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Abstract

We consider the problem of computing hedging portfolios for options that may have

discontinuous payoffs, in the framework of diffusion models in which the number of fac-

tors may be larger than the number of Brownian motions driving the model. Extending

the work of Fournie et al (1999), as well as Ma and Zhang (2000), using integration

by parts of Malliavin calculus, we find two representations of the hedging portfolio in

terms of expected values of random variables that do not involve differentiating the

payoff function. Once this has been accomplished, the hedging portfolio can be com-

puted by simple Monte Carlo. We find the theoretical bound for the error of the two

methods. We also perform numerical experiments in order to compare these methods

to two existing methods, and find that no method is clearly superior to others.
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1 Introduction

Until quite recently the method mostly used in practice for evaluating hedging portfolios of

options in standard diffusion models has been based on the fact that the optimal number of

shares to be held is typically obtained by differentiating the option price with respect to the

underlying factors: namely, one would compute the price for some initial value of a factor

X, increase it by a small amount Δx, find the price for the perturbed factor, compute

the difference and divide by Δx. This division usually makes the method much more
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computationally expensive than finding the option price. Typically, if one uses Monte Carlo

with n steps, the error goes from the order of n−1/2 to the order of n−1/4 or n−1/3; see Boyle,

Broadie and Glasserman (1997), henceforth [BBG97]. On the other hand, in special cases

one can use so-called “direct estimates” that avoid re-simulation for the perturbed initial

conditions; see [BBG97] for references. In the recent papers by Fournie et al.(1999,2001),

this was generalized to finite-dimensional Markovian models, and shown that the hedging

portfolio can be calculated as an expected value of a functional involving the gradient of

the option payoff. This brings down the order of the error to n1/2, if Monte Carlo is used.

Moreover, using Malliavin calculus, they show that this expression can be transformed to

avoid the need for computing the gradient of the payoff, which is quite useful, because

typical option payoffs are not everywhere differentiable. Ma and Zhang (2000) extended

these representations to models in which the portfolio process might enter the drift of the

wealth process in a nonlinear fashion.

The models considered in this paper have the following two main features: 1) the num-

ber of factors may be larger than the number of Brownian motions, and 2) the payoff is

discontinuous. A typical model with feature 1) is one in which the underlying stock driven

by one Brownian motion, but the interest rate and volatility are also diffusion processes

driven by the same Brownian motion. The prototypical example of the feature 2) is the

digital option, which will be the focus of our results.

We shall consider two numerical methods for computing the hedging portfolios. The

first one is based on integration by parts in Malliavin calculus, a technique used in the

aforementioned papers. This leads to a new representation of the hedging portfolio that is

not covered by any existing result. Since such a representation by nature does not involve

differentiating the payoff function, it can then be computed by direct Monte Carlo. The

second method is as follows: we first artificially increase the number of Brownian motions to

match the number of factors by perturbing the volatility matrix to a non-singular (square)

one with appropriate number of additional columns, indexed by ε. We then use the results

from the aforementioned papers to obtain a representation of the hedging portfolios in the

“artificial markets”. Finally, we show that as ε→ 0 these portfolios converge to the hedging
portfolio in the original market model.

We then apply these methods to options with discontinuous payoffs, and confirm by

numerical experiments that these procedures provide feasible algorithms for computing

hedging portfolios. We compare our two methods, called M and Mε methods, respectively,

to other methods that are applicable to models with discontinuous payoffs and with the

number of Brownian motions being smaller than that of factors. These include the standard

finite difference “delta method”, or Δ method, and the “Retrieval of Volatility Method”

of Cvitanic, Goukasian and Zapatero (2001), which we call the RVM method. We show
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that, with the appropriate choice of numerical parameters, theMε method has the smallest

standard error, but not much smaller than the Δ method and the RVM method. However,

it seems that theMε method is not as sensitive with respect to the choice of ε as much as the

Δ method is, with respect to the size of the perturbation, or as much as the RVM method is,

with respect to its free parameters. Moreover, in the example we have only two-dimensional

factor process. The computational time of the Δ method increases linearly with the number

of factors, since it has to compute approximate derivatives of the option price with respect

to all the factors. On the other hand, a disadvantage of the three methods other than the

Δ method is that they do not provide the sensitivities of the option price to individual

parameters – they only provide the value of the hedging portfolio.

Somewhat surprisingly, the M method has the largest error, for the same amount of

processing time. In fact, the M method requires the smallest number of time steps and

simulation paths, but it seems to require a lot of time for computing the Skorohod integral.

On the other hand, we do not have to worry about the choice of any small parameters for

the M method, other than the time step size.

In the special framework of models for LIBOR rates Glasserman and Zhao (1999) address

similar issues, but they focus on the computation of “greeks”, and not on the hedging port-

folio, using methods different from ours. The conclusions they derive from their numerical

experiments seem to be consistent with ours.

The rest of the paper is organized as follows. Section 2 describes the model and the

problem. Section 3 gives the new prepresentation formulae for hedging portfolios. Section 4

computes the Skorohod integral involved in a representation. Section 5 presents the second,

approximation based method, and Section 6 reports results of numerical experiments.

2 Problem Formulation

Throughout this paper we assume that (Ω,F , P ) is a complete probability space on which
is defined a d-dimensional Brownian motion W = (Wt)t≥0. Let F

�
= {Ft}t≥0 denote the

natural filtration generated by W , augmented by the P -null sets of F ; and let F = F∞.
Furthermore, we use the notations ∂t =

∂
∂t , ∂x = (

∂
∂x1
, · · · , ∂∂xn ), and ∂

2 = ∂xx = (∂
2
xixj)

n
i,j=1,

for (t, x) ∈ [0, T ]×IRn. Note that if ψ = (ψ1, · · · , ψn)T : IRn �→ IRn, then ∂xψ
�
= (∂xiψ

j)ni,j=1
is a matrix. The meaning of ∂xy, ∂yy, etc., should be clear from the context.

Consider the following market model: there are d risky assets and 1 riskless asset, whose

prices at time t are denoted by St = (S
1
t , · · · , Sdt )T and S0t , respectively. We assume that

the prices follow the following SDE:{
dS0t = S

0
t rtdt;

dSit = S
i
t [rtdt+

∑d
j=1 γ

ij
t dW

j
t ], i = 1, · · · , d.

(2.1)
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We suppose that the volatility matrix γt = [γ
ij
t ] is invertible and the discounted stock

prices are martingales. Let us recall the standard option pricing framework. Suppose that

the seller (hereafter called the investor) of the option is trying to replicate the option payoff

by investing in the market. We denote by πit the amount of money the investor holds in

the stock i at time t, and we denote π = (π1, . . . , πd). Typically, the payoff of the option

is given by g̃(ST ) for some function g̃, and by definition, the (option) price process is equal

to the wealth process which replicates the option at the maturity time T .

The discounted price process satisfies Yt = Y0+
∫ t
0 RsπsγsdWs, whereRt = exp{−

∫ t
0 rsds}.

Since γ and R are both invertible, we can simply set Zt = Rtπtγt so that the discounted

wealth process Y is now described by a simple form:

Yt = Y0 +

∫ t
0
ZsdWs. (2.2)

In this paper we shall assume that r and γ are components of a finitely-dimensional

diffusion process. To be more precise, we shall consider a state process X of the form

X = (S,R,Xd+2, . . . ,Xn), and assume that X is an n-dimensional diffusion which satisfies

the following SDE

dXit = bi(t,Xt)dt+
d∑
j=1

σij(t,Xt)dW
j
t , i = 1, . . . , n, (2.3)

where (X1, . . . ,Xd) = S and Xd+1 = R. We can then set the discounted payoff function to

be g(X) = Rg̃(S), and thus the discounted price process Y of the option at each time is

given by

Yt = E{g(XT )|Ft} = Y0 +
∫ t
0
ZsdWs = g(XT )−

∫ T
t
ZsdWs. (2.4)

It is noted that the triplet (X,Y,Z) is now an {Ft}-adapted solution to the forward-backward
SDE (2.3) and (2.4). We refer the readers to El Karoui, Peng and Quenez (1997) and Ma and

Yong (1999) for a complete account regarding the theory of backward/forward-backward

SDE’s and their applications in finance.

In order to perform hedging in our model, we have to find an efficient numerical method

for computing the portfolio π, or, equivalently, to compute the process Z that makes YT =

RT g̃(ST ) = g(XT ). We are particularly interested in the case where g is a discontinuous

function. A typical example is the so-called digital option (or binary option), that is,

g̃(s) = 1{s≥K}, for some K > 0. The main difficulty in the numerical computation is that

the discontinuity of g will cause many technical problems using standard arguments via the

PDE theory. Secondly, since the dimension of X is n, this increases the dimension of the

corresponding PDE to n state variables (plus one time variable), which makes the PDE

methods very slow for n > 2. A method which can circumvent these difficulties has been

developed by Fournie et al. (1999); however, in that paper it is assumed that the number of
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factors n is equal to the number of Brownian motions (and the number of stocks) d. This

is not the case in many models used in practice, such as the case of one Brownian motion,

but with r or γ being random.

To conclude this section we give the Standing Assumptions that we will use throughout

this paper.

(A1) n ≥ d. The functions b ∈ C0,1b ([0, T ] × IRn; IRn×d), σ ∈ C
0,1
b ([0, T ] × IRn; IRn);

and all the partial derivatives of b and σ (with respect to x) are uniformly bounded by a

common constant K > 0. Furthermore, we assume that

sup
0≤t≤T

{|b(t, 0)| + |σ(t, 0)|} ≤ K.

(A2) The function g : IRn �→ IR is a measurable function; and there exists a constant
K > 0 such that |g(x)| ≤ K(1 + |x|).
We also introduce the following notation: we represent the (n× d) matrix σ as

σ(t, x) =

[
σ1(t, x)

σ2(t, x)

]
, (2.5)

where σ1 is a d× d matrix.

3 Representations of Hedging Portfolios

Recall from the previous section that we are considering the following system of stochastic

differential equations: ⎧⎪⎪⎨⎪⎪⎩
Xt = x+

∫ t
0
b(s,Xs)ds+

∫ t
0
σ(s,Xs)dWs,

Yt = g(XT )−
∫ T
t
ZtdWt.

(3.1)

Let dimension of X be n, and that of W be d. We shall assume (A1)− (A2); and that the
dimension of Y is 1. Our method of computing hedging portfolios is based heavily on the

Feynman-Kac type representation of the process Z of a BSDE, as in Ma and Zhang (2000).

However, our payoff function may not even be continuous, much less uniformly Lipschitz,

as was assumed in Ma and Zhang (2000). For the sake of completeness, we begin by the

following modified representation theorem for the process Z, which can be regarded as a

special case of the Clark-Ocone formula. Note that we do not require that the matrix σ be

a square matrix.

Theorem 3.1 Assume (A1); and assume that the function g is continuous. Denote A =

{x ∈ IRn : ∂xg(x) does not exist}. Assume further that P{XT ∈ A} = 0 and that ∂xg is
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uniformly bounded outside A. Then, we have

Zt = Et[∂xg(XT )∇XT1{XT /∈A}][∇Xt]
−1σ(t,Xt). (3.2)

Here, ∇X is the solution to the variational equation

∇Xt = In×n +
∫ t
0
∂xb(s,Xs)∇Xsds+

∫ t
0
∂xσ(s,Xs)∇XsdWs, (3.3)

where In×n denotes the n× n identity matrix, and Et is the expectation conditional on Ft.

Proof. Let {gε} be a sequence of molifiers of g. That is, gε’s are smooth functions such
that ∂xg

ε are uniformly bounded, gε → g uniformly, and ∂xgε(x)→ ∂xg(x) for all x /∈ A, as
ε → 0. Since gε(XT ) → g(XT ), by standard stability results for backward SDE’s (cf. e.g.,
Ma and Yong (1999)) one has

E

∫ T
0
|Zεt − Zt|2dt→ 0, as ε→ 0. (3.4)

Furthermore, since gε is differentiable with bounded derivatives, we can apply the represen-

tation theorem of Ma and Zhang (2000) (or Clark-Ocone formula) to get

Zεt = Et[∂xg
ε(XT )∇XT ][∇Xt]−1σ(t,Xt).

On the other hand, let us denote the right hand side of (3.2) by Z̃t. It is easy to see that

|Zεt − Z̃t| ≤ Et[|∂xgε(XT )− ∂xg(XT )||∇XT |1{XT /∈A}]|[∇Xt]
−1||σ(t,Xt)|

+Et[|∂xgε(XT )||∇XT |1{XT∈A}]|[∇Xt]
−1||σ(t,Xt)|,

where |v| Δ=[|v1|, · · · , |vn|]T whenever v = [v1, · · · , vn]T . Noting that P{XT ∈ A} = 0, and
that ∂xg

ε(XT ) → ∂xg(XT ) for XT /∈ A, applying the dominated convergence theorem we
have

E

∫ T
0
|Zεt − Z̃t|2dt→ 0.

This, together with (3.4), implies that Z̃ = Z, dt × dP -a.s. Finally, note that being the
product of a martingale and a continuous process Z̃ has a càdlàg version. Thus as a

modification of Z̃, we conclude that Z has a càdlàg version as well, completing the proof of

the theorem.

We remark that in Theorem 3.1 the assumption P{XT ∈ A} = 0 plays a crucial role.
However, in practice such an assumption is not easy to verify, especially in the case when

d < n. The following sufficient condition is therefore useful for our future discussion.

Theorem 3.2 Assume (A1), and that g is uniformly Lipschitz in all variables, and dif-

ferentiable with respect to (xd+1, · · · , xn). Assume further that det(σ1(T,XT )) �= 0. Then,
P{XT ∈ A} = 0. In particular, (3.2) holds.
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Proof. Let X̂
�
= (X1, · · · ,Xd)T . We first show that the law of X̂T is absolutely continuous

with respect to the Lebesgue measure on IRd, denoted by | · |d.
To this end, let Â =ProjIRd(A) be the projection of set A on IR

d, where A is the set

defined in Theorem 3.1. That is,

Â
�
= {x̂ = (x1, · · · , xd) : ∃(xd+1, · · · , xn), such that x

�
= (x1, · · · , xn) ∈ A}.

Since g is Lipschitz continuous on (x1, · · · , xd), and differentiable on (xd+1, · · · , xn), we see
that |Â|d = 0. Next, note that by standard arguments one shows that XT (whence X̂T ) is
“Malliavin differentiable”, that is, XT ∈ lD1,2 and

DtXT = ∇XT [∇Xt]−1σ(t,Xt). (3.5)

In particular, we have

DTXT = σ(T,XT ), and DT X̂T = σ1(T,XT ).

Define γ̃
�
=

∫ T
0
DtX̂T (DtX̂T )

Tdt. From (3.5) it is readily seen that (DtXT ) is continuous

in t, and that

det(DT X̂T ) = det(σ1(T,XT )) �= 0, a.s..

Therefore, for ∀x ∈ IRd such that x �= 0, xDtX̂T (DtX̂T )TxT is nonnegative for all t ∈ [0, T ]
and is positive for t close to T . Thus we have x

{∫ T
0 (DtXT )(DtXT )

Tdt
}
xT > 0, which

implies that the symmetric matrix γ̃ has positive determinant. Now we can apply Theorem

2.1.2. of Nualart (1995) to conclude that the law of X̂T is absolutely continuous with respect

to | · |d, which, combined with the fact that |Â|d = 0, implies that P (X̂T ∈ Â) = 0. Since
g is differentiable with respect to xd+1, · · · , xn, we see that P (XT ∈ A) = 0, and the result
follows from Theorem 3.1.

Motivated by the digital option, we now consider the case where g is allowed to be

discontinuous. To the best of our knowledge, the representation theorem in such a situation

is new. We state the theorem specifically for an option with one discontinuity point, but

the result can easily be extended to an option with finitely many discontinuities. The proof

is motivated by Proposition 2.1.1 in Nualart (1995).

Theorem 3.3 Assume d = 1, σ1(t, x) ≥ c0 and σ, b ∈ C0,2 with bounded first and second
derivatives. Assume that g is differentiable with respect to x2, · · · , xn, with bounded deriva-
tives; and that g is uniformly Lipschitz continuous with respect to x1, except for the point

x1 = x
∗
1, and both g(x

∗
1+, x2, · · · , xn) and g(x∗1−, x2, · · · , xn) exist and are differentiable.

Then for t ∈ [0, T ), we have

Zt = Et
{
∂xg(XT )∇XTut1{X1T /∈A} + 1{X1T>x∗1}δt(Ftu·)

}
,

7



where A is the same as in Theorem 3.1; X̂2
�
= (X2, · · · ,Xn)T ; ∇X =

(
∇X1

∇X̂2

)
is the

solution to (3.3), δt(·) is the indefinite Skorohod integral over [t, T ];

Ft
�
=
Δg(x∗1, X̂

2
T )[∇X1Tut]∇X1T
‖DX1T ‖2[t,T ]

, ut
�
= [∇Xt]−1σ(t,Xt), t ∈ [0, T ]; (3.6)

and

‖DX1T ‖2[t,T ]
�
=

∫ T
t
|DsX1T |2ds, Δg(x∗1, x̂2)

�
= g(x∗1+, x̂

2)− g(x∗1−, x̂2).

To prove the theorem, we need a technical lemma, whose proof we omit.

Lemma 3.4 Assume that all the assumptions of Theorem 3.3 are in force. Then for any

t < T , the process {Ftus}t≤s≤T is Skorohod integrable over [t, T ].

Proof of Theorem 3.3. First we denote x = (x1, x2, · · · , xn) = (x1,x2) and recall that
A
�
= {x1 ∈ IR : g is not differentiable at x1}. Define gε be a modification of g as follows.

gε(x1,x2)
�
=

⎧⎪⎪⎨⎪⎪⎩
g(x1,x2), |x1 − x∗1| > ε;

(x∗1+ε)−x1
2ε

g(x∗1−ε,x2)+
x1−(x∗1−ε)

2ε
g(x∗1+ε,x2), otherwise.

(3.7)

Then clearly lim
ε→0
|gε(x)− g(x)| = 0, for all x except for x = (x∗1,x2). Now by Theorem 3.2,

we have

Zεt = Et
{
∂xg

ε(XT )∇XT1{X1T /∈Aε}
}
ut,

where Aε
�
= (A∩{|x1−x∗1| > ε})∪{x∗1+ ε, x∗1− ε}. Since Zε is the martingale integrand in

the solution of BSDE (3.1) with g being replaced by gε, the stability result of BSDE’s tells

us that

lim
ε→0
E

{∫ T
0
|Zεt − Zt|2dt

}
= 0. (3.8)

Now note that

∂xg
ε(XT )∇XT1{X1T /∈Aε} =

[
∂1g

ε(XT )∇X1T + ∂x2gε(XT )∇X̂2T
]
1{X1T /∈Aε}

=
1

2ε
[g(x∗1 + ε, X̂

2
T )− g(x∗1 − ε, X̂2T )]∇X1T1{|X1

T
−x∗1|<ε}

+∂1g
ε(XT )∇X1T1{X1T∈({|x1−x∗1|>ε}\A)} + ∂x2g

ε(XT )∇X̂2T1{X1T /∈Aε}

=
1

2ε
Δg(x∗1, X̂

2
T )∇X1T1{|X1

T
−x∗1|<ε} +

1

2ε
1{|X1

T
−x∗1|<ε} × (3.9)

[(g(x∗1 + ε, X̂
2
T )− g(x∗1+, X̂2T )) + (g(x∗1−,X2T )− g(x∗1 − ε, X̂2T ))]∇X1T

+∂1g
ε(XT )∇X1T1{X1

T
∈({|x1−x∗1|>ε}\A)} + ∂x2g

ε(XT )∇X̂2T1{X1
T
/∈Aε}

= Iε1 + I
ε
2 + I

ε
3 + I

ε
4 ,
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where Iε1 , . . . , I
ε
4 are defined in the obvious way. Clearly

lim
ε→0
Iε3 = ∂1g(XT )∇X1T1{X1T /∈A}; limε→0 I

ε
4 = ∂x2g

ε(XT )∇X̂2T1{X1T /∈A}.

Now similar to Theorem 3.2 we can show that the law of X1T has a density, thus limε→0
Iε2 = 0.

So by (3.8) it suffices to show that

lim
ε→0
Et{Iε1ut} = Et

{
1{X1

T
>x∗1}δt(Ftu·)

}
. (3.10)

To do this, for ∀a < b, we define ψ(x) �= 1[a,b](x) and ϕ(x)
�
=
∫ x
−∞ ψ(y)dy. Then for

t ≤ s ≤ T ,
Dsϕ(X

1
T ) = ψ(X

1
T )DsX

1
T .

Multiplying both sides above by DsX
1
T and then integrating over [t, T ], we have∫ T

t
Dsϕ(X

1
T )DsX

1
T ds = ψ(X

1
T )

∫ T
t
|DsX1T |2ds.

Since Ftu· is Skorohod integrable over [t, T ], thanks to Lemma 3.4, applying integration by

parts formula we get

Et
{
ψ(X1T )Δg(x

∗
1, X̂

2
T )∇X1Tut

}
= Et

{∫ T
t
Dsϕ(X

1
T )
DsX

1
TΔg(x

∗
1, X̂

2
T )∇X1Tut

‖DX1T ‖2[t,T ]
ds

}

= Et

{∫ T
t
Dsϕ(X

1
T )Ftusds

}
= Et

{
ϕ(X1T )δt(Ftu·)

}
.

On the other hand, by the Fubini Theorem we have

Et
{
ψ(X1T )Δg(x

∗
1, X̂

2
T )∇X1T

}
=

∫ b
a
Et
{
1{X1T>y}

δt(Ftu·)
}
dy. (3.11)

Note again that the law of X1T has a density, thus the integrand in the right hand side of

(3.11) is continuous with respect to y. Thus, letting [a, b] = [x∗1 − ε, x∗1 + ε], dividing both
sides of (3.11) by ε, and then sending ε→ 0 we obtain (3.10), whence the theorem.

If, in fact, the volatility matrix σ is squared, then the following theorem gives a simpler

representation result. We omit the proof. The result was given under stronger conditions

in Fournie et al. (1999), and extended in Ma and Zhang (2000).

Theorem 3.5 Assume d = n and (A1), (A2), and that the matrix σ is non-degenerate.

Assume further that |A|d = 0, where A ⊂ IRd is the set of all discontinuity points of g.
Then

Zt = Et{g(XT )N tT }σ(t,Xt), (3.12)

where N tT
�
=

1

T − t

[∫ T
t
(σ−1(r,Xr)∇Xr)TdWr

]T
[∇Xt]−1. In particular,

Z0 = E{g(XT )N0T }σ(0, x). (3.13)
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4 Computation of the Skorohod Integral

In the case of a digital option, we see from Theorem 3.3 that the representation of the

hedging portfolio involves a Skorohod integral, which needs to be dealt with numerically so

that the representation is useful in practice. In this section we propose a scheme to compute

this Skorohod integral explicitly.

Due to the Markovian nature of our setting, we shall consider only t = 0:

Z0 = E
{
∂xg(XT )∇XTσ(0, x)1{X1T /∈A} + 1{X1T>x∗1}δ(Fu·)

}
, (4.1)

where δ = δ0, ‖DX1T ‖2H = ‖DX1T ‖2[0,T ], and

F
�
= F0 =

Δg(x∗1, X̂
2
T )[∇X1Tσ(0, x)]∇X1T
‖DX1T ‖2H

.

We remark here that although the Skorohod integral can be approximated by Riemann

sums (see Nualart (1995)), in our case the Riemann summand will still contain the Malliavin

Derivative DX1T , which is quite undesirable in practice. We now try to derive a scheme that

involves only computations of Itô integrals and Lebesgue integrals, which can be simulated

simultaneously with the underlying assets. To begin our analysis, let us first use integration

by parts formula for Skorohod integrals and noting that Δg(x∗1, X̂
2
T )[∇X1Tσ(0, x)] is a scalar,

we have

I
�
= δ(Fu·) = F

∫ T
0
utdWt −

∫ T
0
(DtF )utdt. (4.2)

It is easy to see that the only “unusual” part in F , which involves the Malliavin derivative,

is ‖DX1T ‖2H . However, it can be calculated as follows:

‖DX1T ‖2H =

∫ T
0
|∇X1T [∇Xt]−1σ(t,Xt)|2dt = ∇X1T

{∫ T
0
utu

T
t dt

}
[∇X1T ]T . (4.3)

It remains to calculate the integral

∫ T
0
(DtF )utdt. To this end, let us denote ∂2Δg =

(∂x2 , · · · , ∂xn)(Δg). A direct computation shows that

(DtF )ut =
1

‖DX1T ‖2H

{
[∂2Δg(x

∗
1, X̂

2
T ))∇X̂2Tut][∇X1Tσ(0, x)][∇X1T ut] (4.4)

+Δg(x∗1, X̂
2
T )[[Dt∇X1T ]σ(0, x)][∇X1T ut] + Δg(x∗1, X̂2T )[∇X1Tσ(0, x)][Dt∇X1Tut]

}

−Δg(x∗1, X̂2T )[∇X1Tσ(0, x)][∇X1T ut]
Dt‖DX1T ‖2H
‖DX1T ‖4H

= I1(t) + I2(t) + I3(t)− I4(t),

where Ii’s are defined in the obvious way. We now analyze
∫ T
0 Ii(t)dt separately. First,∫ T

0
I1(t)dt =

∇X1Tσ(0, x)∂2Δg(x∗1, X̂2T )∇X2T
‖DX1T ‖2H

{∫ T
0
utu

T
t dt

}
[∇X1T ]T . (4.5)
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Next, since ∇X is the solution to the variational SDE (3.3), we have

[∇Xt]−1 = Id−
∫ t
0
[∇Xs]−1(∂xb− (∂xσ)2)(s,Xs)ds −

∫ t
0
[∇Xs]−1∂xσ(s,Xs)dWs;

Dt∇Xu = ∂xσ(t,Xt)∇Xt +
∫ u
t
[Dt∂xb(s,Xs)∇Xs + ∂xb(s,Xs)Dt∇Xs]ds

+

∫ u
t
[Dt∂xσ(s,Xs)∇Xs + ∂xσ(s,Xs)Dt∇Xs]dWs, t ≤ u ≤ T. (4.6)

Now applying Itô’s formula we get

Γtu
�
= [∇Xu]−1Dt(∇Xu) = [∇Xt]−1∂xσ(t,Xt)∇Xt
+

∫ u
t
[∇Xs]−1[Dt∂xb(s,Xs)− ∂xσ(s,Xs)Dt∂xσ(s,Xs)]∇Xsds (4.7)

+

∫ u
t
[∇Xs]−1Dt∂xσ(s,Xs)∇XsdWs.

Note that the (i, j)-th entry of the n× n matrix ∇X is ∇jXi. Thus for i = 1, · · · , n we
deduce from (4.7) that Dt∇Xiu = ∇XiuΓtu. Moreover, since⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dt(∂xb(s,Xs)) =
n∑
k=1

[∂k(∂xb)] (s,Xs)[∇Xks ut];

Dt(∂xσ(s,Xs)) =
n∑
k=1

[∂k(∂xσ)] (s,Xs)[∇Xks ut],
(4.8)

where, for ψ = b, σ, ∂k(∂xψ) is an n × n matrix whose (i, j)-th entry is ∂xk∂xjψi, we may
rewrite (4.7) as

Γtu = γt +
n∑
k=1

∫ u
t
[∇Xks ut]

[
αksds+ β

k
s dWs

]
, (4.9)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
αks
�
= [∇Xs]−1[∂k(∂xb)− ∂xσ∂k(∂xσ)](s,Xs)∇Xs

βks
�
= [∇Xs]−1∂k(∂xσ)(s,Xs)∇Xs;

γt
�
= [∇Xt]−1∂xσ(t,Xt)∇Xt.

(4.10)

Combining (4.9) and Dt∇Xiu = ∇XiuΓtu, from (4.4) we obtain∫ T
0
I2(t)dt =

Δg(x∗1, X̂
2
T )
∫ T
0 [∇X1Tut]Dt[∇X1T ]dtσ(0, x)
‖DX1T ‖2H

=
Δg(x∗1, X̂

2
T )
∑n
1 ∇jX1T I

j
2σ(0, x)

‖DX1T ‖2H
, (4.11)

where

Ij2
�
=

∫ T
0
ujtDt∇X1Tdt =

∫ T
0
ujt∇X1TΓtTdt

= ∇X1T

{∫ T
0
ujtγtdt+

n∑
k=1

∫ T
0
[∇Xks

∫ s
0
ujtutdt]

[
αksds+ β

k
s dWs

]}
,
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thanks to Fubini’s Theorem. Using analogous arguments, we get∫ T
0
I3(t)dt =

Δg(x∗1, X̂
2
T )[∇X1Tσ(0, x)]
‖DX1T ‖2H

∫ T
0
Dt∇X1Tutdt (4.12)

+
Δg(x∗1, X̂

2
T )[∇X1Tσ(0, x)]
‖DX1T ‖2H

∇X1T

⎧⎨⎩
∫ T
0
γtutdt+

n∑
k,j=1

∫ T
0
∇jXks

[∫ s
0
u
j
tutdt

][
αksds+β

k
s dWs

]⎫⎬⎭ .
It remains to analyze

∫ T
0
I4(t)dt. First, by (4.3) we have

Dt‖DX1T ‖2H = 2Dt[∇X1T ]
∫ T
0
uru

T
r dr[∇X1T ]T + 2∇X1T

∫ T
t
(Dtur)u

T
r dr[∇X1T ]T . (4.13)

From ∇Xrur = σ(r,Xr), we have (Dt[∇Xr])ur +∇Xr(Dtur) = ∂xσ(r,Xr)∇Xrut, and

Dtur = [∇Xr]−1 [∂xσ(r,Xr)∇Xrut − (Dt∇Xr)ur] . (4.14)

By (4.4) and (4.13), and applying Fubini’s theorem again, we have∫ T
0
I4(t)dt =

2Δg(x∗1, X̂
2
T )[∇X1Tσ(0, x)]
‖DX1T ‖4H

n∑
j=1

∇jX1T × (4.15)

{∫ T
0
u
j
tDt∇X1Tdt ·

∫ T
0
uru

T
r dr+∇X1T

∫ T
0

[ ∫ r
0
u
j
tDturdt

]
uTr dr

}
[∇X1T ]T .

Using (4.14), we can rewrite (4.15) as∫ T
0
I4(t)dt =

2Δg(x∗1, X̂
2
T )[∇X1Tσ(0, x)]
‖DX1T ‖4H

n∑
j=1

∇jX1T ×{∫ T
0
ujtDt∇X1Tdt ·

∫ T
0
uru

T
r dr +∇X1T

∫ T
0
γr

(∫ r
0
ujtutdt

)
uTr dr

−∇X1T
∫ T
0
[∇Xr]−1

(∫ r
0
ujtDt∇Xrdt

)
uru

T
r dr

}
[∇X1t ]T (4.16)

=
2Δg(x∗1, X̂

2
T )[∇X1Tσ(0, x)]
‖DX1T ‖4H

n∑
j=1

∇jX1T
{
Ij,14 + I

j,2
4 − I

j,3
4

}
[∇X1T ]T ,

where Ij,l4 , l = 1, 2, 3, are defined in an obvious way. In particular,

Ij,24
�
= ∇X1T

∫ T
0
γr

(∫ r
0
ujtutdt

)
uTr dr. (4.17)

Recalling (4.9), (4.7) and Dt∇Xiu = ∇XiuΓtu, we have

I
j,1
4 = ∇X1T

{∫ T
0
u
j
tγtdt+

n∑
k=1

∫ T
0
[∇Xks

∫ s
0
u
j
tutdt]

[
αksds+ β

k
s dWs

]}( ∫ T
0
uru

T
r dr
)
;

Ij,34 = ∇X1T
∫ T
0

{∫ r
0
ujtγtdt+

n∑
k=1

∫ r
0
[∇Xks

∫ s
0
ujtutdt]

[
αksds+ β

k
s dWs

]}
uru

T
r dr.

(4.18)
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Finally, since (4.16) can be calculated via (4.18) and (4.17), we can compute
∫ T
0 (DtF )utdt

by computing (4.5), (4.11), (4.12) and (4.16). Consequently, combined with (4.3) we can

compute the Skorohod integral I in (4.2).

Summary of the algorithm.

We have obtained the following explicit scheme for computing the Skorohod integral in

(4.2). Recall the processes Xt, ∇Xt and [∇Xt]−1 and define:

ut = [∇Xt]−1σ(t,Xt); At =
∫ t
0
usdWs; Bt =

∫ t
0
usu

T
s ds;

αkt = [∇Xt]−1[∂k∂xb− ∂xσ∂k∂xσ](t,Xt)∇Xt; βkt = [∇Xt]−1∂k∂xσ(t,Xt)∇Xt;

γt = [∇Xt]−1∂xσ(t,Xt)∇Xt; Cjt =
∫ t
0
ujsγsds+

n∑
k=1

∫ t
0
[∇XksBjs ]

[
αksds+ β

k
s dWs

]
;

Ht =

∫ t
0
γsusds+

n∑
j,k=1

∫ t
0
∇jXksBjs

[
αksds+ β

k
s dWs

]
; Ljt =

∫ t
0

[
γsA

j
s − Cjsus

]
uTs ds;

Then we have

I =
1

∇X1TBT [∇X1T ]T
{
Δg(x∗1, X̂

2
T )[∇X1Tσ(0, x)][∇X1TAT ]

−[∇X1Tσ(0, x)]∂2Δg(x∗1, X̂2T )∇X̂2TBT [∇X1T ]T (4.19)

−Δg(x∗1, X̂2T )
n∑
j=1

∇jX1T∇X1TC
j
Tσ(0, x) −Δg(x∗1, X̂2T )[∇X1Tσ(0, x)]∇X1THT

}

+
2Δg(x∗1, X̂

2
T )[∇X1Tσ(0, x)](

∇X1TBT [∇X1T ]T
)2 n∑

j=1

∇jX1T∇X1T
{
CjTBT + L

j
T

}
[∇X1T ]T .

5 A Perturbation Method

In this section we propose another method that can be applied when d �= n. Our numerical
experiments show that this method may be more efficient than the one described in previous

sections. It is also conceptually easier to understand and to program. However, it is sensitive

to the choice of the perturbation size.

LetW 0 be an (n−d)-dimensional standard Brownian motion defined on (Ω,F , P ), such
that it is independent of W . Let W̃t

�
= (W Tt , (W

0
t )
T )T , and denote F̃ to be the filtration

generated by W̃ . For each ε > 0 we define

σε(t, x)
�
=

[
σ1(t, x) 0

σ2(t, x) εI(n−d)×(n−d)

]
. (5.1)
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Then it is clear that σε(t, x) > 0 for all (t, x) ∈ [0, T ] × IRn, and σε(t, x) → σo(t, x), as
ε→ 0, where σ0(t, x) �= [σ(t, x)

... 0]. Now, consider the following perturbed version of (3.1):⎧⎪⎪⎨⎪⎪⎩
Xεt = x+

∫ t
0
b(s,Xεs )ds+

∫ t
0
σε(s,Xεs )dW̃s,

Y εt = g(X
ε
T )−

∫ T
t
Zεt dW̃t.

(5.2)

By the stability results for both forward and backward SDE’s we know that, as ε→ 0,
the following limit must hold (see Ma and Yong (1999), for example):

E

{
sup
0≤t≤T

|Xεt −X0t |2 + sup
0≤t≤T

|Y εt − Y 0t |2
}
+ E

∫ T
0
|Zεt − Z0t |2dt −→ 0, (5.3)

where (X0, Y 0, Z0) satisfies the following SDE:⎧⎪⎪⎨⎪⎪⎩
X0t = x+

∫ t
0
b(s,X0s )ds+

∫ t
0
σ0(s,X0s )dW̃s,

Y 0t = g(X
0
T )−

∫ T
t
Z0t dW̃t.

(5.4)

Since σ0(t,X0t )dW̃t = σ(t,X
0
t )dWt, by uniqueness of the solution to the SDE we have

Xt ≡ X0t , ∀t ≥ 0, a.s. Thus by the uniqueness of the backward SDE (or the martingale
representation theorem) we conclude that Z0 must be of the form Z0t = (Zt, 0), where Z is

the solution of (3.1). Hence (5.4) is indeed (3.1), and consequently we must have

E

∫ T
0
|Zε,1t − Zt|2dt −→ 0, as ε→ 0, (5.5)

where Zε = (Zε,1, Zε,2) is the solution to (5.2). We have thus proved the first part of

Theorem 5.1 Assume (A1) and that g is bounded and piecewise continuous. Then the

hedging portfolio process Z can be approximated by {Zε,1}, in the sense of (5.5). Further-
more, if g is Lipschitz continuous (not necessarily bounded), then there exist a constant

K > 0, independent of ε, such that

E

∫ T
0
|Zε,1t − Zt|2dt ≤ Kε2TeKT . (5.6)

The proof of the above inequality is standard in BSDE theory, using Gronwall’s inequal-

ity. The problem can now be reduced to computing Zε,1. Hence, we can use the results for

d = n from Fournie et al. (1999) and Ma and Zhang (2000). In particular, assuming that

σ1 is non-degenerate and that g is Lipshitz continuous, we have

Zε,1t = Et
{
g(XεT )N

ε,t
T

}
σ(t,Xεt ), (5.7)
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where

N ε,tr =
1

r − t

[∫ r
t

(
[σε(s,Xεs )]

−1∇Xεs
)T
dW̃s

]T
(∇Xt)−1; (5.8)

and ∇Xε satisfies the linear SDE

∇iXεt = ei +
∫ t
0
∂xb(s,X

ε
s )∇Xεsds+

d∑
j=1

∫ t
0
[∂xσ

j(s,Xεs )]∇iXεsdW j, i = 1, · · · , n, (5.9)

where ei = (0, · · · ,
i
1, · · · , 0)T is the i-th coordinate vector of IRn and σj(·) is the j-th column

of the matrix σ(·).
When g is not Lipshitz continuous, we consider the case d = 1, and assume that the

discounted payoff function is of the form g(X) = Rg̃(S), where g̃ is a piecewise linear

function:

g̃(x) =
K∑
i=1

g̃i(x)1[ai−1,ai)(x), (5.10)

where g̃i(x) = Aix + Bi, i = 1, · · · ,K. We first give the following approximation lemma,
whose proof we omit.

Lemma 5.2 Under the above assumption there exists a sequence of smooth functions g̃k(x)

such that

(i) |g̃k(x)| ≤ C(1 + |x|), ∀x, for some C > 0;
(ii) for each k, supx |g̃′k(x)| ≤ Ck, for some Ck > 0; and
(iii) for all x ∈ IR \ ∪Ki=1 {ai}, g̃′k(x)→ g̃′(x) and g̃k(x)→ g̃(x), as k →∞.

Corollary 5.3 Assume (A1), (A2), that σ1 is non-degenerate and that the FBSDE (5.2)

has a unique adapted solution (Xε, Y ε, Zε). Then the following relation holds:

Zεt = Et{g(XεT )N
ε,t
T }σε(t,Xεt ).

Proof. Let {g̃k} be the smooth sequence that approximates g̃(p), as in Lemma 5.2. Let
(Xε,k, Y ε,k, Zε,k) be the solution to (5.2) with g(XεT ) being replaced by gk(X

ε
T ) = R

ε
T g̃k(P

ε
T ).

Since the forward equation is not changed, we have Xε = Xε,k. Thus, applying (5.7) we

have

Zε,kt = Et{gk(XεT )N
ε,t
T }σε(t,Xεt ).

We claim that E|gk(XεT ) − g(XεT )|2 → 0, as k → ∞. Indeed, since Xε is a (time-
homogeneous) diffusion, we let pε(x, y, t) be its transition density. Then

Et,x|gk(XεT )− g(XεT )|2 =
∫
IRn
|gk(y)− g(y)|2pε(x, y, T − t)dy.
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Since gk → g holds except for only finitely many points, and g̃k’s have uniform linear growth
(Lemma 5.2-(i)), one can easily check that, for any x ∈ IRn, it holds that

|gk(x)|+ |g(x)| ≤ K(1 + |x|2).

Recalling (5.2) and noting that b and σε are uniformly Lipschitz, by standard SDE argu-

ments one can easily show that Et,x|XεT |4 <∞, which implies that
∫
IRn |y|4pε(s, y, T−t)dy <

∞. Now we can apply the dominated convergence theorem to conclude that gk(XεT ) →
g(XεT ) in L

2(Ω) for each ε > 0. Thus, by the stability results for backward SDE’s, we know

that (Y ε,k, Zε,k)→ (Y ε, Zε) in the sense of (5.3). Therefore, P -almost surely, one has

Zεt = lim
k→∞

Zε,kt = lim
k→∞

Et{gk(XεT )N
ε,t
T }σε(t,Xεt ).

6 Numerical Experiments.

We compare here four methods for computing the hedging portfolio of a digital option:

- 1. The Malliavin calculus method, called M method, for Malliavin. We use Theorem

3.3 and (4.19) to do the computations.

- 2. The Malliavin calculus method using the approximation of σ. Let us call it Mε

method. We use the formulas (5.7)–(5.9).

- 3. The “Retrieval of Volatility Method” of Cvitanic, Goukasian and Zapatero (2001),

called RVM method. This method is based on the fact that the hedging portfolio process

Z can be retrieved from the quadratic variation process of the process Y .

- 4. The standard finite difference Δ method, called here Δ. In this method one

computes (by central differences approximation and simulation) the derivatives of the price

process Y at initial time with respect to the initial conditions (X1t , . . . ,X
n
t ) = (x1, . . . , xn),

and uses the fact (from Ito’s lemma) that the value Zt is determined from these derivatives

and the matrix σ (See Boyle, Broadie and Glasserman (1997) for a survey).

We consider a stochastic volatility extension of the Black-Scholes model:

St = S0 +

∫ t
0
σrSrdWr; σt = σ0 +

∫ t
0
kσ(σ̄ − σr)dr +

∫ t
0
ρσσrdWr.

The chosen parameter values are: S0 = 100, σ0 = 0.1, kσ = 0.695, ρσ = 0.21, σ̄ = 0.1 Note

that we assume, for simplicity, that the interest rate is zero. We consider the digital option

with payoff g(ST ) = 1{ST>K} with T = .2, K = 100.

The simulation of the paths of the underlying processes is done using the first order,

Euler scheme. Denoting the number of time steps by N , the number of simulated paths is

set to N2 (this is of the optimal order for Euler scheme; see Duffie and Glynn (1995)). The

mean portfolio value and the standard error are obtained by repeating the procedure 1000
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times. The processing time is the total time for all the repetitions. The results are reported

in Tables 1 and 2. The column labeled “portfolio” gives the number of shares to be held by

the hedging portfolio.

Table 1 is computed so that all the processing times are similar. The RVM method

involves computing an additional conditional expectation, conditioned on the first time

period dt, using KRVM simulated paths. We set NM = 45,NRV M = 80, KRVM = 2,NΔ =

100, NMε = 80, ε = .05, ΔS = .01S0, Δσ = .01σ0, dt = .05. Numerical experiments show

that the standard error of the Δ method is very much sensitive to the choice of ΔS, Δσ.

In particular, if these are not chosen carefully, we may achieve very small error, but with

high bias. With the above choice of parameters, the Δ method and the Mε method have

somewhat smaller standard error than the other two methods, for a similar processing time.

However, it seems that the Mε method is not that sensitive to the choice of ε. Moreover,

in this example we have only two-dimensional factor process (S, σ). The computational

time of the Δ method increases linearly with the number of factors, since it has to compute

approximate derivatives of the option price with respect to all the factors. The RVMmethod

has somewhat larger error than the Δ and Mε methods, but not much. It is, however, also

very sensitive to the choice of parameters dt and KRVM . Surprisingly, the M method does

worst here, even though not significantly worse. On the other hand, we do not have to

worry about the choice of any small parameters for the M method. In fact, the M method

uses the smallest number of time steps and simulated paths, but, apparently, takes a lot of

time computing additional quantities such as the Skorohod integral.

Table 2 was computed so as to achieve a similar standard error for all methods. This was

done with NM = 80, NRVM = 100, KRVM = 2, NΔ = 125, NMε = 90, ε = .05, ΔS = .01S0,

Δσ = .01σ0, dt = .05. The results are similar as in Table 1: the M method requires the

longest time, even though it uses a smaller number of steps and simulated paths. The other

three methods are comparable – they all need the amount of processing time of the same

order.

The results are somewhat surprising considering that the direct method of Theorem 3.1

is typically more efficient than the Δ method. In this example the Δ method is not inferior

if its parameters are carefully chosen to avoid high bias and high standard error.

Table 1: Similar processing time

Method Error Processing Time Portfolio

M 0.003019 3414 0.088906

RVM 0.002057 3138 0.088750

Mε 0.001647 3447 0.088843

Δ 0.001884 3379 0.088061
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Table 2: Similar standard error

Method Error Processing Time Portfolio

M 0.001623 19095 0.088832

RVM 0.001580 6103 0.088755

Mε 0.001495 4888 0.088832

Δ 0.001530 6509 0.088372
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