
Efficient Comparison of Enterprise Privacy Policies

Michael Backes
IBM Research

mbc@zurich.ibm.com

Walid Bagga
∗

Eurecom Institute, France

Walid.Bagga@eurecom.fr

Günter Karjoth
IBM Research

gka@zurich.ibm.com

Matthias Schunter
IBM Research

mts@zurich.ibm.com

ABSTRACT
Enterprise privacy policies often reflect different legal regulations,
promises made to customers, as well as more restrictive enterprise-
internal practices. The notion of policy refinement is fundamen-
tal for privacy policies, as it allows one to check whether a com-
pany’s policy fulfills regulations or adheres to standards set by cus-
tomer organizations, to realize the “sticky policy paradigm” that
addresses transferring data from one realm to another in a privacy-
preserving way, and much more. Although well-established in the-
ory, the problem of how to efficiently check whether one policy re-
fines another has been left open in the privacy policy literature. We
present a practical algorithm for this task, concentrating on those
aspects that make refinement of privacy policies more difficult than,
for example refinement for access control policies, such as a more
sophisticated treatment of deny rules and a suitable way for dealing
with obligations and conditions on context information.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Network]: General – Security
and Protection; K.4.1 [Computer and Society]: Public Policy Is-
sues—Privacy

General Terms
Security, Privacy Policy, Policy Comparison, Algorithm

1. INTRODUCTION
An increasing number of enterprises make privacy promises to

customers or, at least in the US and Canada, fall under new privacy
regulations. To ensure adherence to these promises and regulations,
enterprise privacy technologies are emerging [6]. An important tool
for enterprise privacy enforcement is formalized enterprise privacy

∗This work was done when the author was on internship at the IBM
Zurich Research Laboratory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04, March 14–17, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

policies [3, 8, 10, 11]. An enterprise privacy policy often reflects
different legal regulations, promises made to customers, as well as
more restrictive enterprise-internal practices. Furthermore, it may
allow customer preferences. Compared with the well-known lan-
guage P3P [12] intended for privacy promises to customers, lan-
guages for the internal privacy practices of enterprises and for tech-
nical privacy enforcement must offer more possibilities for fine-
grained distinction of users, purposes, etc., as well as a clearer se-
mantics.

The notion of policy refinement is fundamental for many situa-
tions in privacy policy management. Intuitively, one policy refines
another if using the first policy automatically also fulfills the second
policy. For instance, policy refinement enables verification that an
enterprise policy fulfills regulations or adheres to standards set by
consumer organizations or a self-regulatory body, assuming only
that these coarser requirements are also formalized once and for all
as a privacy policy. Similarly, it enables verification that a detailed
policy for a part of the enterprise (defined by responsibility or by
technology) refines the overall privacy policy set by the company’s
CPO. The verification can be done in the enterprise or by external
auditors, such as [14].

Sticky policies [11] are another application of policy refinement:
With increasingly dynamic e-business, data is exchanged between
enterprises, and enterprise boundaries change due to mergers, ac-
quisitions, or virtual enterprises. After transferring data from the
realm of one policy into another (where the transfer must of course
be permitted by the first policy), the second realm must enforce
the first policy. However, the enforcement mechanisms (both or-
ganizational and technical) in the second realm is often not able
to deal with arbitrary policies for each set of data obtained. In
this case, one realm must perform a refinement test before the data
are transferred, i.e., one has to verify that the policy of the second
realm refines the policy of the first, at least for the restriction of
the first policy to the data types being transferred. This requires
compatible enterprise privacy enforcement mechanisms. For these
reasons, IBM has recently proposed an Enterprise Privacy Autho-
rization Language (EPAL) [1] as an XML specification for public
comments and possible subsequent input to standardization.

Although refinement of privacy policies is well-established in
theory [3], an efficient algorithmic solution for checking whether
one policy refines another has not yet been addressed. Coming
up with such a solution is challenging for three crucial reasons:
First, compared to typical access control policies, privacy policies
additionally offer a more sophisticated semantics for requests to
abstract elements, e.g., an abstract user “department” that is used
to group a set of concrete “employees”. Requests to such abstract

375

2004 ACM Symposium on Applied Computing

elements are interpreted in an access control manner, i.e., if the de-
partment has at least one employee who is not allowed to perform a
specific action, then so is the department as an abstract user. In the
representation of the semantics of privacy policies, this formally
means that deny rules have to be inherited up the hierarchies. Sec-
ond, obligations as well as conditions on context information have
to be taken into account, which are essential features in enterprise
privacy policies. Third, a one-to-one adoption of the definition of
policy refinement requires that each element of the first policy we
compared with each element of the second one. As rules usually
overlap for a large number of such elements, an efficient algorithm
ought to identify these elements and compare them as a whole.

The goal of this article is therefore to provide an efficient algo-
rithm for checking refinement of privacy policies in an enterprise.
We do this concretely for the IBM EPAL proposal. However, for a
scientific paper we cannot use the lengthy XML syntax, but have to
use a corresponding abstract syntax, which closely resembles the
one presented in [3] (which, like EPAL, is based on [11]).

The core contribution of new privacy-policy languages [8, 10,
11], compared with other access-control languages, is the notion
of purpose and purpose-bound collection of data, which is essen-
tial to privacy legislation. Other necessary features that prevent
enterprises from simply using their existing access-control systems
are obligations and conditions on context information. Individu-
ally, these features were also considered in recent literature on ac-
cess control, e.g., purpose hierarchies in [5], obligations in [4, 7, 9,
13], and conditions on context information in [15]. Refinement is a
well-established concept to support the incremental specification of
security policies, authorization policies [5], and management poli-
cies [7]. Whilst significant work has been done in developing pol-
icy refinement techniques, the area of (privacy) policy refinement
checking has barely been addressed.

2. SYNTAX, SEMANTICS, AND REFINE-
MENT OF EPAL POLICIES

In this section, we review the abstract syntax and semantics of
IBM’s EPAL privacy policy language [1], which closely resembles
a recently proposed abstract syntax and semantics for the superset
of E-P3P Enterprise Privacy Policies in [3]. The main differences
are that EPAL does not use rules with priorities as considered in [3]
but the simpler representation as an ordered list of rules, and that
EPAL policies are additionally equipped with a global condition
that has to be satisfied in order to further process a request, as well
as with a default obligation.

2.1 Hierarchies, Obligations, and Conditions
For conveniently specifying rules, the data, users, etc. are cate-

gorized in EPAL as in many access-control languages. This also
applies to the purposes. To allow structured rules with excep-
tions, categories are ordered in hierarchies; mathematically they
are forests, i.e., multiple trees. For instance a user “company” may
group several “departments”, each containing several “employees”.
The enterprise can then write rules for the whole “company” with
exceptions for some “departments”.

DEFINITION 1 (HIERARCHY). A hierarchyis pair (H,>H)
of a finite setH and a transitive, non-reflexive relation>H ⊆ H×
H, where everyh ∈ H has at most one immediate predecessor
(parent). As usual we write≥H for the reflexive closure. We write
h ≷H h′ if h ≥H h′ or h′ ≥H h holds.

For two hierarchies(H,>H) and(G,>G), we define

(H,>H) ⊆ (G,>G) :⇐⇒ (H ⊆ G) ∧ (>H ⊆ >G);

(H,>H) ∪ (G,>G) := (H ∪G, (>H ∪ >G)∗);

where∗ denotes the transitive closure. Note that a hierarchy union
is not always a hierarchy again.

Throughout this paper we often speak of hierarchies as forests, i.e.,
as sets of trees.

EPAL policies can impose obligations, i.e., duties for the enter-
prise. Examples are to send a notification to the data subject after
each emergency access to medical data, or to delete data after a
given time. Obligations are not structured in hierarchies, but by an
implication relation. As multiple obligations may imply more than
each one individually, we define the implication (which must also
be realized in the application domain) on these sets. We also define
how this relation interacts with vocabulary extensions.

DEFINITION 2 (OBLIGATION MODEL). An obliga-
tion model is a pair (O,→O) of a set O and a relation
→O ⊆ P(O) × P(O), spokenimplies, on the powerset ofO,
whereō1 →O ō2 for all ō2 ⊆ ō1, i.e., fulfilling a set of obligations
implies fulfilling all subsets.

For O′ ⊃ P(O), we extend the implication toO′ × P(O) by
((ō1 →O ō2) :⇐⇒ (ō1 ∩P(O)→O ō2)).

The decision formalized by a privacy policy can depend on context
data. Examples are a person’s age or opt-in consent. In EPAL, this
is represented by conditions over data in so-called containers [1].
The XML representation of the formulas is taken from [15], which
corresponds to a predicate logic without quantifiers. Similar to [3],
we formalize the containers as a set of variables with domains, and
the conditions as formulas over these variables.

DEFINITION 3 (CONDITION VOCABULARY). A condition
vocabularyis a pair Var = (V,Scope) of a finite setV and a
function assigning everyx ∈ V , called avariable, a setScope(x),
called itsscope.

Two condition vocabulariesVar1 = (V1,Scope1), Var2 =
(V2,Scope2) are compatibleif Scope1(x) = Scope2(x) for all
x ∈ V1 ∩ V2. For that case, we define theirunion by Var1 ∪
Var2 := (V1 ∪ V2,Scope1 ∪ Scope2).

In this paper, we do not extend this to a full signature in the
sense of logic; i.e., including predicate and function symbols,
but we assume a given universe of predicates and functions with
fixed domains and semantics. For a condition vocabularyVar =
(V,Scope) and for the assume universe of predicates and functions,
we letC(Var) denote the set of correctly typed formulas overV .
Furthermore, letAss(Var) denote the set of all assignments for
the setV into the respective scope, and forχ ∈ Ass(Var), let
evalχ : C(Var)→ {true, false} denote the evaluation function for
conditions given this variable assignment. This is defined by the
underlying logic and the assumption that all predicate and function
symbols come with a fixed semantics.

For an efficient algorithmic solution of policy refinement, it turns
out to be crucial to check whether one conditionc1 satisfies another
onec2, i.e., whetherevalχ(c1) = true implies evalχ(c2) = true
for every assignmentχ. However, as this problem is NP-complete
in the number of variables of the considered condition vocabulary,
we cannot expect to solve this for all instances. For practical pur-
poses, we therefore restrict our attention to asatisfy relationthat is
at leastcorrect, i.e., if c1 andc2 are contained in the relation then
evalχ(c1) = true impliesevalχ(c2) = true.

376

DEFINITION 4 (SATISFY RELATION). Let Var be a condi-
tion vocabulary. Asatisfy relationfor Var is a relation⇒Var⊆
C(Var) × C(Var). The relation iscorrect if for any c1, c2 ∈
C(Var), we have(c1, c2) ∈ ⇒Var only if (evalχ(c1) = true) ⇒
(evalχ(c2) = true) for all χ ∈ Ass(Var). If the converse direc-
tion holds, we call the relationcomplete. In the following, we use
infix notation for the relation⇒Var and we omit the subscriptVar
if it is clear from the context.

For practical purposes, a suitable satisfy relation, which is correct
but not necessarily complete, can often be constructed by means of
symbolic evaluation.

2.2 Syntax of EPAL Policies
An EPAL policy consists of a vocabulary, a list of authorization

rules, a global condition, and a default ruling. The vocabulary de-
fines element hierarchies for data, purposes, users, and actions, as
well as the obligation model and the condition vocabulary. Data,
users and actions are as in most access control policies, and pur-
poses are an important additional hierarchy for the purpose binding
of collected data.

DEFINITION 5 (VOCABULARY). A vocabulary is a tuple
Voc = (UH ,DH ,PH ,AH ,Var ,OM) whereUH , DH , PH ,
andAH are hierarchies called user, data, purpose, and action hi-
erarchy, respectively,Var is a condition vocabulary, andOM an
obligation model.

As a naming convention, we assume that the components of a vo-
cabulary calledVoc are always called as in Definition 5 withUH =
(U,>U), DH = (D,>D), PH = (P,>P), AH = (A,>A),
Var = (V,Scope), and OM = (O,→O), except if explicitly
stated otherwise. In a vocabulary calledVoci all components also
get a subscripti, and similarly for superscripts.

The list of authorization rules, shortrule list, contains rules that
allow or deny operations. A rule basically consists of one element
from each of the considered hierarchies, a ruling, a condition, and
an obligation.

DEFINITION 6 (RULE L IST AND PRIVACY POLICY). A rule
list for a vocabularyVoc is a list containing elements ofU ×D ×
P ×A× {+, ◦,−}×C(Var)×P(O). For ease of handling, we
write a rule(u, d, p, a, r, c, ō) as〈(u, d, p, a), (r, c, ō)〉 and we call
(u, d, p, a) the scope and(r, c, ō) thequalifierof the rule.

A privacy policyor EPAL policy is a tuple(Voc, R, gc, dr , d̄o)
of a vocabularyVoc, a rule listR for Voc, a global conditiongc ∈
C(Var), a default rulingdr ∈ {+, ◦,−}, and a default obligation
d̄o ∈ P(O). The set of these policies is calledEPAL, and the
subset for a given vocabularyEPAL(Voc).

In EPAL, precedences are contained implicitly by the textual order
of the rules. The rulings+, ◦, and− mean “allow”, “don’t care”,
and “deny”. The ruling◦ was not yet present in [2]. In EPAL,
it is called “obligate” because it enables rules that do not make a
decision but only impose additional obligations. An example is the
rule “Whenever someone tries to access my data, I want to receive
a notification”.

For a naming convention, we assume that the components of a
privacy policy calledPol are always called as in Definition 6, and
if Pol has a sub- or superscript, then so do the components.

2.3 Semantics of EPAL Policies
A request is a tuple(u, d, p, a), which should belong to the set

U ×D×P ×A for the given vocabulary. Note that EPAL requests

are not restricted to “ground terms” as in some other languages, i.e.,
minimal elements in the hierarchies. This is useful if one starts with
coarse policies and refines them because elements that are initially
minimal may later get children. For instance, the individual users
in a “department” of an “enterprise” may not be mentioned in the
CPO’s privacy policy, but in the department privacy policy. For
similar reasons, the semantics is also defined for requests outside
the given vocabulary.

DEFINITION 7 (REQUEST). For a vocabulary Voc,
Req(Voc) := U ×D × P ×A is the set ofvalid requests.

Whether a rule with a satisfied condition matches a given request
depends on its ruling. We say that a rule is negative if it has a
“deny” ruling, otherwise it is positive. A positive rule matches for a
parent of the request (in all hierarchies) including the request itself,
i.e., these rules are inherited down the hierarchies. A negative rule
also matches if it is specified for a child of the request, i.e., these
rules are additionally inherited up the hierarchies. The reason is
that the hierarchies are considered groupings; if access is forbidden
to an element of a group, it is also forbidden for the group as a
whole.

DEFINITION 8 (MATCHING RULE). Let
(u, d, p, a)2(u′, d′, p′, a′) iff u2u′ ∧ d2d′ ∧ p2p′ ∧ a2a′

for 2 ∈ {≥,≷}. A positive (negative) rule〈(u, d, p, a), (r, c, ō)〉
matches a request(u′, d′, p′, a′) iff (u, d, p, a) ≥ (u′, d′, p′, a′)
((u, d, p, a) ≷ (u′, d′, p′, a′)).

The semantics of a privacy policyPol is a functionevalPol , given
in Algorithm 1, that evaluates a request based on a given assign-
ment and returns the result(r, ō) of a ruling (decision) and asso-
ciated obligations. If the request is not valid for the considered
vocabulary or the global condition is satisfied under the given as-
signment then the result is(scope error, ∅) or (policy error , ∅),
respectively. Otherwise, the output ruling is determined by the first
matching rule with ‘allow’ or ‘deny’ ruling and whose condition is
satisfied. If no such rule exists, the default ruling applies. The obli-
gations of preceding obligate rules whose conditions are satisfied
are added to the result.

Input: A policy Pol = (Voc,R, gc, dr , d̄o), requestreq =
(uR, dR, pR, aR) and assignmentχ ∈ Ass(Var)
Output: evalPol (req, χ) ∈
{(scope error, ∅), (policy error , ∅)} ∪ {+, ◦,−} ×O
if (uR, dR, pR, aR) /∈ U×D×P×A then return(scope error, ∅)
if evalχ(gc) = false then return(policy error , ∅)
ōadd := ∅
foreach 〈(u, d, p, a), (r, c, ō)〉 ∈ R do

if evalχ(c) = true then
if r = + ∧ (u, d , p, a) ≥ (uR, dR, pR, aR) then return
(r , ō ∪ ōadd)
if r = − ∧ (u, d , p, a) ≷ (uR, dR, pR, aR) then return
(r , ō ∪ ōadd)
if r = ◦ ∧ (u, d , p, a) ≥ (uR, dR, pR, aR) then
ōadd = ōadd ∪ ō

return (dr , ōadd ∪ d̄o)

Algorithm 1: Request evaluation.

2.4 Refinement of Privacy Policies
Refinement is the foundation of almost all operations on policies.

Our notion of refinement allows policyPol2 to define a ruling if
Pol1 does not care. Additionally, it is allowed to extend the scope

377

of the original policy and to define arbitrary rules for the new ele-
ments. In all other cases, the rulings of both policies must be iden-
tical. For new elements, however, we have to capture that if they
are appended to the existing hierarchies, there could exist applica-
ble rules for these elements if they were already present, and newly
added rules for these elements could influence existing elements as
well. As an example, a rule for a “department” may forbid its “em-
ployees” to access certain data for marketing purposes. Now if a
new employee is added, this rule should be applicable as well; fur-
thermore, defining a new rule for this case with higher precedence,
e.g., granting the new employee an exception to the department’s
rule should obviously no longer yield a refinement. In our defini-
tion of refinement, we therefore do not evaluate each policy on its
own vocabulary but on the joint vocabulary of both policies. One
technicality that has to be accommodated is that joining two vo-
cabularies, i.e., joining their respective hierarchies, might not yield
another vocabulary. Hence, we only define refinement for policies
with compatible vocabularies, i.e., those policies for which joining
their respective vocabularies pair-wise yields another vocabulary.

Dealing with the respective obligations is somewhat more dif-
ficult. Intuitively, one wants to express that a finer policy may
also contain refined obligations. However, since a refined policy
might contain additional obligations, whereas some others have
been omitted, it is not possible to simply compare these obliga-
tions in the obligation model of the original policy. (Recall that we
also use refinement to compare arbitrary policies; hence one can-
not simply expect that all vocabulary parts of the refined policy are
supersets of those of the coarser policy.) The following notion of
obligation refinement is from [3].

DEFINITION 9 (OBLIGATION REFINEMENT). Let two obli-
gation models(Oi,→Oi) andōi ⊆ Oi for i = 1, 2 be given. Then
ō2 is a refinementof ō1, written ō2 ≺ ō1, iff the following holds:

∃ō ⊆ O1 ∩O2 : ō2 →O2 ō→O1 ō1.

We are now ready to introduce our notion of policy refinement.

DEFINITION 10 (POLICY REFINEMENT). Let two privacy
policies Pol i = (Voci, Ri, gci, dr i, d̄oi) for i = 1, 2
with compatible vocabularies be given, and setPol∗i =
(Voc∗i , Ri, gci, dr i, d̄oi) for i = 1, 2, whereVoc∗i = (UH 1 ∪
UH2 ,DH 1 ∪ DH 2,PH 1 ∪ PH 2,AH 1 ∪ AH 2, Var i,OM i).
ThenPol2 is a refinementof Pol1, written Pol2 ≺ Pol1, iff for
every assignmentχ ∈ Ass(Var1 ∪ Var2) and every authoriza-
tion requestq ∈ Req one of the following statements holds, where
(ri, ōi) = evalPol∗i

(q, χ) for i = 1, 2:

• (r1, ō1) = (scope error, ∅).

• If evalχ(gc1) = false then alsoevalχ(gc2) = false.

• r1 ∈ {+,−} andr2 = r1 and ō2 ≺ ō1.

• r1 = ◦ andr2 ∈ {+, ◦,−} and ō2 ≺ ō1.

The trivial solution for implementing policy refinement is the brute
force approach, i.e., one simply evaluates both policies for any re-
quest and any assignment, and compares the results. Clearly, a
brute force search is not desirable, and we can identify three inher-
ent weaknesses of this approach that we address in our algorithm.

First, the processing is performed for all elements of the joint
set of valid requests. If several requests have exactly the same
matching rules in the rule list, it would be beneficial to group these
quadruples together and perform a single processing for all of them.
Second, in order to cover all the combinations of conditions that
could be satisfied by a given request, the brute force algorithm has

to consider all the possible subsets of the sets of conditions defined
in the two compared policies. However, it might be that some sub-
sets do not have to be considered because several conditions cannot
be satisfied at the same time. It could hence be beneficial to restruc-
ture the set of rules with respect to their conditions. Finally, several
rules are typically useless for a particular request and assignment
because they are always hidden by matching rules that have higher
priority. One should hence restructure the rule list in a suitable way.
We address these weaknesses in the next section.

3. SCOPE-BASED POLICY COMPARISON
This section describes our algorithm for policy refinement, called

scope-based policy comparison, which consists of four parts:

1. Thescope-based expansiontransforms the rule list of a pol-
icy into an ordered list of so-called scope-based rules. In con-
trast to usual rules, scope-based rules consist of a sequence
of qualifiers instead of a single qualifier. The derived list of
rules is equivalent to the old one in the sense that the evalua-
tion of each request results in the same output for each pos-
sible assignment. However, the derived list enjoys a property
that is crucial for the correctness of the following phases,
namely that rules that are matching for only a small number
of elements come first.

2. Given two such policies with ordered lists of scope-based
rules, wenormalizethe qualifier sequences of each rule ac-
cording to a simple calculus. The essential ideas are to elim-
inate qualifiers with obligate ruling by accumulating the re-
spective obligations and to close the sequence, if necessary,
with the qualifier(dr, true, d̄o).

3. After the two previous parts, which are used for pre-
processing policies, we now show how to efficiently check
whether two normalized qualifier sequences are refining in
the sense that for every assignment, both sequences yield the
same output and one policy always yields refined obligations.

4. We finally show how to efficiently check for refinement be-
tween two policies that have scope-based rule lists with nor-
malized qualifier sequences.

In the following, we decided not to present a precise description of
the algorithm including all the tedious details that it has to accom-
modate, both for reasons of readability and for space constraints,
but we illustrate its different parts by means of examples instead.
However, the precise definition of the algorithm can easily be de-
rived from our description.

3.1 Scope-based Expansion
An important prerequisite for scope-based rules is the no-

tion of extended rules. Instead of having only one qualifier,
an extended rule may have a sequence of qualifiers. For ex-
ample, a rule〈(u, d, p, a), (r1, c1, ō1)〉 followed by another rule
〈(u, d, p, a), (r2, c2, ō2)〉 can be described by the extended rule
〈(u, d, p, a), 〈(r1, c1, ō1); (r2, c2, ō2)〉〉, where evaluation of qual-
ifiers is from left to right and thus respects the precedences of the
original rules.

Note that for positive rules, all elements affected by such a rule
can easily be represented by their parent element, i.e., the element
that the rule is defined for. In contrast, deny rules do not have such
a compact representation because upward inheritance prevents us
from describing all affected elements by means of a single element.
However, we can describe a deny rule for an element(u, d, p, a)

378

u0

u1 u2

u3 u4 u5 u6

d0

d1 d2

d3 d4

p0

p1 p2

p3 p4

a0

a1 a2

Rule 1
Rule 2
Rule 3

3 1

22

3

2
2

1
3

3

1

1

Figure 1: Hierarchies. Dashed areas indicate the scopes of the rules in the respective dimensions.

by a deny rule for the whole hierarchies, i.e., a rule for the root ele-
ment, but explicitly excluding the siblings on the path to the root as
defined below (for ease of description, we assume that each hierar-
chy has only a single root, which we denote as(u0, d0, p0, a0)):

siblings(〈(u, d, p, a), seq〉)
= {〈(u′, d0, p0, a0), 〈(dr, true, d̄o)〉〉 | u0 > u′ > u}
∪ {〈(u0, d

′, p0, a0), 〈(dr, true, d̄o)〉〉 | d0 > d′ > d}
∪ {〈(u0, d0, p

′, a0), 〈(dr, true, d̄o)〉〉 | p0 > p′ > p}
∪ {〈(u0, d0, p0, a

′), 〈(dr, true, d̄o)〉〉 | a0 > a′ > a}

Roughly, this alternative representation and reshuffling of the rules
allows us to generate a “normal form” for rule lists. Although the
normal form has more rules than the original rule list, it simplifies
the comparison of the rule lists because each individual rule does
not necessarily have to be compared with all rules of the other rule
list.

We describe the transformation from the original rule list to this
normal form and to the final list of scope-based rules by means
of a policy example, whose rule list is given below based on the
hierarchies depicted in Fig. 1:

1 〈(u1, d0, p2, a2), (◦, c1, ō1)〉
2 〈(u3, d1, p4, a2), (−, c2, ō2)〉
3 〈(u2, d2, p2, a0), (+, c3, ō3)〉

The first step towards the scope-based rule list is to switch to the
above-described representation of all deny rules (i.e., of rule 2 in
the example). This means that we first extend each deny rule to all
elements of the hierarchies and then explicitly exclude those ele-
ments that must not be affected by this artificially enlarged scope.
Formally, this corresponds to a new rule for the root and additional
rules for the respective siblings. However, we have to ensure that
the remaining allow rules (i.e., rule 3) are not affected by the arti-
ficially inserted deny rule that covers all elements. Formally, this
means that we have to shift the allow rule before the global deny
rule. This is shown in Fig. 2.

Next, we let all original obligation rules float down the rule list
as follows. We have to distinguish among four cases:

1. If there is no overlap with the next lower rule, i.e., there are
no elements for which both rules are matching, we swap both
rules (as done in Steps (ii) & (v) in Fig. 3).

2. If the scope of the floating rule is contained in the scope of
the next rule, the qualifier of that rule is appended to the float-
ing rule’s qualifier and the obligation rule has reached its fi-
nal position (shown in Step (vii) in Fig. 4a).

3. If the scope of the next rule is contained in the scope of the
floating rule, we swap both rules but additionally append the

qualifier of the floating rule to the qualifier sequence of the
current rule.

4. If both rules overlap only partially, we swap the rules and
additionally insert a new rule that deals with the overlap as
follows:

overlap(〈(u, d, p, a) seq1 〉, 〈(u′, d′, p′, a′) seq2 〉)
=: 〈(u∗, d∗, p∗, a∗) seq1 〉

whereu∗ =

{
u if u ≤U u′
u′ otherwise

,

and similarly for the other dimensions. This is shown in
Steps (i), (iii), and (iv) in Fig. 3.

After all obligation rules have been processed in this way, we let the
positive rules float up until a rule is reached whose scope comprises
the scope of the allow rule. In the policy example, rule 3 in Fig. 4a
floats up to the top as there are only either nonoverlapping rules (2e,
2d, 2a, 2a’) or partially overlapping obligation rules. This finally
yields the desired scope-based rule list shown in Fig. 4b. Below
lemmas capture the important properties of scope-based rule lists.

LEMMA 1. Let Pol = (Voc,R, gc, dr , d̄o) be a privacy
policy and letSR denote the scope-based rule list ofR. Let
σ = 〈(u, d , p, a), seq〉 and σ′ = 〈(u ′, d ′, p′, a ′), seq ′〉 be arbi-
trary rules inSR. If scope(u, d , p, a) ⊂ scope(u ′, d ′, p′, a ′) then
σ has higher precedence thanσ′.

LEMMA 2. Let Pol = (Voc,R, gc, dr , d̄o) be a privacy pol-
icy and letSR denote the scope-based rule list ofR. Then for every
valid request(uR, dR, pR, aR) for which there exists a matching
rule in R, the following holds:

• There exists a rule inSR that matches for(uR, dR, pR, aR).

• Let〈(u, d , p, a), seq〉 denote the rule with the highest prece-
dence inSR and let (uR, dR, pR, aR) be an arbitrary ele-
ment in the scope of(u, d, p, a). Thenseq contains the qual-
ifiers from all matching rules inR for (uR, dR, pR, aR).

1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉
3 〈(u2, d2, p2, a0), 〈(+, c3, ō3).〉〉
2’ 〈(u0, d0, p0, a0), 〈(−, c2, ō2).〉〉

Figure 2: Expanded rule list of policy example.

379

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉

. . .

(a) After step (i)

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉

. . .

(b) After step (ii)

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉

. . .

(c) After step (iii)

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d’ 〈(u1, d0, p3, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉

. . .

(d) After step (iv)

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d’ 〈(u1, d0, p3, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
3 〈(u2, d2, p2, a0), 〈(+, c3, ō3).〉〉

. . .

(e) After step (v)

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d’ 〈(u1, d0, p3, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉
3 〈(u2, d2, p2, a0), 〈(+, c3, ō3).〉〉
1 〈(u1, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2’ 〈(u0, d0, p0, a0), 〈(−, c2, ō2).〉〉

(h) After step (vi)

Figure 3: Obligate rule 1 floating down.

2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d’ 〈(u1, d0, p3, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉
3 〈(u2, d2, p2, a0), 〈(+, c3, ō3).〉〉
1’ 〈(u1, d0, p2, a2) 〈(◦, c1, ō1); (−, c2, ō2).〉〉
2’ 〈(u0, d0, p0, a0), 〈(−, c2, ō2).〉〉

(a) After step (vii).

3 〈(u2, d2, p2, a0), 〈(+, c3, ō3).〉〉
2a’ 〈(u4, d0, p2, a2), 〈(◦, c1, ō1).〉〉
2a 〈(u4, d0, p2, a0), 〈(dr, true, d̄o).〉〉
2b 〈(u2, d0, p0, a0), 〈(dr, true, d̄o).〉〉
2c’ 〈(u1, d2, p2, a2), 〈(◦, c1, ō1).〉〉
2c 〈(u0, d2, p0, a0), 〈(dr, true, d̄o).〉〉
2d’ 〈(u1, d0, p3, a2), 〈(◦, c1, ō1).〉〉
2d 〈(u0, d0, p3, a0), 〈(dr, true, d̄o).〉〉
2e 〈(u0, d0, p1, a0), 〈(dr, true, d̄o).〉〉
2f 〈(u0, d0, p0, a1), 〈(dr, true, d̄o).〉〉
1’ 〈(u1, d0, p2, a2), 〈(◦, c1, ō1); (−, c2, ō2).〉〉
2’ 〈(u0, d0, p0, a0), 〈(−, c2, ō2).〉〉

(b) After floating up positive rule 3.

Figure 4: Reordered extended rule list.

(r1, c1 ∧ c2 ∧ c3, ō1); (r2, c1 ∧ c2, ō2); (r3, c2, ō3); (r4, c1, ō4); (dr1, true, d̄o1〉 (1)

(r′1, c1 ∧ c3, ō′1); (r′2, c3, ō
′
2); (r′3, c1, ō

′
3); (dr2, true, d̄o2) (2)

Figure 5: Two example qualifier sequences.

380

Additionally, we want to cover those requests for which there is
no matching rule in the rule list; in particular, we have to consider
those requests that are valid requests for the policy with which we
want to compare our policy. Thus, for every root(u∗, d∗, p∗, a∗)
of the combined vocabularies for which there does not already exist
a matching rule, the rule〈(u∗, d∗, p∗, a∗), (dr , true, d̄o)〉 is ap-
pended to the rule list.

3.2 Normalization of Qualifier Sequences
In this part, qualifier sequences are transformed into equiva-

lent, so-callednormalizedsequences, that no longer contain qual-
ifiers with obligate ruling. Each sequence ends with a qualifier
(dr , true, d̄o). In Section 3.3, we show that two qualifier sequences
of this special form can easily be compared.

We describe the transformation by the axioms below, which are
used as rewriting rules. The first two axioms state that an obli-
gate ruling can always be shifted to the right by adopting suitable
conditions and obligations. Note that there is no axiom for two
subsequent qualifiers with obligate ruling.

(◦, c1, ō1); (r, c2, ō2) c1 ⇒ c2, r ∈ {+,−}
(r, c1, ō1&ō2)

(◦, c1, ō1); (r, c2, ō2), ¬(c1 ⇒ c2), r ∈ {+,−}
(r, c1 ∧ c2, ō1&ō2); (r, c2, ō2); (◦, c1, ō1)

The next two axioms simplify qualifier sequences. They omit qual-
ifiers that are “hidden” beyond a qualifier with higher precedence,
and derive a more useful representation of conditions.

(r1, c1, ō1); (r2, c2, ō2) c2 ⇒ c1, r1 ∈ {+,−}, r2 ∈ {+,−, ◦}
(r1, c1, ō1)

(r1, c1, ō1); (r2, c2, ō2) ¬(c2 ⇒ c1), r1 ∈ {+,−}, r2 ∈ {+,−, ◦}
(r1, c1, ō1); (r2, c2 ∧ ¬c1, ō2)

If the transformed sequence generated by the application of the ax-
ioms described above does not end with the qualifier(dr , true, d̄o),
we want to be able to explicitly append this qualifier to the qualifier
sequence. This is captured in the axiom below.

(◦, c, ō).
(dr, c, ō&d̄o); (dr, true, d̄o)

For example, consider the qualifier sequence(◦, c1 ∧
c2, ō7); (+, c1, ō6); (−, c1 ∧ c2, ō5); (◦, c2, ō4); (−, c2, ō1),
which we want to transform into normal form. Applying
the axioms 2, 1, 1, and 3, we get the rearranged sequence
(+, c1 ∧ c2, ō6&ō7); (−, c2, o4&ō1)(+, c1, ō6)(dr, true, d̄o),
where hidden qualifiers are removed and obligations with obligate
ruling are pushed into qualifiers with allow or deny ruling. The
sequence is terminated by an “otherwise” qualifier, which returns
the default ruling and default obligation of the policy.

For optimization, we use the last two axioms, which correspond
to elimination rules that remove inapplicable qualifiers:

(r1, c1, ō1); (r2, c2, ō2) c2 ⇒ false, r1 ∈ {+,−}, r2 ∈ {+,−, ◦}
(r1, c1, ō1)

(r1, c1, ō1); (r2, c2, ō2) c1 ⇒ false, r1 ∈ {+,−}, r2 ∈ {+,−, ◦}
(r2, c2, ō2)

The following lemma summarizes the main property of normalized
qualifier sequences.

LEMMA 3. Let (r , c, ō) and (r ′, c′, ō′) be two qualifiers in a
normalized sequenceseq , and let⇒ be a correct implies relation
for the considered vocabulary. Then the following holds:

1. If c ⇒ c′ then (r , c, ō) has higher precedence than
(r ′, c′, ō′), i.e., it comes first in the sequence.

2. For any assignmentχ for the considered vocabulary, there
exists at least one qualifier inseq whose condition is satisfied
underχ.

3.3 Comparison of Qualifier Sequences
The comparison of two sequences checks whether there is a re-

finement for every possible pair of qualifiers. Condition compari-
son is based on the considered implies relation, which we assume
to be correct. To illustrate the comparison process, we consider the
normalized qualifier sequences (1) and (2) of Fig. 5. Roughly, for
each qualifier in sequence (2) and in descending order, we check
those qualifiers in sequence (1) for refinement whose conditions
could be concurrently satisfied until we reach a qualifier whose
condition implies the qualifier’s condition of sequence (2). If we
obtain a refinement for this qualifier (explained in more detail be-
low), we proceed with the next qualifier of sequence (2), until we
finally reach a qualifier in the sequence (2) whose condition must
be fulfilled under the assumption that the condition of the currently
investigated qualifier of sequence (1) holds. After this refinement
check is also successful, we proceed with the next element of se-
quence (1).

In the example, we start with the qualifier(r ′1 , c1 ∧ c3 , ō
′
1) and

assume that the conditionc1 ∧ c3 is true. We process the elements
of sequence (1) in descending order until a qualifier with satisfied
condition is found. As the conditionc1 ∧ c2 ∧ c3 of the first qual-
ifier (r1 , c1 ∧ c2 ∧ c3 , ō1) may be true concurrently, we have to
compare(r1, ō1) and(r′1, ō

′
1). More precisely, we have to check

that if r1 6= ◦ we haver′1 = r1; moreoverō′1 must refineō1. If
this holds we continue the comparison with the next qualifier in
sequence (1).

We know at this point that((c1 ∧ c3) ∧ ¬(c1 ∧ c2 ∧ c3)) holds.
As the implies relation is correct, we obtain((c1 ∧ c3) ∧ ¬(c1 ∧
c2 ∧ c3)) ⇒ ¬(c1 ∧ c2); hence the condition(c1 ∧ c2) cannot be
true. This means that the qualifier(r2, c1∧ c2, ō2) does not have to
be considered. The same holds for qualifier(r3, c2, ō3). Because
of c1 ∧ c3 ⇒ c1 , (r4 , c1 , ō4) is the next matching qualifier and
the tuples(r4, ō4) and (r′1, ō

′
1) have to be compared. Moreover,

becausec1 ∧ c3 impliesc1, no remaining elements in sequence (1)
must be checked.

We continue the comparison with the second qualifier in se-
quence (2). At this point we know thatc3 and ¬(c1 ∧ c3)
hold. Because conditionc1 ∧ c3 does not hold, the qualifier
(r1, c1 ∧ c2 ∧ c3, ō1) cannot apply. Furthermore, because of
¬(c1 ∧ c2)∧ c3, the same holds for the qualifiers(r2, c1 ∧ c2, ō2),
(r3, c2, ō3), and(r4, c1, ō4). Thus, we have to check(r ′2 , c3 , ō

′
2)

with (dr1, true, d̄o1). Similarly, we check the remaining elements
in sequence (2). The processing of all qualifiers in sequence (2) is
summarized in Table 1.

3.4 Comparison of extended rule lists
Finally, we are ready to check for refinement of two privacy poli-

cies by comparing their normalized, scope-based rule lists. If there
is refinement for the qualifier sequences of all “matching” rules
then there is policy refinement.

Let SRi for i = 1, 2 denote two scope-based rule lists.
Let σ2 = 〈(u2 , d2 , p2 , a2), seq2 〉 be a rule inSR2 . Process-
ing SR1 in descending precedence, we check each overlapping
ruleσ1 = 〈(u1 , d1 , p1 , a1), seq1 〉 whether the qualifier sequences
seq2 andseq1 constitute a refinement. If there is no refinement, the
algorithm stops and returnsfalse. The processing finishes when a

381

Table 1: Request evaluation results comparison.
Satisfied Condition Result given by seq (1) Result given by seq (2)

c1 ∧ c2 ∧ c3 (r1 , ō1) (r ′1 , ō
′
1)

c1 ∧ c3 (r4 , ō4) (r ′1 , ō
′
1)

c2 ∧ c3 (r3 , ō3) (r ′2 , ō
′
2)

c3 (dr1 , d̄o1) (r ′2 , ō
′
2)

c1 ∧ c2 (r2 , ō2) (r ′3 , ō
′
3)

c1 (r4 , ō4) (r ′3 , ō
′
3)

c2 (r3 , ō3) (dr2 , d̄o2)

- - (dr1 , d̄o1) (dr2 , d̄o2)

ruleσ′1 with scope(σ′1) ⊆ scope(σ2) is found. This is always the
case because everySR ends with rule(s) covering the entire hierar-
chies (by construction).

To illustrate the comparison, consider the two scope-based rule
lists depicted in Fig. 6. The goal of the comparison is to test
whether every request evaluation result inSR2 refines the corre-
sponding evaluation result inSR1 . Thus, for every rule inSR2, all
possible matching rules inSR1 are tested.

1 〈(u2, d2, p2, a0), seq1〉
2 〈(u4, d0, p2, a2), seq2〉
3 〈(u4, d0, p0, a0), seq3〉
4 〈(u1, d0, p2, a2), seq4〉
5 〈(u0, d0, p0, a0), seq5〉

List SR1

1’ 〈(u4, d0, p0, a0), seq′1〉
2’ 〈(u0, d0, p0, a0), seq′2〉

List SR2

Figure 6: Example extended rule list comparison.

In descending order, we check each rule inSR2 with
rules in SR1 whose scopes overlap, comparing their qual-
ifier sequences as described in Section 3.3. Thus, we
begin with rule 1’. The first overlap is with rule 2
(scope(u4 , d0 , p2 , a2) ⊆ scope(u4 , d0 , p0 , a0)). If the qualifier
sequencesseq ′1 and seq2 are a refinement then we continue un-
lessSR2 is not a refinement ofSR1, in which case we stop. The
next overlapping rule is rule 3. After successful comparison we do
not have to check the remaining rules inSR1 because the scope of
rule 3 completely covers the scope of rule 1’. We continue with
the second rule inSR2 and check overlap with the rules inSR1 in
descending order. Because rule 2’ has scope(u0, d0, p0, a0), the
qualifier sequence of every rule inSR1 must be checked.

The structure ofSRi allows for testing the refinement for all the
possible valid requests. Thus, if the refinement is verified for all the
compared sequences of qualifiers, then the comparison algorithm
returnstrue.

THEOREM 1. Let Pi = (Vi ,Ri , gci , dri , d̄oi) for i = 1 , 2 be
two privacy policies. Let furthermoreP ∗i for i = 1, 2 denote the
policies that are derived as in Definition 10, and let a correct im-
plies relation for the considered vocabularies be given. Then the
following holds:

If the scope-based comparison algorithm applied on
P ∗1 and P ∗2 outputstrue, thenP1 is a refinement of
P2. Moreover, if the implies relation is also complete,
then the converse direction also holds, i.e., ifP1 is a
refinement ofP2 then the scope-based comparison al-
gorithm outputstrue.

4. CONCLUSION
We have presented an efficient algorithm to check privacy policy

refinement. In particular, we have addressed the privacy-inherent
difficulties of upward inheritance of deny rules, accumulation of
obligations via obligate rules, and conditional rules. No other effi-
cient algorithmic solution for checking refinement of privacy poli-
cies has yet been given.

5. REFERENCES
[1] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter.

Enterprise Privacy Authorization Language (EPAL).
Research Report RZ 3485, IBM Research, Mar. 2003.

[2] P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-P3P
privacy policies and privacy authorization. InProc. 1st ACM
Workshop on Privacy in the Electronic Society (WPES),
pages 103–109, 2002.

[3] M. Backes, B. Pfitzmann, and M. Schunter. A toolkit for
managing enterprise privacy policies. InEuropean
Symposium on Research in Computer Security (ESORICS),
Lecture Notes in Computer Science 2808, pages 101–119.
Springer, 2003.

[4] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekerat.
Obligation monitoring in policy management. InProc. 3rd
IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY), pages 2–12, 2002.

[5] P. A. Bonatti, E. Damiani, S. De Capitani di Vimercati, and
P. Samarati. A component-based architecture for secure data
publication. InProc. 17th Annual Computer Security
Applications Conference, pages 309–318, 2001.

[6] A. Cavoukian and T. J. Hamilton.The Privacy Payoff: How
successful businesses build customer trust.
McGraw-Hill/Ryerson, 2002.

[7] N. Damianou, N. Dulay, E. Lupo, and M. Sloman. The
Ponder Policy Specification Language. InPolicies for
Distributed Systems and Networks (Policy 2001), Lecture
Notes in Computer Science 1995, pg. 18–39. Springer, 2001.

[8] S. Fischer-Ḧubner.IT-security and privacy: Design and use
of privacy-enhancing security mechanisms, Lecture Notes in
Computer Science 1958. Springer, 2002.

[9] S. Jajodia, M. Kudo, and V. S. Subrahmanian. Provisional
authorization. InProc. E-commerce Security and Privacy,
pages 133–159. Kluwer Academic Publishers, 2001.

[10] G. Karjoth and M. Schunter. A privacy policy model for
enterprises. InProc. 15th IEEE Computer Security
Foundations Workshop (CSFW), pages 271–281, 2002.

[11] G. Karjoth, M. Schunter, and M. Waidner. The platform for
enterprise privacy practices – privacy-enabled management
of customer data. InProc. Privacy Enhancing Technologies,
Lecture Notes in Computer Science 2482, pages 69–84.
Springer, 2002.

[12] Platform for Privacy Preferences (P3P). W3C
Recommendation, Apr. 2002.
www.w3.org/TR/2002/REC-P3P-20020416/ .

[13] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SPL: An
access control language for security policies with complex
constraints. InProc. Network and Distributed System
Security Symposium (NDSS), pages 89–107, 2001.

[14] TRUSTe. Privacy Certification. Seewww.truste.com .
[15] eXtensible Access Control Markup Language (XACML).

OASIS Committee Specification 1.0, Dec. 2002.
www.oasis-open.org/committees/xacml .

382

