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Abstract

The problem of binarization of gray level images, acquired under non-uniform illumination is reconsidered. Yanowitz and Bruckstein
proposed to use for image binarization an adaptive threshold surface, determined by interpolation of the image gray levels at points where
the image gradient is high. The rationale is that high image gradient indicates probable object edges, and there the image values are
between the object and the background gray levels. The threshold surface was determined by successive over-relaxation as the solution
of the Laplace equation. This work proposes a different method to determine an adaptive threshold surface. In this new method, inspired
by multiresolution approximation, the threshold surface is constructed with considerably lower computational complexity and is smooth,
yielding faster image binarizations and often better noise robustness.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Let us consider the problem of separating objects from
their background in a gray level imageI (x, y), where objects
appear lighter (or darker) than the background. This can
be done by constructing a threshold surfaceT (x, y), and
constructing a binarized imageB(x, y) by comparing the
value of the imageI (x, y) with T (x, y) at every pixel, via

B(x, y)=
{1 if I (x, y)>T (x, y),

0 if I (x, y)�T (x, y).
(1)

It is clear that a fixed value of the threshold surfaceT (x, y)=
const cannot yield satisfactory binarization results for
images obtained under non-uniform illumination and/or
with a non-uniform background.
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Chow and Kaneko in Ref.[1] were among the first re-
searchers to suggest using adaptive threshold surfaces for bi-
narization. In their method the image was divided into
overlapping cells, and sub-histograms of gray levels in each
cell were calculated. Sub-histograms judged to be bimodal
were used to determine local threshold values for the corres-
ponding cell centers, and the local thresholds were interpola-
ted over the entire image to yield a threshold surfaceT (x, y).
This was certainly an improvement over fixed thresholding,
since this method utilized some local information. However,
the local information was implicitly blurred to the size of the
cell, and this, obviously, could not be decreased too much.
Yanowitz and Bruckstein made a step forward in Ref.[2]

by suggesting to construct a threshold surface by interpolat-
ing the image gray levels at points where the image gradient
is high. Indeed, high image gradients indicate probable
object edges, where the image gray levels are between the
object and the background levels. The threshold surface
was required to interpolate the image gray levels at all
support points and to satisfy the Laplace equation at non-
edge pixels. The surface was determined by a successive
over-relaxation method (SOR)[2,3].
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Trier and Taxt conducted a performance evaluation of
15 binarization methods by comparing the performance of
OCR system with respective binarization method as the first
step[4]. The Yanowitz–Bruckstein (YB) method produced
the best results with the Trier–Taxt method just slightly
behind. After the addition of a ghost-elimination step from
Yanowitz and Bruckstein method, the methods of Niblack
[5], Eikvil–Taxt–Moen [6] and Bernsen[7] performed
slightly better.
As will be shown later, the last three methods are not

scale-invariant, and their performance is optimal only for
some specific object sizes or requires parameter tuning.
TheYanowitz–Bruckstein method is scale invariant, however
the computational complexity of successive over-relaxation
method is expensive: O(N3) for anN×N image and the re-
sulting binarization process is slow, especially for large im-
ages. Furthermore, the threshold surface tends to have sharp
extremum at the support points, and this can degrade the
binarization performance.
We here follow the approach of Yanowitz and Bruckstein

and use image values at the support high gradient points
to construct a threshold surface. However, we define a new
threshold surface via a method inspired by multiresolution
representation[8]. The new threshold surface is constructed
as a sum of functions, formed by scaling and shifting of a
given original function. This new threshold surface can be
stored in two ways: as an array of coefficientsaljk, or as a
conventional threshold surfaceT (x, y) which is obtained as
a sum of scaled and shifted source functions, multiplied by
appropriate coefficientsaljk.
The threshold surface coefficientsaljk are determined in

O(P log(N)) time, whereP is the number of support points
andN2 is the image size. These coefficients can then be used
to construct the threshold surfaceT (x, y) over the entire
image areaN2 in O(N2 log(N)) time or to construct the
threshold surface over smaller region of the image ofM2

size in onlyO(M2 log(N)) time. Furthermore, the adaptive
threshold surface can be made smooth over all the image
domain.
The rest of this paper is organized as follows: Section

2 reviews the best performing methods according to Trier
and Taxt evaluation[4], Niblack [5], Eikvil–Taxt–Moen
[6], Bernstein[7], and Yanowitz–Bruckstein[2]. Section
3 describes a proposed new method to construct a thresh-
old surface. Section 4 describes the implementation of the
surface computation. Section 5 presents some experimental
results, comparing the speed and binarization performance
of the proposed method with the methods of Niblack and
Yanowitz–Bruckstein. Finally Section 6 summarizes this
work with some concluding remarks.

2. Review of binarization methods

2.1. Niblack’s method

The idea of this method is to set the threshold at each
pixel, based on the local mean and local standard deviation.

The threshold at pixel(x, y) is calculated as

T (x, y)=m(x, y)+ k · s(x, y), (2)

wherem(x, y) ands(x, y) are the sample mean and standard
deviation values, respectively, in a local neighborhood of
(x, y). The size of the neighborhood should be small enough
to reflect the local illumination level and large enough to
include both objects and the background. Trier and Taxt
recommend to take 15× 15 neighborhood andk = −0.2.

2.2. Eikvil–Taxt–Moen’s method

The pixels inside a small windowSare thresholded on the
basis of clustering of the pixels inside a larger concentric
window L, S and L are sliding across the image in steps,
equal to the size ofS [4,6]. For all the pixels insideL,
Otsu’s thresholdT [9] is calculated to divide the pixels into
two classes. If the two estimated class means�̂1 and�̂2 are
further apart than a pre-defined limitl,

‖�̂1 − �̂2‖��, (3)

then the pixels insideS are binarized using the threshold
T. Otherwise, all the pixels insideS are prescribed to the
class with the closest updated mean value. Trier and Taxt
recommendS = 3× 3, L= 15× 15 and�= 15.

2.3. Bernsen’s method

For each pixel(x, y), the thresholdT (x, y) = (Zlow +
Zhigh)/2 is used, whereZlow andZhigh are the lowest and
highest gray level pixel values in a squarer × r neighbor-
hood centered at (x, y). If the contrast measureC(x, y) =
Zhigh − Zlow < �, then the neighborhood consists of only
one class, that is assumed to be a background. Trier and Taxt
recommendr = 15 and�= 15.

2.4. Yanowitz–Bruckstein’s method

The essential steps YB binarization method[2] are the
following:

(1) Find thesupport points{pi} of the imageI (x, y), where
the image gradient is higher than some threshold value
Gth,

pi = {xi, yi} : |∇I (xi, yi)|>Gth. (4)

(2) Find the threshold surfaceT (x, y) that equals to the
image value at the support points and satisfies the
Laplace equation at the rest of the image points:

T (pi)= I (pi),

∇2T (x, y)= 0 if {x, y} ∈ �\{pi}. (5)
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Here� is the set of all the image points. The solution
of Eq. (5) is found by a relaxation method.

(3) Determine the binarized imageB(x, y) according to
Eq. (1).

These three steps are a simplification of the original
method, made in order to discuss the essential steps without
being lost in the details. The original method also included
the following steps. A smoothing of the image before Step 1.
The one-dimensional relaxation along the image boundary
between the Steps 1 and 2 in order to use the obtained values
as the Dirichlet boundary conditions for Step 2. Discarding
of ‘ghost’ objects after Step 3, determined as the objects in
the binarized image with relatively small gradients along the
edge.
The smoothing of original image and discarding of ghost

objects were omitted here, while the one-dimensional relax-
ation along the boundary and use of the result as Dirichlet
boundary condition was substituted by the use of Neumann
boundary conditions in Step 3.
The SOR starts with an approximate solutiont (x, y), and

numerical iterations take it to the unique solutionT (x, y) of
the Laplace equation[2].

2.5. Analysis of the binarization methods

In order to make a goal-oriented evaluation of the bina-
rizationmethods Trier and Taxt built an experimental charac-
ter recognition module. The binarization methods were ap-
plied to a hand-written hydrographic maps. Elliptic Fourier
descriptors were extracted from the contour curve of the
figures to form 12-dimensional features. Then the extracted
features were fed into the quadratic classifier[10], assuming
multivariate Gaussian distributions for each of the ten digit
classes.
According to the evaluation by Trier and Taxt, the modi-

fied methods of Niblack, Eikvil–Taxt–Moen, Bernsen, and
the Yanowitz–Bruckstein’s method were ranked, respec-
tively, to places 1,2,3 and 4. Obviously, this evaluation
procedure could serve a good indicator for the performance
of the binarization methods not only for the applications of
recognition of hydrographic maps but also for other char-
acter recognition applications. However, the authors note
that the generalization of the results to other application
domains is not straightforward.
In the following paragraphs, we show that the meth-

ods of Niblack, Eikvil–Taxt–Moen, and Bernsen are scale
dependent, and will not work properly if the object sizes or
the scale of the illumination uniformity vary significantly
along the image. The threshold surface, constructed in the
Yanowitz–Bruckstein method does not have explicit scale
dependency. However, we shall show that the properties
of this surface shade a doubt on its optimality for image
binarization.

In the Niblack’s method, (2)T (x, y)=m(x, y)+k ·s(x, y)
defines the thresholdT inside the square of a fixed size, typ-
ically 15× 15. Every such region is separated into an ob-
ject and a background. Consider a completely white region,
say, at the blank region of the page. The pixels will have
some meanmand standard deviations. Whatever the inten-
sity distribution of the pixels, some pixels will necessarily
fall below the thresholdT defined by Eq. (2). Therefore, in
every image region of size 15×15 some pixels will be clas-
sified as objects and some as a background. This will be a
misclassification for the images having regions of blank or
objects of size 15× 15 or larger. The recommended value
k= −0.2 can be considered as an incorporation of the prior
knowledge and reflects the fact that more bright background
than the dark objects is expected.
In the Eikvil–Taxt–Moen’s method the problem of single-

class regions is treated somewhat better, since the condition
‖�̂1 − �̂2‖��, in Eq. (3) detects the cases of a single class
in a region.
However, the existence of a ‘magic’ sizeL = 15× 15

makes the method scale dependent. Obviously, this scale is
about the best compromise, at least for the case studied by
Trier and Taxt, however it can be too small for cases when
the objects are large and too large for the cases when the
illumination changes too fast along the image.
Bernsen’smethod is also scale dependent, as can be shown

by applying similar arguments.
In the Yanowitz–Bruckstein’s method there is no explicit

scale factor, and therefore this method is more appropriate
for the general cases. However, the price of constructing the
threshold surface that depends on the entire image is high
computational complexity. Really, every method that is lim-
ited to a fixed square size will scale linearly with the size
of the imaget =O(N2). In the relaxation solution each it-
eration requiresO(N2) operations forN2 grid points and
there should beO(N) iterations to converge to a solution,
therefore the method complexity isO(N3) [2]. The solu-
tion of Eq. (5) can be found in just aO(N2) time using
multigrid methods[11]. However, it will become clear from
the following paragraph that not only the speed of compu-
tation but also the properties of the threshold surface can be
improved.
The general form of the solution of Eq. (5) in the contin-

uum limit is

�(x, y)=�(x, y)−
P∑
i=1

qi log

(√
(x−xi)2+(y−yi)2

)
,

(6)

where�(x, y) is smooth and bounded function[12]. This
solution has singularities at the support points. In the case
of a problem discretized on a finite grid, the iterative
solution of Eq. (5) will be finite, yet, it will have sharp
extrema at the support points. These sharp extrema and
especially the hanging ‘valleys’ between them can cause
the unwanted ‘ghost’ objects in the binarized image. These
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Fig. 1. Solution of the Laplace equation by the over-relaxation method.

ghost objects where eliminated in Ref.[2], however, it is
preferable to get rid of them already by a careful construc-
tion of the threshold surface. To illustrate the sharp extremas
at the support points and the hanging ‘valleys’ in between,
Fig. 1 shows a surface computed by SOR for 100 sup-
port points with random values in the range of 0–100. The
support points were randomly scattered over a 128× 128
grid.
Ideally, a good threshold surface should indicate the

local illumination level, which is usually a smooth func-
tion of the coordinates. Moreover, the value of an image
at a support point probably indicates the local illumi-
nation level in its vicinity and there is no reason that
it will be a local extrema. Hence, what actually hap-
pens to the threshold surface obtained by SOR solution
of the Laplace equation is not what we would expect a
good adaptive threshold surface to be. Therefore, it would
be better not to put an interpolation constraint on the
threshold surface, but to construct it as a smooth approx-
imation of the support points thus making it robust to
noisy outliers among the support points. The next section
describes a new efficient way to construct such a threshold
surface.

3. The new threshold surface

We propose to construct and represent the threshold sur-
face as a sum of functions, obtained by scaling and shifting
of a single source function, similar to what is done in
wavelets or multiresolution representations[13]. In mul-
tiresolution representation[8] the coefficients are calculated
on the basis of an original signal that is known a priori. In

our case the complete threshold surface is not known in ad-
vance, but only its approximate values at the support points:
T (pi) = I (pi) ≡ vi . Herepi = {xi, yi} andvi = I (xi, yi)

denote theith support point and its value. This section
presents an efficient way to construct surfaces that inter-
polate and approximate image values at the support points
I (pi). First an interpolation algorithm is presented. How-
ever, the interpolation surface obtained is discontinuous and
cannot serve as a good threshold surface. Therefore, a small
modification to the interpolation algorithm is presented,
that results in a continuous and smooth approximation
surface.
Let us consider a unit step source function, given by

G000(x, y)=
{
1 if (x, y) ∈ �(I ),
0 if (x, y) /∈ �(I ).

(7)

Here�(I ) = [0,1]2 denotes the set of all the image points.
All the other functions we shall use are generated by down-
scaling of this source function and shifting the downscaled
functions around the image plane and thus cover only part
of the image:

Gljk(x, y)=G000

(
x2l − j, y2l − k

)
, (8)

where l = 0, . . . , log2(N) is a scale factor andj, k ∈{
0, . . . ,2l − 1

}
are spatial shifts.

The threshold surface will be given by

T (x, y)=
log2(N)∑
l=0

2l−1∑
j,k=0

aljkGljk(x, y). (9)
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3.1. Interpolation algorithm

Let us introduce an algorithm to calculate the decompo-
sition coefficientsaijk in order to obtain an interpolating
surfaceT (x, y) by Eq. (9), passing exactly through all the
support pointsT (pi)= I (pi).
The algorithm runs as follows:

(1) The decomposition coefficienta000 is set equal to the
average of all the support points

a000= 〈v(0)i 〉 = 1

P000

P000∑
i=1

v
(0)
i . (10)

Here the first zero in index 000 refers to the 0th reso-
lution level, the following 00 refer to the only possible
spatial position at this level. The support points{pi}P000i=1
are defined by Eq. (4) andP000 is the total number of
support points. After step 1 every support pointv

(0)
i is

already approximated by the averagea000, so it remains
only to interpolate the difference between the value of
every support point and the average.

(2) The values of the support points are updated as follows:

v
(1)
i = v

(0)
i − a000. (11)

The quantitiesv(1)i will be referred to as thefirst-order
residuals.

(3) The image is divided into four cells, with correspond-
ing indexes{jk} relating to the spatial position of the
cell: {00,01,10,11}. The average of the updated sup-
port pointsv(1)i of each celljk is calculated to yield the
appropriate decomposition coefficienta1jk:

a1jk = 1

P1jk

∑
pi∈S1jk

v
(1)
i . (12)

Herepi ∈ S1jk denotes a support pointpi that belongs
to the cell at the 1st resolution level, situated at the(j, k)

spatial position.P1jk denotes the number of support
points in this cell.

(4) After step 3 the values of support points in each cell
jk are approximated bya000+ a1jk, so their values are
updated to be

v
(2)
i = vi − a000− a1jk = v

(1)
i − a1jk. (13)

(5) Steps 3 and 4 are repeated for successive resolution
levels. At every resolution level(l−1) each of the 4l−1

cells of this level is divided into four cells to yield 4l

cells at the resolution levell. The coefficientsaljk of
the cells at levell at (j, k) spatial position are set to be
equal to the average of the residual values of the support

points, belonging to this cell:

aljk = 1

Pljk

∑
pi∈Sljk

v
(l)
i . (14)

Herepi ∈ Sljk denotes a support pointpi that belongs
to the cell at levell, placed at(j, k) spatial position.
Pljk denotes the number of support points in this cell.
After calculation of the coefficientsaljk, the values of
the support points are updated:

v
(l+1)
i = v

(l)
i − aljk. (15)

(6) The procedure ends at the highest resolution levelL
(L= log2(N) for N × N image), when the size of the
cell equals to one pixel. At this step there is at most
one support point in every celljk, with a residual value
v
(L)
i . The coefficientaLjk is set toaLjk = v

(L)
i .

The threshold surface, constructed in accordance with Eqs.
(7)–(9) with the coefficientsaljk obtained by the algorithm
as described in steps 1–6, will be an interpolation surface
of the support points{pi, I (pi)}, i.e. it will pass through
every support point. This can be proved by the following
argument:
Consider some arbitrary support pointpi . The value of

the threshold surface at this point will be

T (pi)=
L∑
l=0

alj lkl . (16)

Where thejlkl chooses at every levell the cell that contains
thepi .
On the other hand the residual valuev(L+1)

i of the support
point pi equals to (step 6):

v
(L+1)
i = v

(0)
i − a000− a1j1k1 − · · · − aLjLkL = 0, (17)

which can be rewritten as

v
(0)
i ≡ I (pi)= a000+ a1j1k1 + · · · + aLjLkL . (18)

From Eqs. (16) and (18) it follows that for an arbitrary sup-
port pointpi , T (pi)= I (pi).
Fig. 2 shows the interpolation surface, obtained by our

method for the same set of support points that was used for
the over-relaxation solution, shown inFig. 1.

3.2. Approximating source function

The method presented in the previous section yields a
surface that interpolates the support points. However, the
obtained interpolation surface is discontinuous. In order to
obtain ann-continuously differentiable approximation sur-
face, the source function (7) must be substituted byn-times
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Fig. 2. Interpolating surface, obtained by a new interpolation method.

Fig. 3. The source function, given by Eq. (19).

continuously differentiable function vanishing together with
n first derivatives at the boundary of its support.
In the practical case of finite grid it is enough to consider a

source function having a value and derivatives small enough
at the boundary. However, there are three additional require-
ments from the source function: (approximation) it should
have value close to 1 in the domain of its cell; (normaliza-
tion) the integral of the source function over its support must
be equal to the image area; (smoothness) it should decrease

gracefully towards the boundary of its support. The first two
requirements are necessary in order to build the threshold
surface really approximating the support points and the third
one in order to have it practically smooth.
As a compromise between these contradicting require-

ments we chose a source function with support[−1,2] ×
[−1,2], extending over the image area[0,1]×[0,1]. There-
fore the threshold surface (9) is constructed with scaled
functions, overlapping at each resolution level. It was found
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Fig. 4. An approximating surface, obtained with source function (19).

empirically that source (19) gave a good performance:

G000(x, y)

=
{

e−(x−1/2)4−(y−1/2)4∫ 2
−1

∫ 2
−1 e

−(x−1/2)4−(y−1/2)4
if {x, y} ∈ [−1,2]2,

0 if {x, y} /∈ [−1,2]2.
(19)

The point{x, y}={12, 12} is the center of the image, spanning
over [0,1] × [0,1]. Fig. 3 shows the source function (19).
The support points that will determine the decomposition
coefficients lie in the central cell[0,1] × [0,1], where the
source function (19) is practically flat. Eight periphery cells
will overlap neighboring functions thusmaking the threshold
surface smooth.
Fig. 4 shows the smooth threshold surface, constructed

with the source function (19) for the same set of support
points that was used to construct the interpolated sur-
faces ofFigs. 1and2. Figs. 1, 2, and4 show the support
points by vertical spikes. Some of the support points of
Fig. 4 are lying apart from the threshold surface. This is
due to the fact that support points have random values
for demonstration purposes and therefore the approximat-
ing surface passes far from some of the support points.
In real cases, the neighboring support points usually have
similar values and the approximation surface will be close
to them.
The new threshold surface is smooth. It does not neces-

sarily pass exactly through the support points, however, this
is an advantage rather than disadvantage, because if sev-
eral neighboring support points have substantially different
and ‘noisy’ values this indicates either that the threshold

surface is under-sampled by the support points or that there
is some error or noise in their values. In both cases there
is not enough information at the support points about the
threshold surface and the best thing to do is probably to set
the threshold surface somewhere in between, as done by the
proposed approximation algorithm.

4. Implementation

The algorithm described in the previous section was
implemented in Matlab. The subsections below describe the
data structures and then the algorithm implementation.

4.1. Data structures

The basic data structures are two arrays:
The first array is calledcoeffs (Table 1), it stores the

decomposition coefficients of the cellsaijk in the first row
and the number of support pointsPljk of these cells in the
second.aljk denotes the decomposition coefficient of the
cell ljk, which is situated at the(j, k) spatial position at the
level l of the resolution.Pljk stores the number of support
points in this cell.
First column ofcoeffsstores the single coefficient of the

lowest levela000 and the total number of support points
P ≡ P000, following are four columns of coefficients of the
first level (a100, . . . , a111) and number of points in each of
these cells (P100, . . . , P111), etc.
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Table 1
Array coeffs

a000 a100 a101 . . .

P000 P100 P101 . . .

Contains decomposition coefficientsaljk and number of support points
Pljk in the cell ljk.

Every support point belongs to one and only one cell
lj lkl at every resolution levell. There are log2(N) different
resolution levels, starting from single cell of sizeN ×N at
level 0 toN2 cells of size 1× 1 at level log2(N).
The second array, calledpointarr (Table2), hasPcolumns

and 1+ log2(N) rows. Every column ofpointarr contains
the residual value of the support pointp(l)i in the first row,
and the indicesindil in other rows. These indexes refer to the
cells which containpi at every levell: coeffs[:, indil]=[aljk;
Pljk].
Fig. 5 shows an example of a point, which belongs to

cell000 at level 0 (as every point does),cell100 at level 1,
to cell cell211 at level 2, etc. This point will contribute
in the construction of the threshold function only through
the coefficientsa000, a100, a211, . . . . These coefficients are
stored in the first row, columns 1,2,11. . . of arraycoeffs
(Table 1). Therefore the column ofpointsarr, correspond-
ing to this point will have values 1,2,11, . . . in its second,
third, fourth . . . rows.

4.2. Algorithm description

(1) Array points (Table2) is created and gradually filled.
Every columni of this table contains value of the point
pi in the first row. For every pointpi a calculation is
performed to determine to which celllj ilkil it belongs
at each levell, l = 0, . . . , log2(N). The positions of

P

P

P Cell_000

Cell_100 Cell_101

Cell_110 Cell_111

Cell_211

Fig. 5. Cell hierarchy.

Table 2
Array pointarr

p1 p2 · · · pp

· · · · · · · · · · · ·
plog2(N)1 plog2(N)2 · · · plog2(N)p

Column i contains the indices of the cells containingpi .

these cells in the arraycoeffs(Table1) are filled into
rows 2, . . . , N of ith column ofpointarr, and simulta-
neously, for every encountered cell the counter of the
points belonging to this cell is increased in the array
coeffs. This requiresP log2(N) calculations of the cell
index andP log2(N) increments of the point counters
(because each ofP support points entered into log2(N)
cells).

(2) The coefficientsaljk in the arraycoeffsare calculated.
a000 is set to be an average value of all points (10).
After this the value of every point inpointsis updated:
average value is subtracted from it (11).

(3) Step 2 is repeated for a higher level: Every point con-
tributes its current value to the cell it belongs to, this
value is divided by the number of points which belong
to the cell. After all the points of a given level have
contributed their residual values to the cells, their val-
ues are updated: from each point belonging tocellljk
the value ofaljk is subtracted.

(4) The threshold surface is built based on thecoeffsand
the basis function (19). This requiresO

(
N2 log2(N)

)
operations.

So an approximation surface forP support points scat-
tered overN2 grid is determined as a set of coefficients
usingO

(
P log2(N)

)
operations and built explicitly using

O
(
N2 log2(N)

)
operations.

In the reconstruction phase, the virtual coefficients beyond
the image boundary were created to effectively maintain
Newman boundary conditions.
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5. Experimental results

The three methods, YB with adaptive threshold sur-
face obtained by SOR and the new one with adaptive
threshold surface obtained by multiresolution approxima-
tion and the Niblack’s method were compared for speed
and quality of binarization. The programs were imple-
mented in MATLAB and ran on an IBM-Thinkpad-570
platform with 128MB RAM and a Pentium-II 366MHz
processor.

Fig. 6. Gray level image of ‘Squares’.

Fig. 7. ‘Squares’ binarized with YB method.

Four artificial black–white images were generated by
simulating non-uniform illumination of the black and white
pattern. This allowed to give a quantitative measure of the
error of the binarization method. The error was calculated
as a normalizedL2 distance between the binarized and the
original B/W image. The post-processing step of ghost-
elimination was omitted for all the methods.Figs. 6–21show
the gray level images and the B/W images, reconstructed
by the three binarization methods.Table 3 presents the
runtimes and the binarization errors for each method. In

Fig. 8. ‘Squares’ binarized with MA method.

Fig. 9. ‘Squares’ binarized with Niblack method.
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Fig. 10. Gray level image of ‘Text’.

Fig. 11. ‘Text’ binarized with YB method.

the Niblack binarization method the value ofk from
Eq. (2) was chosen to minimize the error, independently
for each image. It was equal+0.8, −0.6, +0.05 and−0.2,
respectively for the ‘Squares’, ‘Text’, ‘Rectangles’, and the
‘Stars’ test patterns.
For the ‘Squares’ test patterns theYBmethod gave the best

results. The ‘Text’ test pattern reveals the definite superiority
of the Niblackmethod for this important class of images. The
‘Rectangles’ test pattern was created by addition of 1% salt

Fig. 12. ‘Text’ binarized with MA method.

Fig. 13. ‘Text’ binarized with Niblack method.

and pepper noise to the gray level image of a geometric
series of rectangles. For this pattern the proposed method
gave the best results. Finally, for the ‘stars’ test pattern the
proposedmethod gave the best results again. TheYBmethod
had difficulties in the large regions without support points
near the boundary, while the Niblack method gave perfect
binarization for the objects of specific scale, and produced
less impressive results for larger objects, as predicted in
Section 2.5.
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Fig. 14. Gray level image of ‘Rectangles’.

Fig. 15. ‘Rectangles’ binarized with YB method.

6. Concluding remarks

In this work we proposed a new way to construct a thresh-
old surface in order to improve the Yanowitz–Bruckstein
binarization method. The new threshold surface is con-
structed with considerably lower computational complexity
and hence in much shorter time even for small images. The
new method allows even more gain in speed in region-of-
interest processing scenarios. The new threshold surface can

Fig. 16. ‘Rectangles’ binarized with MA method.

Fig. 17. ‘Rectangles’ binarized with Niblack method.

be made smooth and by the nature of its construction should
be similar to the local illumination level. These qualities
allowed to expect a better visual performance of the bina-
rization process. A binarization with the new threshold sur-
face was compared toYanowitz–Bruckstein and the Niblack
methods on the set artificial images, with 4 representative
cases presented and discussed here. Considering the exper-
imental results it is apparent that there is no clear winner.
The Niblack method was the best for the Text binarization.
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Fig. 18. Gray level image of ‘Stars’.

Fig. 19. ‘Stars’ binarized with YB method.

Table 3
Comparison of the speeds and performance of the Yanowitz–Bruckstein (YB) and multiresolution approximation (MA) and Niblack binarization methods

Test image ‘Squares’ ‘Text’ ‘Rectangles’ ‘Stars’

Runtime Error Runtime Error Runtime Error Runtime Error

SOR 165.2 0.0063 160.2 0.212 160.7 0.191 161 0.312
MA 9.7 0.0072 11.4 0.312 15.9 0.078 13.4 0.096
Niblack 0.95 0.128 0.96 0.000 0.98 0.152 0.98 0.1745

The performance of the best method is printed in bold.

Fig. 20. ‘Stars’ binarized with MA method.

Fig. 21. ‘Stars’ binarized with Niblack method.
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Another advantage of the method is its speed and simplic-
ity of implementation. However, Niblack method is scale
dependent, and that made it inferior toYanowitz–Bruckstein
and our methods on the non-text images, where objects of
different scales appeared. For these images our method was
comparable or better than theYanowitz–Bruckstein method,
while having a significant speed advantage.
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