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Efficient Computation of Invariably Safe States for

Motion Planning of Self-driving Vehicles

Christian Pek1 and Matthias Althoff2

Abstract— Safe motion planning requires that a vehicle
reaches a set of safe states at the end of the planning horizon.
However, safe states of vehicles have not yet been systematically
defined in the literature, nor does a computationally efficient
way to obtain them for online motion planning exist. To tackle
the aforementioned issues, we introduce invariably safe sets.
These are regions that allow vehicles to remain safe for an
infinite time horizon. We show how invariably safe sets can
be computed and propose a tight under-approximation which
can be obtained efficiently in linear time with respect to the
number of traffic participants. We use invariably safe sets to
lift safety verification from finite to infinite time horizons. In
addition, our sets can be used to determine the existence of
feasible evasive maneuvers and the criticality of scenarios by
computing the time-to-react metric.

I. INTRODUCTION

Self-driving vehicles promise many advantages over

human-driven vehicles, most notably enhanced road safety.

In order to achieve safety, motion plans of vehicles must

be collision-free and reach a safe state at the end of the

planning horizon. The latter requirement raises the question

how to define and efficiently compute safe states of vehicles?

Unfortunately, this question has not yet been adequately

answered. Safe motion planning of vehicles in dynamic

environments involves many complex aspects, e. g., collision-

avoidance, ensuring drivability of trajectories, and consider-

ing uncertain future motions of obstacles. Most works there-

fore focus on solving smaller subsets of the aforementioned

challenges [1], e. g., being collision-free for a finite time

horizon. However, these simplifications may lead to unsafe

situations that endanger passengers of self-driving vehicles

and other traffic participants.

Various governmental institutions have also identified the

issue of unsatisfying safety definitions [2]. Legislative pow-

ers already try to impose requirements for developing and

testing self-driving vehicles. Nonetheless, they clarify that

defining safe states, especially in terms of motion planning,

is an open problem which needs to be solved urgently [3,

p. 13]. In particular, in emergency situations in which the

vehicle must react in a timely manner, obtaining a safe state

efficiently is crucial for protecting the lives of humans.

A. Literature Overview

Common motion planning algorithms, such as [4]–[6],

check if each state of the planned trajectory is collision-free
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within a finite planning horizon. However, collisions might

be unavoidable directly after the horizon. For this reason,

one must ensure that the vehicle reaches a set of safe states

at the end of the planning horizon.

Controlled invariant sets (CIS) [7]–[9] are used to guar-

antee persistent feasibility. By definition, for every state

within a CIS, there exists at least one feasible trajectory

which keeps the system within the set indefinitely long; thus,

the vehicle remains safe. Unfortunately, obtaining CIS to

guarantee safety in dynamic environments is challenging due

to the unknown future motion of obstacles.

Instead of computing sets, one can also check if the final

state is an inevitable collision state (ICS) [10] to reason over

infinite time horizons. ICSs are states in which the vehicle,

no matter what trajectory it executes, eventually collides with

an obstacle [11], [12]. Determining ICSs is computationally

intense, and most works can only handle a single trajectory

prediction of traffic participants for online computation.

Consequently, ICSs also suffer from the uncertain future

motion of obstacles.

Reachability analysis can check if states are collision-free

while accounting for any feasible future motion of dynamic

obstacles [13]–[15]. Reachable sets are the set of states

reachable for a system from a set of initial states. Future

collisions of a vehicle can be identified by checking for

intersections of its reachable set with the ones of obstacles.

Reachable sets are also used to determine ICSs [16], [17].

However, reachability analysis comes with the disadvantage

that unsafe regions may grow rapidly over time since any

feasible future motion of obstacles is considered.

For criticality assessment of motion plans, the time-to-

collision (TTC) metric has been proposed. The TTC is the

time until a collision occurs based on motion predictions

of obstacles and the intended trajectory of the vehicle [18],

[19]. The time-to-react (TTR) [20], [21] is considered a more

informative metric since it is the remaining time along the

intended trajectory until one can avoid a collision. However,

most approaches for criticality assessment limit the search

for a feasible maneuver to discrete sets of pre-planned

trajectories [22].

B. Contribution

This paper formally defines and computes invariably safe

sets, which are regions in which vehicles are able to re-

main safe for an infinite time horizon. This concretizes

our previous work [23] for a lane-based setting, which

considers arbitrary traffic scenarios. In contrast to compu-

tationally expensive approaches (cf. Sec. I-A), we show



that an under-approximation of invariably safe sets can be

computed efficiently in linear time with respect to the num-

ber of traffic participants while maintaining formal safety

guarantees. We demonstrate the tightness of our proposed

under-approximation by comparing it to over-approximative

reachable sets. The obtained invariably safe sets can be used

in online motion planning to

1) lift verification from finite time horizons to infinite time

horizons (cf. Def. 7),

2) determine the existence of feasible evasive trajectories

(cf. Rem. 1), and

3) evaluate the criticality of scenarios (cf. Def. 8).

The remainder of this paper is organized as follows: Sec. II

introduces necessary models and assumptions. Sec. III for-

mally derives invariably safe sets and Sec. IV demonstrates

the usage of invariably safe sets for motion planning. In

Sec. V, we present an algorithm to efficiently compute an

under-approximation of invariably safe sets. Benefits of our

proposed approach are demonstrated by examples in Sec. VI.

We finish with conclusions in Sec. VII.

II. MODELS AND ASSUMPTIONS

Let us introduce X ⊂ R
n as the possible set of states x

and U ⊂ R
m as the set of admissible control inputs u of

a self-driving vehicle, whose motions are governed by the

differential equation

ẋ(t) = f
(

x(t), u(t)
)

. (1)

Without loss of generality, we assume that the initial time

is t0 = 0, and we adhere to the notation u
(

[0, th]
)

to

describe an input trajectory for the time interval [0, th]. In

addition, χ
(

t, x(0), u([0, th])
)

denotes the solution of (1) at

time t ∈ [0, th] subject to the initial state x(0) = x0 and the

input trajectory u
(

[0, th]
)

. By an abuse of notation, we use

u
(

[t1, t2]
)

= Φ
(

x([t1, t2]), rref
)

, t1 ≤ t2, to emphasize that

an input trajectory is generated by a feedback control law Φ
for a given reference rref .

The lane-based environment W ⊂ R
k of (1) is modeled

as a subset of the Euclidean space. The set B ⊂ N contains

indices referring to all safety-relevant dynamic and static

obstacles, typically obtained using on-board sensors [24]. We

use v ≥ 0 to denote velocities and a to denote accelerations.

We assume the existence of a set-based prediction, e. g.,

[25], which considers any feasible future motion (including

initial uncertainties) of dynamic obstacles to account for

their uncertain future motion. The set of possibly occupied

points of dynamic obstacles at a certain point in time t is

represented by an occupancy set:

Definition 1 (Occupancy Set O)

The occupancy set O(t) describes the set of (possibly)

occupied points by an obstacle at a point in time t. For

a time interval [t1, t2], t1 ≤ t2, we define O
(

[t1, t2]
)

=
⋃

t1≤t≤t2
O(t).

In order to realize efficient collision checking, we intro-

duce a relation from the configuration space of (1) to the

environment in world coordinates:

Definition 2 (Relation to Environment occ)

The operator occ(x) : X → P
(

W
)

relates the state vector x
to the set of points occupied inW , where P(W) is the power

set of W . Given a set X , we define the operator occ(X ) :=
{occ(x) |x ∈ X}.
We are now able to define the maximal set of collision-free

states at a point in time t (cf. Fig. 1):

Definition 3 (Collision-free States F )

The set F t ⊆ X is the maximal set of states of (1) which

are collision-free at time t: occ
(

F t
)

∩ OB(t) = ∅,OB(t) =
⋃

i∈B Oi(t).

In Sec. III, we use backward reachability to compute the

set of states from which (1) is able to reach a goal set

collision-free [26].

Definition 4 (Collision-free Backward Reachable Set R)

The collision-free backward reachable set R ⊆ X is the set

of states from which (1) is able to reach a goal set Xf ⊂ X
collision-free within a certain time t ≥ 0 considering the set

of inputs U :

R
(

t,O([tf−t, tf ]),Xf

)

:=
{

x
∣

∣ ∃r∈ [0, t] : ∀ξ∈ [tf−r, tf ] :
occ

(

χ(ξ, x, u([tf−r, tf ]))
)

∩ O(ξ) = ∅, u(ξ) ∈ U ,
χ
(

tf , x, u([tf − r, tf ])
)

∈ Xf

}

.

Note that in this work we do not consider the correctness

of software components of self-driving vehicles with respect

to their specification, as discussed in [27], [28], for example.

Furthermore, we assume redundant hardware, allowing us to

ignore hardware faults, e. g., as described in [29] or [30].

Lastly, we do not incorporate the influence of psychological

and social aspects on safety [31].

III. INVARIABLY SAFE SETS

A. Definition

We define safe states by making use of recursion: we call

a state safe if a collision-free trajectory to another safe state

exists. This recursive definition allows us to derive subsets

of F t (cf. Fig. 1), which only contain states that guarantee

a safe transition to another safe state for an infinite time

horizon. By definition, these subsets do not include ICSs

and thus, are invariably safe.

Definition 5 (Invariably Safe Set S)

The Invariably Safe Set St for a point in time t allows (1)

to be safe for an infinite time horizon and is defined as

St :=
{

x ∈ F t
∣

∣ ∀τ > t : χ
(

τ, x,Φ(x([t, τ ], rref)
)

∈ F τ
}

.

Determining the maximal invariably safe set is again a com-

putationally demanding task in most scenarios. However, we

show that an under-approximation of the maximal invariably

safe set can be computed efficiently from a known safe set.

B. Backwards Computation of Invariably Safe Sets

Let us focus on finding an invariably safe set which allows

us to inductively derive other invariably safe sets. Based on

traffic rules [32, Art. 13 and Art. 31], we can state that if a



preceding obstacle comes to a stop, being in standstill behind

it within a certain area is a safe state.

We introduce Γ(b, β) ⊂ W as the allowed area in a lane

for standstill behind a stopped obstacle b ∈ B within a

distance β which is at least as long as the length of the

self-driving vehicle. We show that the set of collision-free

states behind a preceding obstacle within Γ is an invariably

safe set.

Lemma 1 (Invariably Safe Set S
τ at Standstill)

Assuming that the preceding obstacle b stops at any future

time τ > t, the set Sτ := {x | v[x] = 0∧ occ(x) ⊆ Γ(b, β) ∧
occ(x) ∩OB(τ) = ∅} is an invariably safe set according to

Def. 5, where v[x] describes the velocity in state x.

Proof: By definition, states x ∈ Sτ are collision-free.

Thus, Sτ ⊆ Fτ . All x ∈ Sτ remain collision-free ∀τ ′ > τ
by choosing u(τ ′) such that v[x(τ ′)] = 0.

Let us now use backward reachable sets (cf. Def. 4) to

derive invariably safe sets for times prior to τ . In order to

make use of induction, we determine the sets for time inter-

vals prior to τ , rather than single points in time. Therefore,

S(k) := Sτ(k), k ∈ N+, denotes the invariably safe set for

the time interval τ(k) := [τ − kǫ, τ − (k − 1)ǫ], prior to τ ,

where ǫ ∈ R+ is an arbitrarily small step size.

Theorem 1 (Determining Invariably Safe Sets)

The invariably safe set for the time interval τ(k) is S(k) :=
Sτ(k) = R

(

ǫ,OB(τ(k)),S(k − 1)
)

, where S(0) = Sτ .

Proof: We prove the theorem inductively.

Base case (k = 1): S(1) = S [τ−ǫ,τ ] = R
(

ǫ,OB([τ −
ǫ, τ ],Sτ )

)

. For every state x ∈ S(1), there exists a collision-

free trajectory to the invariably safe set Sτ (cf. Lem. 1), i. e.,

∀x ∈ S(1) : ∃r ≤ ǫ : ∃u
(

[τ − r, τ ]
)

: χ
(

τ, x, u([τ − r, τ ])
)

∈
Sτ to remain safe for times τ ′ > τ .

Inductive step: assuming S(k), k = c is an invariably safe

set for any random integer c ∈ N, we show that S(k+ 1) is

an invariably safe set. S(k+1) = R
(

ǫ,OB(τ(k + 1)),S(k)
)

allows us to determine a collision-free trajectory to S(k) for

every state x ∈ S(k+1) (analogous to base case). Since S(k)
is an invariably safe set, every invariably safe set S(j), j ≤ k,
is reachable from S(k + 1) collision-free.

C. Under-approximation of Invariably Safe Sets

We efficiently derive a tight under-approximation of St (cf.

Fig. 1) using 1) formal safe distances for vehicle following

according to [33] and 2) evasive distances according to [34].

Evasive distances allow changing to an adjacent lane while

respecting formal safe distances to obstacles in the target

lane and are usually shorter than safe distances for higher

velocities [35].

Proposition 1 (Under-Approximation of S
t)

The union of the set St1 of states respecting safe distances

[33] and of the set St2 respecting evasive distances [34] to

a preceding obstacle at time t is an under-approximation of

St, i. e., St1 ∪ St2 ⊂ St.

Configuration space

Collision-free states

Invariably safe set

X

F
t

S
t

Under-approximation
of St

Fig. 1: Relation of the configuration space X , collision-free states Ft, and
invariably safe sets St.

Proof: The soundness of safe and evasive distances

has been shown for all cases in [33], [34], [36]. To show

that the resulting set is an under-approximation, we provide

a counterexample: based on [35], the last possible evasive

maneuver must be a combination of braking and steering.

IV. IMPACTS ON MOTION PLANNING

Invariably safe sets offer many advantages for motion

planning of self-driving vehicles. Usually, planned trajec-

tories u
(

[0, th]
)

are verified as collision-free within the

optimization horizon prior to their execution:

Definition 6 (Collision-free Input Trajectory)

An input trajectory u
(

[0, th]
)

, 0 < th, is called a collision-

free input trajectory for the time horizon th if ∀t ∈ [0, th] :
χ
(

t, x(0), u([0, th])
)

∈ F t.

However, the vehicle may not remain safe for times t′ >
th. Furthermore, the feasibility of trajectories starting at th
may not be ensured, which is important for cyclic replanning

approaches such as model predictive control. Our invariably

safe sets guarantee both properties, since a feasible and

collision-free trajectory exists at any time:

Definition 7 (Invariably Safe Input Trajectory)

An input trajectory u
(

[0, th]
)

, 0 < th, is called an invariably

safe input trajectory if u
(

[0, th]
)

is a collision-free input

trajectory (cf. Def 6) and χ
(

th, x(0), u([0, th])
)

∈ Sth .

Note that if collisions occur due to misbehaviors of other

obstacles, e. g., crashing into a tailback or performing a cut-

in, the vehicle would not be accountable, since the obstacle

violated traffic rules [32].

The existence of a feasible and collision-free trajectory1

to another safe state can also be advantageously exploited in

time-critical emergency situations.

Remark 1 (Existence of Evasive Trajectories)

Even in emergency situations, invariably safe sets guarantee

the existence of a feasible trajectory to avoid a collision.

Another use of our invariably safe sets is to obtain the

time-to-react (TTR) [20, Sec. II].

Definition 8 (Time-To-React)

Assuming that x(0) ∈ S0, the time-to-react (TTR) is the

maximum time the vehicle can continue the current tra-

jectory u
(

[0, th]
)

for which the existence of an evasive

1Note that computing such a trajectory is not the focus of this work.



trajectory is guaranteed, i. e., tTTR := sup
{

t | t ∈ [0, th] ∧
χ
(

t, x(0), u([0, th])
)

∈ St
}

.

V. ALGORITHMIC REALIZATION FOR ONLINE

MOTION PLANNING

In this section, we demonstrate how the under-

approximation of St can be computed efficiently.

A. Environment

We make use of a curvilinear coordinate system [4]

aligned with the driving direction of the lane (cf. coordinate

system in Fig. 2) to describe the environmentW and the oc-

cupancies of obstacles. The state of the self-driving vehicle is

modeled as x = (s, d, v)T ∈ R
3, where s is the longitudinal

position, d the lateral position, and v the velocity along the

lane. Positions (s, d)T describe the geometric center of the

vehicle and ℓ denotes its length.

To account for the limited field of view of the self-driving

vehicle, we place static obstacles at its border to guarantee

that the vehicle is able to stop within its sensor view. Road

boundaries and varying lane widths are integrated by limiting

the allowed lateral positions d.

We divide the drivable area of a lane in sections Cbi,bj ⊂
W, bi, bj ∈ B, delimited by the occupancies of a pair of

obstacles (cf. Fig. 4a). For instance, for obstacle b1 and

obstacle b2 and occupancies O1(t) and O2(t), respectively,

Cb1,b2 = {s ∈ R | ∀s1 ∈ O1(t), ∀s2 ∈ O2(t) : s1 + ℓego/2 <
s < s2 − ℓego/2 +∆s2,stop}, where ∆s2,stop is the stopping

distance of obstacle b2.

B. Occupancy Prediction

We make use of the set-based prediction tool SPOT [25]

and the motion assumptions listed in Tab. I to predict the

occupancies OB(t) of obstacles B at time t. In addition,

we enlarge OB(t) for collision checking by adding the

dimensions of the self-driving vehicle [37]. Note that the

set of motion assumptions is not binding in our approach:

if obstacles violate certain assumptions, the occupancies

become larger and our obtained safe sets smaller.

TABLE I: List of motion assumptions based on [32].

Assumption Description

Aamax Maximum absolute accelerations |amax,b| ≥
|amax,ego| of traffic participants b ∈ B are known

Asafe Safe distances to other vehicles have to be respected
to comply with traffic rules

Avmax Positive longitudinal acceleration is stopped when a
parameterized speed vmax is reached

Aback Driving backwards in a lane is not allowed, i. e., v ≥ 0

Alane Changing the lane is only allowed if the new lane has
the same driving direction

Aover While being overtaken, a vehicle is not allowed to
accelerate

C. Algorithm

Without loss of generality, we assume that the intended

routes of the self-driving vehicle are given. Alg. 1 computes

the under-approximation of St1 ∪ St2 ⊂ St for a time t and

a section Cbi,bj along arbitrary road networks (cf. Fig. 4).

The algorithm must be applied to every section, which is

parallelizable.

a) Velocity and acceleration constraints: We determine

the maximum feasible velocity vcrit(s), s ∈ Cbi,bj consid-

ering the lane’s curvature (cf. dashed line in Fig. 3) in

line 2 of Alg. 1. Our approach further incorporates any

given legal speed limits vlimit(s) (cf. solid line in Fig. 3).

The resulting maximum velocity constraints are given by

vmax(s) = min
(

vcrit(s), vlimit(s)
)

. In lines 4-5, we compute

the feasible lateral and longitudinal accelerations, ad(v) and

as(v), for all possible velocities and the lane’s curvature

κ(s), s ∈ Cbi,bj based on [38, Eq. 2-4].

b) Safe distance: Line 7 of Alg. 1 computes the safe

distance to a preceding obstacle bj with velocity vj for

a provided vehicle velocity v and reaction time δbrake by

∆t
safe(v, bj) according to [33, Eq. 17]. Variables ad,max and

as,max denote the maximum feasible accelerations in lateral

and longitudinal direction, respectively.

c) Evasive distance: The distance deva(d) describes the

lateral distance necessary to fully enter an adjacent lane from

a given lateral position d. For the sake of clarity, we omit the

dependence on d in Alg. 1. Line 8 computes the time teva(v),
required for the swerving maneuver over deva considering the

available lateral acceleration ad(v) and reaction time δsteer
[34, Eq. 11]. In line 9, we translate teva(v) into a formal

evasive distance by ∆t
eva(v, bj) [34, Eq. 12-13].

Algorithm 1 invariablySafeSets()

Input: t, Cbi,bj , κ, vlimit, Oj(t), vj(t), δbrake, δsteer
Output: Under-approximation of St

a) Acceleration constraint subroutines [38, Eq. 2-4]:

1: rmin ← min(1/|κ(Cbi,bj
)|)

2: vcrit ← √rminad,max,ego

3: vmax ← min
(

vcrit, vlimit

)

4: Let ad(v) := ad,max,ego(v/vcrit)2

5: Let as(v) := as,max,ego

√

1− (v
2
/v2

crit)2

b) Safe distance subroutines [33, Eq. 17]:

6: Let ζ(v, bj) := (v
2
j/−2|as,max,j |)−(v2

/−2|as(v)|)+δbrakev
7: Let ∆t

safe(v, bj) := max
(

ζ(v, bj), 0
)

c) Evasive distance subroutines [34, Eq. 11-13]:

8: Let teva(v) :=
√

(2deva/(ad,max,ego−ad(v))) + δsteer
9: Let ∆t

eva(v, bj) := vteva(v)− (vj(t)tb − 1
2as,max,jt

2
b),

tb = min
(

vj(t)/as,max,j, teva(v)
)

d) Invariably safe sets St1 and St2:

10: St1 ← {(s, d, v)T ∈X | ∀sj ∈ Oj(t) : s ≤ sj−∆t
safe(v, bj)

∧v ≤ vmax ∧ s ∈ Cbi,bj}
11: St2←{(s, d, v)T ∈X | ∀sj ∈Oj(t) : s≤sj −∆t

eva(v, bj)∧
v ≤ vmax ∧ s∈Cbi,bj ∧ (∀r∈ [0, teva(v)] :
(s+vr, d′, v)T ∈St+r

1 )}
12: return St1 ∪ St2
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Fig. 2: Urban scenario with dynamic obstacles bi, i ≤ 4 and their predicted
occupancies at th = 3.5 s (light blue). Final positions, x1(th) and x2(th),
of the two overtaking trajectories of the ego vehicle are shown in red.

d) Invariably safe sets St1 and St2: We compute the

set St1 of states which respect a safe distance to preceding

obstacles at time t using the predicted occupancies. The

set St2 contains states which respect the evasive distance to

preceding obstacles and a safe distance to obstacles on the

adjacent lane; we check this by finding states (s+vr, d′, v)T ∈
St+r
1 . Note that we can also consider safe distances to

following obstacles to prohibit the vehicle from directly

merging in front of another obstacle during lane changes;

this is omitted in Alg. 1 for the sake of clarity but can be

obtained analogously to preceding obstacles.

D. Computational Complexity

Assuming that the prediction is given, the computational

complexity of computing the under-approximation of St for

all sections is O(n) with n = |B|, as one has to perform a

constant number of calculations per section.

VI. EVALUATION

In this section, we compute the under-approximation for

different scenarios and demonstrate its usage for motion

planning. We implemented Alg. 1 in MATLAB R2015b on a

machine with an Intel i5-4260U 1.4GHz processor and 8GB

of DDR3 1600MHz memory and use the MPT toolbox V3.0

[39] to visualize St by approximating it with half-spaces.

We denote the self-driving vehicle as the ego vehicle and

the under-approximation as S in the following.

A. Trajectory Verification

We investigate an urban scenario2 (cf. Fig. 2) to illustrate

the verification of trajectories for infinite time horizons (cf.

Def. 7). The scenario consists of two lanes (direction of travel

indicated by arrows). Four other traffic participants bi, i ≤
4 occupy the lane of the ego vehicle (parameters given in

Tab. II). The feasible velocity profile and the speed limit are

shown in Fig. 3. The task for the ego vehicle is to overtake

the preceding vehicle b1.

We plan two overtaking trajectories u1

(

[0, th]
)

and

u2

(

[0, th]
)

with equal time horizons th = 3.5 s, but differing

2Scenario ZAM Urban-1 1 S-1 of the CommonRoad benchmark suite
Version 2018a [40].

TABLE II: Parameters of the urban scenario.

Parameter Value

Ego vehicle (s, d, v)Tego = (1.5m, 0m, 8.3m/s)T

Vehicle b1 (s, d, v)Tb1 = (8.5m, 0m, 6.9m/s)T

Vehicle b2 (s, d, v)Tb2 = (43.8m, 0m, 11.1m/s)T

Vehicle b3 (s, d, v)Tb3 = (101.7m, 0m, 8.3m/s)T

Vehicle b4 (s, d, v)Tb4 = (150.9m, 0m, 11.1m/s)T

Vehicle lengths ℓ = 3.0m

Speed limit vlimit v1 = 11.1m/s, v2 = 8.3m/s, v3 = 13.9m/s

Maximum acceleration |as,max| = 8.0m/s2, |ad,max| = 3.0m/s2

Reaction times δbrake = 0.3 s, δsteer = 0.1 s

goal velocities, 10.3m/s and 11.1m/s, respectively (final

positions are shown as red crosses in Fig. 2).

Using SPOT and Alg. 1, we compute St for the initial

scenario at t = 0 s and for the end of the planning horizon

at th = 3.5 s (cf. Fig. 4) in order to apply Def. 7. The

computation of the under-approximation in this scenario and

to check whether x ∈ Sth requires less than 0.3ms. Note

that the predicted occupancy of vehicle b1 is shorter due

to assumption Aover (cf. Tab. I). Our proposed approach is

able to consider safe distances to following vehicles (e. g.,

for overtaking). This is illustrated for vehicle b2 in Fig. 4

by regarding states x with low velocities and small relative

distances to vehicle b2 as unsafe, i. e., x 6∈ S .

The final states x1(th) = (37.2m, 0m, 10.3m/s)T and

x2(th) = (39.9m, 0m, 11.1m/s)T of u1

(

[0, th]
)

and

u2

(

[0, th]
)

, respectively, are indicated with red crosses. Both

trajectories are collision-free within the time interval [0, th]
(cf. Def. 6). However, we note that x1(th) ∈ Sth , but

x2(th) 6∈ Sth . Only if the ego vehicle executes the invariably

safe input trajectory u1

(

[0, th]
)

, reaching Sth , it can come

to a stop without colliding with vehicle b2. We validated our

findings by simulating the scenario for times t > th. The

simulations can be found in the video attachment of this

paper and at https://mediatum.ub.tum.de/1451838.

B. Comparison to Existing Approach

In this subsection, we evaluate the tightness of our

under-approximation in Sec. VI-A by computing an over-

approximation using reachability analysis [17]. The obtained

over-approximation provides us with the approximated set of
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Fig. 3: Feasible velocity profile considering the curvature (dashed) and speed
limit (solid) along the ego vehicle’s lane.
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Fig. 4: Invariably safe set St (gray) for scenario in Fig. 2 at t = 0 s (a) and at th = 3.5 s (b) as a projection on the s-v-plane. The over-approximation is
shown as a dashed line, occupancies in blue, and initial and final ego positions in red.

states for which it may be possible to find a collision-free

trajectory under the given velocity constraints.

The approximated outer boundary of the over-

approximation is illustrated as a dashed line in Fig. 4.

The computation of the boundary took about 1 s per

sampled longitudinal position s. The boundary of the

maximal invariably safe set S must be located between

the boundary of our proposed under-approximation and

the computed over-approximation. The largest deviation

between the under-approximation and over-approximation is

∆s = 3.1m, which is less than a typical vehicle length and

thus our under-approximation can be considered as tight.

C. Evasive Trajectories

We present a safety-critical scenario in which the ego

vehicle is endangered by a cut-in vehicle (parameters given

in Tab. III). The ego vehicle is driving in the right lane of a

straight two-lane motorway with vego = 20m/s. Vehicle b1 is

driving on the adjacent lane with v1 = 13.5m/s and relative

distance ∆s = 15.0m to the ego vehicle and suddenly

changes to the lane of the ego vehicle (cf. Fig. 5a).

We compute St at t = 0 s to check if the ego vehicle

remains safe and see that xego(0) ∈ S0 (cf. red diamond in

Fig. 5a). Thus, an evasive trajectory to the left lane exists

to remain safe if vehicle b1 suddenly performs emergency

braking after merging.

The intended trajectory u([0, th]) of the ego vehicle is

traveling at constant speed and is illustrated in 50ms time

steps in Fig. 5a. We obtain tTTR = 0.15 s (computed by

applying Def. 8), which corresponds to a high criticality

so that the evasive maneuver must be executed as soon as

vehicle b1 starts braking.

Fig. 5b shows the corresponding evasive maneuver, which

has been obtained using a sampling-based planner. The

maneuver starts at x(tTTR) along u([0, th]). The predicted

positions of both vehicles at t = tTTR + teva = 0.99 s,
where teva is the time required for the ego vehicle to reach

TABLE III: Parameters of the cut-in scenario.

Parameter Value

Ego vehicle (s, d, v)Tego = (0m, 0m, 20.0m/s)T

Vehicle b1 (s, d, v)Tb1 = (15.0m, 3.75m, 13.5m/s)T

Vehicle lengths ℓ = 3.0m

Evasive distance deva = 3.75m

Maximum acceleration |as,max| = 8.0m/s2, |ad,max| = 8.0m/s2

Reaction times δbrake = 0.3 s, δsteer = 0.1 s

the adjacent lane, are shown in Fig. 5b. In a next step,

we increase the complexity of the scenario: the left lane is

blocked by a static obstacle, illustrated in Fig. 5c. In this

situation, a safe solution to avoid a collision with b1 exists

if the ego vehicle is allowed to use the shoulder lane.

D. T-junction

A more complex urban scenario is shown in Fig. 6a: the

ego vehicle approaches a T-junction with three other vehicles

bi, i ≤ 3 (parameters given in Tab. IV). Even if the intended

route, driving straight or turning right, of the ego vehicle

is not yet known in the behavioral layer, we are able to

consider both route options during the computation of our

invariably safe sets. Without loss of generality, we assume

that the behavioral layer decides the route at t = 2 s. We

compute the under-approximation Sts and Str for each route

at t = 2 s and obtain St = Sts ∩ Str, visualized in Fig. 6b.

The obtained under-approximation ensures safety for both

possible route options.

VII. CONCLUSIONS

This paper addresses the issue of defining safe states for

the domain of self-driving vehicles by introducing invariably

safe sets. These are regions which allow vehicles to remain

safe for infinite time horizons. In contrast to computationally

expensive approaches, a tight under-approximation of the
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proposed sets can be obtained in real-time. In different

examples, we tackle difficult motion planning problems by

just using invariably safe sets. The proposed sets guarantee

the existence of feasible evasive maneuvers and can be used

to compute the last point in time to avoid collisions.
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Parameter Value
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Vehicle lengths ℓ = 3.0m

Maximum acceleration |as,max| = 10.0m/s2, |ad,max| = 10.0m/s2

Reaction times δbrake = 0.3 s, δsteer = 0.1 s
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[17] S. Söntges and M. Althoff, “Determining the nonexistence of evasive
trajectories for collision avoidance systems,” in Proc. of the IEEE Int.

Conf. on Intelligent Robots and Systems, 2015, pp. 956–961.
[18] W. Wachenfeld, P. Junietz, R. Wenzel, and H. Winner, “The worst-

time-to-collision metric for situation identification,” in Proc. of the

IEEE Intelligent Vehicles Symposium, 2016, pp. 729–734.
[19] A. Berthelot, A. Tamke, T. Dang, and G. Breuel, “A novel approach

for the probabilistic computation of time-to-collision,” in Proc. of the

IEEE Intelligent Vehicles Symposium, 2012, pp. 1173–1178.
[20] A. Tamke, T. Dang, and G. Breuel, “A flexible method for criticality

assessment in driver assistance systems,” in Proc. of the IEEE Intelli-

gent Vehicles Symposium, 2011, pp. 697–702.
[21] J. Hillenbrand, A. M. Spieker, and K. Kroschel, “A multilevel collision

mitigation approach - its situation assessment, decision making, and
performance tradeoffs,” IEEE Transactions on Intelligent Transporta-

tion Systems, vol. 7, no. 4, pp. 528–540, 2006.
[22] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore,

“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 5, pp. 1105–1118, 2009.

[23] C. Pek, M. Koschi, M. Werling, and M. Althoff, “Enhancing motion
safety by identifying safety-critical passageways,” in Proc. of the IEEE

Conference on Control and Decision, 2017, pp. 320–326.
[24] S. Steyer, G. Tanzmeister, and D. Wollherr, “Grid-based environment

estimation using evidential mapping and particle tracking,” IEEE

Transactions on Intelligent Vehicles, 2018.

[25] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction
of traffic participants,” in Proc. of the IEEE Intelligent Vehicles

Symposium, 2017, pp. 1686–1693.
[26] I. M. Mitchell, “Comparing forward and backward reachability as

tools for safety analysis,” in Hybrid systems: computation and control.
Springer, 2007, pp. 428–443.

[27] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT
press, 1999.

[28] L. Luthmann, S. Mennicke, and M. Lochau, “Compositionality, de-
compositionality and refinement in input/output conformance testing,”
in Proc. of Formal Aspects of Component Software, 2016, pp. 54–72.

[29] O. Rooks, M. Armbruster, S. Bchli, A. Sulzmann, G. Spiegelberg, and
U. Kiencke, “Redundancy management for drive-by-wire computer
systems,” in Proc. of the Int. Conf. on Computer Safety, Reliability,

and Security, 2003, pp. 249–262.
[30] R. Isermann, R. Schwarz, and S. Stolzl, “Fault-tolerant drive-by-wire

systems,” IEEE Control Systems, vol. 22, no. 5, pp. 64–81, 2002.
[31] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, Autonomous Driving

– Technical, legal and social aspects. Springer, 2016.
[32] Economic Comission for Europe: Inland Transport Committee,

“Vienna Convention on Road Traffic,” 1968. [Online]. Available:
http://www.unece.org/fileadmin/DAM/trans/conventn/crt1968e.pdf

[33] A. Rizaldi, F. Immler, and M. Althoff, “A formally verified checker
of the safe distance traffic rules for autonomous vehicles,” in NASA

Formal Methods Symposium, 2016, pp. 175–190.
[34] C. Pek, P. Zahn, and M. Althoff, “Verifying the safety of lane change

maneuvers of self-driving vehicles based on formalized traffic rules,”
in Proc. of the IEEE Intelligent Vehicles Symposium, 2017, pp. 1477–
1483.

[35] C. Schmidt, F. Oechsle, and W. Branz, “Research on trajectory
planning in emergency situations with multiple objects,” in Proc. of

the IEEE Int. Conf. on Intelligent Transportation Systems, 2006, pp.
988–992.

[36] S. Magdici and M. Althoff, “Adaptive cruise control with safety
guarantees for autonomous vehicles,” in Proc. of the 20th World

Congress of the Int. Federation of Automatic Control, 2017, pp. 5939–
5946.

[37] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle
motion planning,” in Proc. of the IEEE Intelligent Vehicles Symposium,
2010, pp. 518–522.

[38] E. Velenis and P. Tsiotras, “Optimal velocity profile generation for
given acceleration limits; the half-car model case,” in Proc. of the

IEEE Int. Symposium on Industrial Electronics, 2005, pp. 361–366.
[39] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric

Toolbox 3.0,” in Proc. of the European Control Conference, Zürich,
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