
Efficient Computation Modulo a Shared Secret with

Application to the Generation of Shared Safe-Prime Products

Joy Algesheimer Jan Camenisch Victor Shoup

IBM Research
Zurich Research Laboratory

CH–8803 Rüschlikon
{jmu|jca|sho}@zurich.ibm.com

March 6, 2002

Abstract

We present a new protocol for efficient distributed computation modulo a shared secret. We
further present a protocol to distributively generate a random shared prime or safe prime that
is much more efficient than previously known methods. This allows to distributively compute
shared RSA keys, where the modulus is the product of two safe primes, much more efficiently
than was previously known.

Keywords. RSA, safe primes, threshold cryptography, distributed primality test.

1 Introduction

Many distributed protocols, e.g., [FFS88, FH94, GJKR96], require that an RSA modulus N = pq
is generated during system initialization, together with a public exponent e and shares of the
corresponding private exponent. Moreover, many protocols, e.g., [Sho00, CS99, GHR99, ACJT00,
CL01], even require that N is the product of “safe” primes, i.e., p = 2p′+ 1 and q = 2q′+ 1, where
p′ and q′ are themselves prime. While the requirement for safe primes can sometimes be avoided
(e.g., [DK01, FS01]), this typically comes at the cost of extra communication, computation, and/or
non-standard intractability assumptions.

While the initialization of the system with an RSA modulus N can be accomplished using a
“trusted dealer,” it would be preferable not to rely on this.

Given a distributed protocol to generate a random (safe) prime, securely shared among the
players, it is not too difficult to solve the above problem. One can of course use general multi-party
computation techniques of Ben-Or, Goldwasser and Wigderson [BGW88] to generate a random,
shared (safe) prime. Indeed, that would work as follows: one starts with a standard algorithm
for generating a random (safe) prime, and converts this algorithm into a corresponding Boolean
or arithmetic circuit, and then for each gate in this circuit, the players perform a distributed
multiplication modulo a small prime t. This protocol is not very practical, especially as the players
need to perform a distributed computation for every gate in the circuit, and so unlike in the non-
distributed prime generation algorithm, they cannot use much more efficient algorithms for working
with large integers.

1

In this paper, we present new protocols that allow one to perform arithmetic modulo a secret,
shared modulus in a way that is much more efficient than can be done using the general techniques
of Ben-Or et al. More specifically, we develop a new protocol to efficiently compute shares of c,
where c ≡ ab (mod p), given shares of a, b, and p. The shares of a, b, c, and p are integers modulo
Q, where Q is a prime whose bit-length is roughly twice that of p, and the cost of this protocol is
essentially the cost of performing a small, constant number of distributed multiplications modulo Q.
Actually, this is the amortized cost of multiplication modulo p assuming many such multiplications
are performed for a fixed p. This protocol, together with several other new supporting protocols,
gives us a protocol to generate a random, shared prime, or safe prime, that is much more efficient
than the generically derived protocol discussed above. In particular, we obtain a protocol for
jointly generating an RSA modulus that is the product of safe primes that is much more efficient
in practice than any generic circuit-based protocol (which are the only previously known protocols
for this problem), even using the most efficient circuits for integer multiplication, division, etc.

Our protocols work in the so-called “honest-but-curious” model. That is, we assume that all
players follow the protocol honestly, but we guarantee that even if a minority of players “pool”
their information they cannot learn anything that they were not “supposed” to. Even though we
make this restriction, fairly standard techniques can be used to make our protocols robust, while
maintaining their practicality. In fact, using “optimistic” techniques for robustness, we can obtain
a fully robust protocol for distributively generating an RSA modulus that is not significantly less
efficient than our honest-but-curious solution — this is the subject of on-going work.

Related Work. Boneh and Franklin [BF97] present a protocol for jointly generating an RSA
modulus N = pq along with a a public exponent and shares of the corresponding private key. Like
us, they also work in the honest-but-curious adversary model. Unlike ours, their protocol is not
based on a sub-protocol for generating a random, shared prime. While our protocol for this task is
asymptotically more efficient than the protocol of Boneh and Franklin (when the number of players
is small), we do not claim that our protocol is in practice more efficient than theirs for typical
parameter choices. The relative performance of these protocols in such a practical setting depends
on a myriad of implementation details.

Unlike our techniques, those of Boneh and Franklin do not give rise to a protocol for jointly
generating an RSA modulus N = pq, where p and q are safe primes. Indeed, prior to our work,
the only know method for solving this problem was to apply the much less efficient general circuit
technique of [BGW88].

As our protocols rely mainly on distributed multiplication over a prime field, rather than over
the integers, one can easily make them robust using traditional techniques for verifiable secret
sharing modulo a prime, avoiding the somewhat less efficient techniques by Frankel et al. [FMY87]
for robust distributed multiplication over the integers. Moreover, using the optimistic approach
mentioned above, even further improvements are possible, so that we can get robustness essentially
“for free”.

2 Model

We consider k players P1, . . . , Pk that are mutually connected by secure and authentic channels.
Our protocols are secure against a static and honest-but-curious behaving adversary, controlling
up to τ = bk−1

2 c. That is, all players follow the protocol honestly but the dishonest players may
pool their data and try to derive additional information. We finally assume that no party stops
participating prematurely (we use k-out-of-k secret sharing schemes).

2

However, these assumptions can be relaxed: First, it’s possible to force the participants to
behave honestly by having them to commit to their inputs, to generate their individual random
strings jointly, and to prove (using zero-knowledge proofs) that they followed the protocols correctly.
Second, the k-out-of-k secret sharing schemes can easily be converted into k-out-of-l ones by the
‘share back-up’ method introduced by Rabin [Rab98]. We do not pursue these possibilities here.

We prove security in the model by Canetti [Can00]. Here, we describe a simplified version of it
for a static adversary in the honest-but-curious model. Such an adversary first chooses the players
he wants to corrupt and then gets to see their inputs, their internal state and all the messages they
receive. A protocol π is proved secure by specifying the functionality f the protocol should provide
in an ideal world where all the parties send their inputs to a trusted third party T who then returns
to them the outputs they are to obtain according to f . Let πi(x1, . . . , xk, ρ) denote the output of
party Pi when running protocol π on input xi in the presence of adversary A, where ρ is a security
parameter. As A behaves honest-but-curious, the output πi(x1, . . . , xk, ρ) does not depend on A.

Definition 1. A protocol is said to be statistically secure if for any honest-but-curious behaving
adversary A there exists a probabilistic polynomial-time simulator S such that the two ensembles
of random variables

{A(z), π1(x1, . . . , xk, ρ), . . . , πk(x1, . . . , xk, ρ)}ρ∈N;z,x1,...,xk∈{0,1}∗

and
{S(z), f1(x1, . . . , xk, ρ), . . . , fk(x1, . . . , xk, ρ)}ρ∈N;z,x1,...,xk∈{0,1}∗

are statistically indistinguishable.

It can be shown that security is preserved under non-concurrent, modular composition of pro-
tocols [Can00].

3 Preliminaries

3.1 Notation

Let a be a real number. We denote by bac the largest integer b ≤ a, by dae the smallest integer
b ≥ a, and by dac the largest integer b ≤ a + 1/2. We denote by trunc(a) the integer b such that
b = dae if a < 0 and b = bac if a ≥ 0; that is, trunc(a) rounds a towards 0.

Let Q be a positive integer. All modular arithmetic is done centered around 0; to remind the
reader of this, we use ‘rem’ as the operator for modular reduction rather than ‘mod’, i.e., c remQ
is c− dc/QcQ.

Define ZQ as the set {x ∈ Z | − Q/2 < x ≤ Q/2} (we should emphasize that ZQ is properly
view as a set of integers rather than a ring). We denote an additive sharing of a value a ∈ ZQ
over ZQ by 〈a〉Q1 , . . . , 〈a〉

Q
k ∈ ZQ, i.e., a =

∑k
j=1〈a〉

Q
j remQ and by [a]Q1 , . . . , [a]Qk ∈ ZQ we denote a

polynomial sharing (also called Shamir-sharing [Sha79]), i.e., a =
∑τ

i=1 λj [a]Qj remQ, where λj are
the Lagrange coefficients. The latter only works if Q > k and if Q is prime.

For a ∈ Z we denote by 〈a〉I1, . . . , 〈a〉Ik ∈ Z an additive sharing of a over the integers, i.e.,
a =

∑k
j=1〈a〉Ij .

We denote protocols as follows: the term a := PROTOCOLNAME(b) means that the player in
consideration runs the protocol PROTOCOLNAME with local input b and gets local output a as
the result of the protocol. Finally, lg(x) denotes the logarithm of x to the base 2.

3

3.2 Known Primitives

We recall the known secure multi-party protocols for efficient distributed computation with shared
secrets that we will use to compose our protocols, and we state the number of bit-operations
for which we assume lgQ = Θ(n) and that the bit-complexity of a multiplication two n-bit in-
tegers is O(n2) (which is a reasonable estimate for realistic values of n, e.g., n = 1024). The
round-complexity of all primitives is O(1) and their communication is O(kn) bits (we consider
communication complexity to be the number of bits each player sends on average).

Additive sharing over ZQ: To share a secret a ∈ ZQ player Pj chooses 〈a〉Qi ∈R ZQ for i 6= j, sets
〈a〉Qj := a−

∑k
i=1,i6=j〈a〉

Q
i remQ, and sends 〈a〉Qi to player Pi. This takes O(kn) bit operations.

Polynomial sharing over ZQ: To share a secret a ∈ ZQ player Pj chooses coefficients al ∈R ZQ for
l = 1, . . . , τ , where τ = b(k−1)/2c, and sets [a]Qi := a+

∑τ
l=1 ali

l remQ, and sends [a]Qi to player
Pi. This takes O(nk2 lg k) bit operations.

Additive sharing over Z: To share a secret a ∈ [−A,A] player Pj chooses 〈a〉Ii ∈R [−A2ρ, A2ρ] for
i 6= j, where ρ is a security parameter, and sets 〈a〉Ij := a −

∑k
i=1,i6=j〈a〉Ii , and sends 〈a〉Ii to

player Pi. Note that for any set of k − 1 players, the distribution of shares of different secrets
are statistically indistinguishable for suitably large ρ (e.g., ρ = 128). This takes O(k(ρ + lgA))
bit operations.

Distributed computation over ZQ: Addition and multiplication modulo Q of a constant and a poly-
nomially shared secret is done by having all players locally add or multiply the constant to their
shares. Hence [a]Qj + c remQ is a polynomial share of a+ c remQ and c · 〈a〉Qj remQ is a polyno-
mial share of ac remQ. These operations take O(n) and O(n2) bit operations, respectively.
Addition of two shared secrets is achieved by having the players locally add their shares. Thus
[a]Qj + [b]Qj remQ is a polynomial share of a+ b remQ and takes O(lgQ) bit operations.
Multiplication modulo Q of two polynomially shared secrets is done by jointly executing a mul-
tiplication protocol due to Ben-Or, Goldwasser and Wigderson [BGW88] or by a more efficient
variant due to Gennaro, Rabin and Rabin [GRR98] which requires O(n2k + nk2 lg k) bit opera-
tions for each player. We denote this protocol by MUL([a]Qj , [b]

Q
j).

Joint random sharing over ZQ: To generate shares of a secret chosen jointly at random from ZQ,
each player chooses a random number ri ∈R ZQ and shares it according to the required type of
secret sharing scheme and sends the shares to the respective players. Each player adds up all the
shares gotten to obtain a share of a random value. We denote this protocol by JRS(ZQ) in case
the players get additive shares and by JRP(ZQ) if they get polynomial shares. The protocols
require O(nk) and O(nk2 lg k) bit operations per player, respectively.

Joint random sharing of 0: In protocols it is often needed to re-randomized shares obtained from
some computation by adding random shares of 0. Such shares can be obtained for any sharing
scheme by having each player share 0 according to the required type of secret sharing scheme
and sending them to the respective players. Each player adds up all the shares gotten to obtain
a share of 0. We denote this protocol by JRSZ(ZQ) in case the players get additive shares over
ZQ and JRPZ(ZQ) if they get polynomial shares over ZQ. The protocols require O(nk) and
O(nk2 lg k) bit operations per player, respectively. In case we want to have additive shares over
the integers, it is required to give the range (e.g., [−A,A]) from which the players choose the
shares they send to the other players. We denote this protocol by JRIZ([−A,A]) and it requires
O(k(ρ+ lgA)) bit operations per player.

Computing shares of the inverse of a shared secret: This protocol works only for polynomial shar-
ings over ZQ. Let a be the shared invertible element. Then, a protocol due to Bar-Ilan and

4

Beaver [BB89] computes shares of a−1 remQ given shares [a]Qj . The protocol, denoted by
INV([a]Qj), is as follows: first run [r]Qj := JRP(ZQ), then compute [u]Qj := MUL([a]Qj , [r]

Q
j),

reveal [u]Qj , and reconstruct u. If u ≡ 0 (mod Q), the players start over. Otherwise, they each
locally compute their share of a−1 remQ as (u−1 remQ) · [r]Qj remQ. This protocol requires an
expected number of O(n2k + nk2 lg k) bit operations per player.

Joint random invertible element sharing: This protocol denoted JRP-INV(ZQ) is due to Bar-Ilan
and Beaver [BB89]. The players generate shares of random elements [r]Qj := JRP(ZQ) and
[s]Qj := JRP(ZQ), jointly compute [u]Qj := MUL([s]Qj , [r]

Q
j), reveal [u]Qj and then reconstruct u.

If u is non-zero, they each take [r]Qj as their share of a random invertible element. Otherwise,
they repeat the protocol. The protocol requires an expected number of O(nk2 lg k + n2k) bit
operations per player.

4 Conversions Between Different Sharings

In our protocols, we work with all three secret sharing schemes introduced in the previous section.
For this we need methods to convert shares from one sharing scheme into shares of another one. This
section reviews the known methods for such transformations and provides a method to transform
additive shares over ZQ into additive shares over the integers. The latter is apparently new. The
section also provides a method to obtain shares of the bits of a shared secret.

4.1 Converting Between Integer Shares and ZQ Shares

It is well known how to convert additive shares modulo Q into polynomial shares modulo Q and
vice versa: If the players hold additive (or polynomial) shares of a value a they re-share those with
a polynomial (additive) sharing and send the shares to the respective players, which add up (or
interpolate) the received shares to obtain a polynomial (or additive) share of a. We denote the first
transformation by SQ2PQ(·) and the latter by PQ2SQ(·).

Conversions between shares over the integers into shares over ZQ naturally requires that Q/2 is
bigger than the absolute shared value. If this is the case, an additive sharing 〈c〉I1, . . . , 〈c〉Ik over the
integers of a secret c with −2n−1 < c < 2n−1 < Q/2 can be converted in an additive sharing over
ZQ (and thus also a polynomial sharing) by reducing the shares modulo Q, i.e., 〈c〉Qi := 〈c〉Ii remQ.
We denote this transformation by SI2SQ(·).

Obtaining additive shares over the integers from additive shares over ZQ is not so straightfor-
ward. The main problem is that if one considers the additive shares over ZQ as additive shares
over the integers then one is off by an unknown multiple Q, the multiple being the quotient of the
sum of these shares and Q. However, if the shared secret is sufficiently smaller than Q (i.e., ρ bits
smaller, where ρ is a security parameter), then the players can reveal the high-order bits of their
shares without revealing anything about the secret. Knowledge of these high-order bits is sufficient
to compute the quotient. This observation leads to the following protocol.

Let 〈c〉Qj ∈ ZQ be the share of party Pj and let −2n−1 < c =
∑

i〈c〉
Q
i remQ < 2n−1. If

Q > 2ρ+n+lg k+4 holds, where ρ is a security parameter, the parties can use the following protocol
to securely compute additive shares of c over the integers.

Protocol SQ2SI(〈c〉Qj):
Let t = ρ+ n+ 2. Party Pj executes the following steps.

5

1.Reveal aj := trunc(
〈c〉Qj
2t) to all other parties.

2.Compute l :=
⌈

2t
∑
i ai

Q

⌋
.

3.Run 〈0〉Ij := JRIZ([−Q2ρ, Q2ρ]).

4.If j ≤ |l| set the output to 〈c〉Ij := 〈c〉Qj −Q + 〈0〉Ij if l > 0 and to 〈c〉Ij := 〈c〉Qj + Q + 〈0〉Ij if
l < 0.
If j > |l| set the output to 〈c〉Ij = 〈c〉Qj + 〈0〉Ij .

Theorem 1. Let 〈c〉Q1 , . . . , 〈c〉
Q
k be a random additive sharing of −2n−1 ≤ c < 2n−1. If lgQ >

ρ+ n+ lg k + 4, where ρ is a security parameter, then the protocol SQ2SI(〈c〉Qj) securely computes
additive shares of c over the integers.

Proof. We have to provide a simulator that interacts with the ideal world trusted party T and
produces an output indistinguishable from that of the adversary. The trusted party T gets as input
the shares 〈c〉Q1 , . . . , 〈c〉

Q
k , computes c and re-shares c over the integers by choosing integer shares

of 0 the same way as it would be done if the parties ran the protocol 〈0〉Ii := JRIZ([−Q2ρ, Q2ρ]).
Then T sets 〈c〉I1 := 〈0〉I1 + c and 〈c〉Ii := 〈0〉Ii for i 6= 1, and then sends 〈c〉Ii to player Pi. Note
that the players’ outputs are additive shares of c with the right distribution (i.e., the distribution
of any subset of k − 1 shares is statistically close to the distribution of the corresponding subset if
another value c′ was shared).

A simulator is as follows: it forwards the inputs 〈c〉Qi of the corrupted players to T and obtains
the shares 〈c〉Ii for these players from T . It extends the set of shares 〈c〉Qi of the corrupted players
into a full (and random) sharing of any valid c′ (e.g., 0). Let r1, . . . , rn be the thereby obtained
shares. The simulator then computes ai = trunc(ri2t) and lets the adversary know the ai’s that the

corrupted players would receive in the protocol. Then the simulator computes l =
⌈

2t
∑
i ai

Q

⌋
and,

for every i where Party Pi is corrupted, it sets

〈0〉Ii :=


〈c〉Ii − 〈c〉

Q
i +Q if l > 0, i ≤ |l|

〈c〉Ii − 〈c〉
Q
i −Q if l < 0, i ≤ |l|

〈c〉Ii − 〈c〉
Q
i otherwise.

The simulator finally runs the simulator for JRIZ([−Q2ρ, Q2ρ]) such that these shares 〈0〉Ii are the
outputs of the corrupted players. Finally the simulator stops outputting whatever the adversary
outputs.

It remains to show that for this simulator the distributions of the players’ and the simula-
tors outputs are statistically indistinguishable from the views and outputs of the players and the
adversary when running protocol SQ2SI(〈c〉Qj).

Let us first prove that the players’ outputs of protocol SQ2SI(〈c〉Qj) are indeed shares of c. Let

l̂ =
⌈∑

i〈c〉
Q
i

Q

⌋
. Thus c =

∑
i〈c〉

Q
i − l̂Q fulfills |c| < 2n−1 by assumption. Define bi = 〈c〉Qi −ai2t. Note

that |bi| < 2t. We have to show that l = l̂. As
∑

i ai2
t = c + l̂Q −

∑
i bi we have l =

⌈
2t
∑
i ai

Q

⌋
=⌈

c
Q + l̂ −

∑
i bi
Q

⌋
. Because l̂ is an integer, we have l = l̂ if | cQ | < 1/4 and |

∑
i bi
Q | < 1/4, that is, if

n < lgQ − 2 and 2 + t + lg k = ρ + n + lg k + 4 < lgQ holds. As 〈c〉Qi ∈ ZQ we have |l| < k and

6

thus c =
∑

i〈c〉
Q
i − lQ =

∑
i〈c〉Ii . Furthermore it is easy to see that the distribution of the shares

output is statistically close to the ones produced by T .
Let us now show that the distribution of the ai’s for different shared values c are statistically

indistinguishable. We consider the probability that the ai’s take different values if a different value
of c was shared. W.l.o.g., we can assume that 〈c〉Q1 , . . . , 〈c〉

Q
k−1 are random elements from ZQ and

that 〈c〉Qk = c −
∑k−1

i=1 〈c〉
Q
i remQ. Clearly, the values a1 = trunc(〈c〉

Q
1

2t), . . . , ak−1 = trunc(
〈c〉Qk−1

2t)
do not depend on the shared value. It remains to consider ak. We have 〈c〉Qk remQ = ak2t + bk
with bk < 2t. First note that C = −

∑k−1
i=1 〈c〉i remQ is uniformly distributed over ZQ and that

Q > 2t. If C > Q − 2n or if C rem 2t > 2t − 2n then ak takes a value that depends on c.
These conditions are fulfilled with probability at most 2n+2n

2t+2n < 2n+1

2t = 2−t+n+1. Therefore, the
statistical difference between the distribution of the ai’s for different shared values must smaller
than 2 · 2−t+n+1 = 2−t+n+2 = 2−ρ.

As the JRIZ([−Q2ρ, Q2ρ]) protocol is secure, the distributions of the outputs in the real world
and the outputs of the ideal world with our simulator are statistically indistinguishable.

Combining the above protocols, we can move from polynomial shares over ZQ to additive shares
over the integers and vice versa. The bit-complexities for these conversions are O(nk2 lg k + n2k)
and O(nk2 lg k), respectively. For both, the communication-complexity is O(kn) bits and the
round-complexity is O(1).

Moreover, it follows that we can also move from polynomial shares over ZQ to polynomial shares
over ZQ′ provided Q and Q′ are sufficiently large w.r.t. the security parameter and the shared value.

4.2 Computing Shares of the Binary Representation of a Shared Secret

To do a distributed exponentiation with a shared exponent b it is useful when the players are given
shares of the bits b. In the following we assume (w.l.o.g.) that the players hold additive shares of
the exponent b over the integers. The idea of the following protocol to obtain shares of the bits is
that each player distributes polynomial shares modulo Q̃ of the bits of her or his additive share.
Then the players perform a (general) multi-party computation to add these bits to obtain shares
of the bits of b. This multi-party computation, however, is rather simple. In fact, we need to
implement a circuit of size O(kn) and depth O(lg k+ lgn) (c.f., [CLR92]). Each gate in this circuit
requires O(1) invocations of the multiplication protocol MUL(·, ·) over ZQ̃, where Q̃ can be small.

Protocol I2Q-BIT(〈b〉Ij):
Let n to be (an upper-bound on) the number of bits of b. Party Pj runs the following steps.

1.Re-share each bit of the share 〈b〉Ij with a polynomial sharing over Q̃ and send each share to

the respective player. Let [bi,l]
Q̃
j denote the share held by party Pj of the i-th bit of party

Pl’s additive share of b.

2.The player use the computation techniques of Ben-Or, Goldwasser and Wigderson [BGW88]
on a circuit for adding the k n-bit numbers. This takes O(lg k + lg n) steps.

Let [ui]
Q̃
j , i = 1, . . . , n be the shares of the bits of the result. (Recall that it is ensured b has

n-bits.)

3.For i = 1, . . . , n− 1 do (in parallel)

(a)Execute [0]Q̃j := JRPZ(Z
Q̃

) and set [bi]
Q̃
j := [0]Q̃j + [ui]

Q̃
j rem Q̃.

7

4.Output ([b1]Q̃j , . . . , [bn]Q̃j).

Proving the security of this protocol is straightforward given the security of its sub-protocols
and the composition theorem.

Efficiency analysis: computing shares of the bits of b requires O(nk3 lg k lg Q̃+ nk2(lg Q̃)2) bit
operations per player. This protocol requires only a relatively small Q̃, e.g., ρ + 5 + lg k bits. If
shares of the bits modulo a larger prime Q are required, is more efficient to compute shares modulo
a small Q̃ using the above protocol and then convert these shares into ones modulo Q. The number
of bit operations for this is O(γnk3 lg k + γ2nk2 + n2k2 lg k), where lgQ = Θ(n) and lg Q̃ = Θ(γ),
as opposed to O(n2k3 lg k + n3k2) when using the bigger Q only. This optimization may be quite
important in practice as γ may be much smaller than n (e.g., γ = 100 and n = 2000). The
communication-complexity for both variants is O(n2k + nk lgQ) bits. and their round-complexity
is O(lg k + lg n).

4.3 Approximate Truncation

This paragraph presents a truncation protocol, that on input polynomial shares of a and a parameter
n outputs polynomial shares of b such that |b− a/2n| ≤ k + 1.

Protocol TRUNC(a, n) :
Party Pj executes the following steps.

1.Get additive shares of a over the integers: 〈a〉Ij := SQ2SI(PQ2SQ([a]Qj)).

2.Locally compute 〈b〉Ij := trunc(
〈a〉Ij
2n)

3.Get polynomial shares of b over ZQ: [b]Qj := SQ2PQ(SI2SQ(〈b〉Ij))

It is easy to see that the protocol is secure and correct, if lgQ > ρ + n + lg k + 4 holds,
where ρ is a security parameter (c.f. requirements of the SQ2SI(·) protocol). Its bit-complexity is
O(nk2 lg k + n2k), its communication-complexity is O(kn) bits, and its round-complexity is O(1)
rounds.

5 Distributed Computation Modulo a Shared Integer

This section provides efficient protocols for distributed computation modulo a shared, secret mod-
ulus p. All computations will be done using shares modulo a prime Q whose bit-length is roughly
twice that of p. The main building block is an efficient protocol for reducing a shared secret modulo
p. This immediately gives us distributed modular addition and multiplication. The section further
provides a protocol for efficient modular exponentiation where the exponent is a shared secret as
well. As our modular reduction protocol does not compute the smallest residue in absolute value
but only one that is bounded by a small multiple of the modulus, the usual approach for compar-
ing two shared secrets no longer works and therefore a new protocol for comparing such ‘almost
reduced’ shared secrets modulo p is also presented.

The idea of our protocol for modular reduction is based on classical algorithmic techniques
(c.f. [AHU74]). Recall that c rem p = c − d cpcp. Thus the problem reduces to the problem of
distributively computing d cpc.

By interpreting an integer as the mantissa of a floating point number with a public exponent,
we can interpret shares of this integer as shares of the corresponding floating point number. To

8

multiply two such floating point numbers we distributively multiply the mantissas and locally
add the exponents. To keep the shared numbers small, we ‘round’ the product by converting
the polynomial shares of the product mantissa modulo Q to additive shares over the integers, by
having each party locally right-shift its additive share by ξ bits and add ξ to the exponent, and by
converting back to polynomial shares modulo Q. This rounding technique introduces an relative
error of O(k2ξ/m).

So we split the problem of distributively computing d cpc into the problem of distributively
computing a floating point approximation of 1/p, and of distributively computing d cpc using the
precomputed shares of 1/p. The first problem can be solved using Newton iteration and is described
in the next subsection. In Section 5.2 we show how to compute a close approximation to d cpc if we
are given additive shares of a good approximation to c

p over the integers by having each participant
locally truncate its share. The resulting (shared) integer s satisfies |s− d cpc| ≤ k + 1. It turns out
that this is accurate enough to compute a value congruent to c modulo p that is sufficiently small
to allow for on-going computations modulo p (Section 5.3).

5.1 Computation of Shares of an Approximation to 1/p

Assume each party is given polynomial shares [p]Qi of p, with 2n−1 < p < 2n. This section provides
a protocol that allows the parties to compute polynomial shares of an integer 0 < p̃ < 2t+2 such
p̃ 2−n−t = 1/p+ ε where |ε| < (k + 1)2−n−t+4.

As already mentioned we employ Newton iteration for this task with the function f(x) = 1/x−
p/2n which leads to the iteration formula xi+1 := xi(2 − xip/2n) that has quadratic convergence.
Using 3/2 as a start value gives us an initial error of |2n/p− 3/2| < 1/2 and hence we need to do
about lg t iterations to get a t-bit approximation x̃ to 2n/p. We set p̃ = 2tx̃, which is an integer.

Protocol APPINV([p]Qj) :
Party Pj executes the following steps.

1.Set [u0]Qj := u0 = 3 · 2t−1 remQ.

2.For i = 0 to dlg(t− 3− lg(k + 1))e − 1 run

(a)Distributively compute [zi+1]Qj := MUL([p]Qj , [ui]
Q
j).

(b)[wi+1]Qj := TRUNC([zi+1]Qj , n).

(c)Compute [vi+1]Qj := 2t+1 · [ui]Qj −MUL([wi+1]Qj , [ui]
Q
j).

(d)[ui+1]Qj := TRUNC([vi+1]Qj , t).

3.Run [0]Qj := JRPZ(ZQ).

4.Output [p̃]Qj := [ui+1]Qj + [0]Qj remQ.

Theorem 2. Let ρ be a security parameter and let Q > 2ρ+t+ν+6+lg k, where ν = max(n, t). Then,
for any t > 5+ lg(k+1) and any p satisfying 2n−1 < p < 2n for some n, the protocol APPINV([p]Qj)
securely computes shares of an integer p̃, such that∣∣∣2n

p
− p̃

2t

∣∣∣ < k + 1
2t−4

,

with 0 < p̃ < 2t+2. That is, p̃/2t+n is an approximation to 1/p with relative error k+1
2t−4 .

9

Proof. We need show that the protocol actually computes an approximation to 1/p. Then security
from the security of the sub-protocols for multiplication and transformation of the shares.

Consider how ui+1 is computed from ui in the protocol. Because of the local truncation, we have
2ui−pu2

i 2
−n−t−(k+1)(1+ui/2t) ≤ ui+1 ≤ 2ui−pu2

i 2
−n−t+(k+1)(1+ui/2t). As we will see ui/2t <

3 holds. Thus |2np −
ui+1

2t | <
2n

p − 2ui2t + p
2n (ui2t)

2 + (k+1)
2t (1 +ui/2t) = p

2n (2n

p −
ui
2t)

2 + (k+1)
2t (1 +ui/2t).

From this it follows that
∣∣2n
p −

ui+1

2t

∣∣ < ε2i + k+1
2t−2 =: εi+1. As 2n−1 < p < 2n and u0 = 2t−1 we have

ε0 < 1/2 and by requiring k < 2t−5 − 1 we get e1 < 1/2 and εi = 22−i + k+1
2t−3 < 1/2. In particular,

we have εi = k+1
2t−4 for i = dlg(t− 3− lg(k + 1))e.

Consider the size of the integers ui that are shared during the protocol. As εi < 1/2 and
1 < 2n/p < 2 we have 0 < ui/2t < 2 + 1/2 and hence 0 < ui < 2t+2 for all i and hence
0 < zi < 2n+t+2. Similarly, one can show that 0 < vi < 22t+2.

The lower-bound on Q follows from the fact that the SQ2SI(·) algorithm must work on the vi’s
and the zi’s.

Let us discuss the choice of t: in order for the b most significant bits of 1/p and p̃/2t+n to be
equal, t must be chosen bigger than b + 5 + lg (k + 1). The cost of the protocol is dominated by
the MUL(·, ·) protocol and is O(lg t(n2k + nk2 lg k)) bit-operations per player. Its communication-
complexity O(kn lg t) bits and its round-complexity is O(lg t).

5.2 Reduction of a Shared Integer Modulo a Shared p

Assume the players hold polynomial shares modulo Q of the three integers −2w < c < 2w, 0 < p̃ <
2t+2, and 2n−1 < p < 2n, where p̃ 2−n−t is an approximation of 1/p as computed by the protocol in
the previous paragraph. Using the following protocol, the players can compute shares of an integer
d such that d ≡ c (mod p) and lg |d| < lg(k + 1) + w − t+ 5.

As already mentioned this protocol computes d as c−dcp̃2−n−tcp. For distributively computing
the product cp̃ the size of Q would need to be about w + t bits. However, as the ` ≈ n least
significant bits of c do not matter in the computation of the quotient, we can first cut these ` bits
off, obtaining c̃, and then compute d as c − dc̃p̃2−n−t+`cp which requires the size of Q to be only
about w + t− ` bits.

Protocol MOD([c]Qj , [p]
Q
j , [p̃]

Q
j):

Player Pj executes the following steps.

1.[c̃]Qj := TRUNC([c]Qj , `).

2.Compute [q̂]Qj := MUL([c̃]Qj , [p̃]
Q
j).

3.[q]Qj := TRUNC([q̂]Qj , n+ t− `).

4.Compute [d]Qj := [c]Qj −MUL([p]Qj , [q]
Q
j).

Theorem 3. Given shares of three integers −2w < c < 2w, 0 < p̃ < 2t+2, and 0 < p < 2n, the above
protocol securely computes shares of d = (c rem p) + ip with |i| ≤ (k + 1)(1 + 2w+4−n−t + 2`−n+2),
where k is the number of players and given that Q > max (2ρ+6+w−`+t+2 lg(k+1), 2ρ+w+4+lg(k+1)).

Proof. Due to the local rounding in the TRUNC(·, ·) protocol in Step 1, we have c − (k + 1)2` ≤
c̃2` ≤ c + (k + 1)2`. Due to the local rounding in the TRUNC(·, ·) protocol in Step 3, we have
trunc(c̃p̃2−n−t+`)− k ≤ q ≤ trunc(c̃p̃2−n−t+`) + k. As p̃2−(n+t) is only an approximation to 1/p, we

10

have trunc(cp −
c(k+1)
2n−4+t − p̃(k+1)

2n+t−`)− k ≤ q ≤ trunc(cp + c(k+1)
2n−4+t + p̃(k+1)

2n+t−`) + k and, as −2w < c < 2w and
0 < p̃ < 2t+2 , we get d cpc−(k+1)(1+2w+4−n−t+2`−n+2) ≤ q ≤ d cpc+(k+1)(1+2w+4−n−t+2`−n+2).
Thus d = (c rem p) + ip with |i| < (k + 1)(1 + 2w+4−n−t + 2`−n+2).

The bound on Q follows from the requirements of the SQ2SI(·) in the TRUNC(·, ·) protocol.

The cost of the MOD(·, ·, ·) protocol is dominated by the MUL(·, ·) protocol and is O(n2k +
nk2 lg k) bit operations per players. The communication-complexity of the protocol is O(kn) bits
and its round-complexity is O(1).

5.3 Computing with a Shared Modulus p

Now, we are ready to discuss “on-going” distributed computation modulo a shared integer. In
particular, we discuss how the parameters for the MOD(·, ·, ·) and APPINV(·)· protocols must be
set such that such computation is possible. Assume that the players hold polynomial shares modulo
a prime Q of the integers 0 < p̃ < 2t+2, and 2n−1 < p < 2n, where p̃ 2−t−n is an approximation of
1/p as computed above. Let

t = dn+ 10 + 2 lg(3(k + 1))e, v = n+ lg(3(k + 1)) + 1, and Q > 2ρ+2n+36+6 lg(k+1).

Then, given polynomial shares modulo a prime Q of an integer −22v < c < 22v, the players can
compute shares of an integer −2v < d < 2v as [d]Qj := MOD([c]Qj , [p]

Q
j , [p̃]

Q
j). In particular, given

polynomial shares modulo a prime Q of the integers −2v < a, b < 2v the players can compute
shares of an integer −2v < d′ < 2v as [d′]Qj := MOD(MUL([a]Qj , [b]

Q
j), [p]Qj , [p̃]

Q
j). Thus d and d′ can

be used as inputs to further modular multiplication computations.

Exponentiation with a Shared Exponent: Assume the players want to compute shares of
c ≡ ab (mod p), where a, b, p, p̃ are shared secrets and p̃ is an approximation to 2n+t/p . This
can be done by distributively running the square and multiply algorithm where the fact that abi =
(a−1)bi+1 if bi ∈ {0, 1} comes in handy. We assume that the players hold shares ([b1]Qj , . . . , [bn]Qj)
of the bits of b, where b1 is the low-order bit of b (as computed, say, by protocol I2Q-BIT(·)).

Assuming that |a| < 2v then the following protocol securely computes shares of c such |c| < 2v

and c ≡ ab (mod p).

Protocol EXPMOD([a]Qj , ([b1]Qj , . . . , [bn]Qj), [p]Qj , [p̃]
Q
j):

Player Pj executes the following steps.

1.Compute [cn]Qj := MUL([a]Qj − 1 remQ, [bn]Qj) + 1 remQ.

2.For i = n− 1, . . . , 1 do

(a)[di]
Q
j := MUL([a]Qj − 1 remQ, [bi]

Q
j) + 1 remQ.

(b)[ci]
Q
j := MOD(MUL(MOD(MUL([ci+1]Qj , [ci+1]Qj), [p]Qj , [p̃]

Q
j), [di]

Q
j), [p]Qj , [p̃]

Q
j).

3.Output [c]Qj := [c1]Qj .

Efficiency analysis: This protocol does about 3n invocations of MUL(·, ·) and about 2n of
MOD(·, ·, ·) and hence requires O(n3k + n2k2 lg k)) bit operations per player. The communication
complexity O(n2k) bits and it has O(n) rounds.

11

Set membership: Assume the players want to establish whether a ≡ b (mod p) holds for three
shared secrets a, b and p (where p is not necessarily a prime). This can in principle be done
by computing shares of c := a − b rem p, (re-)sharing c modulo Q, multiplying it with a jointly
generated random invertible element from ZQ, revealing the result, and see if it is 0 modulo Q
(provided Q > p). However, because of the properties of MOD(·, ·, ·), we can only compute shares
of c = (a− b rem p) + ip with |i| < 3(k + 1) and therefore the test does not quite work. But as i is
relatively small, it is possible to distributively compute the integer s :=

∏3(k+1)−1
l=−3(k+1)+1(c− lp) which

will be zero if c ≡ 0 (mod p) and non-zero otherwise. This also holds for s modulo Q because Q - s
if Q > p6(k + 1) as then Q > |(c− ip)| holds for all i ∈ [−3(k + 1), 3(k + 1)].

The protocol below is a generalization of what we just described in that it allows the players to
check whether a equals one of b1, . . . bm modulo p. Here, first an si is computed for each bi similarly
as the s above for b and then it is tested whether

∏
i si ≡ 0 (mod Q).

Assuming that a, b1, . . . , bm are less than 2v in absolute value, then the following protocol
securely tests if a ≡ bi (mod p) for some i.

Protocol SETMEM([a]Qj , {[b1]Qj , . . . , [bm]Qj }, [p]
Q
j , [p̃]

Q
j):

Player Pj runs the following steps.

1.For all i = 1, . . . ,m compute [ci]
Q
j := MOD([a]Qj − [bi]

Q
j remQ, [p]Qj , [p̃]

Q
j) (in parallel).

2.For all i = 1, . . . ,m do (in parallel)

(a)Set [u(i,−3(k+1)+1)]
Q
j := [ci]

Q
j − (3(k + 1)− 1)[p]Qj remQ.

(b)For l = −3(k + 1) + 2, . . . , 3(k + 1)− 1 do

i.Compute [u(i,l)]
Q
j := MUL([u(i,l−1)]

Q
j , ([ci]

Q
j − l[p]

Q
j remQ)).

3.Let [ũ1]Qj := [u(1,3(k+1)+1)]
Q
j .

4.For i = 2, . . . ,m do

(a)Compute [ũi]
Q
j := MUL([ũi−1]Qj , [u(i,3(k+1)+1)]

Q
j).

5.Perform [r]Qj := JRP-INV(ZQ), compute [z]Qj := MUL([ũm]Qj , [r]
Q
j) and send [z]Qj to all other

players.

6.Reconstruct z and output success if z ≡ 0 remQ and failure otherwise.

Security of this protocol follows from the security of its sub-protocols, and the fact that if z is
non-zero, then it is a random element from ZQ and hence no information about a or any of the bi’s
is revealed other than that a is different from all the bi’s modulo p.

Note that this protocol includes as a special case the comparison of two almost reduced residues.
It requires O(mk(n2k + nk2 lg k)) bit operations per player. The communication-complexity
O(mnk2) bits and it takes is O(k + n) rounds. However, it is trivial to get the number of rounds
down to O(lg k + lg n) by using a “tree multiplication method” in step 2b and 4.

We note that an alternative to the above protocol would be to use the techniques of Ben-Or
et al. [BGW88] on a circuit to fully reduce a and b modulo p. As a and b are “almost reduced”
modulo p, this circuit is small.

12

6 Generation of Shared Random Primes and Safe Primes

In this section we discuss how to use the protocols introduced so far to generate a shared random
prime and a random safe prime. Once we know how to do this, we can of course also generate a
shared RSA modulus being the product of two primes or of two safe primes. As mentioned earlier,
the former protocol may be more efficient than the one of Boneh and Franklin, at least for very
large n, and the latter is far more efficient than any previously known protocol for this problem.
We conclude the section with an efficiency discussion and a comparison of our protocols and the
one by Boneh and Franklin for generating a shared prime product.

Our strategy for generating a random shared prime is the same as the one usually applied in the
non-distributed case: choose a random number, do trial division, and then run sufficiently many
rounds of some primality test, e.g., the Miller-Rabin test. In the following we describe how each of
these steps can be distributed.

6.1 Generating a Shared Candidate p

The first task for the player is to generate a random n-bit number. In principle, this could be
done be having each player choose a random n-bit number and then compute shares of the xor

of those strings in a similar way as in the protocol we described in Section 4.2. However, this
would mean to already invest significant computation on candidates that with high probability
fail the trial division step. A more efficient way to generate the candidates due to Boneh and
Franklin [BF97] is as follows. Every party except the first one chooses a random (n− lg k − 1)-bit
number pi ≡ 0 (mod 4); the first one chooses a (n− lg k − 1)-bit number p̃1 ≡ 3 (mod 4) and sets
p1 := 2n−1 + p̃1. Thus p :=

∑
i pi will be a n-bit number and 〈p〉Ii := pi. Of course, the distribution

of p is not uniform but one can show that the distribution of p has at least (n − lg k − 1)-bits
of entropy [BF97]. By restricting p ≡ 3 (mod 4), we loose only about half the primes. This will
be sufficient for most applications (otherwise one could still resort to the computationally more
involved method sketched before).

We note that the restriction of p ≡ 3 (mod 4) could be dropped when resorting to the Solovay-
Strassen test. This, however, requires a protocol to compute shares of the Jacobi symbol of a shared
secret; such a protocol is provided in the full version of this paper.

6.2 Trial Division on p

Before doing the costly primality check the players can do a cheaper trial division. For all primes
e smaller than some bound B, the players do the following steps (in parallel):

Protocol Trial Division:
Player Pj runs the following steps.

1.Re-share 〈p〉Ij rem e as polynomial shares over Ze and send each share to the respective player.

2.Sum up the shares gotten from the other players and obtain the share [p rem e]ej .

3.Run [r]ej := JRP-INV(Ze), then [z]ej := MUL([r]ej , [p rem e]ej) and reveal [z]ej to all other players.

4.Reconstruct z. If z ≡ 0 rem e then e divides p.

Note that the above protocol does not work for e ≤ k, because in such cases the field Fe does
not contain enough points to do Shamir sharing among k players. To overcome this, the player

13

can resort to an extension field of Fe (c.f. [BF97]). Also note that our proposal for trial division
determines exactly whether e divides p or not whereas the proposal by Boneh and Franklin [BF97]
has some probability of error which weakens the effect of the trial division somewhat. This trial
division costs O((B/ lgB)(k2 lgB + k(lgB)2)) bit-operations and the computation complexity is
O(1) rounds and O(Bk) bits..

6.3 Distributed Miller-Rabin Test

As p ≡ 3 (mod 4), the Miller-Rabin test reduces to choosing a random base g from Zp and testing
whether g

p−1
2 ≡ ±1 rem p. The following protocol implements this test for a shared secret p. One

difficulty here is that the players cannot choose the base randomly from Zp directly as p is not
known: They have to choose an integer g from an interval that is sufficiently larger than p (e.g.,
from {0, 1}2n), such that g mod p will be distributed statistically close to the original distribution.

Protocol Miller-Rabin:
Player Pj runs the following step

1.If 2 ≤ j ≤ k locally compute 〈b〉Ij := 〈p〉Ij/2. If j = 1 locally compute 〈b〉I1 := (〈p〉I1 − 1)/2.

2.Run ([b1]Qj , . . . , [bn]Qj) := I2Q-BIT(〈b〉Ij).

3.Compute [p]Qj := SQ2PQ(SI2SQ(〈p〉Ij)) and [p̃]Qj := APPINV([p]Qj).

4.Repeat the following step ζ times (in parallel).

(a)Choose 〈r〉Ij ∈R {0, 1}2n.

(b)Run [r]Qj := SQ2PQ(SI2SQ(〈r〉Ij)) and [g]Qj := MOD([r]Qj , [p]
Q
j , [p̃]

Q
j).

(c)Run [u]Qj := EXPMOD([g]Qj , ([b1]Qj , . . . , [bn]Qj), [p]Qj , [p̃]
Q
j).

(d)It the result of SETMEM([u]Qj , {−1, 1}, [p]Qj , [p̃]
Q
j) is failure then stop and output failure.

5.Output success.

If p is a prime then the parties declare success. Otherwise, they declare that p is a composite
with probability at least 1/2 (over the random choices of g).

Note that in the implementation of I2Q-BIT(·) we work with a prime Q̃ whose bit-length is
γ = O(ρ+lg k), where ρ is the security parameter (c.f. Section 4.2). So, the cost of one Miller-Rabin
test is O(nk3 lg kγ + nk2γ2 + n2k2 lg k + ζ(n3k + n2k2 lg k)) bit-operation and the communication-
complexity O(n2kζ) bits and it takes O(n+ lg k) rounds.

6.4 Generation of a Shared Safe Prime

In this section we recommend a protocol for efficient generation of a safe prime, p = 2p′ + 1 with p
and p′ prime. It follows the single party protocol proposed by Cramer and Shoup [CS00].

1. The players generate a random number p′ as in Section 6.1.

2. If j = 1 compute 〈p〉Ij := 2〈p′〉Ij + 1. If j 6= 1 compute 〈p〉Ij := 2〈p′〉Ij .

3. Run the trial division as described in Section 6.2 on p and p′. If either of them appears to be
divisible by a small prime, go to step 1.

14

4. Run the Miller-Rabin test (Section 6.3) on p′ with ζ = 1 and g = 2. If it fails, go to step 1.

5. Run the Miller-Rabin test (Section 6.3) on p with ζ = 1 and g = 2. If it fails, go to step 1.

6. Run the Miller-Rabin test (Section 6.3) on p′ with random g and sufficiently large ζ to ensure
a small error probability (e.g., 2−80).

As the candidates p′ are not random (n−1)-bit numbers, some care must be taken in choosing the
parameter ζ in step 6. We do not address these details here. Assuming lg k � n, B = O(n), and that
safe primes are sufficiently dense (as is widely conjectured and supported by empirical evidence),
the expected bit-complexity of this protocol is O(n3/(lg n)2(k3 lg kγ+k2γ2 +nk2 lg k+n2k)), where
γ ≈ 128 is a security parameter smaller than n. Assuming that one tests about n2/(lg n)2 candidates
in parallel, the round-complexity is O(n), the communication-complexity and O(n4/(lg n)2k) bits.

6.5 Generation of RSA Moduli, Efficiency Analysis and Comparison

It should now be clear how to generate a modulus N being a prime or a safe prime product. Many
applications require also that the players generate shares of the private exponent. This is much less
computationally involved than distributively generating the modulus N . In particular, Boneh and
Franklin [BF97] as well as Catalano et al. [CGH00] present efficient protocols to accomplish this,
given additive shares over the integers of the factors of N . Our techniques can in fact be used to
improve the latter protocol as well.

Let us compare the computational cost of our method of generating a shared prime product
to the one by Boneh and Franklin. (We do not consider the improvement on the latter protocol
described by Malkin, Wu, and Boneh [WB99], as most of them apply to our protocol as well.)
We first summarize the latter approach. Boneh and Franklin propose to first choose random n-
bit strings and to do a distributed trial division of them. When two strings are found that pass
this trial division, they are multiplied to obtain N . Then, local trial division is done on N , and
finally a special primality test on N is applied that checks whether N is the product of two primes.
Thus, from a bird’s eyes view, one finds that with this method, one has the test about (n/ lg n)2

candidates as opposed to about n/ lg n with our method.
A more careful analysis assuming lg k � n shows that the expected bit-complexity of their

protocol is O((n/ lg n)2(n3 +n2k+nk2 lg k) whereas it is O(n2/ lg n(k3 lg kγ+k2γ2 +nk2 lg k+n2k))
for ours, where γ ≈ 128 is a security parameter smaller than n. For this analysis we assumed
that the bound B for trial division is about O(n). For small number of players k these figures
become O(n5/(lg n)2) and O(n4/ lg n). Round and communication complexities are O(1) rounds
and O(kn3/(lg n)2) bits for theirs and O(n) rounds and O(kn3/ lg n) bits for ours. We note that, in
practice, the round-complexities and communication complexities are not relevant as for this kind
of application one would run many instances of the protocol in parallel and thereby keep the party
with the least computational power constantly busy.

Acknowledgements

We are grateful to Matt Franklin for enlightening discussions that led to a substantially more
efficient test for safe-prime products.

15

References

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and
provably secure coalition-resistant group signature scheme. In Mihir Bellare, editor, Ad-
vances in Cryptology — CRYPTO 2000, volume 1880 of LNCS, pages 255–270. Springer
Verlag, 2000.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analyis of
Computer Algorithms. Addision Wesley, 1974.

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in a
constant number of rounds of interaction. In 8th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, pages 201–209, 1989.

[BF97] Dan Boneh and Matthew Franklin. Efficient generation of shared RSA keys. In Burt
Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume 1296 of LNCS, pages
425–439. Springer Verlag, 1997.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proc. 20th Annual ACM
Symposium on Theory of Computing (STOC), pages 1–10, 1988.

[Can00] Ran Canetti. Security and composition of multi-party cryptographic protocols. Journal
of Cryptology, 13(1):143–202, 2000.

[CGH00] Dario Catalano, Rosario Gennaro, and Shai Halevi. Computing inverses over a shared
secret modulus. In Bart Preneel, editor, Advances in Cryptology — EUROCRYPT 2000,
volume 1807 of LNCS, pages 190–206. Springer Verlag, 2000.

[CL01] Jan Camenisch and Anna Lysyanskaya. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In Birgit Pfitzmann, editor,
Advances in Cryptology — EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118.
Springer Verlag, 2001.

[CLR92] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge, 1992.

[CS99] Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA assump-
tion. In Proc. 6th ACM Conference on Computer and Communications Security, pages
46–52. ACM press, nov 1999.

[CS00] Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA assump-
tion. ACM Transactions on Information and System Security, 3(3):161–185, 2000.

[DK01] Ivan Damg̊ard and Maciej Koprowski. Practical threshold rsa signatures without a
trusted dealer. In Birgit Pfitzmann, editor, Advances in Cryptology — EUROCRYPT
2001, volume 2045 of LNCS, pages 152–165. Springer Verlag, 2001.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of
Cryptology, 1:77–94, 1988.

16

[FH94] Matthew Franklin and Stuart Haber. Joint encryption and message-efficient secure
computation. In Douglas R. Stinson, editor, Advances in Cryptology — CRYPTO ’93,
volume 773 of LNCS, pages 266–277. Springer, 1994.

[FMY87] Yair Frankel, Phil MacKenzie, and Moti Yung. Robust efficient distributed rsa key
generation. In Proc. 30th Annual ACM Symposium on Theory of Computing (STOC),
pages 663–672, 1987.

[FS01] Pierre-Alain Fouque and Jacques Stern. Fully distributed threshold rsa under standard
assumptions. In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001,
volume ??? of LNCS, pages ?–? Springer Verlag, 2001.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures without
the random oracle. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT
’99, volume 1592 of LNCS, pages 123–139. Springer Verlag, 1999.

[GJKR96] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust and ef-
ficient sharing of RSA functions. In Neal Koblitz, editor, Advances in Cryptology —
CRYPT0 ’96, volume 1109 of LNCS, pages 157–172, Berlin, 1996. IACR, Springer Ver-
lag.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track
multiparty computations with applications to threshold cryptography. In Proc. 17th
ACM Symposium on Principles of Distributed Computing (PODC), 1998.

[Rab98] Tal Rabin. A simplified approach to threshold and proactive RSA. In Hugo Krawczyk,
editor, Advances in Cryptology — CRYPTO ’98, volume 1642 of LNCS, pages 89–104,
Berlin, 1998. Springer Verlag.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
November 1979.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances in
Cryptology: EUROCRYPT 2000, volume 1087 of LNCS, pages 207–220. Springer, 2000.

[WB99] Michale Malkin Thomas Wu and Dan Boneh. Experimenting with shared generation
of rsa keys. In Proceedings of the Internet Society’s 1999 Symposium on Network and
Distributed System Security (SNDSS), pages 43–56, 1999.

17

