: we prove a lower bound demonstrating that when the domain space is a 2 dimensional square,
the time required to route a random permutation is £2(y/n) with probability at least 1 — O(1/n). We
also show that the result for routing in an arbitrarily shaped convex domain space is within a constant
factor of optimal.



Finally, we note that our routing strategies developed for the two approaches above (i. e., restricting
the class of MAC layer protocols or the class of allowed transmission graphs) are not limited to sup-
porting the exchange of messages, but can also be used to perform efficient distributed computations
in ad-hoc networks such as sorting and matrix multiplication.

2 A Universal Framework for Wireless Communication

In this section we propose strategies that are universally applicable in a sense that they can be reliably
used for arbitrary static ad-hoc networks and arbitrary routing problems. Our approach basically
consists of three layers:

(1) the medium access control layer (or MAC layer),
(2) the route selection layer, and
(3) the scheduling layer.

The MAC layer is responsible for enabling node-to-node communication. The task of the route
selection layer is to choose suitable routes (i. e., suitable sequences of nodes to visit) for the packets,
and the task of the scheduling layer is to resolve conflicts between packets that want to be transmitted
by the same node at the same time step.

A communication scheme has to fulfill several demands to be strictly online, such as: The routes
should be chosen independently of each other, and the nodes should be able to decide locally when
and how often to try to get access to other nodes within some given time interval, and which packet
to prefer if several packets want to be sent out by a node at the same time step. On the other hand,
the strategy should (at least in important scenarios) ensure that the node-to-node communication, the
selection of the routes and the scheduling are as efficient as possible. As we have seen in the previous
section, to fulfill even a part of these demands is impossible in general (unless P = N P). However, we
will show that if we restrict ourselves to considering only communication strategies that use the class of
MAC layer protocols described below, suitable strategies can be constructed that (nearly) fulfill these
demands.

2.1 Strategies for the MAC layer

In this section, we propose a class of local probabilistic control protocols for the MAC layer (also called
LPC schemes in the following) that allow all nodes to operate independently of each other without
blocking any other node too much by access trials. Before we define this class, let us first give a brief
overview of the most commonly used MAC layer strategies and describe, why they cannot be used
efficiently in ad-hoc networks.

2.1.1 Currently used MAC layer protocols

In todays wireless communication technologies, there are basically three different ways of transmitting
signals: FDMA, TDMA and CDMA.

In FDMA (frequency division multiple access), signals can be transmitted simultaneously by using
different frequencies. In TDMA (time division multiple access), signals occupy the same frequency
band, but are separated by using non-overlapping time slots for transmissions. CDMA (code division
multiple access) is a technique that contains both FDMA and TDMA. The basic idea of CDMA is



that the senders use codes for their transmissions that are orthogonal to each other, i. e., their cross-
correlation is 0. Thus, with the help of a suitable correlator a receiver is able to filter out a signal from
a specific sender without getting interference from others.

All current access schemes use either TDMA or CDMA (both often in combination with FDMA to
increase the bandwidth and/or reduce interference). Whereas TDMA is used in most of todays stan-
dards such as DECT, GSM (Europe), PDC (Japan) and IS-54 (USA), CDMA is regarded as the access
mode for future wireless communication standards such as UMTS (universal mobile communication
system), currently under development in Europe, or IMT-2000, currently under development by the
ITU, the international body for communication standards.

Both TDMA and CDMA are not useful for ad-hoc wireless networks since they are very sensitive
to even small differences in the speeds at which the mobile stations operate. When there is central
control, for instance via a base station, this problem is solved with the help of a reference signal sent
out by the base station at fixed time intervals.

In the special case of wireless LANs, most networks are based on carrier sense multiple access
(CSMA), polling, and TDMA. These can also be found in the IEEE 802.11 recommended standard for
wireless LANS.

In CSMA protocols, each node listens whether other nodes are transmitting. If not, it tries to send
its message. If it recognizes a collision with another message, it backs off for a random period of time
before it tries again to send out its message. CSMA has been used with great success in the Ethernet.
Unfortunately, this strategy is not applicable for ad-hoc networks, since a node cannot detect whether
the destination of its message is currently blocked or not.

Hence, we propose a different class of MAC layer protocols for ad-hoc networks. The advantage of
these protocols is that they seem to have the potential to adjust quickly to changing situations and
therefore could support efficient communication also in dynamic ad-hoc networks.

2.1.2 A new class of MAC layer protocols

In this section we propose a class of simple local probabilistic control protocols for the MAC layer that
allow each node to decide independently of the other nodes when to send a packet.

Let us start with describing how to perform a hop in an ad-hoc network. Suppose v tries to transmit
a packet P to w. We say that the hop of P is successful if v knows that P reached w. Since in our
model a transmission conflict cannot be detected by the sending node, a successful hop requires sending
data without a conflict from v to w and from w to v. For our purposes it would suffice to have only two
steps: Sending P from v to w, and sending an acknowledgement from w to v. We do not require w to
know whether v knows that P reached it, since our route selection strategies will be based on choosing
fixed routes. Once w receives the packet it can immediately start to send it further along its route.

Note that we do not consider here the possibility of transmission errors or node failures. In these
cases, four communication steps may be used for a hop to ensure a correct transmission, and limits for
the number of transmission attempts may be used to detect node failures.

Now, consider any transmission graph G = (V,7). We define an LPC scheme for G to be a MAC
layer protocol that can be described by an access matriz P = (pyw)vwev With p,,, € [0,1) for all
v,w € V. This access matrix is used in the following way:

Assume that some node v wants to send a packet @) to node w (which is allowed if p,,, > 0). As
long as v has not received an acknowledgment, v decides at each time step with probability p, ., to
start a hop for @) to w.

For all u,v € V with u # v, let b, , = max,cv{pyw: a hop attempt from v to w blocks u}. (Recall
the definition of a node to be blocked in our model.) By convenience, we define b, , = 0. We demand
for each LPC scheme that the p, ,,’s are set in such a way that for every u € V', 37, cy by < 1/4, 0. e,



the probability that u is blocked at some time step is at most 1/4 for any situation in which every node
has at most one packet. This ensures that for any LPC scheme, no coordination among the nodes is
necessary. Each node can make an arbitrary decision of where to try to send a packet, but we still have
for all nodes v, w € V that

Pr[hop v — w not successful] < Pr[v blocked] + Pr[w blocked] < 1/2.

That is, a hop attempt has a success probability of at least 1/2.

We want to use this class of schemes as a basic building block for the rest of our communication
strategies. We will demonstrate that we can exploit the power of these schemes in a nearly optimal
way for routing arbitrary permutations in any static ad-hoc network. Hence, possible inefficiencies are
confined mostly to the MAC layer. An interesting open problem is finding more powerful classes of
MAC layer protocols and developing efficient routing strategies on top of them.

2.1.3 Transforming the problem of routing in transmission graphs to routing in PCGs

The drawback of our schemes is that they are only guaranteed to work if every node tries a transmission
only for one packet (i. e., only one packet is active) at any time. Hence, if more than one packet is
currently stored at a node, the others have to wait until the packet chosen by the node for hop
attempts is successful. To see why this is a problem, consider the scenario where v; has p; 2 = 1/10
and p; 3 = 1/1000. If v; has to send a packet P to v3, it will (probably) require many attempts before
Pj is successfully sent. Say in the meantime, that v; receives another packet P5, where P, needs to be
sent to ve. Forcing P» to wait until Ps is successfully sent will probably force P, to wait at v; much
longer than expected. On the other hand, giving P, priority over P3 can lead to “starvation” of Pj if
many packets destined for v, arrive.

In order to avoid this drawback, we show in the following how to refine any LPC scheme to a
scheme that allows several packets to be active at the same time, without reducing the p, ,, by more
than a constant. This transformation not only helps to make our schemes much more flexible, but also
helps to interpret the problem of routing in transmission graphs using our LPC schemes as a routing
problem in a network model called PCG (see Definition 2.2). This allows us to draw on the large body
of literature in the field of interconnection networks to propose suitable path selection and scheduling
strategies. The analysis of these strategies, however, is much more involved than previous analyses
because of the probabilistic and non-uniform nature of our network model.

Consider any LPC scheme S, and let P be its access matrix. For each node v and 7 > 1, let the
i-zone of v contain all nodes w with p,,, € (2%1, %] For each i-zone, let us define the zone access
probability for v as q,; = # Furthermore, for all u,v € V' let b, , be defined as above. Assume that
we allow now each node to have an active packet for every zone. Then the probability that node v is
blocked by a hop attempt of a node w # v is at most
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Since for every pair of nodes v, w € V' we require that p,, < 1/4 in order to ensure the bounds on the
blocking probability of the original LPC scheme, the lowest ¢ for which hop attempts to an i-zone are
allowed is at least 2. Thus, the probability that node v is blocked by one of its own hop attempts is at
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Hence, altogether the probability that a node is blocked using the zone access scheme is at most 1/4.
Thus, the probability that a hop attempt is successful is at least 1/2, as desired.

Let us call the scheme S extended by zone accesses Sz. Furthermore, let Pz be the access matrix

of Sz with entries pf, w for all v,w € V. The construction above implies that, for all v,w € V with
Pow € (2%17 2—111, Pf,w = 21% > 1/8 - pyw. Thus the following fact holds.
Fact 2.1 For any LPC scheme S with access matriz P it holds that every entry of the access matrix
Py of Sz is at least 1/8 the corresponding entry of P. However, Sz allows one packet to participate
in hop trials for each node and zone while guaranteeing that any attempted hop is still successful with
probability at least 1/2.

In the following we show that for all communication strategies using a zone access scheme we can
transform the problem of routing packets in a transmission graph (which is very difficult to handle, as
we saw in the introduction) to the problem of routing packets in the following graph model (which, as
we will see, is easier to handle).

Definition 2.2 Let the probabilistic communication graph (or PCG in short) G = (V, ) be defined as
a complete directed graph with node set V' and edge labels determined by the function ¢ : V. xV — [0, 1].
Every edge e can forward o packet in one time step, but only succeeds in doing this with probability

p(e)-
Next we define how to transform transmission graphs to PCGs.

Definition 2.3 Given a transmission graph G = (V,7) and a zone access scheme Z with mazimum
zone number k, let the corresponding PCG be defined as Gz = (W, ) with

e W=VU(V x{L,...,k}),

o(v, (v,1)) = 21% forallv € V and i € {1,...,k} (this represents the probability that a hop is
attempted to the i-zone of v in G),

e o((v,4),w) =1 if w is in the i-zone of v and 0 otherwise for all v,w € V and i € {1,...,k}, and
e p(v,w) = p((v,1), (w,7)) =0 for allv,w €V and i,j € {1,...,k}.

Assuming the multi-port model for PCGs (i. e., in each time step a transmission can be attempted
for each edge), the following theorem holds.

Theorem 2.4 Given any transmission graph G and zone access scheme Z it holds that, for any strategy
on top of Z that can route some given routing problem R in G in expected time T, there is an offline
strategy in Gz that routes R in expected time at most 2T.

Proof. Given a strategy S on top of Z, let Tg denote the probability tree of all possible outcomes
for sending the packets in G to their destinations, using S on top of Z. The root of Tg represents the
starting point, and each path in Tg from the root to a leaf represents a possible outcome for S. Each
outcome represents a protocol containing for each time step ¢, node v, and zone z the event whether

(1) no packet at v tried to use zone z at time ¢, or
(2) packet P at v tried to use zone z, but it randomly chose not to perform a hop, or

(3) packet P at v tried to perform a hop to node w in zone z, but failed due to a collision event, or



(4) packet P at v successfully performed a hop to node w in zone z.

Each time step of the protocol is represented by a node in Tg.

Our aim is to contruct a (centralized) offline protocol for Gz that simulates Tg. Clearly, events
of type 1 do not need any transformation (apart from, maybe, holding packets artificially back in the
offline protocol). Events of type 2 can also be used without any change for Gz, since the probability of
attempting a hop is equal for both models. Since collisions of events cannot happen in Gz, events of
type 3 do not appear there. To incorporate them in the offline protocol, they are simulated in a way
that the branching probabilities in Tg are preserved. Finally, any event of type 4 appearing in G can
be taken over as it is to the offline protocol. As a hop takes two steps in GGz instead of one step in G,
the theorem follows. [ |

Hence, a lower bound for routing some given routing problem R in the PCG Gy is also (up to a
constant factor) a lower bound for routing R in the transmission graph G using Z. In addition, it is
easy to see that for any analysis of a routing strategy, in which only probabilities for one node and
zone at a time or expectations are considered for bounding the number of successful hops, any upper
time bound for sending packets in the PCG Gz also holds for sending the packets in the transmission
graph G using Z. However, if probabilities for several nodes and/or zones are considered for the same
time step, this is no longer true because of possible transmission conflicts. The proofs for our upper
time bounds, presented in the following, will take care of this problem, so that all results presented in
the following for PCGs also hold for transmission graphs using zone access schemes.

2.2 Path selection strategies for PCGs

In this section, we show how to select online (i. e., in a distributed way) efficient path collections
for routing arbitrary permutations in arbitrary PCGs. For this we need some notation. Let the edge
latency L of a PCG G be defined as the maximum expected time < oo to cross an edge in G. Given a
collection P of simple (i. e., loop-free) paths in some PCG G,

e the dilation D of P is defined as the maximum over all paths in P of the sum of 1/p(e) over all
edges e used by it (that is, D denotes the maximum expected time a packet needs to traverse a
path in P), and

e the congestion C of P is defined as the maximum over all edges e of 1/p(e) times the number of
paths in P that cross it (that is, C' denotes the maximum expected time spent at an edge e to
forward all packets which contain e in their path).

In order to have a measure for the quality of the dilation and congestion of a path collection, we use
the so-called routing number. This number is defined as follows (see, e. g., [2, 30]):

Consider an arbitrary PCG G = (V, ) with N nodes. Let Sy represent the set of all permutations
over [N] = {1,...,N}. For a permutation = € Sy, let R(G,n) be the minimum possible expected
number of steps required to route packets offline (i. e., the whole routing problem is known to all
nodes) in G according to m under the assumption that only one copy per packet is sent through the
network. Then the routing number R(G) of G is defined by R(G) = max,cs, R(G, 7). When there is
no risk of confusion about the network G we will write R instead of R(G). The routing number has
the following nice property.

Theorem 2.5 For any PCG G with routing number R and any routing strategy, the average, over all
permutations, expected number of steps to route a permutation in G is bounded by Q(R).



Proof. The proof follows directly from a proof in [30]. n

Hence, asymptotically the routing number is not only an upper bound, but also a lower bound
for the average permutation routing time using optimal routing strategies in . This demonstrates
that the routing number is a robust measure for the routing performance of graphs within our model.
With the help of the routing number, we can prove Theorem 2.6. The main problem in the proof of
this theorem is that a best possible path selection strategy for a PCG may not be a strategy using
fixed paths, but maybe a strategy in which paths are chosen adaptively according to the outcome of
transmission trials.

Theorem 2.6 For any PCG G with routing number R and edge latency L and any permutation routing
problem w € Sy in G, there exists a collection of simple paths with congestion and dilation at most

R+ O(y/Rllog(R/?)) = O(R), where £ = min[R, L].

Proof. Consider any strategy S for sending packets in G to destinations prescribed by 7. Let the
random variable 7" denote the time the packets need to reach their destinations using S. In order to
have a bound on the edge latencies used by S, we first show the following lemma.

Lemma 2.7 If S makes use of edges with latency beyond E[T], S can be reduced to a strategy 8" with
expected runtime at most 2E[T] that makes use of edges with latency at most 2E[T)].

Proof. Consider the situation that S successfully uses an edge e with latency ¢ > 2E[T], that is,
at least one packet is sent along e. Since the expected routing time for this situation is at least ¢,
S can only successfully use such an edge with probability at most E[T]/¢ < 1/2, because otherwise
the overall expected routing time would exceed E[T]. This means that with probability at least 1/2
no edge successfully used by S has a latency of more than 2E[T]. Hence, the expected runtime for S
restricted in a way that it is only allowed to make use of edges with latency at most 2E[T] is at most
2E[T], because otherwise the overall expected routing time would again exceed E[T]. This completes
the proof. [ |

In the following we therefore assume that S makes use of edges with maximum latency L < 2E[T].
Let the random variables C' and D be defined such that C denotes the congestion and D denotes the
dilation of the path collection chosen by S. Let B = max[C,D]. In order to establish a relation-
ship between B and 7', we need a Chernoff-type bound for sums of geometrically distributed random
variables.

Lemma 2.8 Let Xi,...,X, be n > 1 independent geometrically distributed random variables with
parameters py,...,py € [0,1] (that is, Pr[X; = j] = (1 —p;)?~'p; for all j €IN). Let X = 3" | X; and
p=min[py,...,ps]. Then it holds for any 0 < e <1 that
Pr[X < (1 — )E[X]] < e~ FXI/2
Proof. According to the Markov Inequality it holds that
PIX < (1—d)] < -0 o] (1)

for any A > 0. Since X,..., X, are independent, it follows that
n . .
Bl = LBl =TIy [Ty (1 - i) ~'pie™]
i=1
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1 " 1
= = 2
ZHleh/piJrl—l/pz El—uﬂruzeh @
for all h > 0. Plugging this into inequality (1) yields
L eh(l_d)ﬂi
PriX <(1—-90)u] < _ 3
<0 < 11 (15 ®)
The fraction on the right-hand side of (3) is minimal for h = hy, where
)
hy =1In (1 + 7) .
' pi(1 = 6)
Thus we set h = In(1 + dp/(1 — §)). For this we have
n _ .
(1+dp/(1 — &) 2w
Pr[X <(1-9§)u] < .
< oo < I (S
Since pu; < 1 it holds that
(L+3p/(L =) <1+ dpui Y iy
i>0
Thus,
(1L+38p/(1 =80 140 Biso iy
1+ dppi/ (1 — 6) T 14 0ppi Yo o
< 1—(1—6)dpui [(Zizo 5i) - (Zizo (Z-fl)g)]
() (o)
< e—(l—é)épui% Ei215i — 6*5217'!%/2 .
Plugging this into inequality (3) yields
Pr[X < (1—6)u] <e 0Pm/2
|

In order to bound the probability for a large deviation of B from T', we show the following lemma.
Lemma 2.9 For any 0 < e <1 it holds
Pi[T < (1—€)B] <e B2

Proof. We consider the following two cases.

11



e B = (' Then there exists an edge e that has congestion B. Let k be the number of packets
traversing this edge, i. e., the latency of e is £ = B/k. For all i € {1,...,k}, let the random
variable X; denote the number of time steps it takes for the ith packet to cross e. Then X =, X;
denotes the time all packets need to traverse e. Since the X; are independent and geometrically
distributed with parameters p; = 1/¢, Lemma 2.8 yields that, for all 0 <e <1,

Pr[X < (1 —¢)B] <e B/
Since X < T and ¢ < L, it therefore also holds that

Pr[T < (1 —€)B] < e < B/2L

e B = D: Then there exists a packet p that traverses a path with dilation B. The runtime for
this can be bounded as above by viewing each edge as an independent geometrically distributed
random variable. This implies that also in this case

Pi[T < (1 —€)B] < e €B/2L

Combining the two cases yields the lemma. |

Now we can start to bound E[B]. It holds

= > bPr[B=0b] = Y Pr[T=1]) bPr[B=0b|T =t].

b>1 t>1 b>1

Let the function € : IN — IRT be defined as

(i) = max [ \/4L(ln(E[T]/L)+i) AL((E[T]/L) + )

t ’ t

It holds that

Prfb> (1+€(i)f] & Pr[t< (1-:95)9)

and, according to Lemma 2.9,

; e(i) e(l)
Pr [t < (1 - %) b} <e ~(c5) v/t < e @Y
If e(i) <1, we have
E[T]

and if €(i) > 1, we have €(i)2/(1 + €(i)) > €(i)/2 and therefore

e IEJEZE)(Z t/2L e_ 4L(1“(E[;I']/L)+i) 't/4L = L . e_i
E[T]
So in any case,
L .
b> t] < !
> (1 4] < g7 e

12



Thus, it follows that

EB] = Y Pi[T =) bPi[B=0b|T =1
t>1 b>1
[(1+e(1))t
= Y Pr[T=¢| Y bPr[B=b[T=t]+) (1+e(i+1))t-Prb> (1+€(i))]
t>1 | =1 i>1
< STPrT =1 |(1+¢(1) t+—Z +e(i+1))
t>1 i z>1
L
- ;Pr[T = 1 |1+ () + - O((1 + dl))t)}
= ;Pr <t+ 9, < tL ln(E[T]/L))) (1+ o)

= (1+ &) (E[T] +0< Lln(E[T]/L)) E [ﬁ]) .

Let X be an arbitrary random variable. Since E[(X — E[X])?] = E[X?] — E[X]? > 0, it holds E[X]? <
E[X?]. Substituting X by v/T and taking the root on both sides yields E[v'T] < /E[T]. Hence, since
L < 2E[T],

RB[B] < (1 + ﬁ) (E[T] +0 <\/E[T]Lln(E[T]/L)>>

If we assume that S is a best possible strategy for routing 7, then E[T] = R. (Or E[T] < 2R in case
that Lemma 2.7 had to be used. But then L = ©(R), which means that \/RLIn(R/L) = ©(R).) In
this case, E[B] = R+ O(\/RLIn(R/L)), which implies that there exists a path collection for routing ™
with congestion and dilation at most R + O(y/RLIn(R/L)). This proves Theorem 2.6. n

Once we have this theorem, the question is whether it is possible to find such a path collection in
an efficient way for every permutation routing problem. An option we want to consider in this paper
is to construct a path system, from which suitable paths for routing the packets can be easily chosen.
A path system is defined as a set of paths in G that contains exactly one path for every pair of nodes
in G. The dilation of a path system is defined as for a path collection. The following theorem shows
that we can construct efficient path systems (“w.h.p.” means with probability at least 1 — N ¢ for any
constant c).

Theorem 2.10 For any PCG G of size N in which every permutation can be routed along a path col-
lection with congestion and dilation at most B and edge latency L, a simple path system P with dilation
at most B can be constructed in polynomial time such that the congestion of routing one packet from
every node v to a node chosen uniformly at random by v is bounded by B+ O(\/(B + Llog N)Llog N),
w.h.p.

Proof. First we show the existence of an efficient path system. According to the definition of B, for
any permutation m; : [N] — [N] with 7;(z) = (z + i) mod N for all i, z E [N] there is a path collection
P; with congestion and dilation at most B. We then choose P = U 73Z to be the path system for
G. Clearly, this path system has congestion at most IV - B and dllatlon at most B.

13



Next we bound the congestion that holds w.h.p. for routing a random function in G using paths in
P. Consider some fixed edge e in G, and let £ be its latency. Let the random variable C, be defined as
the congestion at e. For any node v in G, let the binary random variable X, be one if and only if the
packet with source v contains e in its routing path. Then C, = £}, .y, X,. Since each node sends out
a packet to a destination chosen uniformly at random, we have E[C,] < B. As the X, are independent,
the Chernoff-Hoeffding bounds yield that

7523/34 o ifo< 1
e S | €<
II'[Ce ( ) ]_{66' / 1f€>

This probability is polynomially small in N for € = O(max[\/ﬂogN, llng;N]) sufficiently large. Hence,
w.h.p. all edges have a congestion of at most B + O(\/(B + Llog N)Llog N). It remains to be shown
how to construct an efficient path system.

Constructing an efficient path system

First, let us assume that all probabilities attached to the edges in G are of the form 1/¢, where ¢ € IN.
(If this is not the case then divide all probabilities by N, where « is a constant chosen for a sufficiently
good precision. Then round all probabilities to the nearest 1/¢, where ¢ € IN and continue with the
construction as described below. It is easy to see that in this case the relative rounding error per
edge is below 1 + N~®. This ensures that the amount by which the bounds on the congestion and
dilation below have to be increased is at most (14 1/N®), which is insignificantly small.) The following
algorithm will serve as a basic building block for our algorithm to construct an efficient path system
in G.

For any d € IN, let G4 denote a leveled network of depth d, i. e., a network consisting of d + 1 sets
of nodes called levels. Let its levels be numbered from 0 to d. For each level, let its node set represent
the set of all nodes in G. Two nodes v and w are connected if

e v and w are in consecutive levels and represent the same node in G, or

e v and w are in levels 7 and 7+ £ for some ¢+ > 0 and the nodes represented by v and w are connected
via an edge with latency ¢ in G.

Let all edges be directed from the lower to the higher level. We consider the problem of sending
one unit of flow from every node at level 0 to every node at level d. (That is, we have a so-called
multicommodity flow problem.) There are certain capacity limits that have to be kept in order for a
solution to our problem to be valid: We demand that for every edge e with latency ¢ in G, all edges
in G4 representing copies of e together are allowed to forward a flow of at most N - d/¢. There are no
restrictions on how this flow is distributed among these edges. All edges in G4 that connect copies of
the same node in G are assumed to have infinite capacity.

If we allow fractional flows then linear programming can be used to find a solution (or stop with
the answer that no solution exists) in polynomial time.

Now we are ready to formulate our algorithm for finding an efficient path system.

(1) Find the minimum d for which there is a solution to the multicommodity flow problem for G, as
stated above.

(2) Transform the multicommodity flow for G4 into a multicommodity flow for G by identifying nodes
in G4 representing the same node in G. Since all copies of an edge e in G with latency ¢ together
have a capacity of d - N/, the fractional congestion of e is at most d - N.

14



(3) Use Raghavan’s method [34] for converting fractional flows into integral flows. This results in a
path system for G with dilation at most d and congestion at most
d-N+O(\/(d-N+ LlogN)LlogN).

Clearly, the algorithm runs in polynomial time. It remains to bound d. According to the existence
proof, there is a path system P with dilation at most B and congestion at most C = B - N. This
path system can be directly transformed into an integral solution to our multicommodity problem for
G p (the paths of P represent the paths of the units of flow). Hence, there exists a fractional solution
to our multicommodity flow problem with d < B. Raghavan’s rounding method therefore produces a
path system with congestion at most B+ N + O(y/(B- N + Llog N)LlogN).

Using the same analysis for bounding the congestion of routing random functions as in the existence
proof yields Theorem 2.10. |

Hence, for L = O(%), the congestion and dilation of routing a randomly chosen function using
paths in P is bounded by O(R), w.h.p. Using Valiant’s trick [40] of routing packets first to randomly
chosen intermediate destinations before they are routed to their original destinations, we can get this
congestion bound for arbitrary permutations, w.h.p. So if there were an offline protocol that can route
packets along an arbitrary simple path collection with congestion C' and dilation D in expected time
O(C + D), then the optimal worst case (and average case, see Theorem 2.5) expected time to route
packets according to an arbitrary permutation can be reached by using a fixed path system. We will
address this question in the next section.

2.3 Scheduling strategies for PCGs

In this section, we prove upper bounds for offline and online scheduling of packets along a fixed col-
lection of paths in a PCG. Recall that in offline scheduling it is assumed that all nodes know the
entire scheduling problem from the beginning (and are therefore able to compute an optimal schedule
since internal computations are usually not counted for the time complexity of scheduling algorithms),
whereas in online scheduling every node initially only knows the packets it stores.

2.3.1 Offline scheduling

In order to simplify the development of efficient offline schedules for PCGs, we compare these com-
munication graphs with their deterministic equivalents. For this, we introduce the following type of
communication graph.

Definition 2.11 Let the deterministic communication graph (DCG) G = (V) be defined as a com-
plete directed graph with node set V. and a function v : V x V. — IRT U {cc}. For any edge (u,v),
~v(u,v) represents the time it takes to send a packet from u to v.

Consider any PCG G = (V,¢). Let the DCG of G be defined as G = (V,v) with y(e) = 1/p(e) for
all e € V x V. Consider the problem of simulating an offline protocol for G by G. The next theorem
shows that this can be done efficiently. The proof can be found in the appendix.

Theorem 2.12 Consider any offline protocol S that requires T time steps to send all packets along
a given path collection of size n in G. Let L denote the mazimum edge latency and ¢ denote the
minimum edge latency of this path collection. Then S can be taken to construct a protocol with runtime
O(Tlog(L/¢) + Llogn), w.h.p., for sending the packets along the same path collection in G.

Note that Theorem 2.12 is true for any (even non-simple) path collection. This may allow to use it
for a wider range of problems than just communication problems.
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2.3.2 Online scheduling

With the help of the idea behind the online protocol in [27], we will show the following result.

Theorem 2.13 There is an online protocol for sending packets along an arbitrary path collection of
size n with dilation D, congestion C, maximum edge latency L and minimum edge latency £ in time

O(C + Dlog(n- L/¢)), w.h.p.

Proof. We assume in the following that the minimum edge latency, ¢, is equal to 1. It is easy to
modify the proof such that it also holds for any minimum edge latency.

Let us first present a protocol for a DCG, called random delay protocol, before we show how to
convert it to a protocol for a PCG. The protocol assumes that all links have bandwidth B (fixed later),
that is, up to B packets can traverse a link at one time step. Let us call an interval of ¢ consecutive
time steps a t-interval. The following algorithm is used as a basic building block for the random delay
protocol.

Algorithm Route(s):

Each packet is assigned an initial delay, chosen uniformly and independently at random
from the range [C/log(Ln)]. A packet that is assigned a delay of § waits in its initial
buffer for ¢ steps and then moves on without waiting again until it reaches its destination
or traversed a path with dilation at least s. If a packet arrives at an edge that is currently
traversed by B other packets, then it stops and stays at the link for the rest of Route(s).

The random delay protocol works as follows.

repeat
execute Route(min[D, L - n])
until all packets reached their destinations

Lemma 2.14 Suppose we are given an arbitrary simple path collection P of size n with congestion
C, dilation D and edge latency L in some DCG G. Then the random delay protocol needs at most
O(C + Dlog(Ln)) time steps to finish routing in P, w.h.p.

Proof. Let us consider some fixed edge e and time step ¢ during the execution of Route(s). Let ¢
be the latency of e. Since at most C/¢ packets want to traverse e and each of these packets chooses
an initial delay independently at random from a range of size C'/ log(Ln), the probability that at least
B = max|[a + 3, 2e] log(Ln) + 3 packets arrive at e within some /-interval is at most

B
it 1]+ /o2 %)) (7maz)

elog(Ln)\? 1\ (a+3)log(Ln)+3 1
< —_— < = = —.
< 2Ln < 5 ) <2Ln <2> ITGE

We say that a packet P fails at edge e if at that time it reaches it, e is already used by B other packets.
Clearly, if P fails then at least B arrivals of other packets fall in an /-interval ending with P’s arrival
time. Hence, the probability that P fails at least k¥ = [D/(Ln)] times during the execution of the
random delay protocol is bounded by

() Gaes) < () (i)
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Since there are n packets to consider, the probability that there exists a packet with at least k failures
is at most n- (Ln)~*"! < n~% Hence, w.h.p. the random delay protocol successfully routes all packets
along the given path collection in time

B (min[D, L - n] + C/log(Ln)) - (D/(min[D, L - n]) + k)
= O(C+ min[D, L - n]-log(Ln)) - (D/(min[D, L - n]) + [D/(Ln)]))

Cxfn O(C + Dlog(Ln)) .

A

This completes the proof of Lemma 2.14. |

It remains to be shown how to convert this protocol into a protocol for a PCG. For each time step
of the protocol for a DCG with bandwidth B, let us use 4B time steps for the PCG.

Consider the simulation of some fixed call of Route(s). Let each packet have a rank denoting,
for each edge it currently waits at, the time it arrives there in a DCG with bandwidth B. A packet
currently staying at an edge with latency ¢ is declared active if the current time step ¢ is within the
time interval [4¢B - r,4¢B(r + 1)) of its rank r. Only active packets are allowed to try to cross a link.
If several packets are active at the same time at some edge then the packet with lowest rank is chosen
for attempts to cross the edge. (In case that several packets have the same rank, an arbitrary packet
may be chosen.) If a packet is not able to traverse an edge within its active period, it stops and stays
at that edge for the rest of Route(s). Also if, for some packet P and edge e with latency ¢ along P’s
path, more than B packets with lower ranks than P are active at e when P arrives there, P stops and
stays at that edge for the rest of Route(s). If a packet is involved in one of these two cases, we say
that it fails Route(s).

The rules above imply that every active packet is competing with at most B —1 other active packets
at any time step during the simulation. Hence, the probability that a packet with rank r fails to traverse
its current link e within the time interval [4¢B -r,4¢B(r + 1)) is at most the probability that e has less
than B successes within 4/B time steps. Let the random variable X denote the number of successes
e has within 4/B time steps. Clearly, E[X] = 4B. Applying the Chernoff bounds with e = 1 — i, we
obtain

Pr[X < B] =Pr[X < (1 — E[X]] < e CEXN2 = ¢ (1-1/4°4B/2 < o~ B

Using this together with the proof of Lemma 2.14 yields Theorem 2.13. |

With a more involved proof we obtain the following result.

Theorem 2.15 There is an online protocol for sending packets along an arbitrary simple path collection
of size n with dilation D, congestion C, maximum edge latency L and minimum edge latency £ in time

. 2
N r—— )

w.h.p.

Proof. The proof basically combines the ideas in [14] and [33] with Theorem 2.12.

Let us assume in the following that D < L -n. The case D > L -n can be dealt with similar to
the proof of Theorem 2.13 (see the way the random delay protocol calls Route(s)). Furthermore, let
us assume for the moment that the minimum edge latency, £, is 1. We again first present a protocol
for a DCG, called advanced random delay protocol (or advanced RDP), before we show how to convert
it to a protocol for a PCG. The protocol assumes that all links have bandwidth B (fixed later), that
is, up to B packets can traverse a link at one time step. In the following, let
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__log(Ln)
*p= log(L logn)?’

e C, =b-Llog(Ln) - p for some constant b > 0 to be set later and
c
* Dy= log(L lbogn)'

The following algorithm is used as a basic building block for our protocol.

Route-Block:

In a first pass, each participating packet chooses an initial delay uniformly and indepen-
dently at random from the range [Dy]. A packet that is assigned a delay of § waits in its
initial buffer for § steps. Afterwards it moves on in the following way until it reaches its
destination or traversed a path with dilation at least Djy: For each edge e with latency
¢ at which it arrives, it waits for £ many steps before traversing e. If, for some edge e
with latency £, more than B packets arrive at e during an /-interval then all of them stop.
Packets to which this happens are declared unsuccessful.

After the first pass (which takes at most 3D, time steps) 2p further passes are performed
for the unsuccessful packets. For each pass, every unsuccessful packet chooses an initial
delay uniformly and independently at random from the range [D,/p]. The forwarding and
stopping of packets in case of a too high contention is done as above. Packets that traversed
a path with dilation at least Dj/p stop for this pass. Packets that reach their destination
or altogether traversed a path with dilation at least Dy stop for the rest of Route-Block.

The advanced RDP then works as follows.

Execute Route-Block 2C/Cy + D/D, times. Each packet is assigned an integer, chosen
uniformly and independently at random from the range [2C/C}]. A packet that is assigned
a value of d awaits d executions of Route-Block before participating in (at most) D/D
consecutive calls of Route-Block.

First, let us bound the runtime of the protocol. If all edges have a bandwidth of B and the minimum
latency is 1, this is at most

2C D 2C D
— 4+ —+1 D 2p - (3D =(—4+—4+1)9D, =
(Cb+Db+>(3 b+ 2p- (3Dy/p)) (Cb+Db+>9b

18C

———+ 9D+ 9Dy .
log(Llogn)+ O

Hence, for B = O(log(Llogn)) this would result in a runtime of

2
O <C+Dlog(Llogn) +L- (%) ) .

In case that the minimum latency, ¢, is not 1, we scale the parameters C, D, and L to C' = C/¢,
D' =D/¢, and L' = L/¢, respectively. In this case we arrive at a time bound of

O|C"+ D' -log(L'logn) + L' - (M>2
log(L'logn) '

Multiplying this bound with £ to obtain the original runtime, we obtain the bound stated in The-
orem 2.15. We next show that the probability that a packet fails to reach its destination is very
low.

Lemma 2.16 For any constant ¢ > 0 there is a constant b > 0 such that, for B = blog(Llogn) and C,
and Dy chosen as above, the probability that the advanced RDP fails to send a packet to its destination

18 at most n~°C.
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Proof. First we bound the probability that the congestion within some call of Route-Block exceeds
Cp (Claim 2.17). Then we show that under the assumption that the congestion in Route-Block is at
most CY, the probability is very small that, for any edge e along the path of a participating packet,
there are more than Cy/p packets left with paths containing e that were unsuccessful in the first pass
(Claim 2.18). Finally, we show that if the congestion at any edge e caused by unsuccessful packets is at
most Cp/p after the first pass, then the probability is very small that one of the unsuccessful packets
fails in so many of the 2p other passes that it is not able to traverse a path of dilation D, (Claim 2.19).
Combining the three claims yields the lemma.

Claim 2.17 For any ¢ > 0 there is a b > 0 such that the probability that there is a call of Route-Block

with a congestion of more than Cy is at most n™¢.

Proof. Consider some fixed execution of Route-Block and some fixed edge e. Let the random variable
X denote congestion caused by the packets that intend to cross e in this call. That is, if e has a
latency of ¢ then each packet that intends to cross e in this call contributes ¢ to X. Since the total
congestion at e is at most C' and the packets choose at random one of 2C/C}, possible starting blocks,
E[X] < C-C,/(2C) = Cp/2. Because the packets choose their starting blocks independently at random,
we can use Chernoff bounds to obtain, for e = 1,

/2 blog?(Ln)

PI'[X > Cb] =Pr |:X > (]. + 6)%] < e ¢T3 < e 6log(Llogn) |

Clearly, there are at most D - n different edges and at most 2C'/Cj, + D /D < n calls of Route-Block
to consider per edge. Since we assume that D < L - n, the probability that there is an edge with
congestion more than Cj is at most

- blogz(Ln)
D -n2e tla(Llogm) < (L- n)3 .o blog(In)/6 ~ —c

for b > 5(c + 3). |

Given some fixed call of Route-Block and a packet P, a subpath ¢ of P’s path is called its active
path segment if ¢ represents the path P tries to traverse during this call. Then we can show:

Claim 2.18 Assume that the congestion in any call of Route-Block is at most Cy. Then, for any ¢ > 0
there is a b > 0 such that the probability is at most n=C that, for any edge e along an active path
segment, the congestion at e caused by packets that were unsuccessful in the first pass is more than

Cy/p.

Proof. Consider some fixed call of Route-Block. A site is defined as an ordered pair (e, I'), where e is
an edge and I is a time interval within the first pass of Route-Block. A packet aims for a site (e, I) if
it selects a random delay such that it intends to arrive at e within /. For any edge e, let I, denote an
interval of length the latency of e. Given a link bandwidth of B and an edge e, a site (e, I..) is declared
bad if more than B packets arrive at e within 1.

Consider some fixed edge e, and let P, be defined as the set of all edges contained in the active
path segments that cross e. Consider marking any m sites along the edges of P,. According to our
assumptions, e is crossed by at most C} active path segments and each of these segments contains at
most Dy edges. Furthermore, at most 3D, sites have to be considered per edge. Hence, there are at
most CyDy - 3Dy, possibilities of marking a site. Let the random variable X denote the total number
of packets that aim for any of the m marked sites. Since the number of active segments containing
an edge ¢ with latency ¢ in P, is at most Cy/¢ and each of the corresponding packets chooses a
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random delay from a range of size Dy, the expected number of packets in any one site of €’ is at most
%ﬁ : Dib = log(Llogn). Therefore, E[X] < mlog(Llogn). Consider the marked sites to consist of all bad
sites. Since a packet can only participate in one bad site, X can be regarded as the sum of independent
binary random variables. Hence, we can use the Chernoff bounds to bound the probability that X is
at least B -m with B = blog(Llogn):

o1 mlog(L logn)
_ log(Ln) _ 9 .
Let m = max[w,3e]. Then we get that, for b = max[c + 3logb + 3,e?], the probability that
there exist m bad sites along the active segments containing e is at most

3CbD2 o1 mlog(Llogn)
b A

This bounds the number of bad sites in P, and therefore the number of packets that fail and whose
active path segments contain e to most blog(Ln) with probability at least 1 — (Ln)~(¢+3).,

Since there are at most Dy, -n edges to consider in a call and there are at most 2C'/Cy+D /Dy < L-n
calls, the probability that some edge has more than blog(Ln) packets that fail the first pass is at most

<3e(bL log?(Ln))? ) " . o—bmlog(Llogn)

m

em 6 log(v'bL log(Ln))—bm log(L logn)

ININ

e(GIOgVB—b)mlog(Llogn) _ e—(c+3)10g(Ln) < (Ln)—(c+3) )

Dy - L-n?(Ln)~ ™) < p°.

Hence, the maximum congestion at any edge after the first pass is at most Lblog(Ln) = Cy/p with
probability at least 1 —n=¢. [ |

Claim 2.19 Assume that the congestion at any edge e caused by unsuccessful packets is at most Cy/p
after the first pass of any call. Then for any ¢ > 0 there is a b > 0 such that the probability is at most
n~¢ that one of the unsuccessful packets fails in so many of the 2p other passes that it is not able to
traverse a path of dilation Dy in a call of Route-Block.

Proof. Consider some fixed execution of Route-Block. Within this execution, consider some fixed
packet P and edge e along P’s active path segment. Let ¢ be the latency of e. The probability that P
runs at e into a bad site is at most

Cy/ (- ) < ‘ )B - (9)3
B Db/b —\b '
Let B = blog(Llogn) and b > 4e. Then the probability that P fails a pass is at most

B 2blog(Llogn)
% . (%) < bLlog?(Ln) - (%) < (Llogn)~®+1)

P fails the call of Route-Block if it fails in more than p passes. The probability for this is at most

2p 1 (b+1)p 1 bp b
< <n .
p <Llogn> - <Llogn> -

Counting over all possible packets and calls of Route-Block yields the claim for ¢ < b — 2. [ |
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The claims complete the proof of Lemma 2.16. |

It remains to be shown how to convert this protocol into a protocol for a PCG. For this, let us
assume that an offline protocol S is given for a DCG G with link bandwidth B, that is, an edge can
forward up to B packets simultaneously in each direction. This offline protocol has to be simulated on
a PCG G with link bandwidth 1.

An easy modification of the proof of Theorem 2.12 shows that this can be done in O(B-T log(L/¢)+
Llogn) time steps. To ensure that this time bound also holds for our online protocol, we have to modify
our protocol in the following way:

Consider some pass of a fixed call of Route-Block. Each packet is given a rank denoting the time
step at which it is supposed to cross its actual link in G during that pass. All packets again wait for
the latency of their current edge many time steps before trials are started to cross an edge. If, at some
time step during the simulation, more than B packets with the same rank wait at an edge, all of them
are deleted.

To be able to use the analysis above for our online protocol, the definition of bad sites has to be
slightly changed. Now, a site is called bad if more than B packets not only intend to use it, but wait
for transmission at the same time at the corresponding edge. This definition ensures that every packet
can only be used once as a witness of a bad site, since it is deleted at the corresponding edge by the
rule above. The independence assumptions in Claim 2.18 are therefore still correct. This allows us to
use the proof of Lemma 2.16 to show Theorem 2.15. |

2.4 Putting everything together

Theorem 2.4 together with Theorem 2.5, Theorem 2.10 and Theorem 2.13 show that for any trans-
mission graph using a scheme out of our class of local probabilistic control schemes there is an online
protocol that can reach up to a factor of O(log N) for arbitrary permutations the optimal average
case permutation routing time. Theorem 2.15 further shows that this can be reduced to a factor
of O((loglog N)?) if L = log® U N and L < h)g;—I;N' It would be interesting to see, whether further
improvements are possible.

3 Wireless Communication in a Euclidean space

We next turn to the case where the nodes that wish to communicate with each other are points in IR?,
and the weight of an edge that connects any two points p; and ps is the Euclidean distance between
the two points in IR?: this models the scenario where the required signal strength to send a message
between a pair of nodes is only a function of distance. The cases where d = 2 and d = 3 are the most
relevant from a practical standpoint; we here focus on the case where d = 2. Recall that we consider
the case where the nodes are distributed independently and uniformly at random in a fixed region of
IR?, called the domain space.

3.1 Upper bounds

3.1.1 Square domain spaces

We start with the case where the domain space is exactly a square. We demonstrate how to take
advantage of the considerable similarity between randomly distributed nodes in such a domain space
and existing work on computing with faulty arrays [35, 24, 13]. For Z = a? for some integer a, let a
Z -partition of a square domain space be the partition of the domain space into exactly Z equal sized
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square regions and let r;; denote the region in the ith row and the jth column, counting from some
fixed corner of the domain space. The following easy lemma is useful in many of our later proofs.

Lemma 3.1 For any Z-partition and any communication pattern where the nodes in every region send
at most h messages and every message sent from region r;; has a destination node in region r;;, or in
a region that abuts region ri;, there exists a schedule that sends every message in time O(h).

Proof. Recall that «, the ratio of the interference radius to the transmission radius, is a constant.
Regardless of where in a region nodes are distributed, every message sent from region r;; directly to its
destination conflicts only with regions at most & = [3a/| away from region r;;. Thus, all messages sent
from any region r;;, where ¢ = x mod k and j = y mod k can be sent concurrently, where 0 < z,y < k.
Thus, all messages can be scheduled in k? waves, where in wave m, we schedule all messages sent from
a region r;;, where 1 = m mod k and j = |m/k] mod k. Each wave requires time O(h). n

This implies for example that if we have an n-partition with exactly one communication node located
somewhere in each region, then in a constant number of steps, we can route any communication pattern
performed in a single step on a (non-faulty) \/n x y/n array. Here, the node in region r;; performs the
communication performed by processor p;; of the array.

When each node is distributed uniformly and independently at random, it is very unlikely that
there will be exactly one node in each region of the n-partition. Let S, ,, be a placement of n nodes
into an m-partition. Given any Sy, ,, there is a /m x /m faulty array F(Sy ;) such that processor
pij of F(Spy) is fault-free if Sy, ,, has at least one node in region 7;; of the m-partition, and is faulty
otherwise. A faulty processor cannot send or receive any messages. Sy, can emulate F(S), ) with
constant slowdown. Note that in most cases the number of nodes in Sy, ;,, is strictly larger than the
number of processors in F'(S,, ), since some of the regions of the domain space contain more than one
node. When region r;; contains more than 1 node, one arbitrarily chosen node in the region performs
the communication performed by processor p;; of the array.

Existing work on routing with faulty arrays considers the scenario where each node fails indepen-
dently with probability p [35, 24, 13]. Thus, in order to simulate algorithms for the faulty array, we
need to deal with the fact that the event that a given square contains some node is dependent on how
many other squares also contain nodes. We do this by requiring that the algorithm for the array to
be simulated is (p, k, m)-guaranteed, a technical condition described below. This technical condition is
actually fairly natural, and most existing algorithms for faulty arrays adhere to it.

In order to describe an algorithm that is (p, k, m)-guaranteed, we first need to define some terms.
Let A denote the processors in s, a subset of the processors of faulty array A, and let f(Ag) denote
the set of fault-free processors in As;. An array property specifies a subset A; and a function Ps(f(As))
from f(As) to {0,1}.

Definition 3.2 A monotonic array property is an array property Ps(f(As)) such that for two faulty
arrays A and A', where f(As) C f(AL), if Ps(f(As)) =1, then Ps(f(AL)) = 1.

Most algorithms for faulty arrays work correctly provided that a subset of the processors with a
specified structure is fault-free: such a requirement is a monotonic array property. An example of an
algorithm that might not be so guaranteed is one where the question of whether a processor is faulty
or not is used to provide random bits.

Definition 3.3 A set of k array properties {Pi(f(A1)),..., Pe(f(Ax))} is said to (p, k, m)-guarantee

an algorithm for the faulty array A ifVj, 1 < j <k, it holds that Pr[P;(f(A;)) = 0] < p, and the number
of processors in A; < m, and the algorithm functions correctly whenever V1 < j <k, P;(f(4;)) = 1.
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In other words, an algorithm is (p, k, m)-guaranteed if we can specify a set of k (not necessarily
disjoint) subsets of the processors, each of size at most m, and each with an array property that is 1
with probability at least 1 — p, such that if all the array properties are satisfied then the algorithm
functions correctly.

Lemma 3.4 Let A be a \/n X \/n faulty array where every processor is faulty independently with
probability q, for any constant q. Let P; be any monotonic array property on A;, a subset of at most
5 of the processors of A. There exists a constant c such that for S.,, the distribution of cn wireless

nodes into an n-partition,
Pr[P;(f(F(Senn);)) = 1] = Pr[P;(f(4;)) = 1].

Proof. For some fixed ordering of processors in Aj, let z; = 1, 1 < i < |A;| if processor i of A;
is fault-free and 0 otherwise. Let y; = 1, 1 < i < |A;] if processor i of F(Scn,); is fault-free and 0
otherwise. Also, for an ordering of all processors in F'(Sep ), let z; =1, 1 < i < n, if processor i of
F(Scn,n) is fault-free and 0 otherwise.

Claim 3.5 There exists a c such that for y; defined by Scp n,

Prly; = 1y -+ Yio1, Yis1 - Yja ] > ¢

Proof. The process of determining which z; = 1 can be viewed as the two part process where first we
determine N =} z;, the number of fault-free nodes in F(S, ), and then we choose which nodes are
fault free by choosing uniformly a set of NV variables z;, set them to 1, and set the remainder of the z;
to 0.

For S¢p n, the expectation of N is > (1 — e~ “)n, and using standard Martingale techniques, when ¢
is a constant, we can show that

Pr[N < (1 —2¢ %)n] < e,

We first condition on the value of N. If we then condition on the values of y1 ... Yi—1,¥it1...Yja,;
the setting of these random variables that minimizes Pr[y; = 1] is when y3 = yo = ... 91 = yjt1 =
. y\A]‘| =1. Thus,

N—|Aj| >2N—’I’L
n—|4]-17 n+2"

Prly; = 1N, y1 ... yi1,Yit1---Yja;)] =

By Bayes rule, Prly; = 1|y1 ... Yi—1, Yit1 - - - y‘Aj‘] is at least this same probability conditioned on the

fact that N > (1 — 2e~¢)n, multiplied by 1 — e~**("). However, for any constant ¢, there is a constant
c such that
2(1—=2e %)n—n

n

(1 —e ) > ¢

Given this claim, we prove the lemma as follows. Deciding which z; = 1 (i. e., deciding which
processors of the faulty array A; are fault-free) can be viewed as traversing a complete binary tree T'
of depth |A;| from the root to a leaf, where at level i, we branch right if z; = 1 and left otherwise.
Let Aj(z) be the xth leaf of T' in the left to right ordering of the leaves of T'. For some of the leaves
of T, Pj(f(Aj(z))) = 1. We label every node N of T with a probability py, which is the probability
of reaching any leaf A;(x) such that P;(f(A4;(z))) = 1, given that we have already reached node N.
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We label both outgoing edges from node N with the probability of taking that edge from N. In T, all
right branches have label ¢, and all left branches have label 1 — q.

For Scp n, we define an analogous tree T, where at level 7 of 7" we branch right if y; = 1, and we
branch left otherwise. We label every node N’ of T' with a probability pys, which is the probability
of reaching a leaf F/(S¢p ) () such that P;(f(F (Senn);i(x))) =1, given that we have already reached
node N’. We label both outgoing edges from node N’ with the probability of taking that edge from
N'. If node r is the root of T' and node 7’ is the root of 7", then to prove the lemma, we need to show
that p, < py.

To do this, we use a series of trees 77 ... T a;, where T1 =T and Tj4,;| = T'. Tj is the complete
binary tree where all edge labels between nodes which both have height at most j (counting the root
as height 1) are identical to the corresponding labels in the tree T”, the remainder of the edge labels
are identical to the corresponding labels in the tree 7', and the node labels of the leaves are the same
as both T" and T". We show that for every node in T}, the node label of the corresponding node in Tj44
is at least as large, and the lemma follows directly by induction.

We use two facts. For any internal node N of T or T, let [(N) and r(N) be the left and right
children of N respectively. Fact 1 is that for any node N’ of T”, the probability of proceeding from N’
to r(N') is at least q. This follows from Claim 3.5. Fact 2 is that for any node N of T', p,(n) > py(w)-
This follows from the fact P;(A;) is monotonic and the fact that edge labels are identical in the subtrees
rooted at p.(n) and py)

Note that in T}, all node labels at levels greater than j are the same as their value in 7T'. Thus, by
Fact 2, every node J in level j of Tj is such that p,.5) > pys). However, by Fact 1, when the edge
labels between levels j and j +1 are changed from their values in T} to their values in T}, this cannot
decrease the likelihood of going from J to r(J). Thus, all node labels at level j of T are at least as
large as the corresponding node label in T}. It is easy to show by induction that this implies that all
node labels of T ; are at least as large as the corresponding node label in Tj. n

This lemma and lemma 3.1 give us the following;:

Theorem 3.6 Let A be an algorithm for A, an \/n x \/n faulty array with each processor faulty inde-
pendently with probability r, for some constant r, where A is (p, k, §)-guaranteed by a set of monotonic
array properties. With probability at least 1 — kp, a random placement of O(n) wireless nodes into a
square domain space can simulate algorithm A with constant factor slowdown per step of A.

So, for example, we can use the results of [24] to obtain the following:

Corollary 3.7 With probability 1 — O(1/n), a placement of n wireless nodes uniformly and indepen-

dently at random into the domain space can perform any of the following in time O(y/n):
e Route an arbitrary on-line permutation between the n nodes.

e Sort n keys.

e Multiply two \/n X \/n matrices.
The algorithms for all of these are deterministic and require constant sized queues.

Proof. [24] provides algorithms that run in time O(y/n) for all of these problems for the \/n x /n
faulty array. They show that these algorithms work correctly, provided that the array is v/n/4-gridlike.
An array is r-gridlike if every r x r subarray has at least %r fault-free paths connecting the left and right
sides of the subarray and at least %7’ fault-free paths connecting the top and bottom of the subarray.
Being r-gridlike is a monotonic array property, and is also decomposable: if the processors in columns 0
through 4 are r-gridlike, the processors in columns 4 through ¥ are r-gridlike, and the processors
in columns @ through /n are r-gridlike, then the the entire array is r-gridlike, for r < 4. In [24],
they also prove the following:
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logn
log1/p

Theorem 3.8 [2/] A \/nXx\/n array, where each processor is faulty with probability p, is -gridlike

with probability at least 1 — %

Thus the algorithms for the three problems are (%, 3, 5 )-guaranteed by a set of monotonic array
properties. For the routing result, the algorithm of [24] is only able to route permutations consisting of
pairs of processors connected by a path of fault-free processors. However, we can use the extra power of
wireless communication to route any permutation between all n nodes. We do this by using the log”Z -
-partition a super-region. Using standard

partition of the domain space. Call each square of the log”Z -
Chernoff bound techniques, we can show that every super-region has at most O(log? n) nodes w.h.p. Tt
is shown in [24] that in any logn x logn region of the faulty array, there are Q(log? n) active processors,
where each active processor is connected by a fault-free path to every other active processor. Thus,
Lemma, 3.1, gives us that in time O(log?n), we can redistribute the messages within each super-region

so that every message is at an active node, and each active node has O(1) messages. |

3.1.2 Arbitrary Convex Regions

We also demonstrate that these techniques can be extended to route a random permutation in time
that is asymptotically optimal when the nodes are distributed independently and uniformly at random
into any 2-dimensional convex region. In such a domain space, a Z-partition is defined as follows. Find
the longest chord of the domain space, called the major axis, and the longest chord perpendicular to
the major axis, called the minor axis. The Z-partition is the set of Z abutting squares with largest
side length that fit entirely into the domain space, where the squares are aligned with the major and
minor axes. The width of the domain space is defined to be the number of squares in the n-partition
along the major axis, and the height is the number along the minor axis. As a first step, we consider
the problem of nodes distributed randomly into any rectangular region.

Lemma 3.9 When n nodes are distributed uniformly at random in a rectangular domain space with
height H and width 7, w.h.p. a random permutation can be routed in time O(g min[H, [105”]]).

Proof. We use the n-partition of the rectangular domain space, and the corresponding faulty array.
When H > logn, the routing algorithm follows directly from the techniques of the previous subsection,
since the rectangle can be shown to be log n-gridlike. Also, when H < y/logn, each message can be
sent directly from source to destination in the stated running time. Thus, the interesting case is when

Viogn < H < logn.

. 2
In this case, we use the 2

logZ n
partition a super-region. Each of these super-regions consists of a square of l%g{—" X l%g{—" regions of

the n-partition. Let S’ be the distribution of the nodes into the lggl—partition, and let f(S’) be the

-partition of the rectangular domain space. Call each square of this

n
logn
super-region of S’ contains at least one node. When each region of the n-partition has a node in it

independently with probability é, then each super-region has at least one node in it with probability

corresponding faulty X % array, where a processor of f(S’) is fault-free iff the corresponding

log2n
1 — p, where p = (%) 72, Let A’ be the faulty 1ogn X lifn array, where each processor is faulty

independently with probability p.
By Theorem 3.8, array A’ is

logn __ H?
log1/p ~— logn
free processor routing problem in time O(logn). By Lemma 3.4, the array f(S’) is also %—gridlike,
and thus by Lemma 3.1, the nodes in S’ can also perform, in time O(%), any routing problem

where there is at most one packet for each super-region that contains at least one node. However, the

-gridlike w.h.p. Thus, A’ can route a one-item per fault-
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2
distribution of wireless nodes actually has an average of 1352—" packets per super-region. Since every

set of léfn super-regions has O(logn) packets w.h.p., the packets can be redistributed in time O(logn)
so that in fact each super-region has O(%@) packets. Thus, by solving O(l%g{@) separate routing
problems, the total time required is O(%%—”) |

We now turn to the case of domain spaces that are not rectangles.

Theorem 3.10 For n nodes distributed uniformly and independently at random into a convexr domain
space with height H, there is an algorithm that, with probability 1—O(1/n), routes a random permutation
in time O(% min[H, [\%6"1]).

Proof. Any node that is not contained in a region of the n-partition uses as an intermediary a node
in the partition. Routing to and from such nodes requires time O(logn), and thus we here assume that
every node is contained in a region of the partition. This only effects the analysis by constant factors.

When H > log?n, we use super-regions consisting of logn x logn squares that are all contained
in the domain space. The only regions of the n-partition that are more than logn regions away from
such a super-region are the regions at the extreme end-points of the major axis. By the convexity
assumption, the number of such regions is O(%g;—”), and thus routing directly to and from the nodes
in those regions can be performed in time O(Z). For the remainder of the nodes, we route to the
nearest node in a super-region by routing either first to the correct row and then to the correct column,
or visa versa (depending on which path does not leave the domain space). Then, from there, the packet
is forwarded to the correct node.

In the case that H = O(log? n), the number of nodes that are not within distance logn of a super-
region is high enough that we need to be more careful. We partition the domain space as follows: where
the local height of the space is > logn, we partition the space into the same logn x logn super-regions
as before. When the local height is < logn, we partition the domain space into rectangles. At any
point along the major axis, there is at most one such rectangle. By the convexity assumption, there
are at most two portions of the domain space where the local height is between 2¢ and 2*!, for any
integer i. Each of these portions consists of one rectangle of height 2°. Note that if we examine the
arrangement of rectangles along the major axis, then this results in rectangles of increasing size until
we possibly reach a portion of the domain space of height > log n, after which the rectangles will be of
decreasing size.

We here describe how to route packets that travel in the direction of one endpoint of the major axis
(called without loss of generality the left endpoint of the domain space). We assume that the packets
start at uniformly distributed nodes in the highest point of the domain space. With the ability to do
this, we can route any permutation of packets, since routing in the opposite direction is just the reverse
process.

We number the rectangles between the left endpoint and the highest point of the domain space
from smallest to largest: the jth smallest rectangle is R;, and let R,,, m = min[log H,loglogn] be the

largest such rectangle. By using our results for rectangular domain spaces, there are @([lgzjn]) paths
in rectangle R; from the left edge to the right edge. There are 4 times as many paths in R;; as in R;.
These paths can be connected so that every path in R; is connected to exactly 4 paths in R;;, and
every path in R;, is connected to a path in R;. To do this, we assume that the width of the rectangle
is (logn), but when the width of any rectangle R; is o(logn), then by the convexity assumption, the
number of nodes in the rectangles R;, i < j is at most o(log? n), which means that any packets destined
for these nodes can be delivered directly to their destinations in the stated time.

With such a set up of paths, we route as follows. Packets are sent using the previous faulty array

like routing techniques to the rectangle R,,, and are then sent along a randomly chosen path of the
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[li:;n] paths in R,,. Each packet is routed along the chosen path to the correct column of the domain
space. Since 4 paths in rectangle R; 1 connect to a single path in rectangle R;, there may be conflicts
between two packets trying to use the same path. When there is a conflict between two packets, the
packet that has the furthest to go is sent first. After all the packets have reached the correct column,
the packets are sent directly to their destinations.

It is easily shown that the total number of times a packet is transmitted is at most 7. It only remains
to show that the packets are delayed by conflicts for the same path for at most O( min[H, [132—"]])
steps. Consider a packet that is destined for rectangle R;. It can only be delayed by packets on their

way to rectangles Ry, k < j. By the convexity argument, the number of regions in R; is at most
22 Jn)

O(27 - 2J”) This implies that the total number of regions in rectangles Ry, k < j is at most O(

W.h.p. the number of packets bound for these rectangles (and hence the number of packets that

pass into rectangle R;) is also O(2 £-1). Since each of these packets passes along a randomly chosen

path in R;, the number of packets traveling along each path is w.h.p. O(2 0 min n(1 —g—]) This

o2 5 927
means that any packet destined for R; can be delayed at most 0(21;2" min]1, —2§]—]) steps, and this is
O(4 min[H, [105"]]), for any value of j and H. |

3.2 Lower bounds

In this section we address the question of how much additional power is provided by the ability to be
able to communicate directly with nodes that are far away. The wireless scenario might be faster than
an array, since a wireless transmission can send any single message from source to destination in a single
step. The cost of this, however, is that such a transmission can block many other transmissions from
occurring. In fact, we demonstrate that in the Euclidean case, the use of such long transmissions does
not help for most permutations, and in fact the results of the previous section are within a constant
factor of optimal. We assume that packets to be transmitted are indivisible (i.e., that the algorithm
does not encode or duplicate the content of the packets), and each transmission by a node can forward
at most one packet.

Theorem 3.11 For n nodes placed uniformly and independently at random in a square domain space,
the time to route a random permutation is w.h.p. Q(y/n).

Proof. In the following, let (zy) denote the distance from node z to node y, where the unit of distance
is defined to be the side length of a square of the n-partition. In this proof, in come cases, instead
of using the distance between two points, we use the distance between the centers of the respective
regions of the n-partition. Thus, we start with a claim that bounds the difference in distance between
these two measures of distance.

Claim 3.12 Ford > /2, let 3 =1 — % Let x and y be any two points that are at least distance d
apart, and let T be the exact center of the region containing x.

(zy) > Ba(zy)

and
(zy) > Balzy)

Let k£ be the minimum integer such that < J/a. Note that since « is a constant > 1, k is also a

constant. For this k, we see that if node a transmlts to node a’ on a step where node b’ also receives a
message, where (aa’) > k and (ab’) > k, then (ab') > a(ad').
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Figure 1: Region s is occupied by three messages.

Definition 3.13 We say that region r;; is k-occupied at time t by message m if message m is at a
node in region v, | +k < j at time t — 1, and message m is at a node in region ryy, y > j at time t.

Thus, every time a message moves r regions to the right, max[r — k,0] regions are k-occupied.
This holds regardless of how many columns a packet moves during any step, and also regardless of
how many rows the packet moves up or down during any step. Let o be the total number of regions
that are k-occupied by messages over the course of a routing algorithm. Let p be the total number
of transmissions that move a packet somewhere between 1 and k regions to the right. In a random
permutation, the total, over all packets, of the number of columns moved from left to right is w.h.p.
Q(ny/n). However, when a message moves £ columns to the right, if £ < k, the contribution of this step
to p is 1, and if £ > k, the contribution of this step to o is at least £ — k. Thus, each column moved to
the right by any message contributes at least IcL—H to the sum o + p, Thus, in a random permutation,
o+ p = Q(n*?). This means that max[p,o] = Q(n®?). If p = Q(n3/?), the theorem follows directly
from the fact that at most n messages can be sent at any step. Otherwise, the following lemma suffices.

Lemma 3.14 For any time step t and for any region r, at most O(1) messages can k-occupy r at step
t.

Proof. We assume that at some time step, nodes a1, as,...a; each successfully transmit to nodes
al,dl, ... a} respectively, and they all k-occupy some region s. We shall see that j is bounded by a
constant. The nodes are ordered so that a; is the closest to s and a; is the furthest. Let a; be the
midpoint of the region containing a;. Let b be the midpoint of the region containing b. This is depicted
in Figure 3.2.

By the definition of k-occupy, (apa}) > k for all h, and so for all h # i, (dpa;) > /a(ana),). Thus,

(dray) > Va(diay) (4)
(@2a}) > Va(dras) (5)

Equation (5) implies

(a2a1) + (a1a}) > Va(aray) (6)
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Multiplying (6) by /«, and using (4), we obtain
o3 (aaay) + (drab) > o3 (dmab) (7)

However, since the angle dyayal, must be obtuse, we see that (azab) > (a2ay), and (azab) > (ayah).
Thus, when a?/? > a!/? + 1, we see that

o3 (ddy) + (d1ay) < a2/3(a‘2a’2).

Since this contradicts (7), we see that when o?/3 > a!/3 4+ 1, j can be at most 1.

When « is smaller, we boost the effective value of « in the above equations as follows. Since
(a3ab) > a(dzal), we have that (dzdy) + (dpal) > Ya(dzay). If we multiply this by /3 and use (7)
to substitute for o®/3(ayal), we obtain

o (d3@2) + o' (@pin) + (d1ah) > o/ (d3af).
A simple geometric argument gives us that (dja}) > (d1ad)), and thus we have
o3 (azdn) + o3 (daay) + (aray) > a(dzaly).

Iterating this same argument 4 times, we can show that for any ¢ < j,

i1
Zaé/?’(agjrldg) + (a1a}) > &3 (aal).
=1

This in turn implies that
oI (gar) + (@ra)) > o (Ga)). (8)

However, we again have that angle @;d1a; is obtuse, and thus that (g;a}) > (@;a1), and (@;a}) > (d1a}).
For any constant « > 1, there is a constant I such that a!/3 > 1 4+ U=U/3_ For i > I, it must be the
case that

ali=1/3 (aiaq) + (ar1a}) < ozi/g(dia;-).
Since this contradicts (8), it must be the case that j < I, which completes the proof of the lemma. We
also point out that a more complicated argument using the law of cosines can be used to obtain much
better constants. |

We next turn to the case of nodes distributed independently and uniformly at random into any
2-dimensional convex region. As a first step, we consider the problem of nodes distributed randomly
into any rectangular region.

Theorem 3.15 If n nodes are distributed randomly in a rectangular domain space with height H, then
the time required to route a random permutation is (7 min[H, [1%%,—"]]), w.h.p.

Proof. By using the technique of occupied regions used for the proof of the previous theorem, it

is straightforward to show that the time required is (), and thus we only describe the case where
H <logn. The bound for this case follows from the following:

Claim 3.16 There exists a column c between columns {3 and f—g of the n-partition such that w.h.p.
at most [hfgn] packets can cross column c at any time step.
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= an
aH
columns that do not contain any nodes. To see this, we partition the columns into sets of l—ng—”

consecutive columns. Next, we ask the question of how many of these sets between columns ;7 and

i’—g contain at least one node. We then place the nodes, one at a time, uniformly at random into the
sets. By using the solution to the coupon collectors problem (see for example [29]), After n nodes have
been placed, w.h.p., there is still some set that has not received any nodes.

When H < /logn, at most a constant number of transmissions can be successful across this gap of

l—ng—” consecutive columns. When y/logn < H < logn, no more than a constant number of transmissions

Proof. When H < logn, w.h.p. there is between columns d i’—g a set of l—ng—” consecutive

can be successful across this gap in any set of l%g{—" consecutive rows, and thus the total number of
H2
logn* u

transmissions that can be successful is at most

Thus, when H < y/logn, the total time required for transmission is Q(n), and when /logn < H <
logn, the total time required is at least Q(%%—”) |

We next turn our attention to the case of an arbitrarily shaped convex domain space. Note that
the convexity assumption gives us that the width W of the domain space is Q(7). We can then use
essentially the same lower bound technique as for the case of a rectangular domain space to obtain the
following.

Theorem 3.17 If n nodes are distributed uniformly and independently at random in a convexr domain
space with height H, then the time required to route a random permutation is (4 min[H, [lﬂg—n]]),
w.h.p.
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A Appendix

A.1 Proof of Theorem 2.12
A.1.1 The uniform case

We first consider the uniform case, that is, all edges have the same latency. Let S be the offline protocol
for G. We construct from S a protocol S’ for G that works as follows.

At any time step, a packet waiting to traverse an edge e is given as rank the difference between the
actual time step and the time step it is supposed to traverse e according to S. If more than one packet
want to use the same edge at the same time, then the one with highest rank is preferred for trials to
cross it, and the others are blocked. (Note that no two packets can have the same rank at the same
time at some node.)

In the following we bound the time S8’ needs, w.h.p., to simulate S in G. Let us assume that, for all
edges e, p(e) = } for some fixed 2 < ¢ < L. Our aim will be to bound the worst case distribution over
all ranks of the expected number of packets with certain rank at any time step during the simulation.

Let us first introduce some notation. For any two functions f1, fo : Z — IR>q, let us say that f;
dominates fa (or fi > fo) if, for every i € Z, 3755, f1(§) > 255 f2(j). We define the rank distribution
of the N packets at some time step as r : Z — {0,..., N}, where r(7) denotes the current number of
packets with rank 4, that is, >, (i) = N. (Note that ranks of packets can be negative if packets are
ahead of their schedule.) Define the delay of a packet at node v to be the current time step minus the
dilation of the path it traversed so far. Clearly, during the whole simulation the delay of a packet is an
upper bound on its rank. That is, if 7 denotes the current rank distribution and d denotes the current
delay distribution of the packets then, for every i € Z, 37,5, d(j) > 3,5, 7(j). Hence, d dominates r.
In order to make the proof simpler in the following, assume that any delay change is by +1 (in reality,
the delays are a multiple of £ apart), and any rank change is compressed accordingly.

Let rg denote the initial rank distribution and dy denote the initial delay distribution of the packets
for the simulation of S by G. Then we define E;[ry] to be the expected rank distribution after ¢ time
steps of the simulation. Let E; [dp] denote the expected delay distribution after ¢ time steps, assuming
MAXDELAY at each time step, where MAXDELAY is defined as follows:

MAXDELAY: Given a delay distribution d consider, for every i, min[}>,.;d(j),d()] of the d(i)
packets with delay ¢ to be blocked from transmissions.

For every t € IN, Et[d] is defined as B, [E!"[d]] and E{[d] = d. Our aim is to show that E![dy] >
E,[ro]. This would enable us to compute an upper bound for the number of packets with ranks greater
than some given rank by applying E t times to do, which is significantly easier to calculate than Ey[r].
For this, we show the following lemma.

Lemma A.1 For every time step t € g, Et[do] > Ey[ro].

Proof. We will show by complete induction that, for all ¢ € INg, E[dy]> Ey[ro]. Clearly, for t = 0 the
relation is true. Suppose now that the relation holds for some ¢ € INg. Let d = E![dy] and d' = E;[d].
Since in case of MAXDELAY an expected amount of +(d(¢) — min[d(i), > ;>i d(j)]) packets is moved
from d(7) to d(i — 1) for every i € Z, we have

d'(i) = d(i) — $(d(i) — min[d(i), Y _ d(5)]) + +(d(i + 1) — min[d(i + 1), Y _ d(j)]
J>i J>i+1
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Hence, we get for all 1 € Z

Sd() = Z(d(j)—%(d( ~ minfd(j), Y d(k)

Jjzt Jjzt k>j
%(d(j—i—l)—mm (7+ 1), Z d(k )
k>j+1
= Y d(j ) + + min[d(i), Y d(5)] - (9)
j>i Jj>i

Let P = {h : [N] — INg} denote the set of all possible assignments of positions to packets in a way
that, given an h € P, h(i) denotes the number of edges packet 7 has already passed. Let the random
variable X; be h € P if and only if the outcome after ¢ steps of the simulation is h. Given a h € P, let
ry, be the corresponding rank distribution. Furthermore, let 7, (i) for every i € Z denote the number
of packets with rank ¢ that are allowed to attempt transmissions, and let r,‘l"(z) for every 7 € Z denote
the number of packets with rank larger than ¢ that are allowed to attempt transmissions and, in case
of success, get rank ¢. Then it holds for every i € Z:

Eppalro)(@) = D PrXy = h]- (ra(i) + 57 () = 77 (i)
heP
= Eyfrol(i) + 7 Y_ Pr[X¢ = h] - (ry (i) — 13, (4))
heP

Summing up over all j > ¢ yields

> Eralrol() =Y Eifrol(5) + 3> Y. Pr[Xy = k] - (rf (5) — 7}, (7))

j>i j>i j>t heP

As it is easy to see, 3 5; > pep Pr[Xy = h] - F(rif(j) — rj; (j)) represents the expected number of all
packets that change from a rank at least ¢ to a rank lower than ¢ after step £+ 1. This number is minimal
if we assume that all ranks can only be reduced by one and, for every h € P, min[ry (i), 3,5, 7 (j)]
of the packets with rank 4 are blocked. (Note that the offline schedule S ensures that each node can
only have one packet with rank i at any time, so packets with the same rank cannot block each other.)
Hence, together with the fact that for any two sequences ay,...,a, and by, ..., b, of real numbers it
holds that >, min[a;, b;] < min[}"; a;, >, b;], we obtain

Y Eenlrol()) < Y Eilrol() — 3 Y Pr[Xe = h] - (rn(i) — minfra(3), Y ra(j)

Jj>i Jj>u heR G>i
= D Erol(s) — 7 Eulrol (i) +
j2i
3 Z Pr[X; = h] - min[r, (i Z rh(J
heR j>t
< Y Eifrol() — $Eulrol(6) +
J>t

%min{ZPf[Xt Bl ra(@), D PriXe = hl-Zm(ﬁ}

heER heR J>1
= " Eifrol(j) — 7 Eulrol(6) + ¢ min[Ey[ro] (i), Y Eifro] (i)]
Jj>u j>i
= ZEl [E[ro]l() - (10)
Jj>i
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It remains to be shown that (9) > (10) for all . Let » = E4[rg]. According to the induction hypothesis,
dv>r. Clearly, from any delay distribution d any rank distribution r that is dominated by d can be
constructed by moving units from position 7 to position i — 1 for some 7 € Z again and again. (Note
that units cannot be added or deleted, since every distribution function f has to fulfill >, f(i) = N.)
For the case that d is equal to r the claim immediately follows, since ranks of successful packets are
reduced by at least as much as their delays. In all other cases we can restrict ourselves to considering
two delay distributions dy and ds, where ds results from d; by moving an e-unit from position ¢ to ¢ — 1
for some i € Z. Let dj = Ey[dy] and dy = Ey[do]. We claim that 3 ; dy(k) < Xy di (k) for all
j € Z. For this, we have to consider some cases.

e For all j <i—1andj > iit clearly holds that di(j) = da(j) and 3., di(k) = ¥~ da(k).
Hence, ")~ ; dy (k) = 34>, d5(k), which fulfills the claim for these j.

e For j =i it holds that di(j) = da(j) + € and 345, di(k) = X5, da(k). Hence, 3oy, dy(k) >
k> do(k), which also fulfills the claim for this j.

e For j = i — 1, we have da(j) = di(j) + € and 34 da(k) = Xy di(k) —e If di(j) <
Yk>;di(k) then, clearly, 35, dy(k) > Y45;d5(k). It therefore remains to consider the case
dy(j) > k> dy (k). Let § = dy(j) — Pk dy (k). Then Dok>j dy (k) = dok>j dy (k) —&/¢. On the

other hand,
dy(j) =Y da(k) = (di(j) +€) = (D_di(k) —€) = 5 +2¢.
k>j k>j

Hence,

o dy(k) =Y do(k) — (54 2e) /0= di(k) — (6 +2¢) /¢ <> dy(k) .

k>j k>j k>j k>j

Thus, the claim is also true for j =1 — 1.

This completes the induction step, which proves the lemma. [ |

Lemma A.1 implies that we can use the same assumption for the delays of the packets as for their
ranks: Packets can only be blocked by packets with higher delays. (Recall that packets can only be
blocked by packets with higher ranks, since the offline protocol S guarantees that, for any node v and
any rank r, there can be at most one packet at v at any time step with rank r.) Furthermore, the
lemma implies that in order to have an upper bound for 3 ;-; Ey[ro](j) at some time step ¢ it remains
to find an upper bound for 3, Edo] ().

Since we assume all edges e to have a success probability of 1/¢ for some fixed /, every time a packet
is successful, its delay is decreased by £ — 1 and every time it is not successful, its delay is increased
by one. Hence, at any time step, the difference between the delays of any two packets is an integer
multiple of £. In order to simplify the analysis for the distribution of the packets, let us consider instead
of the delay the number of edges a packet already passed. Clearly, if at time step ¢t a packet already
passed s edges then its delay is t — £ - s.

For every time step ¢, let the distribution function p; : INg — [0, 1] be defined such that, for all s,
pi(s) - N denotes the expected number of packets that have already passed s edges. Initially, po(0) =1
and po(s) = 0 for all s > 0. In the next lemma, we show that p; can be bounded as follows.

Lemma A.2 Using MAXDELAY at every time step t > 1 it holds that, for all s > 0,

() (0-4)

s!

pi(s) <
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Proof. We show this by complete induction over t. It is easy to check that for £ = 1 the bound is
correct. So suppose that for some ¢ > 1 it has already been shown that the bound above is correct.
Then we show that it is also correct for ¢ 4+ 1. For this we use the fact that for an upper bound we are
allowed to apply E, for any time step ¢. Let us consider the following cases in order to bound pi41(s)
for all s € INy.

Case pi(s) > Yy pi(s') and pi(s —1) > 3oy pi(s'):

In this case, using MAXDELAY, an expected fraction of %(pt(s) — > gcsPe(s")) is moved from py(s) to
pi(s + 1), while an expected fraction of }(pi(s — 1) — Yy, pi(s’)) is moved from py(s — 1) to py(s).
Hence, we get

pri1(s) = pi(s) — = > () + Fpels —1) = D pils

s'<s s'<s—1
= (1- %)pt(s> +ip(s = 1)

Using the induction hypothesis, it follows that

2\ (1 _ 1)
piyi(s) < <1 %) . (5—1) S(!l é) +£ (s — 1)
s t+1
. (&) (8!—%) (1+2)
It holds that
() (-1 () (=)
-1 - 7 <1+;>§ -1 . [

s 142 < (1 + 1)5
t = t) 7
which is clearly true for any s > 0 and ¢ > 1. This completes the first case.

Case pi(s) < Lg<spi(s’) and py(s —1) > oo pi(s'):
In this case, using MAXDELAY, an expected fraction of 3(p;(s — 1) — Xy .,_; pi(s)) is moved from

pe(s — 1) to py(s). Hence, we get
pea1(s) = pi(s) + F(pe(s —1) = > pils
s'<s—1
This term is less than (1 — %)pt(s) + %pt(s — 1) if and only if
e(s) <tpls =1 +1 Y puls
s'<s—1

& pls) <pls—1)+ > puls
s'<s—1

which is true since py(s) < > o, pi(s’). Thus, we can use the same calculation as above to prove the
bound for p;y1(s) also in this case.

Case pi(s — 1) < Xgcoo1 pi(s'):

Then it is easy to see that nothing can have reached p.(s) yet, that is, p;(s) = 0. This completes the
proof of Lemma, A.2. |
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Since each successful traversal of an edge by a packet corresponds to £ steps in S, di(s) = pi(s/€)-N
corresponds to the expected number of packets that are at time step ¢ of the simulation at step s in S.
Clearly, the simulation finishes if all packets are beyond step 1" in S. It therefore remains to be shown
that for t = O(T + Llog N) this is the case w.h.p. For this, let usset s=T and t = (1 +¢)T. If e > 4
then

o\ T/e (1+6)T T/
(s/0) (Z(?T)T) (1—%) (z%) 2(1+¢)\ "/
Prsie) = (T/0)! = TTio T e
( ¢ )T/‘f (2(1+e)>T/f
< - Sl
- /-1 ef
< e%(ﬁfg) .

Let the random variable X be defined as the number of packets at time step ¢ with a rank of at least
t —T'. Using Lemma A.1, E[X] can be upper bounded by > s<,_7di(t — ). It is easy to check that,
forall 0 < s <T/¢and t > T, py(s) < py(s + 1). Hence, since during the simulation the delays of the
packets are always a multiple of £ apart, for any constant « > 1 there exists a constant € such that

t—0 1\¢
EX]= Y dt-6=N > pt<—£ >5<ﬁ> :
t—T<5<t, t—T<5<t,
£](t=3) L](t=4)

Using the Markov inequality, it follows
1 «
Pr[X > 1] < (-) .
N
This concludes the proof of Theorem 2.12 for the uniform case.

A.1.2 The nonuniform case

Now, we show how to prove Theorem 2.12 also for the non-uniform case. Although we only show it
for PCGs, it also holds for any transmission graph using a zone access scheme if we assume that at
every time step all zones at all nodes participate in decisions to attempt hops, whether a packet has to
be sent out for some zone or not. This ensures that the probability distribution for certain node—zone
pairs to have or not to have success is the same throughout the whole simulation. We will note at
specific places in our proof where we need this assumption.

Let S; be an offline protocol for some DCG G. First, we modify S; so that it is easier to bound
the time of simulating it. We start with transforming &7 into a schedule S5 in which all edge latencies
are powers of 2 and every edge with latency ¢ only starts to send a packet at an integer multiple of £.
This can be done as follows:

Expand &1 by a factor of two in a way that an edge that previously forwarded a packet at time
t now starts to forward it at time 2¢. Change the latency of every edge to the next highest power of
two. Thus, the highest and the lowest edge latency, L and ¢, are now powers of two. Clearly, the new
schedule is still valid (in a sense that traversals of edges by a packet do not overlap in time), and the
order of transmitting packets at the edges is preserved. Expand &1 again by a factor of two as before.
Change the starting time of every traversal to the next highest time that is an integer multiple of the
corresponding edge latency. Again it is easy to see that the resulting schedule is valid and the order of
transmissions is preserved.

Next, transform S, into a schedule S3 where all packets use paths of the same type p. This path
p consists of a so-called (L, ¥¢)-sequence s of 2L/¢ — 1 edges that repeats itself again and again. The

37



edge latency of edge i € {1,...,2L/¢ — 1} of the (L, £)-sequence is £ - j, where j is the largest integer
for which i is an integer multiple of 2/~!. To give an example, for # = 1 and L = 8, s represents a
sequence of edges with latencies

1,2,1,4,1,2,1,8,1,2,1,4,1,2, 1.

It can be easily checked that the time to traverse all edges of the (L, #)-sequence one after the other is
equal to Llog(2L/¢). For each such sequence, Ss reserves a time interval of length Llog(2L/¢) so that
disjoint time intervals can be assigned to the edges.

In order to transform S, into S3, consider any time interval I of length L in Sy starting at time step
t, where ¢ is an integer multiple of L. Let us map Sy restricted to I to Ss restricted to the (¢/L + 1)th
occurance of s in p, denoted by s', in the following way: For every packet P and every edge e with
latency ¢' scheduled to be used by P with starting time ¢ in I, schedule P in S3 to use e represented
by the (# + 1)th edge in s' with latency #'. (This is possible, since ¢ is at most L — ¢’ and an integer
multiple of #'.) As it is easy to check, the transformation ensures that

e traversals of different edges by the same packet and
e the traversal of the same edge by different packets

remain in order and do not overlap. In addition to this transformation, we fill all time intervals a packet
is not scheduled to traverse an edge by traversals of the corresponding edges in p. For any packet P,
these edges are called imaginary edges, whereas the edges already used in Sy are called real edges. So
we end up with a schedule S3 in which all packets traverse the same type of path p for T'/ L occurences
of s without waiting, where 7" is the runtime of S;.

S3 will be simulated by the PCG G of G in the following way: The traversal of any real edge e
by some packet, where e corresponds to the original edge ¢’ in G, is simulated in G by attempts to
cross the counterpart of €/, €¢”, in G. If e has a larger latency than €', then we add an extra random
experiment that decides whether to attempt to traverse e” so that, together with the probability that
the attempt fails for €”, we arrive at a probability of traversing e that is the inverse of the latency of
e. (Recall that for transmission graphs using zone access schemes, all probabilites are already powers
of 2. Hence, an offline protocol for its corresponding DCG does not require any change in the latency
of the edges.) The traversal of any imaginary edge by some packet is simply simulated internally in
the PCG, that is, the corresponding packet does not leave its current node. Obviously, once the PCG
finishes S5 it has also finished S;. Hence, it remains to provide an upper bound for the time the PCG
requires to simulate S3. For this we show the following lemma.

Lemma A.3 For every time step t € Ny, Et[dg] > Ey[ro].

Proof. We present here a different proof than for Lemma A.1. The reason for this is that, in the
uniform case, ranks are decreased always by at least as much as delays, no matter where some packet
might be for two different simulations. This does not hold for the nonuniform case.

Let the rank and the delay of a packet during the course of the simulation be defined as for the
uniform case. Since in S3 no packet is ever waiting at an edge, the following fact holds.

Fact A.4 Schedule S3 has the property that, at any time during its simulation, the delay of a packet
18 always equal to its rank.

To continue, we need some notation. For any two multisets D7, Dy of functions of the form f :
[N] — Z with the property that |Di| = |Dy| we say that D; strongly dominates Dy (or Dy >5 Do) if
there is a permutation 7 : Dy — Dy such that for all d € D; it holds that d(i) > 7(d)(%) (or d>s 7(d)).
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Let Py[dy] be defined as the probability distribution over all assignments of delays to the packets
after ¢ steps of the simulation. Similarly, let P, [dp] be defined as the probability distribution over all
assignments of delays to the packets after ¢ steps, assuming MAXDELAY at every step. However,
instead of allowing to choose an arbitrary set of packets as in the uniform case, we will select a specific
set of packets, depending on the situation. Since the success probability of any packet at any node
is a rational number, we can transform P;[dy] into a multiset D;[dy] with the property that, for all
assignments d : [N] — Z of delays to the N packets, P;[dy](d) = (number of times d appears in
Dy[do])/|Dy[do]]. Dy[do] is defined accordingly, using P,[do]. Let Dy[dy] and D,[do] be chosen such that
they are of the same cardinality.

Our aim is to show by complete induction that, for all ¢ € IN, D, [do]>s Dy[dp]. Clearly, if D, [do] >s
Dy[dp] is true, then this would immediately imply that E, [do] > E¢[dp]. Since, by Fact A.4, during the
whole simulation the delay of a packet is equal to its rank, E;[do] = Ey[r¢] and therefore the lemma
would follow.

For t = 0 our claim is obviously true. Suppose now that D;[dy] strongly dominates D;[d] for some
t € INg. Let the permutation « : Dy[dy] = Dy[dy] be defined such that, for all d € D,[dy], d>, 7(d). Fix
any d € Dy[dy], and let d' = 7(d). We will show that then D;[d] >, D;[d']. From this the lemma would
follow.

According to the definition of g, for every packet P it holds that P w.r.t. d is not ahead of
P w.r.t. d'. (Notice that once the delay of a packet is known at a specific time step, then also its
position is known.) Clearly, all packets whose positions w.r.t. d are behind their positions w.r.t. d’
imply D; [d] >5 D1[d'] restricted to these packets. So we only have to consider those packets whose
positions are the same w.r.t. d and d’. As S3 ensures that there can be no two packets with the
same delay (resp. rank) that intend to cross some common edge in G at the same time, MAXDELAY
is the worst case that can happen for the packets placed according to d’. Since, due to d >, d',
{7 | d(j) > i} > |{j | d'(§) > i}| for all 4 € Z, all packets with equal positions w.r.t. d and d’ that are
blocked w.r.t. d' can also be blocked via MAXDELAY w.r.t. d. Hence, D;[d] >, D;[d'] restricted to all
packets that are blocked w.r.t. d’. For the remaining packets, we have the situation that w.r.t. d and
d' they are allowed to perform access trials, that is, the probability distribution for any combination of
these packets to be successfully transmitted is the same for both situations. (Note that we need here
the assumption formulated at the beginning of the section that in a transmission graph all zones in
all nodes participate in decisions for hop trials. Otherwise our results for PCGs cannot be transferred
to the transmission graphs, since the probability distributions are not the same.) This implies that
Dy [d] > Dy[d] for all packets, which proves the lemma. n

This lemma allows us to argue in the following only with E;[dy]. For a final transformation from
S3 to a schedule Sy, we need the following lemma.

Lemma A.5 Consider any schedule S in which all packets follow a path of the same type p. Let S’
be a schedule in which the same number of packets follow a path of the same type p'. p’ results from p
by exchanging the positions of two consecutive edges in p, where the first edge has a lower latency than
the second edge. Then E![dy] w.r.t. S' dominates E![dy] w.r.t. S.

Proof. Let us denote the two edges to be exchanged as e; and ey, where e; be the ith edge of p.
(W.l.o.g. we assume that i > 2. The case ¢ = 1 can be prevented by inserting an edge with latency L
in front of p.) Let ¢; be the latency of e; and /5 be the latency of ey, £1 < £5. Given a time step ¢, let
a®, z(®) € IR* be two vectors, where

(t) (t)

e ay’ (resp. z;’) denotes the expected number of packets that have not traversed the (i —1)st edge
in p (resp. p') yet,
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() ( ()

e ay’ (resp. z;’) represents the expected number of packets that is currently at the ith edge of p

(resp. p'),

. agt) (resp. :cht)) is the expected number of packets that is currently at the (i 4 1)st edge of p (resp.
p'), and

. agt) (resp. :Egt)) denotes the expected number of packets that has already passed the (i + 1)st
edge of p (resp. p').

See also the following Figure 2.

a, a, a, a;
: Iy I,
P og—e——e—fe ]
X, X, X, X3

Figure 2: The positions of the a; and z; in the two paths p and p’

Clearly, it holds a(()o) = :Jcéo) =1 and a;p) = :cho) =0 for all j € {1,2,3}. So for t = 0, z® > a(®). For
the remaining steps it remains to prove the following proposition.

(t) (t)

Proposition A.6 For any strategy of moving packets from ay’ to a;’ that is also used for moving
packets from w(()t) to wgt) at every time step t € IN it holds under MAXDELAY that ® > a® for all

t € IN.
() () (t)

Proof. For any ¢t € IN, let ¢; denote the amount of load moved from ay’ to a;’ (resp. from z;’ to
xgt)). As long as agt) < agt) it clearly holds az(-t) = xz(t) for alli € {1,2,3}, so " >a®). Let ¢ be the first
time step for which a{"") > aétl), and let , be the first time step for which al?) > aém + 4! Since
l1 < £o, it holds aét) > :Egt) and agt) = :cht) = 0 for all t; < t < ty. Hence, 20 b a® also for t; <t < t.

For t = ¢ + 1, we have aét) > 0 for the first time. Let ¢ be chosen such that ¢{?™" = 4

3 == mE.
This means that a{> = a(()tz) +al™ + 7€, and because of al? Y < a(()tzfl) +a{”Y that ol 7Y =
a(()t2_1) +4e + £16 and aé”‘” = agtrl) + agh_l) — § for some § > 0. Let the vectors b, () € IR be

defined as b(>~1) = a(2=1) 4 (¢, —¢,0,0) and >~ = (—¢,€,0,0), that is, a2~ = plt2—1) 4 (=1,
For all t > t5, let the load moved from a(()t) to agt) be equal to the load moved from b(()t) to bgt). Let
MAXDELAY be applied to b®) and ¢(¥). Then the equations for a(*>~1) above yield that

o bit2) — (a(()tz) + ¢, ath) —(1- %)e, agh) — %6,0) and

o c2) = (—¢ (1 - %)e, %e, 0).

Hence, a(t2) = p(t2) 4 (t2) " Furthermore, it is easy to check that bgz) = bgh) + bgtz), using the equation
for agh) above. Thus Claim A.7 shows that a() = (") 4 c(®) also for all t > .

@ @ ) () (®) ) p(0)

Claim A.7 Given some time step t with distributions (ay’,a;’,as’,a3"), (b(()t),b1 , by, b37) and
(D, B B

¢y sC .6y ¢y ), where
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o ol =" 1 foralli € {0,...,3,

o cgt) > co), cg) > cgt) + c(()t), and
e a load of € > 0 is moved from ag) to agt) and from bgt) to bgt) in step t + 1.
Then it holds that, using MAXDELAY for o, b®) and ®,

o ol =p*) L D gor qli i € {0, 3},

)

agt+1) > aétﬂ), agtﬂ) > agtﬂ) n a(()tJrl)’
. bgt-i-l) > b )’ bgt—l—l) > bgt-i-l) + b(t—l—l) and

pltH1
0
§t+1) gt+1)’ c§t+1) > C§t+1) n c(()t-i—l)

e c
Proof. Follows directly from the application of MAXDELAY. |

Similarly, let us decompose z(* into ) and z() with y(f2=1 = z(t2=1) 4 (¢, —¢,0,0) and 2>~ =
(—€,€,0,0). Then the following claim holds.

Claim A.8 Under the assumption that MAXDELAY is applied to z®, y® and 2z it holds that

0 y(t) + 20 for all t >ty — 1.

Proof. Let t3 be the first time step for which yé) yg) +y

that :ch) () + x() Suppose that z(3) > y(t3) 4 »(t3), eﬁne u(t3) = y(t3) 4 2(3)  Then, according

to Claim A. 7 u® = y® 4 20 for all t > ts. Smce 213) > 4t applying MAXDELAY ensures that

z® > u® for all t > t5. Hence, the claim would be true for all ¢ > t3, given that 2(!3) » ¢(t8) 4 z(ts),
We prove the claim for 9 — 1 < ¢ < t3 by complete induction over ¢. For ¢t = t9 — 1 the claim is

obviously true. Suppose now that the claim is true for some to — 1 < ¢ < t5. Let u(t) = (z(gt), z%t) , :Egt) —

yét), zét) + (zét) - (:L“gt) - yét)))) Since it follows from Claim A.7 that :L“gtl) = y(()tl) + z((]tl) and 7y~ =
yt") 4+ 2") for all #' > t, — 1, it holds that z§) + 2’ = 48 + 28" + 2{. Hence,

(t) Clearly, in this case it already holds

wét) — yét) > zét) & zét) + zé) — :I?:())) > z( ) & zét) > :I?:())t) ,

which is true. Therefore, u® > z(® and also uw(*D » z(t+1) | Furthermore, () = y® + ®. Since
() (t) (¢ ) (t+1) (t)

Yo <Y +Y —ug’ is equal to
0 =l +uf) = @) = = @l =+ ol =)
= ) =Gl ) - ) 6 o) 2 A )
Thus, £t b D) 4 (0D (1) 4 (04D Thig completes the proof of the claim. |

Furthermore, the next claim shows that 205 c® for all t >ty — 1.
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Claim A.9 Consider the case that (a3,a?,a3,al) = (—€,60,0) and for the rest of the time steps

nothing is moved from agy to a1. Then we get with MAXDELAY that, for every t € IN,
¢ 1!
a; = <2<1_E> —1)6,

1 1\ = 1\ 1\ (=D 1\

— 4 — 1—— 1—— —|1—=({1-—
<f1+€2>i2%< €1> ( €2> ( €2> <

1 1 t—1 1 ) 1 (t—1)—1 1 t 1 t

b DR )

“ [ a1 " 2 ; 2 s / ) €

Proof. We prove the formulas above by complete induction. Let us start with a!. For t = 0 the
formula is obviously correct. Suppose it is correct for some ¢ > 0. Then it holds for step ¢ + 1:

b= 2

)
N
|

1t 1t t
ay = ap - E(al — ayp)
1

- (0a) ) a0 )
©(8) 05 )
- (20-2)" )

Next we prove the formula for a. For ¢ = 0, it is clearly correct. Suppose the formula is correct
for some ¢ > 0. Then it holds for step ¢ + 1:

41 ot 1
as

= 2

() B0 Con) - (o))

It remains to prove the formula for a%. Since 327 ;al =0 for all ¢ > 0 we get:

ay = e—ah—adl
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=[G DE 02 0-2) (o)) -a) )
-G B 02 (-0 (-2 - (-3 -

This completes the proof of the claim. |

Since, for all t > to, a(® = b®) 4 ¢®) according to Claim A.7, (! > y(®) + 21 according to Claim A.8
and 2 > ¢® according to Claim A.9, it holds that:
In order to show that z® > a® also for t > ty it remains to show that y(t) > b for all ¢ > to.

Because yétﬁl) = bgt”l) = 0, this is certainly true for t = ¢, + 1. Applying the same reduction to b(®)
and y(t) for time step to + 2 as done to a?) and z® for time step 2 + 1, proves that also 21212 q(t2+2),

Continuing this for time steps t3 + 3,%2 + 4, ... yields the proposition. [ |

i From the proposition it immediately follows that dominance is preserved. This proves the lemma.
|

Lemma A.5 implies that we can order the edges in p in such a way that first all edges with latency
L are used, then all edges with latency L/2 are used, and so on, until we arrive at the edges with
latency 2. Let the resulting schedule be called S;. Let Sy ; denote the part of S that contains all edges
of latency 2¢. According to the uniform case, for each one of the S, it takes at most O(T + 2t log n)
steps, w.h.p., to complete the simulation of S; ;. Hence, the total amount of time steps required, w.h.p.,
to simulate Sy is bounded by

log L _
Z @) (T +2 logn) = O(Tlog(L/¢) + Llogn) .
i=log ¢

Hence, after O(T log(L/¢) + Llog N) time steps the simulation of S; in G is completed, w.h.p., which
concludes the proof of Theorem 2.12.
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