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Abstract

The problem of binarization of gray level images, acquired under non-uniform illumination is reconsidered. Yanowitz and Bruckstein
proposed to use for image binarization an adaptive threshold surface, determined by interpolation of the image gray levels at points where
the image gradient is high. The rationale is that high image gradient indicates probable object edges, and there the image values are
between the object and the background gray levels. The threshold surface was determined by successive over-relaxation as the solutior
of the Laplace equation. This work proposes a different method to determine an adaptive threshold surface. In this new method, inspired
by multiresolution approximation, the threshold surface is constructed with considerably lower computational complexity and is smooth,
yielding faster image binarizations and often better noise robustness.
© 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

MSC: 68T45

Keywords:Computer vision; Image binarization; Threshold surface; Bernsen; Eikvil-Taxt—-Moen; Niblack; Yanowitz—Bruckstein

1. Introduction Chow and Kaneko in Refl1] were among the first re-
searchers to suggest using adaptive threshold surfaces for bi-
Let us consider the problem of separating objects from narization. In their method the image was divided into
their background in a gray level imagéx, y), where objects  overlapping cells, and sub-histograms of gray levels in each
appear lighter (or darker) than the background. This can cell were calculated. Sub-histograms judged to be bimodal
be done by constructing a threshold surfdte, y), and were used to determine local threshold values for the corres-
constructing a binarized imagR(x, y) by comparing the ponding cell centers, and the local thresholds were interpola-
value of the imagd (x, y) with T'(x, y) at every pixel, via ted over the entire image to yield a threshold surface, y).
This was certainly an improvement over fixed thresholding,
1 ifI(x,y)>T(x,y), since this method utilized some local information. However,
B(x,y) = { . 1) the local information was implicitly blurred to the size of the
0 i1, <T@, y). cell, and this, obviously, could not be decreased too much.
Yanowitz and Bruckstein made a step forward in R2F.
by suggesting to construct a threshold surface by interpolat-
ing the image gray levels at points where the image gradient
is high. Indeed, high image gradients indicate probable
object edges, where the image gray levels are between the
object and the background levels. The threshold surface
was required to interpolate the image gray levels at all
" Corresponding author. Tel.: +972545 404 938: support_ points and to satisfy the Laplgce equation at non-
fax: +972 482 939 00. edge pixels. The surface was determined by a successive
E-mail addressblayvas@cs.technion.ac(il. Blayvas). over-relaxation method (SOR2,3].

Itis clear that a fixed value of the threshold surfége, y)=
const cannot yield satisfactory binarization results for
images obtained under non-uniform illumination and/or
with a non-uniform background.
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Trier and Taxt conducted a performance evaluation of The threshold at pixelx, y) is calculated as
15 binarization methods by comparing the performance of
OCR system with respective binarization method as the first 7 (x, y) = m(x, y) + k - s(x, y), (2)
step[4]. The Yanowitz—Bruckstein (YB) method produced
the best results with the Trier—Taxt method just slightly wherem(x, y) ands(x, y) are the sample mean and standard
behind. After the addition of a ghost-elimination step from deviation values, respectively, in a local neighborhood of
Yanowitz and Bruckstein method, the methods of Niblack (x, y). The size of the neighborhood should be small enough
[5], Eikvil-Taxt-Moen [6] and Bernsen[7] performed to reflect the local illumination level and large enough to
slightly better. include both objects and the background. Trier and Taxt
As will be shown later, the last three methods are not recommend to take 1% 15 neighborhood ank = —0.2.
scale-invariant, and their performance is optimal only for
some specific object sizes or requires parameter tuning., 5 Eikvil
The Yanowitz—Bruckstein method is scale invariant, however
the computational complexity of successive over-relaxation

. . . 3 -
method is expensive: @°) foranN x N image and the re-  qiq of clustering of the pixels inside a larger concentric
sulting binarization process is slow, especially for large im- ;4 L, SandL are sliding across the image in steps,
ages. Furthermore, the threshold surface tends to have shargqua| to the size o [4,6]. For all the pixels inside.
extremum at the support points, and this can degrade thegg s thresholdr [9] is calculated to divide the pixels into

binarization performance. _ . two classes. If the two estimated class megnand i, are
We here follow the approach of Yanowitz and Bruckstein further apart than a pre-defined linhjt

and use image values at the support high gradient points
to construct a threshold surface. However, we define a newlm >t 3)
threshold surface via a method inspired by multiresolution 1o mem

representatiofB]. The new threshold surface is constructed o the pixels insidé are binarized using the threshold
as asum _Of funcuo_ns, formed by scaling and shifting of a T. Otherwise, all the pixels insid8 are prescribed to the
given o_rlglnal function. This new thres“‘?'?‘ surface can be class with the closest updated mean value. Trier and Taxt
stored in two ways: as an array of coefficienfs, orasa  ocommends =3 x 3, L = 15 x 15 and¢ = 15.
conventional threshold surfa@gx, y) which is obtained as
a sum of scaled and shifted source functions, multiplied by ,
appropriate coefficients ;. 2.3. Bernsen’s method

The threshold surface coefficients; are determined in )
O(P log(N)) time, whereP is the number of support points For each pixel(x, y), the thresholdr'(x, y) = (Ziow +
andN?2 is the image size. These coefficients can then be usedZhigh)/2 1S used, wher&y,,, and Z;;¢; are the lowest and
to construct the threshold surfad&x, y) over the entire  Nighest gray level pixel values in a square r neighbor-
image areav2 in O(N2 log(N)) time or to construct the hood centered atx( y). If the c_ontrast measuré_(x, y) =
threshold surface over smaller region of the imageVt Zhigh — Ziow < ¢, then the neighborhood consists of only
size in onIyO(MZ log(N)) time. Furthermore, the adaptive ©n€ class, that is assumed to be a background. Trier and Taxt
threshold surface can be made smooth over all the image€commend: = 15 and¢ = 15.
domain.

The rest of this paper is organized as follows: Section 2.4. Yanowitz—Bruckstein’s method
2 reviews the best performing methods according to Trier
and Taxt evaluatiof4], Niblack [5], Eikvil-Taxt-Moen The essential steps YB binarization meth@jl are the
[6], Bernstein[7], and Yanowitz—Brucksteif2]. Section following:
3 describes a proposed new method to construct a thresh-
old surface. Section 4 describes the implementation of the (1) Find thesupport pointqp;} of the imagél (x, y), where
surface computation. Section 5 presents some experimental  the image gradient is higher than some threshold value
results, comparing the speed and binarization performance  G,,
of the proposed method with the methods of Niblack and
Yanowitz—Bruckstein. Finally Section 6 summarizes this pi ={xi, yi} : IVI(xi, yi)| > Gyp. (4)
work with some concluding remarks.

—Taxt—Moen’s method

The pixels inside a small windo®are thresholded on the

(2) Find the threshold surfacg(x, y) that equals to the
2. Review of binarization methods image value at the support points and satisfies the

. Laplace equation at the rest of the image points:
2.1. Niblack’'s method

The idea of this method is to set the threshold at each  T(pi) =1(pi),
pixel, based on the local mean and local standard deviation.  V2T(x, y) =0 if {x, y} € Q\{p;}. (5)
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Here Q is the set of all the image points. The solution In the Niblack’s method, (2F (x, y)=m(x, y)+k-s(x, y)

of Eq. (5) is found by a relaxation method. defines the threshol@inside the square of a fixed size, typ-
(3) Determine the binarized imagk(x, y) according to ically 15 x 15. Every such region is separated into an ob-
Eq. (2). ject and a background. Consider a completely white region,

say, at the blank region of the page. The pixels will have

These three steps are a simplification of the original some meam and standard deviatiom Whatever the inten-
method, made in order to discuss the essential steps withousity distribution of the pixels, some pixels will necessarily
being lost in the details. The original method also included fall below the threshold defined by Eq. (2). Therefore, in
the following steps. A smoothing of the image before Step 1. every image region of size 2615 some pixels will be clas-
The one-dimensional relaxation along the image boundary sified as objects and some as a background. This will be a
between the Steps 1 and 2 in order to use the obtained valuesgnisclassification for the images having regions of blank or
as the Dirichlet boundary conditions for Step 2. Discarding objects of size 15 15 or larger. The recommended value
of ‘ghost’ objects after Step 3, determined as the objects in k = —0.2 can be considered as an incorporation of the prior
the binarized image with relatively small gradients along the knowledge and reflects the fact that more bright background
edge. than the dark objects is expected.

The smoothing of original image and discarding of ghost  In the Eikvil-Taxt-Moen’s method the problem of single-
objects were omitted here, while the one-dimensional relax- class regions is treated somewhat better, since the condition
ation along the boundary and use of the result as Dirichlet [|fi; — fioll > ¢, in Eq. (3) detects the cases of a single class
boundary condition was substituted by the use of Neumannin a region.

boundary conditions in Step 3. However, the existence of a ‘magic’ siZe= 15 x 15

The SOR starts with an approximate solutigm, y), and makes the method scale dependent. Obviously, this scale is
numerical iterations take it to the unique solutiBty, y) of about the best compromise, at least for the case studied by
the Laplace equatiof2]. Trier and Taxt, however it can be too small for cases when

the objects are large and too large for the cases when the
illumination changes too fast along the image.
Bernsen’s method is also scale dependent, as can be shown
2.5. Analysis of the binarization methods by applying similar arguments.
In the Yanowitz—Bruckstein’s method there is no explicit
In order to make a goal-oriented evaluation of the bina- scale factor, and therefore this method is more appropriate
rization methods Trier and Taxt built an experimental charac- for the general cases. However, the price of constructing the
ter recognition module. The binarization methods were ap- threshold surface that depends on the entire image is high
plied to a hand-written hydrographic maps. Elliptic Fourier computational complexity. Really, every method that is lim-
descriptors were extracted from the contour curve of the ited to a fixed square size will scale linearly with the size
figures to form 12-dimensional features. Then the extracted of the imager = O (N?). In the relaxation solution each it-
features were fed into the quadratic classifi€)], assuming eration requiresD (N?) operations forN? grid points and
multivariate Gaussian distributions for each of the ten digit there should be (N) iterations to converge to a solution,
classes. therefore the method complexity i8(N2) [2]. The solu-
According to the evaluation by Trier and Taxt, the modi- tion of Eq. (5) can be found in just @(N?) time using
fied methods of Niblack, Eikvil-Taxt—-Moen, Bernsen, and multigrid methodg11]. However, it will become clear from
the Yanowitz—Bruckstein’s method were ranked, respec- the following paragraph that not only the speed of compu-
tively, to places 12,3 and 4. Obviously, this evaluation tation but also the properties of the threshold surface can be
procedure could serve a good indicator for the performanceimproved.
of the binarization methods not only for the applications of  The general form of the solution of Eq. (5) in the contin-
recognition of hydrographic maps but also for other char- uum limit is
acter recognition applications. However, the authors note »
that the generalization of the results to other application . 2 2
domains is not straightforward. P, M)=yix, y)= Z ai 109 (‘/(x_xi) =) ) !
In the following paragraphs, we show that the meth- =t 6)
ods of Niblack, Eikvil-Taxt-Moen, and Bernsen are scale
dependent, and will not work properly if the object sizes or wherey(x, y) is smooth and bounded functigh2?]. This
the scale of the illumination uniformity vary significantly solution has singularities at the support points. In the case
along the image. The threshold surface, constructed in theof a problem discretized on a finite grid, the iterative
Yanowitz—Bruckstein method does not have explicit scale solution of Eq. (5) will be finite, yet, it will have sharp
dependency. However, we shall show that the propertiesextrema at the support points. These sharp extrema and
of this surface shade a doubt on its optimality for image especially the hanging ‘valleys’ between them can cause
binarization. the unwanted ‘ghost’ objects in the binarized image. These
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Fig. 1. Solution of the Laplace equation by the over-relaxation method.

ghost objects where eliminated in R§2], however, it is our case the complete threshold surface is not known in ad-

preferable to get rid of them already by a careful construc- vance, but only its approximate values at the support points:

tion of the threshold surface. To illustrate the sharp extremasT (p;) = I (p;) = v;. Here p; = {x;, y;} andv; = I (x;, y;)

at the support points and the hanging ‘valleys’ in between, denote theith support point and its value. This section

Fig. 1 shows a surface computed by SOR for 100 sup- presents an efficient way to construct surfaces that inter-

port points with random values in the range of 0—-100. The polate and approximate image values at the support points

support points were randomly scattered over a 42828 I (p;). First an interpolation algorithm is presented. How-

grid. ever, the interpolation surface obtained is discontinuous and
Ideally, a good threshold surface should indicate the cannot serve as a good threshold surface. Therefore, a small

local illumination level, which is usually a smooth func- modification to the interpolation algorithm is presented,

tion of the coordinates. Moreover, the value of an image that results in a continuous and smooth approximation

at a support point probably indicates the local illumi- surface.

nation level in its vicinity and there is no reason that Let us consider a unit step source function, given by

it will be a local extrema. Hence, what actually hap-

pens to the threshold surface obtained by SOR solution 1 if (x,y) € QU),

of the Laplace equation is not what we would expect a ¢000(X: ) = {0 if (x, y) ¢ Q). @)

good adaptive threshold surface to be. Therefore, it would

be better not to put an interpolat_ion constraint on the HereQ(I) = [0, 1]? denotes the set of all the image points.
threshold surface, but to construct it as & smooth approX- || the other functions we shall use are generated by down-
imation of the support points thus making it robust 10 gcajing of this source function and shifting the downscaled

noisy outliers among the support points. The next section ¢nctions around the image plane and thus cover only part
describes a new efficient way to construct such a threshold

of the image:
surface.
Gujk(x, ¥) = Gooo (x2 = j, ¥2' — k), ®)
3. The new threshold surface
where! = 0,...,log,(N) is a scale factor and,k €
We propose to construct and represent the threshold sur-{O, 2= 1} are spatial shifts.

face as a sum of functions, obtained by scaling and shifting The threshold surface will be given by

of a single source function, similar to what is done in

wavelets or multiresolution representatiofis]. In mul- logy(N) 2/—1

tiresolution representatids] the coefficients are calculated  7(x,y)= Y > aG(x.y). (9)
on the basis of an original signal that is known a priori. In I=0 k=0
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3.1. Interpolation algorithm points, belonging to this cell:
Let us introduce an algorithm to calculate the decompo- arig = 1 NOj (14)
sition coefficientsa;;; in order to obtain an interpolating ! Prjk or '
surfaceT (x, y) by Eq. (9), passing exactly through all the Y
support pointsl’(p;) = I (p:). Here p; € Sjx denotes a support poim that belongs
The algorithm runs as follows: _ to the cell at level, placed at(j, k) spatial position.
(1) The decomposition coefficiemboo is set equal to the P,jx denotes the number of support points in this cell.
average of all the support points After calculation of the coefficients;;,, the values of
the support points are updated:
© 1 X o
— — 1+1 1
aopoo= (v; ) = Pooo ; v - (10) Ui( D Ui() — ajjk- (15)
(6) The procedure ends at the highest resolution l&vel
Here the first zero in index 000 refers to the Oth reso- (L =log,(N) for N x N image, when the size of the
lution level, the following 00 refer to the only possible cell equals to one pixel. At this step there is at most
spatial position at this level. The support poim@}fgj‘) one support point in every cgk, with a residual value
are defined by Eq. (4) anslyoo is the total number of v{P. The coefficientu . is set toarj; = v'".

support points. After step 1 every support poifﬂ) is
a|ready approximated by the averaggo, SO it remains The threshold surface, constructed in accordance with Egs.

only to interpolate the difference between the value of (7)—(9) with the coefficients;;; obtained by the algorithm
every support point and the average. as described in steps 1-6, will be an interpolation surface

(2) The values of the support points are updated as follows: Of the support pointgp;, I (p;)}, i.e. it will pass through
every support point. This can be proved by the following
argument:

Consider some arbitrary support poipt. The value of
the threshold surface at this point will be

1 0
vl.( ) — Ui( ) _ aopoo- (11)

The quantitiesvi(l) will be referred to as thérst-order

residuals -
(3) The image is divided into four cells, with correspond- T(pi) = Z k- (16)
ing indexes{jk} relating to the spatial position of the =0

cell: {00, 01, 10, 11}. The average of the updated sup-
port pointSv(l) of each celik is calculated to yield the

i

appropriate decomposition coefficient;;:

Where thej;k; chooses at every levethe cell that contains
the Di-

On the other hand the residual vathéH) of the support
point p; equals to (step 6):

1 &)
atjk = Z v (12) L+1 0
Prit s o =0 —ago0 — arjyr, — - —aje, =0, (17)

. which can be rewritten
Herep; e Sy, denotes a support poipt that belongs ch can be rewritten as

to the cell at the 1st resolution level, situated atthe) 2O —
spatial position.Pyj; denotes the number of support
points in this cell.

(4) After step 3 the values of support points in each cell
jk are approximated byooo + a1k, SO their values are
updated to be

I(pi) =aooo+ avjk, + - +arj i, - (18)

From Egs. (16) and (18) it follows that for an arbitrary sup-
port pointp;, T (p;) = 1(p;).

Fig. 2 shows the interpolation surface, obtained by our
method for the same set of support points that was used for
the over-relaxation solution, shown Fig. 1

@ _ . _ PN ¢ ) I
v;” =v; —agoo — a1jk =V;" — aiji- (13)
3.2. Approximating source function
(5) Steps 3 and 4 are repeated for successive resolution

levels. At every resolution levegl — 1) each of the 41 The method presented in the previous section yields a
cells of this level is divided into four cells to yield 4  surface that interpolates the support points. However, the
cells at the resolution level The coefficientsy;; of obtained interpolation surface is discontinuous. In order to

the cells at level at (j, k) spatial position are set to be obtain anr-continuously differentiable approximation sur-
equal to the average of the residual values of the supportface, the source function (7) must be substitutedhitynes
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Fig. 2. Interpolating surface, obtained by a new interpolation method.
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Fig. 3. The source function, given by Eq. (19).

continuously differentiable function vanishing together with gracefully towards the boundary of its support. The first two
n first derivatives at the boundary of its support. requirements are necessary in order to build the threshold
In the practical case of finite grid it is enough to consider a surface really approximating the support points and the third
source function having a value and derivatives small enoughone in order to have it practically smooth.
at the boundary. However, there are three additional require- As a compromise between these contradicting require-
ments from the source function: (approximation) it should ments we chose a source function with supgert, 2] x
have value close to 1 in the domain of its cell;, (hormaliza- [—1, 2], extending over the image arfa 1] x [0, 1]. There-
tion) the integral of the source function over its support must fore the threshold surface (9) is constructed with scaled
be equal to the image area; (smoothness) it should decreaséunctions, overlapping at each resolution level. It was found
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Fig. 4. An approximating surface, obtained with source function (19).

empirically that source (19) gave a good performance: surface is under-sampled by the support points or that there
is some error or noise in their values. In both cases there
Gooo(x, y) y . is not enough information at the support points about the
S e U O it v e -1, 212, threshold surface and the best thing to do is probably to set
= [ ffetyatomat o the threshold surface somewhere in between, as done by the
0 if {x, v} ¢[-1 2% 19) proposed approximation algorithm.

The point{x, y}={3, 3} is the center of the image, spanning

over [0, 1] x [0, 1]. Fig. 3 shows the source function (19).

The support points that will determine the decomposition 4. |mplementation
coefficients lie in the central celD, 1] x [0, 1], where the

source function (19) is practically flat. Eight periphery cells  The algorithm described in the previous section was
will overlap neighboring functions thus making the threshold jmplemented in Matlab. The subsections below describe the

surface smooth. data structures and then the algorithm implementation.
Fig. 4 shows the smooth threshold surface, constructed

with the source function (19) for the same set of support

points that was used to construct the interpolated sur-4.1. Data structures

faces ofFigs. 1and 2. Figs. 1 2, and4 show the support

points by vertical spikes. Some of the support points of The basic data structures are two arrays:

Fig. 4 are lying apart from the threshold surface. This is  The first array is calleccoeffs (Table 1), it stores the
due to the fact that support points have random values decomposition coefficients of the celts;, in the first row
for demonstration purposes and therefore the approximat-and the number of support poing;; of these cells in the
ing surface passes far from some of the support points.second.q;;; denotes the decomposition coefficient of the
In real cases, the neighboring support points usually havecell ljk, which is situated at théj, k) spatial position at the
similar values and the approximation surface will be close levell of the resolution.P;;; stores the number of support
to them. points in this cell.

The new threshold surface is smooth. It does not neces- First column ofcoeffsstores the single coefficient of the
sarily pass exactly through the support points, however, this lowest levelaggg and the total number of support points
is an advantage rather than disadvantage, because if sevP = Pggq, following are four columns of coefficients of the
eral neighboring support points have substantially different first level @ioo, . . ., a111) and number of points in each of
and ‘noisy’ values this indicates either that the threshold these cells P1go, - . ., P111), €tc.
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Array coeffs
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Table 2
Array pointarr

apoo
Pooo

a100
P100

ai01
P101

Contains decomposition coefficientg;; and number of support points
Pyji in the cellljk.

Every support point belongs to one and only one cell
Ljk; at every resolution levél There are log(N) different
resolution levels, starting from single cell of sizex N at
level 0 to N2 cells of size 1x 1 at level 0g(N).

The second array, callgmbintarr (Table2), hasP columns
and 1+ log,(N) rows. Every column opointarr contains
the residual value of the support po'mlil) in the first row,
and the indicefd;; in other rows. These indexes refer to the
cells which contairp; at every level: coeff$:, ind;;1=[a;j«;
Piji].

Fig. 5 shows an example of a point, which belongs to
cellpgo at level 0 (as every point doesyll1gg at level 1,
to cell cellp11 at level 2, etc. This point will contribute
in the construction of the threshold function only through
the coefficientsigog, a100, a211, . .. . These coefficients are
stored in the first row, columns, 2, 11... of array coeffs
(Table 1). Therefore the column gbointsarr, correspond-
ing to this point will have values,2, 11, ... in its second,
third, fourth. .. rows.

4.2. Algorithm description

(1) Array points (Table 2) is created and gradually filled.
Every columni of this table contains value of the point
p; in the first row. For every poinp; a calculation is
performed to determine to which céji;;k;; it belongs

P1 P2 Pp

Plogy(N)1 Plogy(N)2 Plogy(N)p

Columni contains the indices of the cells containipg.

these cells in the arragoeffs(Table 1) are filled into
rows 2 ..., N of ith column ofpointarr, and simulta-
neously, for every encountered cell the counter of the
points belonging to this cell is increased in the array
coeffs This requiresP log,(N) calculations of the cell
index andP log,(N) increments of the point counters
(because each &f support points entered into logV)
cells).
The coefficientsy;; in the arraycoeffsare calculated.
aopo IS set to be an average value of all points (10).
After this the value of every point ipointsis updated:
average value is subtracted from it (11).
Step 2 is repeated for a higher level: Every point con-
tributes its current value to the cell it belongs to, this
value is divided by the number of points which belong
to the cell. After all the points of a given level have
contributed their residual values to the cells, their val-
ues are updated: from each point belongingoédl;;«
the value ofg,j; is subtracted.
The threshold surface is built based on theffsand
the basis function (19). This requires (N2 log,(N))
operations.
So an approximation surface fd® support points scat-
tered overN? grid is determined as a set of coefficients
using O (P IogZ(N)) operations and built explicitly using
O (N?log,(N)) operations.

In the reconstruction phase, the virtual coefficients beyond
the image boundary were created to effectively maintain

)

®)

(4)

at each level, I =0, ...,log,(N). The positions of ~ Newman boundary conditions.
Cell 2117 P
Cell_110 Cell_111
P
Cell_100 Cell_101
P Cell_000

Fig. 5. Cell hierarchy.
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5. Experimental results Four artificial black—white images were generated by
simulating non-uniform illumination of the black and white
The three methods, YB with adaptive threshold sur- pattern. This allowed to give a quantitative measure of the
face obtained by SOR and the new one with adaptive error of the binarization method. The error was calculated
threshold surface obtained by multiresolution approxima- as a normalized.? distance between the binarized and the
tion and the Niblack’'s method were compared for speed original B/W image. The post-processing step of ghost-
and quality of binarization. The programs were imple- elimination was omitted for all the methodsgs. 6—2%how
mented in MATLAB and ran on an IBM-Thinkpad-570 the gray level images and the B/W images, reconstructed
platform with 128 MB RAM and a Pentium-l1l 366 MHz by the three binarization method$able 3 presents the
processor. runtimes and the binarization errors for each method. In

Fig. 6. Gray level image of ‘Squares’. Fig. 8. ‘Squares’ binarized with MA method.
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Fig. 7. ‘Squares’ binarized with YB method. Fig. 9. ‘Squares’ binarized with Niblack method.
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Fig. 12. ‘Text’ binarized with MA method.

Fig. 10. Gray level image of ‘Text'.

'ABC.D139 ABCD139

EFGHIJKLM139 EFGHIJKI.M139
L MOPQRSTUVWX139

2 ZABCDEFGHITETLMNO139
PORSTUVWEYZABCDEFGHIKINMNO139

LMOPQRSTUVWX139

XYZABCDEFGHLIETMNO139
PORSTUVWXYZABCDEFGHUKLMNO139

Fig. 13. ‘Text' binarized with Niblack method.

Fig. 11. ‘Text' binarized with YB method.

the Niblack binarization method the value & from and pepper noise to the gray level image of a geometric
Eq. (2) was chosen to minimize the error, independently series of rectangles. For this pattern the proposed method
for each image. It was equal0.8, —0.6, +0.05 and—0.2, gave the best results. Finally, for the ‘stars’ test pattern the
respectively for the ‘Squares’, ‘Text’, ‘Rectangles’, and the proposed method gave the best results again. The YB method
‘Stars’ test patterns. had difficulties in the large regions without support points

For the ‘Squares’test patterns the YB method gave the bestnear the boundary, while the Niblack method gave perfect
results. The ‘Text' test pattern reveals the definite superiority binarization for the objects of specific scale, and produced
of the Niblack method for this important class of images. The less impressive results for larger objects, as predicted in
‘Rectangles’ test pattern was created by addition of 1% salt Section 2.5.
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Fig. 14. Gray level image of ‘Rectangles’. Fig. 16. ‘Rectangles’ binarized with MA method.

Fig. 15. ‘Rectangles’ binarized with YB method. Fig. 17. ‘Rectangles’ binarized with Niblack method.

6. Concluding remarks be made smooth and by the nature of its construction should
be similar to the local illumination level. These qualities
In this work we proposed a new way to construct a thresh- allowed to expect a better visual performance of the bina-
old surface in order to improve the Yanowitz—Bruckstein rization process. A binarization with the new threshold sur-
binarization method. The new threshold surface is con- face was compared to Yanowitz—Bruckstein and the Niblack
structed with considerably lower computational complexity methods on the set artificial images, with 4 representative
and hence in much shorter time even for small images. Thecases presented and discussed here. Considering the exper-
new method allows even more gain in speed in region-of- imental results it is apparent that there is no clear winner.
interest processing scenarios. The new threshold surface caifhe Niblack method was the best for the Text binarization.
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Fig. 18. Gray level image of ‘Stars’. Fig. 20. ‘Stars’ binarized with MA method.

Fig. 19. ‘Stars’ binarized with YB method.

Fig. 21. ‘Stars’ binarized with Niblack method.

Table 3
Comparison of the speeds and performance of the Yanowitz—Bruckstein (YB) and multiresolution approximation (MA) and Niblack binarization methods
Test image ‘Squares’ ‘Text’ ‘Rectangles’ ‘Stars’
Runtime Error Runtime Error Runtime Error Runtime Error
SOR 165.2 0.0063 160.2 0.212 160.7 0.191 161 0.312
MA 9.7 0.0072 11.4 0.312 15.9 0.078 13.4 0.096
Niblack 0.95 0.128 0.96 0.000 0.98 0.152 0.98 0.1745
The performance of the best method is printed in bold.
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Another advantage of the method is its speed and simplic- [5] W. Niblack, An Introduction to Digitall Image Processing, Prentice-
ity of implementation. However, Niblack method is scale Hall, Englewood Cliffs, NJ, 1986. _ o
dependent, and that made it inferior to Yanowitz—Bruckstein [6] L. Eikvil, T. Taxt, K. Moen, A fast adaptive method for binarization

and our methods on the non-text images. where obiects of of document images, in: Proceedings of the First International
u XU ges, w ) Conference on Document Analysis and Recognition, Saint-Malo,

different scales appeared. For these images our method Was  France, 1991, pp. 435-443.

comparable or better than the Yanowitz—Bruckstein method, [7] J. Bernsen, Dynamic thresholding of grey-level images, in:

while having a significant speed advantage. Proceedings of the Eighth International Conference on Pattern

Recognition, Paris, France, 1986, pp. 1251-1255.
[8] S.G. Mallat, A Wavelet Tour of Signal Processing, Academic Press,
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