
Efficient Compression of Web Graphs

Yasuhito Asano1, Yuya Miyawaki2, and Takao Nishizeki2

1 Graduate School Informatics, Kyoto University, Yoshidahonmachi,
Sakyo-ku, Kyoto, 606-8051, Japan

asano@i.kyoto-u.ac.jp
2 Graduate School of Information Sciences, Tohoku University, Aza-Aoba 6-6-05,

Aramaki, Aoba-ku, Sendai, 980-8579, Japan
miyawaki@nishizeki.ecei.tohoku.ac.jp, nishi@ecei.tohoku.ac.jp

Abstract. Several methods have been proposed for compressing the
linkage data of a Web graph. Among them, the method proposed by
Boldi and Vigna is known as the most efficient one. In the paper, we
propose a new method to compress a Web graph. Our method is more
efficient than theirs with respect to the size of the compressed data.
For example, our method needs only 1.99 bits per link to compress a
Web graph containing 3,216,152 links connecting 325,557 pages, while
the method of Boldi and Vigna needs 2.84 bits per link to compress the
same Web graph.

1 Introduction

A Web graph is a directed graph, whose vertex set consists of Web pages, and
whose edge set consists of hyperlinks connecting these pages. A Web graph plays
a central role in data mining on the Web. For example, search engines, includ-
ing Google and Yahoo!, score Web pages by analyzing a Web graph containing
billions of links [3],[6],[14]. Some other algorithms cluster Web pages by finding
dense subgraphs in a Web graph [2],[12],[16],[23]. Such a Web graph has too many
pages and links to be stored in the main memory of a computer. Thus, compress-
ing a Web graph is indispensable for many applications, including search engines
and clustering algorithms.

Several methods have been proposed for compressing a Web graph [1],[4],[5],
[7],[9],[13],[19],[20],[22]. The previously known most efficient method, proposed
by Boldi and Vigna [7], compresses the link data of a Web graph as little as about
three bits per link. The so-called “localities of a Web graph” are utilized by most
of the existing methods including that of Boldi and Vigna. The localities stem
mainly from the fact that there are much more “intra-host links” than “inter-host
links;” an intra-host link is a link between two pages in the same host computer,
while an inter-host link is a link between two pages in distinct hosts. However,
the fact has not been fully utilized by previous methods.

In the paper, we first propose a new method to compress a Web graph. Our
method fully utilizes the localities of a Web graph together with the fact that
there are much more intra-host links than inter-host links. The main idea of

X. Hu and J. Wang (Eds.): COCOON 2008, LNCS 5092, pp. 1–11, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 Y. Asano, Y. Miyawaki, and T. Nishizeki

our method is twofold: one is to deal with intra-host links separately for each
host; the other is to use six types of “blocks” to cover all 1’s in an adjacency
matrix representing intra-host links for a host; each block consists of consecu-
tive 1’s in the matrix. (See Figure 1 in Section 4.2) Each type of blocks corre-
sponds to some locality of intra-host links. The matrix can be represented by
a sequence of blocks, each of which is represented by the “type,” “beginning
element” and “dimension” of a block. Thus the data of intra-host links can be
efficiently compressed. We regard inter-host links as intra-host links of special
type, and compress intra-host links and inter-host links all together. We then
compare our method with that of Boldi and Vigna with respect to the size of
compressed data and the retrieval speed. The size of data compressed by our
method is smaller than 79% of that by their method. For example, our method
compresses a Web graph containing 3,216,152 links and 325,557 pages as little
as 1.99 bits per link, while their method compresses the same Web graph as
little as 2.84 bits per link. Our method retrieves all the links of an original Web
graph faster than their method, although our method could be slower than their
method when retrieving only the links emanating from a specified page.

2 Localities of a Web Graph

Most of the existing methods to compress a Web graph pagenate all pages with
integers in lexicographic order of their URIs, and hence two pages have close page
numbers if their URIs share a long common prefix. We call the page number of
a page the index of the page, and often call a page with index i simply page i.
The following three facts, called the localities of a Web graph, hold true.

Locality (A): Two pages connected by a link often have close indices, that is,
the difference of their indices are small.

Locality (B): Pages linked from the same page often have close indices.
Locality (C): Pages with close indices often have “similar” links. More pre-

cisely, if page i has a link to page j, then page h such that |i − h| is small
often has a link to the same page j.

These three kinds of localities stem from the following two facts on the Web: (1)
all the pages in the same host have close indices; and (2) there are much more
intra-host links than inter-host links in the Web.

The URIs of pages in the same host share a long common prefix, and hence
these pages have close indices. An intra-host link and an inter-host link are
formally defined as follows.

Definition 1. A link between two pages is called an intra-host link if the pages
belong to the same host; otherwise, the link is called an inter-host link.

Intra-host links occupy more than 89% of all the links for the three data sets
used in Section 5.

Efficient Compression of Web Graphs 3

3 Previously Known Methods

In this section, we explain the ideas of two previous methods to compress a Web
graph, one by Boldi and Vigna [7], and the other by Claude and Navarro [9].

We first present several definitions. If a link emanates from page p and enters
page q, then the pages p and q are called the source and destination of the link,
respectively.

Definition 2. The destination list Lp of page p contains all indices of pages
linked from page p, sorted in increasing order. The adjacency list of a Web graph
is the set of all destination lists of pages in the Web graph.

Methods of compressing a Web graph encode the adjacency list to a binary file,
called the compressed data.

Boldi and Vigna’s method [7] utilizes Localities (B) and (C), and has two
positive integer parameters W and α. The parameter W is called a refer range.
Their method represents the destination list Lp of page p by referring the des-
tination list of one of the W pages preceding page p. They choose one of the
W pages, say page q, such that Lq is most similar to Lp, that is, |Lq ∩ Lp| is
maximum among all q, p − W ≤ q ≤ p − 1. They say that page p refers page
q and page q is referred by page p. The copy list is a binary string of |Lq| bits;
its i-th bit, 1 ≤ i ≤ |Lq|, is set to 1 if the i-th element of Lq is contained in Lp;
otherwise, it is set to 0. Their method efficiently represents the subset Lq ∩ Lp

of Lp by the copy list, while the remaining subset Lp \ Lq of Lp is represented
by a “differential list,” called the remaining list; the differential list of k integers
i1 < i2 < · · · < ik is defined as a list of k integers i1, i2 − i1, i3 − i2, · · · , ik − ik−1.
Their method uses several other techniques to efficiently compress the copy lists
and the remaining lists. In particular, they allow that page q refers another page
r, page r refers another page s, and so on. A set of pages p1, p2, · · · , pk for some
integer k is called a copy chain if page pi refers page pi−1 for each i, k ≥ i ≥ 2,
and p1 does not refer any page. The integer k is called the length of this copy
chain. The maximum length of a copy chain is bounded above by the parameter
α. If α becomes larger, then the size of compressed data tends to become smaller
but the retrieval speed becomes slower.

Claude and Navarro’s method [9] uses a uniform technique called Re-Pair [17]
to compress a Web graph comparably as small as that of Boldi and Vigna, while
the retrieval time of links emanating from a specified page is several times faster
than that of Boldi and Vigna.

4 Our Method

4.1 Classification of Links

We first partition the set of all links of a Web graph into several subsets, each
consisting of all the links whose sources belong to the same host.

For example, consider a Web graph whose pages have URIs and indices writ-
ten in Table 1, and whose adjacency list is represented in Table 2. The “URI”

4 Y. Asano, Y. Miyawaki, and T. Nishizeki

Table 1. An example of URIs and indices of
pages

URI Original Index
abc.com/index.html 0
abc.com/link.html 1
abc.com/t0.html 2
abc.com/t1.html 3

ace.com/index.html 4
... ...

ace.com/pic300.html 314
add.com/a1.html 315

add.com/index.html 316
add.com/adv.html 317

Table 2. An example of an adjacency
list

Source Destinations
0 1, 2, 315
1 0, 2, 3, 315, 316
2 3
3 1
4 314
... ...

314 4
315 0, 316, 317
316 1, 317
317 316

column of Table 1 represents the URIs of pages, and the “Original Index” col-
umn represents the indices of pages. Let H0 be a host whose name is abc.com,
and let H2 be a host whose name is add.com. Pages 0, 1, 2 and 3 belong to H0,
and pages 315, 316 and 317 belong to H2. The “Destinations” column of each
row in Table 2 represents the destination list of the page written in the “Source”
column of the same row.

We then partition the set of all links whose sources belong to each host into
two subsets: the set of all intra-host links and the set of all inter-host links.
Table 3 depicts intra-host links and inter-host links for H2. The destinations of
intra-host links are written in the “Intra” column, and those of inter-host links
are in the “Inter” column.

Table 3. Intra-host links and inter-host
links for H2

Source Intra Inter
315 316, 317 0
316 317 1
317 316 -

Table 4. Intra-destination lists for H2

Source Destinations
0 1, 2
1 2
2 1

Finally, for each host, we assign an integer, called a “local index,” to each
page in the host, and represent every intra-host link by a pair of local indices.
The original index of a page is the index in lexicographic order of its URI, as
described in Section 2. Tables 1–3 above use original indices. The local index of
a page with original index p is defined to be the difference between p and the
smallest original index of pages in the host containing page p. For example, the
smallest original index in H2 is 315, and hence the local index of the page with
original index 317 is 2. Thus, a local index is much smaller than an original index.
Table 4 represents the local indices of pages belonging to H2. The “Source”
column of each row represents the local index of a source of intra-host links,
and the “Destinations” column represents the local indices of the destinations.

Efficient Compression of Web Graphs 5

Comparing Tables 3 and 4, one can immediately realize the advantage of local
indices in compressing intra-destination lists. From now on we call a page with
local index i simply page i. The intra-destination list of page i is a list of all
local indices of the destinations of intra-host links whose sources are page i.

4.2 Compression of Intra-host Links

Our method compresses the data of intra-host links in a Web graph, separately
for each host, by extending a technique used for the compression of bi-level
images [15].

Only for the sake of explanation, we employ an adjacency matrix A of intra-
host links for a host. It should be noted that we use an adjacency list, in place
of an adjacency matrix, for implementing our method. Let n be the number of
pages in a host. Then the adjacency matrix A of the host is an n × n matrix
such that, for 0 ≤ i, j ≤ n − 1, an (i, j)-element Ai,j = 1 if page i has a link to
page j, and otherwise, Ai,j = 0. We say that an element Ai,j is a 1-element if
Ai,j = 1; otherwise, it is called a 0-element.

Our method finds the following six types of blocks in A, each consisting of
1-elements consecutive in A in some sense.

Definition 3. (1) A singleton block consists of an “isolated” 1-element. (2) A
horizontal block consists of two or more horizontally consecutive 1-elements.
(3) A vertical block consists of two or more vertically consecutive 1-elements.
(4) An L-shaped block is a union of a horizontal block and a vertical block
sharing the upper leftmost 1-element. (5)A rectangular block is a submatrix
of A such that all the elements in the submatrix are 1’s and the submatrix has
more than one consecutive rows and more than one consecutive columns. (6)

0 1 1 1 1 1 0 0 0 1

1 0 1 0 0 0 0 0 0 0

0 1 0 0 1 1 1 1 1 0

0 0 1 0 1 1 1 1 1 0

1 0 0 1 1 1 1 1 1 0

1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0

B1

B3
B5

B7

B8

B2
B4

B6

B9

B10

1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Fig. 1. Adjacency matrix A and blocks
B1, B2, · · · , B10 in A

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

B6

Fig. 2. Matrix A after B5 is found

6 Y. Asano, Y. Miyawaki, and T. Nishizeki

A diagonal block consists of two or more 1-elements downward diagonally
consecutive from upper left to lower right.

In Figure 1, each block is either shaded or surrounded by dotted lines. For
example, a horizontal block B1 consists of five 1-elements A0,1, A0,2, · · · , A0,5.
Block B3 is diagonal, B5 is rectangluar, B6 is vertical, and B8 is L-shaped.
Blocks B2, B4, B7, B9, and B10 are singletons.

We represent a block by the “beginning element,” the “type,” and the “di-
mension” of the block. We denote by type(B) the type of a block B. For example,
type(B1) = Horizontal. The upper leftmost element of a block B is called the
beginning element of B, and is denoted by b(B). Let br(B) be the row number of
b(B), and let bc(B) be the column number, then b(B) = Abr(B),bc(B). Let er(B)
be the row number of the lowest element in B, and let ec(B) be the column
number of the rightmost element in B. We call Aer(B),ec(B) the ending element
of a block B unless B is L-shaped. An L-shaped block has two ending elements,
the rightmost one Abr(B),ec(B) and the lowermost one Aer(B),bc(B). The dimen-
sion d(B) of an L-shaped or rectangular block B is definded to be an ordered
pair (er(B) − br(B) + 1, ec(B) − bc(B) + 1). The dimension d(B) of block B of
the other types is defined to be the number of elements in B. For the example
depicted in Figure 1, the beginning element of B1 is A0,1. The dimension of B1
is 5, while the dimensions of B5 and B8 are (3, 5) and (3, 4), respectively. We can
represent a block B in A by a quadraplet (br(B), bc(B), type(B), d(B)), called
the signature sig(B) of B. For example, sig(B5) = (2, 4, Rectangular, (3, 5)). A
singleton block can be represented without the dimension, because the dimen-
sion of every singleton block is 1. For example, sig(B2) = (0, 9, Singleton). The
size of a block B is the number of 1-elements in B, and is denoted by size(B).

The five types of blocks, other than a singleton block, corresponds to localities
of intra-host links; some are variants of the three localities mentioned in Section
2, and the remainder are newly found in the paper. We call pages with consec-
utive local indices simply consecutive pages. (i) A horizontal block corresponds
to a variant of Locality (B); a page often has intra-host links to consecutive
pages. (ii) A vertical block corresponds to a variant of Locality (C); in a host,
consecutive pages often have an intra-host link to the same page. (Some of the
previously known methods explicitly used (i) and (ii) [1],[4],[7],[13],[19],[20],[22].)
(iii) A rectangular block corresponds to a newly found variant of Localities (B)
and (C); in a host, several consecutive pages often have intra-host links to com-
mon consecutive pages. (iv) An L-shaped block also corresponds to a newly
found variant of Localities (B) and (C); a page, say page p, often has intra-host
links to several consecutive pages q, q+1, · · · , q+h, and several consecutive pages
p + 1, p + 2, · · · , p + k often have intra-host links to page q. For example, a site
has such a locality if the site consists of ten pages page0.html, page1.html,
page2.html, · · ·, page9.html, the top page page0.html has intra-host links to
the remaining nine pages, and they have a link to page0.html for returning to
the top page. There are a number of sites similar to this example. (v) A diagonal
block corresponds to another newly found locality in intra-host links; if page p
has an intra-host link to page q, then some consecutive pages p + i, 1 ≤ i ≤ k,

Efficient Compression of Web Graphs 7

often have intra-host links to page q+ i. For example, a site has such a locality if
a site has ten pages page0.html, page1.html, page2.html, · · ·, page9.html and
each page except the last page has an intra-host link to the next page. There are
a number of sites similar to this example. We do not adopt an upward diagonal
block from lower left to upper right, because there are very few such blocks.

We now explain how to find a set of blocks which cover all 1-elements in an
adjacency matrix A. We first find the leftmost 1-element Ai,j in the uppermost
row containing 1-elements, then find a block B containing Ai,j as its beginning
element, then output the signature sig(B), and finally replace all the 1-elements
in B by 0’s. We repeat the operation above from top to bottom and from left to
right until there is no 1-element in A.

If there are two or more blocks whose beginning elements are Ai,j , then we
choose B as follows. (One can easily find B using an adjacency list in place of
an adjacency matrix.)

1. If there is a rectangular block whose beginning element is Ai,j , then we
choose the largest one, that is, the block of the largest size, among these
rectangular blocks.

2. Otherwise and if there is an L-shaped block whose beginning element is Ai,j ,
then we choose the largest one among them.

3. Otherwise, let Bh, Bv and Bd be the largest blocks with beginning element
Ai,j among the horizontal, vertical and diagonal blocks, respectively, and we
choose the largest one among Bh, Bv and Bd. If there are no such blocks
Bh, Bv and Bd, then we choose the singleton block B consisting only of the
beginning element Ai,j .

For example, consider the adjacency matrix A in Figure 1, for which our
algorithm finds B1, B2, · · · , B10 in this order. Figure 2 depicts matrix A just
after the first five blocks B1, B2, · · · , B5 in Figure 1 are found and all the 1-
elements in these blocks are replaced by 0’s. A4,0 is now the leftmost 1-element
in the uppermost row containing 1-elements, and there are two blocks having
A4,0 as the beginning element: a vertical block B6 and a diagonal block consisting
of two 1-elements A4,0 and A5,1. Since the former is larger than the latter, we
choose B6 as the block containing A4,0.

After all the blocks B covering all 1-elements in the adjacency matrix A are
found, we encode sig(B) = (br(B), bc(B), type(B), d(B)) of all the blocks B in
A. In order to encode an integer br(B) to a binary string, we choose the best
code among the following three kinds of variable-length codes: γ-code [11], δ-
code [11] and ζ-code [8]. The best one depends on the distribution of the values
of row numbers br(B). Similarly, we choose the best code for encoding bc(B)
and d(B).

We encode type(B) to a binary string so that a type which often appears is
encoded to a shorter string, but the details are omitted here.

4.3 Compression of Inter-host Links

For each host, we regard all the inter-host links for the host as intra-host links
by giving “new local indices” to the destinations of inter-host links. We then

8 Y. Asano, Y. Miyawaki, and T. Nishizeki

compress the inter-host links and the intra-host links all together by the method
described in Section 4.2.

For each host H , our method first gives “new local indices” to all the desti-
nations of inter-host links whose sources belong to H . Let n be the number of
pages in H . Let m be the number of destinations of inter-host links for H , and
let t(1) < t(2) < · · · < t(m) be the original indices of all the destinations of
inter-host links. The new local index N(t(i), H) of a destination t(i) is defined
to be an integer n + i − 1.

Our method then constructs a “new intra-destination list” of each page p in
host H . If t(x1) < t(x2) < · · · < t(xk) are the original indices of destinations of
inter-host links for page p, then the new intra-destination list of page p is the
union of two lists: one is the intra-destination list of page p, and the other is the
list of new local indices N(t(x1), H), N(t(x2), H), · · · , N(t(xk), H).

We thus compress intra-host links and inter-host links all together for each
host by the method in Section 4.2. The input to the method is the new intra-
destination lists for the host. Let p be the local index of a page in host H , and
let t(xi) be the i-th smallest orignal index of destinations of inter-host links of
page p. Then, for most inter-host links, |N(t(xi), H) − p| is much smaller than
|t(xi) − p|. Thus, by using new local indices, we can cover all 1-elements in
the adjacency matrix by a relatively small number of blocks, and can efficiently
compress inter-host links together with intra-host links. Experimental analyses
will be presented in Section 5.

For each host, it is necessary to store, in a table, a pair of the new local index
and original index of the destination of each inter-host link. Using the table, one
can retrieve orignal indices from new local indices. We efficiently represents the
table by a differential list of the original indices.

5 Experiments

For the computational experiments, we use three data sets of Web graphs, named
cnr-2000, in-2004, and eu-2005, collected by Boldi and Vigna [7]. These data
sets can be downloaded from their site [21].

Table 5. The size of the compressed data

Data set cnr-2000 in-2004 eu-2005
Pages 325, 557 1, 382, 908 862, 664
Links 3, 216, 152 16, 917, 053 19, 235, 140
Hosts 722 4, 409 417

BV, α = 3(bit/link) 3.56 2.82 5.17
BV, α = ∞(bit/link) 2.84 2.17 4.38

Ours (bit/link) 1.99 1.71 2.78
Ratio(%) 70.1 78.8 63.5

Efficient Compression of Web Graphs 9

Table 5 depicts the size of each data set compressed by our method and that
of Boldi and Vigna [7]. The numbers of pages and links in each data set are
written in rows “Pages” and “Links,” respectively. Each cell in the row “Ours”
represents the size of the compressed data per link, obtained by our method.
Similarly, the rows “BV, α = ∞” and “BV, α = 3” represent those by Boldi and
Vigna’s method with α = ∞ and α = 3, respectively, where α is the maximum
length of a copy chain as described in Section 3. The “Ratio” row represents the
ratio of the size of the data compressed by our method to that by the “Boldi
and Vigna, α = ∞.” On average, the size of the data compressed by our method
is smaller than 70.8% of theirs.

We use the method of Boldi and Vigna implemented by themselves, which
is available on their site [21]. Our method is implemented with Java, and the
experiments run on a PC with Core2 Duo E6600 (2.40GHz) and 2GB main
memory.

Table 6. Retrieval time for the whole
compressed data

Data set cnr-2000 in-2004 eu-2005
BV,

α = 3 1.48s 5.87s 7.34s
BV, 1.25× 1.54× 5.38×

α = ∞ 103s 103s 103s
Ours 0.68s 3.73s 1.94s

Table 7. Retrieval time for a specified
page

Data set cnr-2000 in-2004 eu-2005
BV, 3.51 × 6.07 × 4.07 ×

α = 3 10−2ms 10−2ms 10−2ms
BV,

α = ∞ 4.35ms 1.22ms 6.73ms
Ours 2.34ms 2.38ms 28.72ms

Table 6 depicts the time required to retrieve the whole compressed data.
Table 7 depicts the time to retrieve the destination list of a specified page,
which is the average time for randomly selected 10,000 pages for each data set.
The retrieval time of our method is written in the column “Ours.” Similarly,
that of Boldi and Vigna’s method with α = 3 is written in the column “BV,
α = 3,” which is much faster than their method with α = ∞, written in the
column “BV, α = ∞.”

Both our method and theirs take time O(M) to retrieve the whole compressed
data, where M is the number of links in a Web graph. However, our method is
experimentally several times faster than theirs with α = 3, and is about 1000
times faster than theirs with α = ∞.

For a request to retrieve a specified page, our method must retrieve all the links
whose sources belong to the same host as the specified page. On the other hand,
their method must retrieve the destination lists of all the pages in a copy chain,
whose length is at most α. Our method retrieves a specified page experimentally
much slower than their method with α = 3. For cnr-2000 data set, our method is
faster than their method with α = ∞, although our method is slower than theirs
for in-2004 and eu-2005 data sets. Our method takes much time particularly
for eu-2005 data set, because the data set have several hosts containing a huge
number of links and pages.

10 Y. Asano, Y. Miyawaki, and T. Nishizeki

6 Concluding Remarks

We have proposed a new efficient method of compressing a Web graph. We have
introduced six types of blocks to cover all 1-elements in an adjacency matrix to
fully utilize localities of intra-host links. We have also proposed a technique for
compressing inter-host links and intra-host links all together by giving new local
indices to the destinations of inter-host links. The size of data compressed by our
method is about 70.8%, on average, of that by Boldi and Vigna’s method which
has been known as the most efficient method of compressing a Web graph [7].
The retrieval of our method for the whole compressed data is faster than their
method, although that for a specified page could be slower than their method.
Thus, one of the possible future works is to improve the retrieval speed for a
specified page.

References

1. Asano, Y., Ito, T., Imai, H., Toyoda, M., Kitsuregawa, M.: Compact Encoding of
the Web Graph Exploiting Various Power Laws: Statistical Reason Behind Link
Database. In: Dong, G., Tang, C.-j., Wang, W. (eds.) WAIM 2003. LNCS, vol. 2762,
pp. 37–46. Springer, Heidelberg (2003)

2. Asano, Y., Nishizeki, T., Toyoda, M., Kitsuregawa, M.: Mining Communities on
the Web Using a Max-Flow and a Site-Oriented Framework. IEICE Trans. Inf.
Syst. E89-D (10), 2606–2615 (2006)

3. Asano, Y., Tezuka, Y., Nishizeki, T.: Improvements of HITS Algorithms for Spam
Links. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM
2007. LNCS, vol. 4505, pp. 479–490. Springer, Heidelberg (2007)

4. Bharat, K., Broder, A., Henzinger, M., Kumar, P., Venkatasubramanian, S.: The
Connectivity Server: Fast Access to Linkage Information on the Web. In: Proc. of
the 7th WWW, pp. 469–477 (1998)

5. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact Representation of Separable
Graphs. In: Proc. of the 14th SODA, pp. 679–688 (2003)

6. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
In: Proc. of the 7th WWW, pp. 14–18 (1998)

7. Boldi, P., Vigna, S.: The Web Graph Framework I: Compression Techniques. In:
Proc. of the 13th WWW, pp. 595–601 (2004)

8. Boldi, P., Vigna, S.: Codes for the World Wide Web. Internet Mathematics 2(4),
405–427 (2005)

9. Claude, F., Navarro, G.: A Fast and Compact Web Graph Representation. In:
Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 118–129.
Springer, Heidelberg (2007)

10. Cormen, T.H., Leiserson, C.E., Rivest, R., Stein, C.: Introduction to Algorithms.
2nd edn. MIT Press, Cambridge (2001)

11. Elias, P.: Universal Codeword Sets and Representaions of the Integers. IEEE Trans-
actions on Information Theory 21, 194–203 (1975)

12. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient Identification of Web Communi-
ties. In: Proc. of the 6th KDD, pp. 150–160 (2000)

13. Guillaume, J.L., Latapy, M., Viennot, L.: Efficient and Simple Encodings for the
Web Graph. In: Meng, X., Su, J., Wang, Y. (eds.) WAIM 2002. LNCS, vol. 2419,
pp. 328–337. Springer, Heidelberg (2002)

Efficient Compression of Web Graphs 11

14. Kleinberg, J.: Authoritative Sources in a Hyperlinked Environment. In: Proc. of
the 9th SODA, pp. 668–677 (1998)

15. Kou, W.: Digital Image Compression: Algorithms and Standards. Springer, Hei-
delberg (1995)

16. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the Web for
Emerging Cyber-Communities. Computer Networks 31(11-16), 1481–1493 (1999)

17. Larsson, N.J., Moffat, A.: Off-Line Dictionary-Based Compression. Proc.
IEEE 88(11), 1722–1732 (2000)

18. Levenstein, V.E.: On the Redundancy and Delay of Separable Codes for the Natural
numbers. Problems of Cybernetics 20, 173–179 (1968)

19. Randall, K., Stata, R., Wickremesinghe, R., Wiener, J.L.: The Link Database: Fast
Access to Graphs of the Web. Research Report 175, Compaq Systems Research
Center, Palo Alto, CA (2001)

20. Suel, T., Yuan, J.: Compressing the Graph Structure of the Web. In: Proc. of the
Data Compression Conference, pp. 213–222 (2001)

21. WebGraph Homepage, http://webgraph.dsi.unimi.it/
22. Wickremesinghe, R., Stata, R., Wiener, J.: Link Compression in the Connectivity

Server. Technical Report, Compaq Systems Research Center, Palo Alto, CA (2000)
23. Zhang, Y., Yu, J.X., Hou, J.: Web Communities: Analysis and Construction.

Springer, Berlin (2006)

http://webgraph.dsi.unimi.it/

	Efficient Compression of Web Graphs
	Introduction
	Localities of a Web Graph
	Previously Known Methods
	Our Method
	Classification of Links
	Compression of Intra-host Links
	Compression of Inter-host Links

	Experiments
	Concluding Remarks

