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ABSTRACT

A key step in the design of multi-rate real-time systems is
the determination of buffer capacities. In our multi-processor
system, we apply back-pressure as caused by bounded buffers
in order to control jitter. This requires the derivation of
buffer capacities that both satisfy the temporal constraints
as well as constraints on the buffer capacity. Existing exact
solutions suffer from the computational complexity associ-
ated with the required conversion from a multi-rate dataflow
graph to a single-rate dataflow graph. In this paper we
present an algorithm, with linear computational complexity,
that does not require this conversion and that determines
close to minimal buffer capacities. The algorithm is applied
to an MP3 play-back application that is mapped on our net-
work based multi-processor system.

Categories and Subject Descriptors: C.3 Special Pur-
pose and application based systems Real-time and embedded
systems

General Terms: Algorithms, Design, Performance

Keywords: System-on-Chip, Dataflow, Buffer Capacity

1. INTRODUCTION
Decreasing feature sizes have made it possible to imple-

ment multiple processing cores on a single chip, resulting in
so-called Multi-Processor System-on-Chip (MPSoC) designs.
These MPSoCs provide a high data processing throughput in
a cost and energy-efficient way, making them an ideal match
with multi-media applications as can be found in TV-sets,
set-top boxes, and smart-phones.

MPSoCs operate on multiple streams of data that often
have temporal constraints, such as throughput and latency.
These streams have firm or soft real-time constraints. In
the mentioned application domain, throughput constraints
dominate over latency constraints.

For firm real-time streams we want to guarantee that no
deadline is missed, because this would result in a severe qual-
ity degradation. Therefore, we model the processing per-
formed on these streams with Multi-Rate Dataflow (MRDF)
graphs [9], of which we can analytically derive the cycle that
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determines the throughput [13]. Tasks are modelled by the
vertices of an MRDF graph, which are called actors.

An essential step when programming a multi-processor sys-
tem is the determination of buffer capacities. In our multi-
processor system, in which backpressure is applied, tasks
start their execution on an assigned processor based on the
availability of containers that signal the presence of data or
space in a first-in first-out (FIFO) buffer with a fixed capac-
ity. The buffer capacity therefore influences when tasks can
start their execution and consequently influences the tempo-
ral behaviour of the stream. Applying back-pressure has the
advantage that the system does not require means to control
jitter, such as e.g. traffic shapers, to prevent buffer overflow.

However, determining whether particular buffer capacities
allow a throughput that satisfies the constraint is a complex
task. In order to find exact results, first a conversion from a
multi-rate to a single-rate dataflow (SRDF) graph [9] is re-
quired, which can result in an exponential number of vertices
[12], after which the throughput of each cycle in the SRDF
graph is determined [3]. Algorithms that have a polynomial
complexity for SRDF graphs, therefore have an exponential
complexity for MRDF graphs.

The contribution of this paper is an algorithm that deter-
mines close to minimal buffer capacities that satisfy both the
temporal constraint as well as any buffer capacity constraints
that are for instance caused by finite memory sizes.

This is accomplished as follows. In our multi-processor
system [1], we only use pre-emptive schedulers that provide
resource budget guarantees [11]. These schedulers allow the
determination of the response time of a task based on only
the execution time of the task and the scheduler settings.
This response time is therefore independent of other tasks.
Using these response times, a strictly periodic schedule is
constructed that meets the throughput constraint. Note that
the effects of resource conflicts are already taken into account
when constructing a schedule using response times. From
this schedule we derive, in an analytical way, sufficient buffer
capacities for the bounded FIFO buffers. This is possible,
because our system has monotonic temporal behaviour, see
Section 2.1, which guarantees that removing the constraint
of a strictly periodic schedule at run-time will not lead to
later container production times.

Alternative approaches make a different trade-off between
complexity and accuracy. For instance, while we determine
a one-dimensional periodic schedule, an alternative approach
could include the determination of a multi-dimensional pe-
riodic schedule [14]. The number of dimensions equals the
number of pairs of schedule start times and periods required
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to describe the schedule. Multi-dimensional schedules can
satisfy the throughput requirement and buffer capacity con-
straints for a larger set of problem instances, however deter-
mining such a schedule involves more complex computation.

Govindarajan [5] proposes a linear programming formula-
tion that determines a schedule for each MRDF actor, with
the corresponding number of SRDF actors as the number of
dimensions, and aims at the minimum total buffer capacity
required to satisfy the temporal constraints. This approach
potentially leads to the minimally required total buffer ca-
pacity. However, because the objective function in their lin-
ear programming formulation is not exact, this goal is not
always obtained. In our experience, this approach can lead
to excessive run-times and memory requirements for realistic
problem instances.

Our aim is to create a mapping flow that has as input an
MRDF graph annotated with execution times together with
the end-to-end throughput and latency constraints. The syn-
thesis flow results in (1) the task to processor binding, (2)
scheduler settings, and (3) buffer capacities such that our
network-based multi-processor system [1] satisfies the tem-
poral constraints. Such a mapping flow includes automatic
design space exploration involving back-tracking, in which
buffer capacities need to be determined that satisfy the con-
straints for multiple task to processor bindings and scheduler
settings. The run-times of Govindarajan’s approach can be
problematic in case of automatic design space exploration
involving back-tracking, in which buffer capacities need to
be determined for multiple task to processor bindings and
scheduler settings. However, in Section 7 we will show a re-
alistic problem instance that caused the linear programming
solver to run out of memory.

Scheduling approaches that do not include run-time arbi-
tration, like the time triggered [8] and static-order [7] ap-
proaches, are difficult to apply for a system that includes a
mix of streams that have firm or soft real-time constraints.
This is because soft real-time streams often have execution
times that are impractical to bound, and can have a data
dependent number of task executions.

Scheduling approaches that include run-time arbitration,
as for instance presented by Jersak [6], Goddard [4], or Max-
iaguine [10], do not allow feedback cycles that influence the
temporal behaviour of the system. Not only do these cy-
cles occur, because of functional constraints, this also means
that back-pressure through bounded FIFO buffers cannot be
applied in these approaches.

The organization of this paper is as follows, some for this
paper relevant properties of MRDF graphs are summerized
in Section 2. The relation between an implementation and its
MRDF graph is discussed in Section 3. In Section 4, we de-
termine a proper schedule of two actors connected by a single
edge, while in Section 5 upper bounds on the required num-
ber of tokens on a cycle are determined. Section 6 presents
the algorithm to compute sufficient buffer capacities given an
MRDF graph, response times and a throughput requirement.
By applying the algorithm on an MP3 playback case study,
we investigate the performance of the algorithm in Section
7.

2. ANALYSIS MODEL
The input to our mapping flow is an MRDF graph that

models the application. An MRDF [9] graph is a directed
graph G = (V, E, δ, ρ, π, γ) that consists of a finite set of ac-

tors V , and a set of directed edges, E = {(vi, vj)|vi, vj ∈ V }.
Actors synchronise by communicating tokens over edges that
represent queues. The graph G has an initial token placement
δ : E → N. An actor is enabled to fire when the number of
tokens that will be consumed is available on all its input
edges. The number of consumed tokens per firing is given
by γ : E → N. Actor vi therefore consumes γ(e) tokens per
firing from input edge e = (vk, vi). The specified number of
tokens is consumed in an atomic action from all input edges
when the actor is started. The response time ρ(vi) is the dif-
ference between the finish and enabling time of an actor vi,
with ρ : V → R. When actor vi finishes, then it produces the
specified number of tokens on each output edge e = (vi, vj)
in one atomic action. The number of produced tokens per
firing will be denoted by π : E → N.

We can describe the topology of an MRDF graph with a
topology matrix Γ [9]. The matrix Γ is a |E| × |V | matrix,
where

Γij =

8
>><
>>:

π(ei) if ei = (vj , vk)
−γ(ei) if ei = (vk, vj)
π(ei) − γ(ei) if ei = (vj , vj)
0 otherwise

If the rank of Γ is |V | − 1, then a connected MRDF graph is
said to be consistent. A consistent MRDF graph requires
queues with finite capacity, while an inconsistent MRDF
graph requires infinite queue capacity. The vector q of length
|V |, for which holds Γq = 0, is the repetition vector of the
MRDF graph, which gives the relative firing frequencies of
the actors.

For a strongly connected and consistent MRDF graph, we
can specify a required period μ within which on average every
actor vx should fire qx times. The throughput of the graph
relates to μ−1.

2.1 Monotonic Execution
If an MRDF graph is executed in a self-timed manner, then

actors start execution as soon as they are enabled. Further
we say that a FIFO ordering of tokens is maintained, if each
actor either has a constant response time, or has a self-cycle
with one initial token.

An important property is that self-timed execution of a
strongly connected MRDF graph that maintains a FIFO or-
dering of tokens is monotonic in time, which is defined as
follows.

Definition 1 (monotonic execution). If the i’th fir-

ing of actor va consumes token j, then an MRDF graph ex-

ecutes monotonically if no decrease in response time of any

firing of any actor can lead to a later enabling of the i’th

firing of actor va.

If an MRDF graph G maintains FIFO ordering of tokens,
then the self-timed execution of G is monotonic. This is
because a decrease in response time can only lead to earlier
token production times, and therefore only to earlier actor
enabling.

2.2 Example
An example MRDF graph is shown in Figure 1 in which

data flows from actor v1 to actor v4. The repetition vector
is q = [1 2 2 4]T, and the response times are r1 = 6, r2 = 1,
r3 = 4, and r4 = 2. One instance of the problem discussed in
this paper, is to find a token placement δ such that the period
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Figure 1: Example buffer capacity problem.

of the graph in Figure 1 is 8, and the constraints on d1, d4,
d5, and d8 are satisfied. The presented algorithm will tell us
that buffer capacities d1 = d4 = d5 = d8 = 1, d2 = 4, d3 = 4,
d6 = 3, and d7 = 4 are sufficient to satisfy the constraints.

3. ANALYSIS MODEL AND

IMPLEMENTATION
We assume the following. Our applications are imple-

mented as a weakly connected directed task graph, of which
the vertices represent tasks and the edges represent FIFO
buffers with a fixed capacity. Tasks only communicate fixed
sized containers over FIFO buffers, where a container can be
full or empty. Further, a task communicates a fixed amount
of containers per execution, and consumes containers after
it has started and produces containers before it has finished.
Furthermore, a task only starts when this fixed amount of
containers is present on its input and output FIFO buffers.
The finish time of each task execution is at most the worst
case response time later than the enabling time. And at most
one instance of a task can execute at any time.

The corresponding MRDF graph can now be constructed
as follows. Each task is modelled by an actor that has a re-
sponse time which equals the task’s worst-case response time.
Containers are represented by tokens. Each FIFO buffer is
modelled by a pair of queues in opposite direction, where
the tokens on one queue represent full containers, and on the
other queue represent empty containers. The fixed capacity
of a FIFO buffer is modelled by the number of initial to-
kens on the corresponding pair of queues. The fixed number
of containers communicated per task execution is modelled
by the actor token production and token consumption rates.
The constraint that no two instances of a task can execute
simultanuously is represented by an edge from the actor to
itself, a self-cycle, with one initial token.

Since the task graph is weakly connected, and each FIFO
buffer is represented by two queues in opposite direction the
corresponding MRDF graph is strongly connected. And be-
cause each actor has a self-cycle with one initial token, the
MRDF graph maintains a FIFO ordering of tokens.

In Section 2 we have established that self-timed execu-
tion of strongly connected MRDF graphs that maintain a
FIFO ordering of tokens is monotonic in time. The MRDF
graph is constructed in such a way that there is a one-to-one
correspondence with the task graph, with the only impor-
tant difference that tasks can have a smaller response time
than actors and produce their containers before they finish.
Therefore we arrive at the conclusion that, during self-timed
execution, tasks produce their containers no later than the
corresponding actors produce their tokens.

In the next section a strictly periodic schedule will be con-
structed for each actor. Compared to the strictly periodic
schedule, the self-timed execution of the MRDF graph will
not have later actor enabling times. This is because oth-
erwise the strictly periodic schedule would violate a firing
rule. Furthermore, the self-timed schedule in the implemen-
tation considers the actual response times. The task enabling
times will therefore not be later than the corresponding ac-
tor enabling times. The buffer capacities derived using the
strictly periodic schedule for the MRDF actors are there-
fore an upper bound on the buffer capacities that enable
the self-timed schedule in the implementation to satisfy the
throughput constraint.

4. SCHEDULE CONSTRUCTION
In this section strictly periodic schedules for two commu-

nicating actors are constructed such that the firing rules are
not violated, the required temporal behaviour is satisfied,
and a minimal buffer capacity is required.

We start by defining a number of variables that define
properties of an edge and the actors connected to it. In this
section we look at a single edge e = (vp, vc) of a strongly con-
nected and consistent MRDF graph. Edge e connects a token
producing actor vp ∈ V to a token consuming actor vc ∈ V ,
and has d = δ(e) initial tokens. Actor vp has a response time
rp = ρ(vp), a token production rate p = π(e), and a repeti-
tion factor qp. Actor vc has a response time rc = ρ(vc), a
token consumption rate c = γ(e), and a repetition factor qc.

We define the critical response time brx of actor vx as brx =
μ
qx

, where μ is the required period of the graph and qx is the
repetition rate of vx.

4.1 Token production schedule
When considering an edge e = (vp, vc), we construct a

token production schedule such that vp fires every brp time,
where the first firing starts at brp−rp. Note that this schedule
satisfies the required period μ. With this schedule the num-
ber of tokens produced is given by the function prod : R → Z,
prod(t) = p⌊ t

brp
⌋ + d.

4.2 Token consumption schedule
The token consumption schedule is constructed, similarly

to the token production schedule, such that actor vc fires
every brc time. However, the token consumption schedule
starts at β+brc−rc, where β is determined such that the token
consumption schedule does not violate the firing rules. The
number of tokens consumed by vc is given by the function
cons : R → Z, cons(t) = c⌊ t−β+rc

brc
⌋. In the next paragraphs,

we will determine an expression for β such that the required
schedule of vc is completely specified.

We first define prod−1 : Z → R and cons−1 : Z → R as
follows, the production of token i occurs at time prod−1(i) =
brp⌈

i−d
p

⌉, while the consumption of token i occurs at time

cons−1(i) = brc⌈
i
c
⌉ + β − rc. The following lemmas will be

helpful in the determination of β. Let gcd stand for greatest
common divisor.

Lemma 1. For l ∈ N, 0 < l ≤ gcd(p, c) and k = i ∗
gcd(p, c), i ∈ N, cons−1(k) − prod−1(k) = cons−1(k + l) −
prod−1(k + l).

Proof. From the edge e = (vp, vc) with production rate
p and consumption rate c, we can create a new edge e′ where
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the token size is multiplied with gcd(p, c), the number of to-
kens is divided by gcd(p, c) and with production rate p

gcd(p,c)

and consumption rate c
gcd(p,c)

. The token production and

consumption events on e′ are at the same times as the token
production and consumption events on e. This is because p

and c are scaled by the same factor resulting in c′ = c
gcd(p,c)

and p′ = p
gcd(p,c)

, where p′, c′ ∈ N.

Lemma 2. For every x, y ∈ Z it holds that ⌈x
y
⌉ ≤ x

y
+ 1 −

gcd(x,y)
y

.

Proof. If a, b ∈ Z and gcd(a, b) = 1, then ⌈a
b
⌉ ≤ a

b
+1− 1

b
.

Therefore if s, t ∈ Z and gcd(s, t) = d, then ⌈ s
t
⌉ = ⌈ s/d

t/d
⌉ ≤

s/d
t/d

+ 1 − 1
t/d

= s
t

+ 1 − gcd(s,t)
t

.

Lemma 3. For every x, y ∈ Z it holds that ⌊x
y
⌋ ≥ x

y
− 1 +

gcd(x,y)
y

.

Proof. If a, b ∈ Z and gcd(a, b) = 1, then ⌊a
b
⌋ ≥ a

b
−1+ 1

b
.

Therefore if s, t ∈ Z and gcd(s, t) = d, then ⌊ s
t
⌋ = ⌊ s/d

t/d
⌋ ≥

s/d
t/d

− 1 + 1
t/d

= s
t
− 1 + gcd(s,t)

t
.

Lemma 4. If in a consistent MRDF graph, actors v1 and

v2 are connected by an edge e = (v1, v2), then br1
π(e)

= br2
γ(e)

.

Proof. By construction we have μ = br1q1 = br2q2 →
br1
br2

= q2
q1

. Since the MRDF graph is consistent we have that

q1π(e) = q2γ(e) → q2
q1

= π(e)
γ(e)

, resulting in br1
br2

= π(e)
γ(e)

.

Theorem 1. A sufficient start value β ∈ R of the strictly

periodic schedule of the token consuming actor vc such that

the firing rule is not violated is rc + brp −
brpgcd(p,c)

p
−

gcd(p, c)⌊ d
gcd(p,c)

⌋
brp

p
.

Proof. The difference between cons−1 and prod−1 only
changes every gcd(p, c) tokens, see Lemma 1. Therefore in-
stead of considering prod−1(i) = brp⌈

i−d
p

⌉, i ∈ N, we can

consider prod−1(k) = brp⌈
k−d

p
⌉, with k = igcd(p, c). From

Lemma 2 we know that brp⌈
k−d

p
⌉ ≤ brp( k−d

p
+ 1− gcd(k−d,p)

p
).

If we define λ = jgcd(p, c), with j = ⌊ d
gcd(p,c)

⌋, j ∈ N, then

gcd(k − λ, p) = gcd(igcd(p, c) − jgcd(p, c), p) ≥ gcd(p, c)

for i − j ≥ 1, we have that
brp(k−λ)

p
+ brp −

brpgcd(k−λ,p)

p
≤

brp(k−λ)

p
+ brp −

brpgcd(p,c)

p
again for i − j ≥ 1. For i − j = 0

and thus k − λ = 0, we have that brp⌈
k−λ

p
⌉ = 0 while

brp(k−λ)

p
+ brp −

brpgcd(p,c)

p
= brp −

brpgcd(p,c)

p
= brp(1 − gcd(p,c)

p
).

Since gcd(p, c) ≤ p we have that brp(1− gcd(p,c)
p

) ≥ 0. There-

fore prod−1(k) ≤
brp(k−λ)

p
+ brp −

brpgcd(p,c)

p
.

Further we know that cons−1(k) = brc⌈
k
c
⌉+ β − rc ≥ brck

c
+

β − rc.
Thus a lower bound on the difference between cons−1 and

prod−1 is ( brck
c

+ β − rc) − (
brp(k−λ)

p
+ brp −

brpgcd(p,c)

p
), since

consumption of token k cannot occur before production of

token k, we obtain the following: brck
c

+ β − rc −
brp(k−λ)

p
−

brp +
brpgcd(p,c)

p
≥ 0. Using Lemma 4 we know

brp

p
= brc

c
. The

inequality for the minimum difference therefore reduces to

β− rc +
λbrp

p
−brp +

brpgcd(p,c)

p
≥ 0 → β ≥ rc + brp −

brpgcd(p,c)

p
−

λ
brp

p
= rc + brp −

brpgcd(p,c)

p
− gcd(p, c)⌊ d

gcd(p,c)
⌋

brp

p
.

vp vc

rcrp
ecp

epc
p c

cp

Figure 2: The cycle considered in this section.

5. BUFFER CAPACITY
In this section we will determine the required buffer ca-

pacity of a FIFO buffer modelled with a cycle C through the
two actors vp and vc. The cycle C is formed by the edges
epc = (vp, vc) and ecp = (vc, vp), see Figure 2. The edge epc

determines a difference α ∈ R between the start times of the
schedules of vp and vc, while tokens can be placed on edge
ecp.

While prod(t) and cons(t) are defined on the edge epc, we
define the consumption of tokens by vp on edge ecp = (vc, vp)

with acq: R → Z, acq(t) = p⌊
t+rp

crp
⌋. As required by the

model, consumption of tokens by vp on ecp occurs rp earlier
than production of tokens on epc. Production of tokens on
ecp by vc occurs when vc finishes, and is thus given by rel:
R → Z, rel(t) = c⌊ t−α

brc
⌋. Further acq−1 : Z → R, acq−1(i) =

brp⌈
i
p
⌉ − rp and rel−1 : Z → R with rel−1(i) = brc⌈

i
c
⌉ + α.

The required number of tokens on the cycle C can be found
by determining the maximum difference between the number
of tokens acquired by vp, acq(t),and the number of tokens
released by vc, rel(t), that will ever occur when vp and vc

execute according to the constructed schedules.

Theorem 2. A sufficient number of tokens to be placed

on edge ecp to meet the required period μ equals

gcd(p, c)⌊

p(rp+α)

brp
+c

gcd(p,c)
⌋.

Proof. We will first derive an expression that forms a
lower bound on rel(t), and subsequently an upper bound
on acq(t), since acq(t) ≥ rel(t) we find an upper bound on
the difference between acq(t) and rel(t) by subtracting these
bounds.

We know that rel(t) = c⌊ t−α
brc

⌋ ≥ c(t−α)
brc

− c. We further

know that acq(t) = p⌊
t+rp

brp
⌋ ≤ p

t+rp

brp
. An upper bound on

acq(t)−rel(t) is therefore (p
t+rp

brp
) − (c t−α

brc
− c) = pt

brp
+

prp

brp
−

ct
brc

+ cα
brc

+ c.

From Lemma 4 we obtain brc

c
=

brp

p
→ p

brp
= c

brc
. The

expression for the maximum difference between acq(t) and

rel(t) thus reduces to
prp

brp
+ cα

brc
+c =

prp

brp
+ pα

brp
+c =

p(rp+α)

brp
+c.

Since the difference d between the number of tokens placed
on and removed from edge ecp is a linear combination of p and
c, d is a multiple of gcd(p, c). And since the obtained upper
bound on the maximum difference is not necessarily a multi-
ple of gcd(p, c) we can round to the next smaller integer that

is a multiple of gcd(p, c), obtaining gcd(p, c)⌊

p(rp+α)

brp
+c

gcd(p,c)
⌋.

If, however, brp, brc ∈ N, then the bound on the maximum
difference between acq(t) and rel(t) as obtained in the proof
of Theorem 2 can be improved. Note that if brp, brc ∈ Q,
then multiplying brp and brc by the least common multiple
of their denominators results in integer values. And for the
sake of completeness, if brp, brc ∈ R, then rounding to a next
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larger value in Q is possible in order to derive sufficient buffer
capacities, due to the monotonic behaviour of our system.

Theorem 3. If brp, brc ∈ N, then a sufficient number of

tokens to be placed on edge ecp to meet the required period μ

equals gcd(p, c)⌊

p(rp+α−1)

brp
+c

gcd(p,c)
⌋.

Proof. If time is discrete, Lemma 3 can be applied to
obtain rel(t) = c⌊ t−α

brc
⌋ ≥ c( t−α

brc
− 1 + 1

brc
) = c t−α+1

brc
− c.

An upper bound on acq(t)−rel(t) is therefore (p
t+rp

brp
) −

(c t−α+1
brc

− c) = pt
brp

+
prp

brp
− ct

brc
+ cα

brc
− c

brc
+ c.

From Lemma 4 we obtain brc

c
=

brp

p
→ p

brp
= c

brc
. The

expression for the maximum difference between acq(t) and
rel(t) thus reduces to

prp

brp
+ cα

brc
− c

brc
+c =

prp

brp
+ pα

brp
− p

brp
+c =

p(rp+α−1)

brp
+ c.

Since the difference d between the number of tokens placed
on and removed from edge ecp is a linear combination of
p and c, d is a multiple of gcd(p, c). And since the ob-
tained upper bound on the maximum difference is not nec-
essarily a multiple of gcd(p, c) we can round to the next
smaller integer that is a multiple of gcd(p, c), obtaining

gcd(p, c)⌊

p(rp+α−1)

brp
+c

gcd(p,c)
⌋.

6. ALGORITHM
In this section we present the algorithm to compute suffi-

cient buffer capacities of a strongly connected and consistent
MRDF graph G = (V, E, δ, ρ, π, γ), given a repetition vec-
tor q, and a required period μ. The presented algorithm is
applicable if the dependencies caused by the communication
over bounded FIFO buffers are the only dependencies be-
tween tasks, and if each bounded FIFO buffer is either full
or empty. Therefore, apart from any self-cycles, the corre-
sponding MRDF graph only has pairs of edges between ac-
tors, with each pair representing a bounded FIFO buffer. On
each such pair of edges, all initial tokens are assumed to be
on a single edge, which models that a bounded FIFO buffer
is initially either full or empty. The set of edges on which
tokens can be placed forms a set B ⊂ E, and B = E \ B.
The initial tokens ρ(e) on each edge e are considered as the
constraint on the buffer capacity. In the following algorithm,
the schedule of each actor vi will be assigned an as-soon-
as-possible asap(vi) and an as-late-as-possible alap(vi) start
time, such that the constraints are satisfied and the required
buffer capacity is close to minimal.

1. ∀vi ∈ V • bri = μ
qi

, asap(vi) = 0, and alap(vi) = ∞

2. Determine βij for each edge (vi, vj) ∈ E

3. Create a directed a-cyclic graph D = (V, B, δ, ρ, π, γ)

4. Create a list L of length |V |, where the actors of D are
topologically sorted. If the topological sort fails, then report
deadlock

5. Visit the actors in L from front to back, and for each actor
vi : asap(vi) = max({asap(vi)} ∪ {asap(vx) + βxi|(vx, vi) ∈
B})

6. ∀vl ∈ V \ {vx|∃vy • (vx, vy) ∈ B} • alap(vl) = asap(vl)

7. Visit the actors in L from back to front, and for each actor
vi : alap(vi) = min({alap(vi)}∪{alap(vx)−βix|(vi, vx) ∈ B})

8. Visit the actors in L from front to back, and for each actor
vi : alap(vi) = min({alap(vi)} ∪ {alap(vx) − βix|(vi, vx) ∈

B}), and report a constraint violation if asap(vi) > alap(vi)

9. For each edge (vj , vi) ∈ B, a sufficient number of tokens
can be determined using Theorem 3, if we take α = alap(vj)−
alap(vi).

Step 3 creates a connected directed a-cyclic graph. The
graph D is connected, because between each communicating
pair of actors vx and vy there is at least one edge on which
no tokens can be placed: (vx, vy) ∈ B ∨ (vy, vx) ∈ B. And
further D is a-cyclic, because it is not possible that there
remains a cycle, since this would indicate deadlock [13].

For the following reason, all actors in V will have been
assigned alap times after step 7. Since D is a connected
graph, all actors without successors in D have been assigned
an asap time after step 5, and thus after step 6 all actors
without successors in D have been assigned an alap time. If
we would create a graph D = (V, B, δ, ρ, π, γ), then the actors
without successors in D are the actors without predecessors
in D. After step 6, the actors without predecessors in D

have all been assigned alap times, while in step 7 all actors
reachable from an actor with an alap time will be assigned an
alap time. And we have that the union of the sets of actors
reachable from the actors without predessors in D equals V .

The three passes through L are required for the follow-
ing reasons. In step 5 each actor is assigned the minimal
asap time that does not violate the constraints formed by
edges from B, given that all vertices with no predecessors
in D have an asap time that equals 0. In step 7 each actor
is assigned the maximal alap time that does not violate the
constraints formed by edges from B, given that all vertices
with no successors in D have an alap time that equals their
asap time. In step 8 each actor is assigned the maximal alap
time that does not violate the constraints formed by edges
from B, the maximal alap time is taken to impose as few re-
strictions as possible on alap times that are determined later.
Subsequently a constraint feasibility check is performed.

In the MRDF graph of Figure 1, the asap and alap times of
actor v2 are different, because r3 > r2 results in β34 > β24.
In this example the difference between the asap and alap
times is large enough to make a trade-off between the buffer
capacities d2 and d6, i.e. d2 = 3 and d6 = 4 are also sufficient
buffer capacities.

Note that, because the presented algorithm constructs, in
general non-optimal, strictly periodic schedules, it can oc-
cur that an in fact feasible constraint set is reported infeasi-
ble by this algorithm. Furthermore, note that even though
this algorithm determines buffer capacities such that the con-
structed schedule does not experience back-pressure, the self-
timed schedule in the implementation will experience back-
pressure.

Steps 1, 5, 6, and 7 each have complexity O(V ), steps 3
and 4 have complexity O(V + E) [2], and steps 2, 8, and 9
have complexity O(E). The complexity of this algorithm is
therefore O(V +E). This low complexity is due to the specific
class of MRDF graphs that this algorithm can deal with. In
general a single source longest path algorithm, as for instance
the Bellman-Ford algorithm with complexity O(V E) [2], is
required to determine asap and alap times [13].

7. EXPERIMENTAL RESULTS
In this section we apply our algorithm to determine buffer

capacities for an MP3 playback application. In the MP3
playback application, of which the MRDF graph is shown in
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Figure 3: MP3 playback application.

Figure 3, the compressed audio is decoded by the MP3 task
into a 48kHz audio sample stream. These samples are con-
verted by the Sample Rate Converter (SRC) task into a 44.1
kHz stream, after which the Audio Post-Processing (APP)
task enhances the perceived quality of the audio stream and
sends the samples to a Digital to Analog Converter (DAC).

We performed an experiment with the MP3 playback ap-
plication in which the topology of the MRDF graph is fixed
to the topology shown in Figure 3, the required period is
fixed to μ = 1217160, and the response time of the sample
rate converter is varied to show the behaviour of the pre-
sented algorithm. The repetition vector is [5 12 5292 5292]T,
further rMP3 = brMP3, rAPP = brAPP , and rDAC = brDAC .

Table 1 lists the resulting buffer sizes for this experiment,
both as determined by the algorithm presented in Section 6
and as determined through back-tracking where the through-
put of the MRDF graph is determined with Maximum Cycle
Mean (MCM) analysis [13], which is applied on the SRDF
graph.

Buffer Capacity
rSRC d1 d2 d1 + d2

alg. opt. alg. opt. alg. opt.
101430 3072 3072 882 882 3954 3954
76073 2976 2688 772 1015 3748 3703
50715 2880 2688 662 794 3542 3482
25358 2784 2688 552 574 3336 3262

Table 1: Results from presented algorithm (alg.) and
the optimal result (opt.) for MP3 playback.

The presented algorithm confirms that one token on each
self-cycle and d3 = 2 is sufficient. Further, as shown in Table
1, the algorithm has a reasonable accuracy at a run-time
in the order of 10−2s. In our multi-processor system, often
more than one FIFO buffer will be mapped on a particular
memory. This results in a constraint on a sum of buffer
capacities. Since the algorithm does not allow for constraints
that include multiple buffer capacities, many iterations using
this algorithm are required. The low run-time of a single
iteration enables this approach.

Even though we have been able to apply back-tracking in
combination with MCM analysis for this example, we feel
that this is not a feasible approach since one iteration of the
Howard algorithm [3], which we used to derive the MCM,
requires a minute.

Application of Govindarajan’s linear programming formu-
lation on the MP3 playback application was infeasible, be-
cause the solver from the GNU Linear Programming Kit
(GLPK) runs out of memory. Removal of the APP task
from the graph enables the application of Govindarajan’s
approach, but still has a run-time of half an hour.

Note that there exists a trade-off between the buffer capac-
ities, similar to the trade-off in the MRDF graph of Figure
1, that is not apparent in the MRDF graph of Figure 3, but
which is required to be exploited in order to obtain mini-

mal buffer capacities, see Table 1. Conversion of the MRDF
graph into an SRDF graph is required to make this trade-off
explicit.

8. CONCLUSION
In this work we have presented an algorithm that de-

termines close to minimal buffer capacities for Multi-Rate
Dataflow graphs such that the throughput requirement and
constraints on buffer capacities are satisfied. The buffer
capacities are analytically determined from a constructed
strictly periodic schedule. Because this algorithm does not
require a conversion from a Multi-Rate Dataflow graph to a
Single-Rate Dataflow graph, we do not suffer from the ex-
ponential complexity associated with this conversion. Re-
lated algorithms do make this conversion and have excessive
run-times and memory requirements for realistic Multi-Rate
Dataflow graphs.

An essential difference with related real-time synthesis ap-
proaches is that functional and flow control cycles are allowed
to influence the temporal behaviour. In our system, jitter can
therefore be controlled through back-pressure implemented
by bounded FIFO buffers.

We are currently setting up a mapping flow that deter-
mines both scheduler settings, which result in appropriate
response times, and the task to processor assignment. In or-
der to derive a configuration that meets all constraints, we
expect that this mapping flow will need to evaluate many dif-
ferent scheduler settings and task to processor assignments,
for which the presented algorithm will be an important con-
tribution.
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