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Abstract

The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in
computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded
and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially
outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when
computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is
called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram
for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method
to optimal mesh generation based on the centroidal Voronoi tessellation.

Keywords: clipped Voronoi diagram, Delaunay triangulation, centroidal Voronoi tessellation, mesh
generation.

1. Introduction1

The Voronoi diagram is a fundamental geometric2

structure which has numerous applications in var-3

ious fields, such as shape modeling, motion plan-4

ning, scientific visualization, geography, chemistry,5

biology and so on.6

Suppose that a set of sites in a compact domain in7

R
d is given. Each site is associated with a Voronoi8

cell containing all the points in R
d closer to the site9

than to any other sites; these cells constitute the10

Voronoi diagram of the set of sites. Voronoi cells of11

those sites on the convex hull are infinite, and some12

of Voronoi cells may be partially outside of the spec-13

ified domain. However, in many applications one14

usually needs only the parts of Voronoi cells inside15

the specific domain. That is, the Voronoi diagram16

restricted to the given domain, which is defined as17

the intersection of the Voronoi diagram and the do-18

main, and is therefore called the clipped Voronoi19

diagram [1]. The corresponding Voronoi cells are20

called the clipped Voronoi cells (see Figure 1).21

Computing the clipped Voronoi diagram in a con-22

vex domain is relatively easy – one just needs to23

compute the intersection of each Voronoi cell and24

the domain, both being convex. However, directly25

computing the clipped Voronoi diagram with re-26

spect to a complicated input domain is a difficult27

problem and there is no efficient solution in the ex-28

isting literature. There has been no previous work29

on computing the exact clipped Voronoi diagram30

for non-convex domains with arbitrary topology. A31

brute-force implementation would be inefficient be-32

cause of the complexity of the domain.33

The motivation of the work is inspired by the34

recent work [2, 3]. They showed in [2] that the35

CVT energy function is C2-continuous, which can36

be minimized by the Newton-like algorithm, such37

as the L-BFGS method presented. In [3], an effi-38

cient CVT-based surface remeshing algorithm was39

presented with an exact algorithm for computing40

the restricted Voronoi diagram on mesh surfaces.41

In this paper, we aim at applying the fast CVT42

remeshing framework to 2D/3D mesh generation.43

To minimize the CVT energy function, one needs to44

compute the clipped Voronoi diagram in the input45

domain for function evaluation and gradient com-46

putation (see Section 2).47

In this paper, we shall present practical algo-48

rithms for computing clipped Voronoi diagrams49

based on several simple operations. The main idea50
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(a) (b)

Figure 1: Examples of clipped Voronoi diagram in
a circle (a) and a cylinder (b). The clipped Voronoi
cells on the boundary are shaded.

of our approach is that instead of computing the51

intersection of Voronoi diagram and the domain di-52

rectly, we first detect the Voronoi cells that have in-53

tersections with domain boundary and then apply54

computation for those cells only. We use a simple55

and efficient algorithm based on connectivity propa-56

gation for detecting the cells that intersect with the57

domain boundary (i.e., polygons in 2D and mesh58

surfaces in 3D, respectively). We also utilize the59

presented techniques for mesh generation as appli-60

cations. The contributions of this paper include :61

• introduce new methods for computing the62

clipped Voronoi diagram in 2D regions (Sec-63

tion 3) and 3D volumes (Section 4);64

• present practical algorithms for 2D/3D mesh65

generation based on the presented clipped66

Voronoi diagram computation techniques (Sec-67

tion 5).68

1.1. Previous work69

The properties of the Voronoi diagram have been70

extensively studied in the past decades. Existing71

techniques compute the Voronoi diagram for point72

sites in 2D and 3D Euclidean spaces efficiently.73

There are several robust implementations that are74

publicly available, such as CGAL [4] and Qhull [5].75

A thorough survey of the Voronoi diagram is out76

of the scope of this paper, the reader is referred to77

[6, 7, 8] for details of theories and applications of78

the Voronoi diagram. We shall restrict our discus-79

sion to the approaches of computing the Voronoi80

diagram restricted to a specific 2D/3D domain and81

their applications.82

Voronoi diagram of surfaces/volumes. It is natu-83

ral to use the geodesic metric to define the so84

called Geodesic Voronoi Diagram (GVD) on sur-85

faces. Kunze et al. [9] presented a divide-and-86

conquer algorithm of computing GVD for paramet-87

ric surfaces. Peyré and Cohen [10] used the fast88

marching algorithm to compute a discrete approx-89

imated GVD on a mesh surface. However, the cost90

of computing the exact GVD on surfaces is high,91

for instance, the fast marching method requires to92

solve the nonlinear Eikonal equation.93

The restricted Voronoi diagram (RVD) [11] is de-94

fined as the intersection of the 3D Voronoi diagram95

and the surface, which is applied for computing con-96

strained/restricted CVT on continuous surfaces by97

Du et al. [12]. The concept of the constrained CVT98

was extended to mesh surfaces in recent work [2, 3]99

and applied for isotropic surface remeshing. Yan100

et al. [3] proposed an exact algorithm to construct101

the RVD on mesh surfaces which consist of trian-102

gle soups. They processed each triangle indepen-103

dently where a kd-tree was used to find the nearest104

sites of each triangle in order to identify its incident105

Voronoi cells and compute the intersection. In this106

paper, we further improve the efficiency of the RVD107

computation by applying a neighbor propagation108

approach instead of using kd-tree query, assuming109

the availability of the mesh connectivity informa-110

tion (Section 4.1).111

The clipped Voronoi diagram is defined as the112

intersection of the 3D (resp. 2D) Voronoi diagram113

and the given 3D volume (resp. a 2D region). Chan114

et al. [1] introduced an output-sensitive algorithm115

for constructing the 3D clipped Voronoi diagram116

of a convex polytope. Kyons et al. [13] presented117

an O(nlog(n)) algorithm to compute the clipped118

Voronoi diagram in a 2D square and applied it119

to network visualization. Yan et al. [14] utilized120

the clipped Voronoi diagram to compute the peri-121

odic CVT in 2D periodic space. Hudson et al. [15]122

computed the 3D clipped Voronoi diagram in the123

bounding box of the sites and used it to improve the124

time and space complexities of computing the full125

persistent homological information. However, the126

handling of non-convex objects was not addressed127

in these approaches. Existing algorithms used a dis-128

crete approximation in specific applications. Hoff129

III et al. [16] proposed a method for computing the130

discrete generalized Voronoi diagram using graph-131

ics hardware. The Voronoi diagram computation132

was formulated as a clustering problem in the dis-133

crete voxel/pixel space. Sud et al. [17] presented an134
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n-body proximity query algorithm based on com-135

puting the discrete 2nd order Voronoi diagram on136

the GPU. GPU-based algorithms were fast but pro-137

duced only a discrete approximation of the true138

Voronoi diagram. In this paper, we shall present139

efficient algorithms to compute the exact clipped140

Voronoi diagram for both 2D and 3D domains.141

Mesh generation. Mesh generation has been ex-142

tensively studied in meshing community over past143

decades. The detailed reviews of mesh genera-144

tion techniques are available in [18, 19]. In the145

following, we will focus on the work based on146

Voronoi/Delaunay concepts, which are most related147

to ours. We also briefly review the main categories148

of tetrahedral mesh generation techniques.149

The concept of Voronoi diagram has been suc-150

cessfully used for meshing and analyzing point data.151

Amenta et al. [20] presented a new surface recon-152

struction algorithm based on Voronoi filtering. This153

algorithm has provable guarantees when the sam-154

ple points of a smooth surface satisfy the lfs (local155

feature size) property. Alliez et al. [21] proposed a156

surface reconstruction algorithm from noisy input157

data based on the Voronoi-PCA estimation. Ley-158

marie and Kimia introduced the medial scaffold of159

point cloud data [22], which is a hierarchical rep-160

resentation of the medial axis of 3D objects. Al-161

though these works deal with point data, they can162

be extended further for volumetric meshing.163

The medial axis, which is a subset of Voronoi164

diagram, has been applied in applications such as165

2D quadrilateral meshing [23] and 3D hexahedral166

meshing [24]. Given a closed 2D polygon or 3D167

triangulated surface as the input domain, a set of168

dense points is first sampled on the domain bound-169

ary and the medial axis/surface is computed di-170

rectly from the Voronoi diagram of samples. The171

final mesh is generated by first meshing the medial172

axis(2D)/surface(3D) and extruding to the domain173

boundary [25]. The medial axis based method is174

suitable for models which have well defined medial175

axis, such as CAD/CAM models, but the medial176

axis computation is sensitive to noise or small fea-177

tures of the domain boundary.178

In this paper, we focus on the tetrahedral mesh-179

ing as an application of the clipped Voronoi diagram180

computation (see Section 5). The shape quality and181

boundary preservation are two main issues of tetra-182

hedral meshing algorithms, since the quality of sim-183

plices is crucial to finite element applications. We184

refer the reader to [26] for the theoretic study of the185

relationship between element qualities and interpo-186

lation error/condition number. In the following, we187

briefly discuss the main categories of tetrahedral188

meshing.189

• The octree-based approaches (e.g. [27, 28])190

subdivide the bounding box of input model191

repeatedly until a pre-specified resolution is192

reached, then connect those cells to form the193

tetrahedra. In general, this kind of approaches194

cannot prevent bad elements near the bound-195

ary.196

• Advancing front methods start from the do-197

main boundary and stuff the interior of the do-198

main progressively, guided by specified heuris-199

tic to control the shape/size. Advancing front200

methods are fast but a high-quality triangu-201

lated boundary is required.202

• Delaunay/Voronoi based approaches generate203

meshes satisfying Delaunay properties, which204

maximize the minimal angle of shape elements.205

Given an input domain, Delaunay/Voronoi206

based methods repeatedly insert Steiner points207

into the mesh, until all the elements meet the208

Delaunay property. This approach aims at209

generating meshes which conform to the input210

domain boundary, but often leads to unsatis-211

fied results if the given domain boundary is212

poorly triangulated. An alternative way is to213

approximate the boundary instead of conform-214

ing, which results the better shape/size quality.215

• Variational approach is one of the most ef-216

fective ways of generating isotropic tetrahe-217

dral meshes. Recent work includes both CVT-218

based and ODT-based techniques. The CVT-219

based approach aims at optimizing the dual220

Voronoi structure of Delaunay triangulation,221

while ODT tends to optimize the shape of pri-222

mal elements [29]. The CVT-based mesh gen-223

eration has been extensively studied in the lit-224

erature [12], while ODT was recently intro-225

duced to graphics community [30, 31]. One of226

the main difficulties of both CVT and ODT-227

based tetrahedral meshing is the boundary228

conforming issue. Alliez et al. [30] used dense229

quadrature samples to approximate restricted230

Voronoi cells on mesh surface. Dardenne et231

al. [32] used a discrete version of the CVT to232

generate tetrahedral meshes from the discrete233

volume data. The voxels are clustered into n234
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cells via Lloyd iteration, with each cell corre-235

sponding to a site. The tetrahedral mesh is ob-236

tained from the connectivity relations of cells.237

However, such an approach is limited to the238

resolution of voxels.239

2. Problem Formulation240

We first provide mathematical definitions and no-241

tations, then introduce the main idea of the clipped242

Voronoi diagram computation.243

2.1. Definitions244

Definition 2.1. The Voronoi Diagram of a given
set of distinct sites X = {xi}

n
i=1 in R

d is defined by
a collection of Voronoi cells {Ωi}

n
i=1, where

Ωi = {x ∈ R
d
∣

∣ ∥x− xi∥ ≤ ∥x− xj∥, ∀j ̸= i}.

Each Voronoi cell Ωi is the intersection of a set of245

half-spaces, delimited by the bisectors of the Delau-246

nay edges incident to the site xi.247

Definition 2.2. The Clipped Voronoi Diagram for
the sites X with respect to a connected compact do-
main Ω is the intersection of the Voronoi diagram
and the domain, denoted as {Ωi|Ω}

n
i=1, where

Ωi|Ω = {x ∈ Ω
∣

∣ ∥x− xi∥ ≤ ∥x− xj∥, ∀j ̸= i}

Each clipped Voronoi cell is the intersection of the248

Voronoi cell Ωi and the domain Ω, i.e., Ωi|Ω =249

Ωi

∩

Ω. We call Ωi|Ω the clipped Voronoi cell with250

respect to Ω (see Figure 1 for examples).251

Definition 2.3. Centroidal Voronoi Tessellation
of a set of distinct sites X with respect to a com-
pact domain Ω is the minimizer of the CVT energy
function [33] :

F (X) =
n
∑

i=1

∫

Ωi|Ω
ρ(x)∥x− xi∥

2 dσ. (1)

In the above definition, ρ(x) > 0 is a user-defined
density function. The partial derivative of the en-
ergy function with respect to each site is given
by [34] :

∂F

∂xi

= 2mi(xi − x∗
i ), (2)

here mi =
∫

Ωi|Ω ρ(x) dσ, and x∗
i =

∫
Ωi|Ω

ρ(x)x dσ
∫
Ωi|Ω

ρ(x) dσ
252

is the centroid of the clipped Voronoi cell Ωi|Ω.253

We use the L-BFGS method [2] for computing the254

CVT. The clipped Voronoi diagram is used to assist255

the function evaluation (Eqn. 1) and the gradient256

computation (Eqn. 2).257

2.2. Algorithm overview258

There are two types of clipped Voronoi cells of a259

clipped Voronoi diagram : inner Voronoi cells and260

boundary Voronoi cells, whose corresponding sites261

are called inner sites and boundary sites, respec-262

tively. The inner Voronoi cells are entirely con-263

tained in the interior of the domain Ω, which can be264

deduced from the Delaunay triangulation directly.265

The boundary Voronoi cells are those cells that in-266

tersect with the domain boundary ∂Ω, as shown in267

Figure 1. In the following, we will focus on how to268

compute the boundary Voronoi cells.269

To compute a clipped Voronoi diagram with re-270

spect to a given domain, we first need to classify the271

sites into inner and boundary sites, and then com-272

pute the clipped Voronoi cells for boundary sites.273

As discussed above, the boundary cells have inter-274

sections with the domain boundary ∂Ω (i.e., poly-275

gons in 2D and mesh surfaces in 3D), which can276

be found by intersecting the boundary with the277

Voronoi diagram. We present efficient algorithms278

for computing the intersection of a Voronoi diagram279

and 2D polygons or 3D mesh surfaces, respectively.280

Once the boundary sites are identified, we are able281

to compute the clipped Voronoi cells efficiently by282

clipping the domain Ω against boundary Voronoi283

cells.284

In the following sections, we shall present efficient285

algorithms for computing clipped Voronoi diagram286

in 2D (Section 3) and 3D (Section 4) spaces, respec-287

tively. Furthermore, we show how to utilize the pre-288

sented clipped Voronoi diagram computation tech-289

niques for practical mesh generation (Section 5).290

3. 2D Clipped Voronoi Diagram Computa-291

tion292

Suppose that the input domain Ω is a compact293

2D region, whose boundary is represented by a 2D294

counter-clockwise outer polygon, and several clock-295

wise inner polygons without self-intersections. As-296

sume that the boundary is represented by a set of297

ordered edge segments {ei}. The main steps of our298

method are illustrated in Figure 2. For a given set299

of sites inside the given domain, we first compute300

the Voronoi diagram of the sites. Then we identify301

the boundary sites and finally compute the clipped302

Voronoi cells of boundary sites .303

3.1. Voronoi diagram construction304

We first construct a Delaunay triangulation from305

input sites X = {xi}
n
i=1. The corresponding306

4



(a) (b) (c) (d)

Figure 2: Illustration of main steps for computing clipped Voronoi diagram in 2D. (a) Delaunay triangulation,
(b) 2D Voronoi diagram, (c) detect boundary sites, (d) compute clipped Voronoi diagram.

Voronoi diagram {Ωi}
n
i=1 is constructed as the dual307

of the Delaunay triangulation, as defined in Sec-308

tion 2. Each Voronoi cell is stored as a set of bi-309

secting planes, which is used for clipping operations310

in the following steps.311

3.2. Detection of boundary cells312

In this step, we shall identify the boundary313

Voronoi cells by computing the intersection of314

boundary edges and the Voronoi diagram {Ωi}. We315

repeatedly find the incident cell-edge pairs with the316

assistance of an FIFO queue. An incident Voronoi317

cell of a boundary edge ei is the cell that intersects318

with ei, i.e., a boundary Voronoi cell.319

We assign a boolean tag to each boundary edge320

ei which indicates whether ei has been processed or321

not. This flag is initialized as false. Once the edge322

is visited, the flag is switched to true. Starting323

from an unvisited boundary edge ei, we first find324

its nearest incident Voronoi cell Ωj , then use the325

barycenter (or midpoint) of ei to query the nearest326

site xj . Any linear search function can be used here327

for the nearest point query.328

The FIFO queue is initialized by the initial inci-329

dent cell-edge pair (Ωj , ei). We repeatedly pop out330

the cell-edge pair from the queue and compute the331

intersection of the current Voronoi cell Ωc and the332

boundary edge ec. The intersected segment is de-333

noted as sc. The current boundary edge is marked334

as visited and the current Voronoi cell is marked335

as boundarycell. We detect new cell-edge pairs336

by examining the current intersected segment sc.337

There are two cases of sc’s endpoints :338

(a) if the endpoints of sc contain a boundary ver-339

tex of the current edge ec (green dots in Fig-340

ure 2(c)), the adjacent boundary edge who341

shares the same vertex with ec is pushed into342

the queue together with the current Voronoi343

cell Ωc;344

(b) if the endpoints of sc contain an intersection345

point, i.e., the intersection point between a346

Voronoi edge of Ωc and ec (yellow dots in Fig-347

ure 2(c)), the neighboring Voronoi cell who348

shares the intersecting Voronoi edge with Ωc349

is pushed into the queue together with ec.350

The boundary detection process terminates when351

all the edges have been visited.352

3.3. Computation of clipped Voronoi cells353

Once the boundary sites are identified, we com-354

pute the clipped Voronoi cells by clipping the do-355

main against their corresponding bounding line seg-356

ments. A straightforward extension of [3] should357

first triangulate the boundary polygons and then358

do computation on the resulting planar mesh, which359

will be the same as the surface RVD computation360

described in Section 4.1. Given that the average361

number of bisectors of 2D Voronoi cells is six [33], it362

is efficient enough to clip the 2D domain by Voronoi363

cells directly. Here we simply use the Sutherland-364

Hodgman clipping algorithm [35] to compute the365

intersection. More examples of 2D clipped Voronoi366

diagram are given in Section 6.367

4. 3D Clipped Voronoi Diagram Computa-368

tion369

In this section we describe an efficient algorithm370

for computing the clipped Voronoi diagram of 3D371

objects. Suppose that the input volume Ω is given372

by a tetrahedral mesh M = {V, T }, where V =373

5



(a) (b)

Figure 3: Illustration of clipped Voronoi diagram
computation of 500 sites in a torus. (a) Surface
RVD of 227 boundary sites, (b) Clipped Voronoi
diagram.

{vk}
nv

k=1 is the set of mesh vertices and T = {ti}
m
i=1374

the set of tetrahedral elements. Each tetrahedron375

(tet for short in the following) ti stores the informa-376

tion of its four incident vertices and four adjacent377

tets. The four vertices are assigned indices 0, 1, 2, 3378

and so are the four adjacent tets. The index of an379

adjacent tet is the same as the index of the vertex380

which is opposite to the tet. The boundary of M is381

a triangle mesh, denoted as S = {fj}
nf

j=1, which is382

assumed to be a 2-manifold. Each boundary trian-383

gle facet fj stores the indices of three neighboring384

facets and the index of its containing tet. Note that385

although other types of convex primitives can also386

be used for domain decomposition, we use tetrahe-387

dral mesh here for simplicity.388

The 3D clipped Voronoi diagram computation is389

similar to the 2D counterpart. After constructing390

the 3D Voronoi diagram {Ωi} of the sites X (see391

Section 3.1), there are two main steps, as illustrated392

in Figure 3 :393

1. detect boundary sites by intersecting Voronoi394

diagram with the boundary surface S, i.e.,395

compute the surface RVD (Section 4.1);396

2. compute the clipped Voronoi cells for all the397

boundary sites (Section 4.2).398

4.1. Detection of boundary sites399

For the given set of sites X = {xi}
n
i=1 and400

the boundary surface S = {fj}
nf

j=1, the restricted401

Voronoi diagram (RVD) is defined as the intersec-402

tion of the 3D Voronoi diagram and the surface S,403

denoted as R = {Ri}
n
i=1, where Ri = Ωi

∩

S [11].404

Each Ri is called a restricted Voronoi cell (RVC).405

The sites corresponding to non-empty RVCs are re-406

garded as boundary sites.407

(a) (b)

Figure 4: Illustration of the propagation process.
The green points are the vertices of input boundary
mesh and the white points are the sites. The yellow
points in (b) are the vertices of RVD.

We use the algorithm presented in [3] for comput-408

ing the surface RVD. The performance of RVD com-409

putation is improved by using a neighbor propaga-410

tion approach for finding the incident cell-triangles411

pairs, instead of using a kd-tree structure to query412

the nearest site for each triangle, as shown by our413

tests.414

Now we are going to explain the propagation step415

(refer to Figure 4). We assign a boolean flag (initial-416

ized as false) for each boundary triangle at the ini-417

tialization step. The flag is used to indicate whether418

a triangle is processed or not. Starting from an419

unprocessed triangle and one of its incident cells,420

which is the cell corresponding to the nearest site of421

the triangle by using the barycenter of the triangle422

as the query point. Here we assume that a triangle423

f0 on S is the unprocessed triangle and the Voronoi424

cell Ω0 is the corresponding cell of the nearest site425

of f0, as shown in Figure 4(a). We use an FIFO426

queue Q to store all the incident cell-triangle pairs427

to be processed. To start, the initial pair {f0,Ω0}428

is pushed into the queue. The algorithm repeatedly429

pops out the pair in the front of Q and computes430

their intersection. During the intersection process,431

the current triangle is marked as processed, new432

valid pairs are identified and pushed back into Q.433

The process terminates when Q is empty and all434

the triangles are processed.435

The key issue now is how to identify all the valid436

cell-triangle pairs during the intersection. Assume437

that {f0,Ω0} is popped out fromQ, as shown in Fig-438

ure 4. In this case, we clip f0 against the bound-439

ing planes of Ω0, which has five bisecting planes,440

i.e.,[x0,x1], [x0,x2]..., [x0,x5]. The resulting poly-441

gon is represented by q0,q1, ...,q5, as shown in Fig-442

ure 4(b). Since the line segment q0q1 is the inter-443

section of f0 and [x0,x1], we know that the oppo-444
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(a) (b) (c) (d)

Figure 5: 2D CVT-based meshing. (a) The clipped Voronoi diagram of initial sites; (b) the result of CVT
with ρ = 1; (c) the result of constrained optimization. Notice that boundary seeds are constrained on the
border; (d) the final uniform 2D meshing.

site cell Ω1 is also an incident cell of f0, thus the445

pair {f0,Ω1} is an incident pair. Since the com-446

mon edge of [f0, f1] has intersection with Ω0, the447

adjacent facet f1 also has intersection with cell Ω0,448

thus the pair {f1,Ω0} is also an incident pair. So449

is the pair {f2,Ω0}. The other incident pairs are450

found in the same manner. To keep the same pair451

from being processed multiple times, we store the452

incident facet indices for each cell. Before pushing453

a new pair into the queue, we add the facet in-454

dex to the incident facet index set of the cell. The455

pair is pushed into the queue only if the facet is456

not contained in the incident facet set of the cell;457

otherwise the pair is discarded. At each time after458

intersection computation, the resulting polygon is459

associated with the surface RVC of the current site.460

The surface RVD computation terminates when the461

queue is empty. Those sites that have non-empty462

surface RVC are marked as the boundary sites, de-463

noted as Xb = {xi|Ri ̸= ∅}.464

4.2. Construction of clipped Voronoi cells465

Once the boundary sites Xb are found, we com-466

pute the clipped Voronoi cells for these sites. The467

computation of boundary Voronoi cells is similar468

to the surface RVD computation presented in Sec-469

tion 4.1, with the difference that we restrict the470

computation on boundary cells only. For each471

boundary cell, we have recorded the indices of its in-472

cident boundary triangles. We know that the neigh-473

boring tet of each boundary triangle is also incident474

to the cell. We also store the indices of the incident475

tet for each boundary cell. The incident tet set476

is initialized as the neighboring tet of the incident477

boundary triangle.478

We use an FIFO queue to facilitate this process.479

The queue is initialized by a set of incident cell-480

tet pairs (Ωi, tj), which can be obtained from the481

boundary cell and its initial incident tet set.482

The pair (Ωi, tj) in front of Q is popped out re-483

peatedly. We compute the intersection of Ωi and484

tj again by the Sutherland-Hodgman clipping al-485

gorithm [35] and identify new incident pairs at the486

same time. We clip the tet tj by bounding planes487

of cell Ωi one by one. If the current bounding488

plane has intersection with tj , we check the oppo-489

site Voronoi cell Ωo that shares the current bisect-490

ing plane with Ωi; if Ωo is a boundary cell and tj491

is not in the incident set of Ωo, a new pair (Ωo, tj)492

is found. We also check the neighboring tets who493

share the facets clipped by the current bisecting494

plane. Those tets that are not in the incident set of495

Ωi are added to its set, and new pairs are pushed496

into the queue. After clipping, the resulting poly-497

hedron is associated with the clipped Voronoi cell498

Ωi|M of site xi. This process terminates when Q is499

empty.500

5. Applications for mesh generation501

We present two applications of the presented502

clipped Voronoi diagram computation techniques,503

including 2D triangular meshing and 3D tetrahe-504

dral meshing.505

5.1. 2D mesh generation506

Triangle mesh generation is a well-known appli-507

cation of CVT optimization. In this section we508

present such an application based on our 2D clipped509

Voronoi diagram computation. The input domain510

7



(a) (b) (c) (d)

Figure 6: Illustration of the CVT-based tetrahedral meshing algorithm. The wireframe is the boundary of
the input mesh. (a) The clipped Voronoi diagram of the initial sites (the boundary Voronoi cells are shaded);
(b) the result of the unconstrained CVT with ρ = 1; (c) the result of the constrained optimization. Notice
that boundary seeds are constrained on the surface S; (d) the final isotropic tetrahedral meshing result.

Ω is a 2D polygon, which can be single connected or511

with multiple components. We first sample a set of512

initial points inside the input domain (Figure 5(a))513

and then compute a CVT (Eqn. 1) from this initial514

sampling (Figure 5(b)). Once we have a set of well515

distributed samples, we snap the seeds correspond-516

ing to boundary Voronoi cells to the boundary and517

run optimization again, with the boundary seeds518

constrained on the border (Figure 5(c)). Finally,519

we keep the primal triangles whose circumscribing520

centers are inside the domain as the meshing re-521

sult (5(d)). Our 2D meshing framework also allows522

the user to insert vertices of input polygon and tag523

these vertices as fixed. By doing this, the geomet-524

ric properties of the input domain can be better525

preserved. More results are given in Section 6.526

5.2. Tetrahedral mesh generation527

There are three main steps of the CVT-based528

meshing framework: initialization, iterative opti-529

mization, and mesh extraction, which are illus-530

trated by the example in Figure 6.531

Initialization. In this step, we build a uniform532

grid to store the sizing field for adaptive meshing.533

Following the approach in [30], we first compute534

the local feature size (lfs) for all boundary vertices535

and then use a fast matching method to construct536

a sizing field on the grid. This grid is also used for537

efficient initial sampling (Figure 6(a)). The reader538

is referred to [30] for details.539

Optimization. There are two phases of the global540

optimization: the unconstrained CVT optimization541

and the constrained CVT optimization. In the first542

phase, we optimize the positions of the sites inside543

the input volume without any constraints, which544

yields a well-spaced distribution of the sites within545

the domain, with no sites lying on the boundary546

surface (Figure 6(b)).547

During the second phase of optimization, all the
boundary sites will be constrained on the boundary.
The partial derivative of the energy function with
respect to each boundary site is computed as:

∂F

∂xi

∣

∣

∣

∣

S
=

∂F

∂xi

−

[

∂F

∂xi

·N(xi)

]

N(xi), (3)

whereN(xi) is the unit normal vector of the bound-548

ary surface at the boundary site xi [2]. The partial549

derivative with respect to an inner site is still com-550

puted by Eqn. 2. Both boundary and inner sites551

will be optimized simultaneously, applying again552

the L-BFGS method to minimize the CVT energy553

function (Figure 6(c)).554

Sharp features are preserved in a similar way as555

how the boundary sites are treated. For example,556

we project sites on sharp edges on the boundary and557

allow them to vary only along these edges during558

the second stage of optimization. For details, please559

refer to [3] where these steps are described in the560

context of surface remeshing.561

Final mesh extraction. Once the optimization is562

finished, we extract the tetrahedral cells from the563

primal Delaunay triangulation (Figure 6(d)). As564

discussed in [30], the CVT energy cannot eliminate565

the slivers from the resulting tetrahedral mesh. We566

perform a post-processing to perturb slivers using567

the approach of [36]. The results are given in Sec-568

tion 6.569
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Figure 7: Results of clipped Voronoi diagram computation.

6. Experimental results570

Our algorithm is implemented in C++ on both571

Windows and Linux platform. We use the CGAL li-572

brary [4] for 2D and 3D Delaunay triangulation and573

TetGen [37] for background mesh generation when574

the input 3D domain is given as a closed triangle575

mesh. All the experimental results are tested on a576

laptop with 2.4GHz processor and 2GB memory.577

Efficiency. We first demonstrate the performance578

of the proposed clipped VD computation algorithm.579

The 2D version is very efficient. All the exam-580

ples shown in this paper take only several millisec-581

onds. To detect the boundary sites, we have im-582

plemented a propagation based approach for sur-583

face RVD computation. This new implementation584

of RVD performs better then the previous kd-tree585

based approach [3] since there is no kd-tree query586

required, as shown in Figure 8. The performance587

of the 3D clipped Voronoi diagram computation is588

demonstrated in Figure 9. We progressively sample589

the input domain with number of sites from 10 to590

6 × 105. Note that the time of surface RVD com-591

putation is much less than the Delaunay triangula-592

tion, since only a small portion of all the sites are593

boundary sites. The time cost of the clipped VD594

computation algorithm is proportional to the to-595

tal number of incident cell-tet pairs (Section 4.2).596

Therefore, an input mesh with a small number of597

tetrahedral elements would help to improve the effi-598

ciency. In our experiments, all the input tetrahedral599

meshes are generated by the robust meshing soft-600

ware TetGen [37] with the conforming boundary.601

More results of the clipped Voronoi diagram com-602

putation of various 3D objects are given in Figure603

7 and the timing statistics is given in Table 1.604

Model |T | |S| |X| |Xb| Time
Twoprism 68 30 1k 572 0.2
Bunny 10k 3k 2k 734 1.8
Elk 34.8k 10.4k 2k 1,173 3.1

Block 77.2k 23.4 1k 659 4.7
Homer 16.2k 4,594 10k 2,797 6.3

Rockerarm 212k 60.3k 3k 1,722 12.1
Bust 68.5k 20k 30k 5k 16.2

Table 1: Statistics of clipped Voronoi diagram com-
putation on various models. |T | is the number
of the input tetrahedra. |S| is the number of the
boundary triangles. |X| is the number of the sites.
|Xb| is the number of the boundary sites. Time (in
seconds) is the total time for clipped Voronoi dia-
gram computation, including both Delaunay trian-
gulation and surface RVD computation.

Robustness. We use exact predicates to predicate605

the side of a vertex against a Voronoi plane during606

the clipping process. We use Meyer and Pion’s FGP607

predicate generator [38] provided by CGAL in our608

implementation, as also done in [3]. We did not609

encounter any numerical issue for all the examples610

shown in the paper. Our clipped Voronoi diagram611

is robust even for extreme configurations. We show612

an example of computing the clipped Voronoi dia-613

gram on a sphere in Figure 10. The sites are set to614

the vertices of the boundary mesh and there is no615

9



Figure 8: Comparison of the propagation-based
surface RVD computation with the kd-tree-based
approach.

#seed vs time of clipped VD

#seed vs time of RVD

#seed vs time of DT

#Seed

T
im

e
(s

)

Figure 9: The timing curve of the clipped Voronoi
diagram computation against the number of sites
on Bone model.

inner site. Furthermore, we give another example616

of computing clipped Voronoi diagram in a cubic617

domain. The boundary mesh of the cube is shown618

in Figure 11(a). We sample the eight corners of619

the cube as sites, in this case, the bounding planes620

of Voronoi diagram are passing through the edges621

of the boundary mesh. The surface RVD and the622

volume clipped Voronoi diagram are shown in Fig-623

ure 11(b) and (c), respectively.624

2D meshing. We show some 2D mesh generation625

results based on our fast clipped Voronoi diagram626

computation. Figure 12 demonstrates that our al-627

gorithm works well for multiple connected domains.628

Figure 13 shows that we insert original vertices of629

input polygon for the better preservation of the ge-630

ometric properties.631

Figure 10: Clipped Voronoi diagram of a sphere.
The sites are the vertices of the sphere. (a) The
surface RVD, (b) the clipped Voronoi diagram.

(a) (b) (c)

Figure 11: Clipped Voronoi diagram of a cube. Red
points represent the sites. (a) The input domain,
(b) the surface RVD, (c) the clipped Voronoi dia-
gram.

Figure 12: CVT-based 2D mesh generation of a
ring.

Figure 13: CVT-based 2D mesh generation. The
boundary vertices of the input domain are used as
constraints.
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Tetrahedral meshing. The complete process of632

the proposed tetrahedral meshing framework is il-633

lustrated in Figure 6. Figure 14 (a)&(b) show two634

adaptive tetrahedral meshing examples, using lfs635

as the density function [30]. Figure 14 (c)&(d) give636

two examples with sharp features preserved. Our637

framework can generate high quality meshes effi-638

ciently and robustly. The running time for obtain-639

ing final results ranges from seconds to minutes, de-640

pending on the size of the input tetrahedral mesh641

and the desired number of sites.642

Figure 14: Tetrahedral mesh generation results.
The histograms show the angle distribution of the
results.

Comparison. We compare our meshing results643

with the Delaunay refinement approach provided644

by CGAL [4], as well as a recent work that used645

a discrete version of clipped Voronoi diagram for646

tetrahedral mesh generation [32]. Four shape qual-647

ity measurements are used as in [32], i.e.,648

• Q1 = θmin, the minimal dihedral angle θmin of649

each tetrahedron;650

• Q2 = θmax, the maximal dihedral angle θmax651

of each tetrahedron;652

• Q3 = 3 rin
rcirc

, the radius-ratio of each tetra-653

hedral, where rin and rcirc are the in-654

scribed/circumscribed radius, respectively;655

• Q4 = 12
3
√
9V 2

∑
l2
i,j

, meshing quality of [39], where656

V is the volume of the tetrahedron, and li,j657

the length of the edge which connects vertices658

vi and vj .659

Q3 and Q4 are between 0 and 1, where 0 denotes a660

silver and 1 denotes a regular tetrahedron.661

We choose the sphere generated from an iso-662

surface as input domain. The Hausdorff distance663

(measured by Metro [40]) between the boundary664

of generated mesh and the input surface (normal-665

ized by dividing by the diagonal of bounding box)666

is 0.049%, which is 3 times smaller than 0.17% re-667

ported by [32]. The quality of the tetrahedral mesh668

is shown in Figure.15 and the comparison of each669

measurement is given in Table 2. Our approach670

produces better meshing quality, as well as smaller671

surface approximation error, attributed to the ex-672

act clipped Voronoi diagram computation.673

method Q1 Q4 min(Q1) min(Q4) HDist

[4] 48.11◦ 0.847 12.05◦ 0.339 0.054%
[32] 56.32◦ 0.911 16.31◦ 0.376 0.170%
ours 56.37◦ 0.932 24.23◦ 0.560 0.049%

Table 2: Comparison of meshing qualities. HDist

is the Hausdorff distance between the boundary of
generated mesh and the input discretized isosur-
face.

We also compare our result with an octree-based674

approach [27]. As shown in Figure 16, the CVT675

based approach exhibits much better element qual-676

ity than a standard approach. Our approach out-677

performs previous work in boundary approximation678

error (as shown in Figure 17), attributed to the ex-679

act clipped Voronoi diagram computation and si-680

multaneous surface remeshing [3].681
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Figure 15: Comparison of the meshing qualities of
the sphere with the Delaunay refinement approach
implemented in CGAL [4].

7. Conclusion682

We have presented efficient algorithms for com-683

puting the clipped Voronoi diagram for closed 2D684

and 3D objects, which has been a difficult problem685

without an efficient solution. As an application, we686

present a new CVT-based mesh generation algo-687

rithm which combines the clipped VD computation688

and fast CVT optimization.689

In the future, we plan to look for more interdis-690

ciplinary applications of the clipped Voronoi dia-691

gram, such as biology and architecture. Applying692

our meshing technique to physical simulation appli-693

cations, and extending the clipped Voronoi diagram694

to a higher dimension are also interesting directions.695
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Figure 16: Comparison with the octree based ap-
proach [27]. The resulting tetrahedral mesh has
200k tetrahedra.

Figure 17: Approximation error of gargoyle model:
50K vertices, 256K tetrahedra, mean/max Haus-
dorff distance: 0.045%/0.37%. Our approach pro-
duces smaller approximation error compared with
[30] (mean error: 0.053%) using the same number
of vertices.
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