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Abstract— In this paper we describe an efficient algorithm for the con-
strained shortest path problem which is defined as follows. Given a directed
graph with two weights on each link e, a cost le and a delay te, find the
cheapest path from a source to all destinations such that the delay of each
path is no more than a given threshold. The constrained shortest path prob-
lem arises in Quality-of-Service-sensitive routing in data networks and is of
particular importance in real-time services. The problem formulation and
the algorithmic framework presented are quite general; they apply to IP,
ATM, and optical networks.

Unlike previous algorithms, our algorithm generates paths from one
source to all destinations. Our algorithm is strongly polynomial, and is
asymptotically faster than earlier algorithms. We corroborate our analysis
by a preliminary simulation study.

I. INTRODUCTION

The basic problem in QoS-sensitive routing for emerging ser-
vices such as VoIP (Voice over IP), video, interactive multime-
dia etc. is to find the cheapest route from a source to a destina-
tion (or destinations) that satisfies one or more QoS criteria. The
most important QoS criteria are end-to-end bandwidth require-
ment and end-to-end delay threshold. This basic problem is im-
portant for IP networks as well as optical networking.

Most QoS criteria fall into one of two categories depending
on the routing induced by the criterion. Monotone criteria re-
sult in the routing to a specific destination taking place along a
tree. A key property of monotone criteria is that sub-paths of op-
timal paths are themselves optimal. End-to-end bandwidth re-
quirement is an example of a monotone QoS criterion. These
can be implemented using simple link filters. In general, since
monotone criteria result in a tree, OSPF extensions for QoS are
particularly well suited for monotone criteria [2].

The other kind of QoS criteria are what we call additive met-
rics. The prime example of additive QoS metrics is delay: the
delay of a path is the sum of the delays of the links along the path.
The goal is to find the cheapest path with respect to the cost met-
ric, such that the delay of the path is less than a user-specified
end-to-end delay threshold. Unlike monotone criteria, additive
metrics need not result in routing to a specific destination taking
place along a tree. In figure 1, for example, the cheapest paths
from the source S which satisfies a delay threshold of 15 do not
form a tree. Since the routes do not form a tree, it is infeasible
to store routing tables inside the network as simple next hop ta-
bles per destination like OSPF and RIP [5]. Storing the entire

Ashish Goel is at the Department of Computer Science, University of South-
ern California. He was at Lucent Bell Labs when this work was done. Email:
agoel@cs.usc.edu

K.G. Ramakrishnan is the Director of the Network Planning and Optimization
group at Winphoria Networks. He was at Lucent Bell Labs when this work was
done. Email:ram@winphoria.com

Deepak Kataria is at Lucent Bell Labs, Murray Hill, NJ. Email:
kataria@lucent.com

Dimitris Logothetis is at Lucent Bell Labs. Email: dlogothetis@lucent.com

path or even the next hop for each separate source-destination
pair and delay threshold is impractical since the routing tables
would grow too large. Instead, we need an efficient algorithm to
compute these delay sensitive routes at the source.

This problem is known to be NP-hard [3]. Previous theoretical
work on this problem has focussed on finding approximately op-
timal paths from one source to a single destination. In this paper
we make some simple engineering observations which lead to an
algorithm for computing approximately optimal paths from one
source to all destinations in less time asymptotically than previ-
ous algorithms for the single-source single-destination problem.
The single source multiple destination nature of our algorithm
makes it particularly well suited for computing route caches at
the source. Our algorithm also has various other desirable prop-
erties which we describe later. Our algorithm is currently being
implemented for use in Lucent Technologies’ optical network
management system.

Background

The problem of computing optimal delay constrained routes at
the source is an instance of the constrained shortest paths prob-
lem. Formally, we are given a network G(V;E) where V is the
set of nodes andE the set of links. The network has n nodes and
m links. There are two metrics defined on each link: a cost met-
ric l and a delay metric t. We are also given a user-specified delay
thresholdT and a source node s. The goal is to find the cheapest
paths (as measured using the cost metric l) from s to all destina-
tions that satisfy the delay thresholdT . This problem is known to
be NP-hard [3]. Several Lagrangian relaxation algorithms have
been proposed (see [6] for an example) but no theoretical bounds
are known for these algorithms. Further, Lagrangian relaxation
methods are restricted to single-source single-destination com-
putations. Hassin proposed an algorithm which computes an ap-
proximately optimal path from a source s to a specific destination
d in time O(mn

�
log log UB

LB ), where UB and LB are the costs
of the fastest and the cheapest path from source s to destina-
tion d. This algorithm is guaranteed to find a path, if one ex-
ists, which satisfies the delay threshold exactly. Also, the cost
of the path is guaranteed to be within (1 + �) of the cost of the
cheapest path which satisfies the delay threshold1. This algo-
rithm is not strongly polynomial i.e. the running time depends
not only on the size of the graph but also on the costs of the links.
Strongly polynomial variants of this algorithm have also been
proposed [8], [7].

1This algorithm is a fully polynomial time approximation scheme, or FPTAS.
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Fig. 1. An example to show that the cheapest paths satisfying a delay threshold do not form a tree. The pair of numbers at each link denote (delay,cost). The delay
threshold is 15. S is the source. Part (b) shows the optimal paths from S to D1 and D2, and (c) shows the optimal path from S to D3.

Relaxing the delay constraint

Our algorithm is based on the observation that it might be ac-
ceptable to violate the delay threshold2 upto a small constant
fraction �. Thus we will attempt to find the cheapest paths which
satisfy the delay thresholdT but we will also accept paths which
have a delay of up to T (1 + �). In other words, instead of relax-
ing the costs, we will relax the delay constraint. As we will see
later this relaxation allows us to compute single source multiple
destination paths.

Our results

Given a source s and a delay threshold T , a destination d is
said to be feasible if there is a path from s to dwith delay at most
T . In this paper we present an algorithm that computes paths
from the source s to all feasible destinations d such that

1. The cost of the path from s to d is at most the cost of the
cheapest path from s to d with delay at most T .
2. The delay of the the path from s to d is at most (1 + �)T .

The running time of our algorithm is O((m + n logn)D=�)
where D is the length, in hops, of the longest path that we find.
D can be at most n� 1 in the worst case. This compares favor-
ably with the best known single-source single-destination run-
ning time of O(mn(1=� + logn)) due to Raz and Lorenz [7].
While there may be instances where mn < (m + n logn)D,
in realistic networks, D is much smaller than n= logn. Our al-
gorithm is strongly polynomial, and is progressive i.e. the qual-
ity of the solution improves progressively so that the algorithm
can be interrupted at any time. Further, the algorithm does not
need to knowD in advance. We use standard dynamic program-
ming techniques to obtain our result. Our main contribution is
the observation that relaxing the delay constraint leads to a much
simpler, faster, and single-source multiple destination solution.
Our analysis is corroborated by a preliminary simulation study
on random networks.

Section II presents our algorithm and running time analysis.
Section III presents our simulation results.

2The approach in [4], [8], [7] is to discretize the cost and then “search” for the
right discretization. This leads to an approximation for the cost. Since the right
discretization depends on the destination, this approach seems doomed to find
single-source single-destination paths.

Inputs: Graph G with link costs lij and delays tij and a
delay threshold T .
Outputs: Tables L(v; t) and P (v; t); 1 � v � n; 0 � t �
t. The entry L(v; t) is the cost of the cheapest path from
1 to v whose delay is no more than t. The entry P (v; t)
encodes the cheapest path from 1 to v, whose delay is no
more than t.
1. Initialize L(1; t) = 0; t = 0; � � � ; T
2. Initialize L(j; 0) =1; j = 2; � � � ; n
3. Compute L(j; t) = minfL(j; t� 1);

minkjtkj�t and(k;j)2E fL(k; t� tkj) + lkjgg

where j = 2; � � � ; N , t = 1; � � � ; T

Fig. 2. Subroutine DAD which iterates on integer delays.

II. DELAY SCALING ALGORITHM

In this section we present our algorithm, DSA (Delay Scal-
ing Algorithm); the name comes from the fact that the algorithm
works by scaling delays. Recall that there are n nodes, m links,
and the delay threshold is T . We will assume that the nodes are
numbered from 1 to n, with the source being numbered 1. Recall
that a node d is feasible if there is a path from s to dwith delay at
most T . We will preprocess the network by pruning out all nodes
which are not feasible using one single run of Dijkstra’s shortest
path algorithm using the delay metric.

DSA uses the simple dynamic programming algorithmDAD(G; T ),
described in figure 2 as a subroutine. In this subroutine we as-
sume that all link-delays as well as the delay threshold T are
positive integers. Let L(i; t) be the cost of a cheapest path from
source node 1 to node i with delay at most t. DAD(G; T ) builds
up the tableL(i; t). The time complexity of the subroutine DAD
is O(mT ), where m is the number of links in the network.

As mentioned earlier, the delay-scaling algorithm, DSA(G; T; �)
finds an approximate solution to the constrained shortest path
problem. More specifically, it computes paths from the source
s to all destinations d such that
1. The cost of the path found from s to d is at most the cost of
the cheapest path from s to d with delay at most T .
2. The delay of the the path from s to d is at most (1 + �)T .

The delay scaling algorithm attempts to balance the tradeoff
between scaling down the delay requirement (so that DAD can
work faster) and the inaccuracy introduced by truncating scaled
delays to integers. The algorithm works as follows:
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A � -scaling G� of graph G is obtained by multiplying the de-
lay on each link in G by �=T and then truncating the new delay
to an integer. Some of the delays may now become zero – we
will ignore this fact in the initial description and analysis of the
algorithm and will get back to it later. The corresponding delay
constraint for the new scaled graph is taken to be � . The algo-
rithm DSA(G; T; �) works as follows:
1. Set � = �0 (a small number � T )
2. Call DAD(G� ; � ) to compute the L(v; t) and P (v; t) tables
3. Compute the delays in the original graph G for each of paths
P (v; � ) and store the delays in D(v).
4. If 9v 2 G such that D(v) > T (1 + �) set � = 2� and go to
Step 2.

The table calculated during the last invocation of DAD con-
tains the constrained shortest paths.

Theorem II.1: The worst case complexity of the algorithm is
O(mD

� ), whereD is the maximum length in hops of any optimal
constrained shortest path in the graph G.

Proof: To obtain this result we need the following lemma.
The proof of the lemma is straightforward and is omitted.

Lemma II.1: Let P� (v) denote the cheapest path from the
source to any vertex v in G� satisfying the delay constraint � .
The cost of P� (v) is no more than the cost of the cheapest path
between s and v satisfying the delay constraint T in G. Further,
the delay of P� (v) in G is at most T (1 + D=� ) where D is the
maximum length, in hops, of any cheapest path satisfying the de-
lay constraint � .

We now continue with the proof of the theorem. If � � D=�
then the delay of P� (v) in G is at most T (1 + �), and the algo-
rithm DSA(G; T; s; �) terminates during step 3. Thus, the run-
ning time of DSA is at most of order

m�0 + 2 �m�0 + : : :+ 2k �m�0;

where k =
l
log D=�

�0

m
. Summing up, the running time is at most

of order
4 � 2k�1�0 < 4mD=�:

Notice that the algorithmguarantees a running time ofO(mD=�)
without needing to know D. The constant hidden inside the O-
notation is quite small.

ClearlyD < n. The worst case running time of this algorithm
is independent of the delay/cost values and hence, this algorithm
scales well as these values change. Further, a single invocation
ofDSA finds the constrained shortest path from the source to all
destinations.

To handle zero-delay links, we must run an invocation of Di-
jkstra’s algorithm during each iteration of the dynamic program
DAD to update costs due to zero delay. The only links consid-
ered during this invocation will be zero delay links. Since Dijk-
stra’s algorithm runs in timeO(m+n log n), the overall running
time of our algorithm would be O((m+n logn)D=�). As stated
earlier, this is asymptotically better than O(mn logn + mn=�)
of Lorenz and Raz [7] in most realistic scenarios; further, DSA
can compute paths from one source to all destinations.

Several properties of DSA are worth reiterating:
1. The time complexity result has a value D, but the algorithm
does not need to know this value.

2. A slightly weaker time complexity result for our algorithm is
O( (m+n logn)n

�
), but in most real-life cases the tighter complex-

ity result we present above is orders of magnitude better than the
weaker result.
3. DSA has a progressive property that is useful in practice: the
accuracy of the solution progressively improves with successive
invocations of DAD. DSA can be terminated in the middle and
still produce reasonable answers. For instance, when there is a
call processing time budget during call setup, we can terminate
the execution when the time runs out, and still have a reasonably
accurate solution in the form of the last table computed using
DAD.
4. DSA is strongly polynomial, i.e. the running time bound
does not depend on the actual delay and cost values on the
links. Strongly polynomial algorithms are traditionally consid-
ered more robust. Hassin’s original algorithm was not strongly
polynomial [4].

Delay can be replaced by any additive metric in the above dis-
cussion. One interesting metric is packet loss probability, which
is not additive itself, but becomes additive when we take its loga-
rithm. Thus the above result could also be used to find the cheap-
est path satisfying a given packet loss threshold. The basic ideas
in this paper can also be extended to multiple constraining met-
rics.

III. SIMULATION RESULTS

In this section we compare our delay scaling algorithm to Has-
sin’s algorithm in terms of executions times with the same � (=
5%). The results here should be taken as a preliminary indica-
tion. A more complete simulation study would require a suite of
realistic network topologieswith both cost and delay data as well
as careful implementations of several candidate algorithms (not
just Hassin’s algorithm); such a study is beyond the scope of this
paper.

These results were obtained on a Sun Enterprise 3000 with
1 GB of memory and running SunOS 5.6. All running times
reported are in seconds. For our experiments we used random
graphs of a given node size n and connectivity p which we de-
fined as the probabilityof a link existence between nodes i and j.
The link cost and delay are also random numbers uniformly dis-
tributed in the open interval [1, 1000]. The quantityD (the max-
imum hop-count) is O(logn) for this class of networks. We also
scale the mean of the delay distribution by a factor 0 < r < 1
to achieve the effect of light/heavy network load. Hassin’s al-
gorithm is referred to as the cost-scaling algorithm. The column
“Dijkstra” refers to the classical shortest path algorithm [1] that
finds shortest paths to all destinations; this algorithm ignores the
delay metrics on each link and finds the cheapest path to all nodes
using only the cost metric. The result from “Dijkstra” is not fea-
sible, and these numbers are only provided to establish a bench-
mark. We report times for single-source multiple-destinations
for all algorithms.

As can be seen from tables I, II, III, IV, and V,the delay scal-
ing algorithm runs much faster than the cost-scaling algorithm.
Each running time reported is a mean of twenty independent
replications.
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No. of Connec- cost- delay- Dijks-
nodes tivity scaling scaling tra
100 0.1 2.192 0.160 0.006
100 0.2 2.730 0.375 0.006
100 0.3 2.582 0.634 0.006
150 0.1 6.252 0.701 0.014
150 0.2 7.394 1.116 0.014
150 0.3 7.802 1.514 0.014
200 0.1 15.432 1.088 0.024
200 0.2 16.110 1.782 0.074
200 0.3 16.721 1.670 0.074
250 0.1 27.447 1.479 0.038
250 0.2 30.011 1.855 0.038
250 0.3 31.372 2.244 0.138
300 0.1 47.220 1.502 0.104
300 0.2 51.379 2.491 0.055
300 0.3 54.273 3.414 0.155

TABLE I

LOAD = 0.1 (VERY LIGHTLY LOADED NETWORK)

No. of Connec- cost- delay- Dijks-
nodes tivity scaling scaling tra
100 0.1 2.236 0.160 0.006
100 0.2 2.525 0.425 0.006
100 0.3 2.717 0.632 0.006
150 0.1 6.295 0.601 0.013
150 0.2 7.469 1.116 0.014
150 0.3 7.705 1.415 0.064
200 0.1 15.443 0.887 0.124
200 0.2 16.142 1.788 0.024
200 0.3 16.533 1.460 0.025
250 0.1 27.516 1.527 0.140
250 0.2 29.947 1.799 0.038
250 0.3 31.254 2.096 0.088
300 0.1 47.340 1.504 0.054
300 0.2 51.582 2.487 0.155
300 0.3 54.216 3.218 0.055

TABLE II

LOAD = 0.5 (LIGHTLY LOADED NETWORK)

IV. CONCLUSIONS

We studied the problem of delay sensitive routing. Relax-
ing the delay constraint instead of approximating the costs re-
sults in an algorithm that is asymptotically faster than earlier al-
gorithms, and more importantly, computes routes from a single
source to all destinations; earlier algorithms were single-source
single-destination.
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