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Abstract—We propose a way of accounting for the lack
of detailed knowledge about material shapes in computational
time-domain electromagnetics. We use Legendre-Gauss-Lobatto,
Stroud-2 and Stroud-3 quadrature formulae to solve the resulting
stochastic equation and we show the efficiency of the proposed
method over statistical Monte-Carlo simulations. We also show
how the radar-cross-section in scattering is affected by the
uncertainty in shape of the objects and by the direction of the
incident field.
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I. INTRODUCTION

Most of the research effort in CEM has been in develop-

ing efficient numerical algorithms for different applications,

assuming ideal inputs, boundary conditions or computational

domains. While computational methods have become increas-

ingly accurate, their reliance on exact data (e.g. the geometry

of the objects, the material parameters, the sources terms,

etc.) is becoming a bottleneck in the modeling of complex

problems. A standard way to deal with this lack of knowledge

or uncertainty, is to assume that some of the parameters

are random and compute macroscopic quantities (e.g. means

and variances) through Monte-Carlo sampling. In that case,

one runs a deterministic code many times and computes

the statistics of interest from an ensemble of solutions. The

advantage of this approach is its simplicity, however the

rate of convergence of Monte-Carlo is quite slow since it is

proportional to where is the number of samples.

Therefore, designing more efficient numerical methods for

the solution of stochastic partial differential equations with

random inputs or random coefficients is meeting growing

interest.

When the randomness can be modelled by a relatively small

number of independent random variables (i.e. up to three

or four), a stochastic collocation method based on Lagrange

polynomials was shown to be as simple as a Monte-Carlo

simulation, but with higher rates of convergence [2][13]. In

the present paper, the uncertainty is modelled by a number

of independent random variables in , which precludes

from using this approach. Instead, we use a method based on

Stroud-2 and Stroud-3 quadrature rules, for the computation of

multiple integrals. To compute single integrals we will use the

Legendre-Gauss-Lobatto quadrature rule. Here again, it will

be shown to possess the simplicity of Monte-Carlo simulations

but with higher convergence rates.

This paper is organized as follows: in Section 2, we recall

the deterministic Maxwell’s equations in the time-domain and

we give some details of its spatial discretization using a high-

order discontinuous Galerkin method. In Section 3, we give

some details about the computation of the RCS. In Section 4,

we describe the modelling of a general object having a random

shape, and we explain how our problem can be reduced to

solving Maxwell’s equations on a fixed mesh but with random

coefficients. The second part of Section 4 is devoted to the

discretization of the random space based on Legendre-Gauss-

Lobatto, Stroud-2 and Stroud-3 quadrature rules. This sets the

stage for numerous examples in Section 5. In Section 6 and 7,

we conclude and offer some suggestions for continued research

in this direction.

II. MAXWELL’S EQUATIONS AND ITS NUMERICAL

APPROXIMATION

The time-dependent Maxwell’s equations in the scattered

field formulation are given as

(1)

(2)

where, and denote the scattered electric and magnetic

fields, and are the local permittivity and perme-

ability, is the conductivity of the media and and

are source terms. Here we have not explicitly written the

divergence constraints assuming that the initial conditions sat-

isfy these constraints. Taking the divergence of equations (1)-

(2) verifies that if the initial conditions satisfy the divergence

constraints then the solution to Maxwell’s equations (1)-(2)

will also satisfy the divergence constraints.

Let the incident field be a solution to Maxwell’s

equations in a media of permittivity, permeability, and

conductivity— , , , respectively. Along a per-

fect electric conductor (PEC), the boundary conditions on the

total electric field and the total magnetic field
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are

(3)

(4)

where is the outward pointing normal vector at the surface.

We now briefly describe the computational methods used

for solving Maxwell’s equations (1)-(2) in the physical space.

A discontinuous Galerkin method is used; which offers a

number of advantages over widely used alternative (see [6],

[7], [8], [9], for example) and we shall simply sketch its main

components. First, we rewrite Maxwell’s equations (1)–(2) in

conservation form

(5)

where is the state vector given by

(6)

and the components of the tensor are defined by

(7)

where denotes the Cartesian unit vectors. On the right-

hand side of (5), is the source term, which

depends on the incident field, and the material matrix is

a diagonal matrix with values on its diagonal.

We assume that the computational domain, , is tessellated by

triangles in two spatial dimensions and tetrahedrons in three

spatial dimensions. Given an element of the tessellation,

the represent the local solution restricted to is given as

(8)

where reflects nodal values, defined on the element. The

function signifies an th order Lagrange polynomial

( for triangles and

for tetrahedrons), associated with grid points on

the reference element (see [6], [7], [8], [9] for details). The

discrete solution, , of Maxwell’s equations is required to

satisfy

(9)

In (9), denotes a numerical flux, whose expression can

be found in [6], and is an outward pointing unit vector

defined at the boundary of the element . Note that this

is an entirely local formulation, and relaxing the continuity

of the elements decouples the elements, resulting in a block-

diagonal global mass matrix which can be trivially inverted

in preprocessing. After discretization of the operators and

evaluation of the integrals appearing in (9), the problem can

be rewritten in matrix-vector form (see [7])

(10)

x

y

dC

M(x,y)

n(n
x
,n

y
)

Fig. 1. Illustration showing the scattering object and a possible contour
to compute the RCS.

The matrices , , and represent the local mass-, stiffness-,

and face-integration matrices, respectively, the exact entries of

which only depend on the metric of the triangle (see [6]). The

local nature of the scheme allows for the use of an explicit

solver for the time discretization of (10) and this is done using

an explicit fourth-order Runge–Kutta method.

III. COMPUTATION OF THE RADAR CROSS SECTION (RCS)

Given the importance of the RCS in this paper, we devote

this section to explaining how it is computed. For the sake

of simplicity, we will give details for the 2D transverse

magnetic case. We assume that the scattered fields

and are available at any point of

the computational domain and at any time . When a somewhat

established regime is reached, we assume that the electric field

can be written under the form

(11)

The two unknowns that need to be determined in the above

expression are and . They are computed by taking

two solutions and at time and

and by solving the system

(12)

Then, we define the phasor of the electric field to be the

complex-valued field defined at each point by

(13)

The same procedure can be applied to the magnetic field,

leading to the phasors

(14)

and

(15)
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We now take any contour that surrounds the scattering

object (see Figure 1). Although the RCS is independent of the

chosen contour , the computation of the RCS will be greatly

simplified by taking a contour that matches the finite element

mesh. To compute the RCS all we need is the phasor of the

electric field, the phasor of the magnetic field and the normal

unit vector on the contour . The RCS under the scattering

angle is a function of the following integral along

(16)

Since we have chosen a contour that matches the finite

element mesh, it is formed by (say) non-overlapping seg-

ment lines ( ) such that

Therefore the integral (16) becomes

(17)

or, after a simple change of variable

(18)

Then, the integral on the interval is computed using a

Legendre-Gauss-Lobatto quadrature rule to give

(19)

where are the quadrature weights and is the number

of collocation points on each sides of the triangles. Note that

the phasors and do not need to be interpolated

since each one is readily available at all collocations points (in

particular, at collocations points on the sides of the triangles).

Finally, the RCS under the scattering angle is given by

where is defined in equation (32). For the calculations,

no scaling is applied to the RCS, i.e. the plots of the RCS on

a scale are simply

For the plots of the RCS for scattering objects, a scaling

equal to is applied.
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Fig. 2. Points defining the boundary of an
object.

IV. ACCOUNTING FOR UNCERTAINTY

A. Modelling of a random surface

We consider an object whose shape can vary in a random

fashion. As an example, Figure 2 shows a disc which is mod-

elled by line segments from a finite

element mesh. Those line segments are defined by the points of

polar coordinates . We now

assume that the point can be moved randomly by a quantity

to take a new position

. We

further assume that two points (say and ) with polar

angles and close to each other should have a random

height close to . This is done by introducing the

covariance matrix such that:

(20)

where

(21)

In the definition of we have to separate the cases

and to ensure that two points on the random

surface, one with a polar angle close to and the other one

with a polar angle close to , be strongly correlated. In the

relation (20), is a parameter which can control how correlated

two points and can be and is another parameter which

controls the roughness of the surface (the magnitude of

for is directly proportional to ). Furthermore, is

the standard deviation of each component of .

To generate a random surface, the problem can be

formulated as follows: find a random vector

with a given covariance matrix that

will generate the new random surface

. This procedure is illus-

trated in Figure 3, where a triangle having one
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Fig. 3. Illustration showing how the points on the boundary of an object are
moved randomly.

side sitting on the boundary of the object is distorted

into a new triangle which side

will compose the new shape of

the object. From a practical point of view, this can be easily

done by first generating a vector ,

where are random independent variables follow-

ing (for example) a uniform law on the interval . Since

is symmetric definite positive, it can be decomposed as

, where is a diagonal matrix with positive

eigenvalues on its diagonal. Then, it can be shown that the

vector given by will be a random vector

with covariance matrix . In terms of implementation, one

generates independents pseudo-random numbers

with a uniform law on the interval , then the vector

is given by the matrix-vector product (the matrix

can be pre-computed and stored once for all). The

coordinates of the points of the new random surface will be

for . The procedure described here

for a disc can be easily adapted to objects with more general

shapes, as will be shown in the numerical experiments section.

As an example, we have considered a somewhat simplified

rocket in Figure 4. Figure 5 shows a zoom of its front part for

the original (non-distorted) rocket and a typical sample mesh,

when the procedure described above has been applied (here,

we take and in equation (20)). It should

be noted that with this procedure, one just needs to generate

a single mesh for the problem to be solved (the mesh of the

object with its original shape, i.e. the mesh of Figure 4, for

example). One needs to be careful that once the points defining

the original object have been moved randomly, the triangles

sitting on the object do not distort the mesh too much. This

can be easily controlled by the parameter in equation (20)

which is directly linked to the amplitude that can take. The

coordinates of the points which define the finite element mesh

only occur in the matrices , , and of equation (10) and

those quantities are constant element by element. Since those

matrices appear as multiplicative coefficients into Maxwell’s

Fig. 4. Original mesh for the rocket problem.

Fig. 5. One sample of a mesh for the rocket with a random shape together
with its original shape.

equations we have transformed a problem with an object

having a random shape (which usually requires the generation

of a new mesh for each sample) into an equivalent stochastic

problem having a fixed mesh but with random coefficients.

B. Monte-Carlo simulation

A Monte-Carlo simulation is therefore quite simple:

one simply need to generate (say) random vectors

as described above. Each set of random num-

bers will give a new random surface from which we can

compute solutions of Maxwell’s equations. Those solu-

tions of Maxwell’s equations, will give radar cross section

from which we can compute averages as

follows:

(22)
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And for the variance, we have

(23)

It should be noted that the advantage of the Monte-Carlo

approach is its simplicity (it only requires repetitive runs of

an existing deterministic solver), but it is hard to get accurate

solutions due to its slow rate of convergence . In

the next subsection, we will introduce a stochastic collocation

method which has the simplicity of the Monte-Carlo approach

but with better rates of convergence.

C. Stochastic collocation method based on Stroud’s points

About fifty years ago, Stroud [11] constructed a set of

cubature points to compute integrals of the form

(24)

This set of cubature points based on points is exact for

polynomials of degree two, and the approximation is written

as

(25)

where the cubature points are

given by

(26)

for and if is odd, .

The weights in (25) are all equal to . Similarly, we

have the Stroud-3 method based on points which is exact

for polynomials of degree three :

(27)

where the cubature points are now

defined by

(28)

for and if is odd, similarly we have,

. The weights in (27) are all equal to .

It can be shown [10] that Stroud-2 and Stroud-3 methods

employ the minimal number of points for their corresponding

integration accuracy. Since Stroud-2 and Stroud-3 methods

appeared, many other cubature formulae have been estab-

lished to compute various high-dimensional integrals. In the

70’s, Stroud published a book [12] containing most cubature

formulae known at that time. This extensive work was then

continued by Cools in a series of two papers [3][4]. The idea

of the stochastic collocation method is based on polynomial

interpolations in the multi-dimensional random space. We

assume that Lagrange polynomials based on Stroud’s cubature

points exist, and we express the RCS using the Lagrange

interpolation polynomials, which gives (for Stroud-2 cubature

points)

(29)

where are -variate Lagrange polynomials

based on points of the cubature formula (25). We

note that by construction of Lagrange polynomials, we have

and therefore . The radar

cross sections can be easily computed as follows:

for each cubature point generate a new surface with

and

compute the corresponding solution of Maxwell’s equa-

tions

compute the corresponding radar cross section

The expression of the RCS is now available under the form

(29) and we will show that statistical quantities, e.g. mean

and variance, can easily be computed. By taking the average

of equation (29) and evaluating the multi-dimensional integral

with Stroud-2 cubature formula (25), we get

Similarly, for the variance, we have

(30)

The same procedure can be used with Stroud-3 cubature, and

in that case, realizations of the RCS corresponding to the

cubature points of equation (27) will have to be computed.

When the random space is one-dimensional this procedure can

also be repeated for the Legendre-Gauss-Lobatto quadrature.

Alternatively, we could have used orthogonal polynomials to

express the RCS, i.e. equation (29) would have to be replaced

by

(31)
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where are orthogonal polynomial on . The

expression (31) is usually referred as “polynomial chaos

expansion” and was used in a number of mechanical problems

by Ghanem [5]. The problem of this approach lies in the

difficulty to compute in an efficient way the coefficients .

D. Reduced random space

For the stochastic collocation method, we have seen that

there is a close relation between the size of the random space

and the number of calls to the deterministic Maxwell solver

(i.e. we need calls for Stroud-2 and calls for Stroud-

3). A way of reducing the CPU cost of the method would be to

reduce the size of the random space . This is possible, up to a

certain extent, depending on the covariance matrix defined

by equation (20). Let us consider the two extreme cases:

First, we assume that and in equation (20);

in this case, is the identity matrix and .

In other words we will need independent and identically

distributed random variables to describe the process since all

points of the object are uncorrelated.

Now we assume that and in equation

(20); in this case, all variables are fully correlated. We

have for ; and

for . Thus, all points of the sample

are moved with the same

amplitude, i.e. . This means that

would suffice to describe the problem. In practice, we are

between those two extreme cases and the size of the random

space can be given by the number of significant eigenvalues of

denoted by with . Then, the modified algorithm

proceeds as follows:

Compute the eigenvalues of the matrix

and select the most significant ones satisfying

, where is some small number. The

integer will be the size of the random space needed to

move the points of the objects randomly.

We denote by and the matrices of size

constructed from the restriction of the matrices and

where we have only kept the most significant eigenvalues

and their associated eigenvectors.

Since the dimension of the random space is reduced

to , the collocation points are -dimensional

vectors based on quadrature points for the computation of

-dimensional integrals. For Stroud-2, we have

points and for Stroud-3, it is .

The vector used to move the mesh is now given by

, where .

In the next section, we will study three different problems

with three different kind of meshes: a cylinder (simple smooth

mesh), a square (simple non-smooth mesh) and a rocket

(general non-smooth mesh). Table I gives typical values of

for those three problems for different values of the parameter

of equation (20). The threshold value for the most significant

eigenvalues was taken equal to (ratio of the

smallest eigenvalues to the largest ones). We can see that the

size reduction of the random space can increase from a factor

of two (when ) up to a factor of approximately five

(when ).

1 5 10

cylinder problem 21 16 9

square problem 22 16 9

rocket problem 22 14 10

TABLE I

SIZE OF THE REDUCED RANDOM SPACE FOR THREE PROBLEMS AND

THREE DIFFERENT VALUES OF THE PARAMETER OF EQUATION (20).

V. NUMERICAL EXPERIMENTS

The ideas described above are tested on three different

problems in two spatial dimensions and two different problems

in three spatial dimensions. We consider a transverse magnetic

plane wave scattering by an object of boundary and in all the

two-dimensional cases considered here, the source term of

equation (1) is due to a transverse magnetic plane wave and

takes the form :

(32)

where the wave vector is taken equal to and the

frequency is taken equal to (or for the high frequency

cases). For all cases with two spatial dimensions a PML is used

to truncate the domain (see [1] for details) and the solution in

the physical space is obtained with degree four (or six when

) Lagrange polynomials in each spectral element (see

equation (8)). For the cases with three spatial dimensions a

sponge layer is used for the absorbing boundary condition to

truncate the domain.

A. Smooth shape

We first consider a 2D circular cylinder with a radius of .

Here ie the wavelength of the incident plane wave. The mesh

consists of 852 elements (see Figure 6) and the dimension of

the full random space is 42, i.e. the cylinder is formed by 42

points of the finite element mesh. The parameters and

in equation (20) are taken equal to and , respectively.

This choice of corresponds to the radial randomness having a

standard deviation of about . According to table I, it is

possible to reduce the size of the random space to . In

order to justify the choice of as a threshold value

for the most significant eigenvalues, we have represented the

variance of the RCS for three different values ( ,

and ) as well as the variance of

the RCS for the full random space when Stroud-3 method is

used (see Figure 7). We see that for (in that

case, the size of the random space is reduced to ),

the variance of the RCS is far from its expected value. When

(which corresponds to ), the variance

of the RCS gets close to the one with a full random space

and when , they are indistinguishable. For the

average of the RCS the four curves match exactly and therefore

they are not shown.
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Fig. 6. Original mesh for the cylinder problem.
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Fig. 10. Comparison of the variance of the RCS for the cylinder problem
using Stroud-3 method and Monte-Carlo method with 42, 120 and 250
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Figures 8 and 9 show the average and the variance of

the RCS for the Stroud-2, the Stroud-3 and the Monte-Carlo

method using 250 samples. We see that for the average, all

methods have converged. For the variance, the Stroud-2 and

Stroud-3 have converged to the same RCS but the Monte-Carlo

method give slightly different results. Figure 10 shows that as

we increase the number of samples of the Monte-Carlo method

from 42 to 250, the variance of the RCS converges to the

solution of the Stroud-3 method. Therefore, it can be expected

that a Monte-Carlo simulation with more samples would give

results closer to the Stroud results. Note that the CPU cost of

the Monte-Carlo method with 42 samples is exactly the same

as the one of Stroud-3 method and when 250 samples are

used, it is about six times more CPU expensive than Stroud-3

(the cost is proportional to the number of samples solutions

computed, i.e. for Stroud-2 it is ; for Stroud-3, it is
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Fig. 11. RCS for the cylinder problem. Results are shown with the mean
RCS as well as one standard deviation (shown results are for Stroud-3).

and for the most accurate Monte-Carlo simulation,

it is 250 samples). Finally, Figure 11 shows the average of

the RCS and the possible variations around its average value

when Stroud-3 method is used. It can be noted that for this

test case the uncertainty in shape affects the RCS mostly in

the sidebands.

B. Non-smooth shape

We now consider a square of width whose mesh

consists of 840 elements. Again, is the wavelength of the

incident plane wave. The dimension of the full random space

is 44, which means that the square is formed by 44 points of

the finite element mesh. The parameters and in equation

(20) are taken equal to and , respectively. This choice

of corresponds to the radial randomness having a standard

deviation of about . By choosing , the covariance

matrix defined by (20) is more diagonal dominant than

it was in the previous example, and the number of most

significant eigenvalues is reduced to . Due to the

geometrical singularities in the corners of the square, this is a

much harder problem to solve than the cylinder problem. This

is illustrated on Figure 12 and 13, where we show the mean

and the variance of the RCS for the Stroud-2, the Stroud-3

and the Monte-Carlo methods using 250 samples. We can see

on Figure 12 that the mean converges to the same values for

the three methods. However, for the variance, the Stroud-3 and

the Monte-Carlo methods give similar results but the Stroud-

2 method gives results which have not converged, especially

in the sidebands. This is because Stroud-2 can only integrate

exactly multi-variate polynomials of degree two at most,

and the exact solution of this example cannot be accurately

represented by such polynomials. On the other hand, Stroud-

3 which can integrate exactly multi-variate polynomials of

degree three at most does a better job. In order to emphasize

the cost saving of Stroud-3 method over Monte-Carlo method,

we have represented the variance of the RCS for Stroud-3,

Monte-Carlo with 32 samples (which has the same CPU-cost
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Fig. 12. Comparison of the average of the RCS for the square problem for
Stroud-2, Stroud-3 and Monte-Carlo methods.
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Fig. 13. Comparison of the variance of the RCS for the square problem
using Stroud-2, Stroud-3 and Monte-Carlo methods.

as the Stroud-3 method) and Monte-Carlo with 250 samples

in Figure 14. We see that as we increase the number of

samples, the Monte-Carlo solution converges slowly to the

Stroud-3 solution. Figure 15 shows the average of the RCS

and the possible variations around its average value obtained

with Stroud-3 cubature. We can see that like for the cylinder

problem, the uncertainty in shape affects the RCS mostly in

the sidebands.

C. General shape

As a last shape, we consider the (simple) rocket shown

in Figure 4 which is long and the body is wide.

The mesh consists of 1465 elements and the dimension of

the full random space is 45 (i.e. the rocket is formed by 45

points of the finite element mesh). As for the square problem,

the parameters and in equation (20) are taken equal to

and , respectively and the size of the random space
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Fig. 15. RCS for the square problem. Results are shown with the mean RCS
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can be reduced to . This choice of corresponds to

the radial randomness having a standard deviation of about

. Similarly to the square problem, good convergence

of the average RCS is obtained both for Stroud-2, Stroud-3

and Monte-Carlo simulations. However for the variance of the

RCS, only Stroud-3 and Monte-Carlo with enough samples

(i.e. more than 250) give good results. Figure 16 shows the

average of the RCS and the possible variations around its

average value obtained with Stroud-3 cubature. For this case,

the uncertainty in shape affects the RCS both in the middle

part and in the sidebands.

D. Higher frequency cases

As a last numerical experiment in two spatial dimensions,

we increase the frequency of the source term (32) up to

. This causes the radius of the cylinder to increase to and

the size of the rocket to increase to long and wide in
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Fig. 16. RCS for the rocket problem. Results are shown with the mean RCS
as well as one standard deviation.

the body. For these cases the radial randomness has a standard

deviation of about . For all the previous numerical

experiments, we have used 4th order elements in each triangle

of the finite element grid. Due to the higher frequency, all

the results shown in this section are obtained with 6th order

elements to get converged results in the physical space (i.e.

the value of defined below equation (8) is increased to

). Figures 17 and 18 show the average of the RCS and

the possible variations around its average value obtained with

Stroud-3 cubature for the cylinder and the rocket problem,

respectively. The form of the uncertainty remains the same as

in the previous numerical examples, the only difference being

the frequency of the source term. By comparing Figure 11

with Figure 17 and Figure 16 with Figure 18, we see that

as we increase the frequency, the regions where the RCS has

the greatest variance remains more or less the same. In this

numerical experiment, convergence of the average of the RCS

and the variance of the RCS is good for the cylinder problem,

for both Stroud and Monte-Carlo methods. However, for the

rocket problem only Stroud-3 and Monte-Carlo with enough

samples give converged results for the variance.

E. Sphere

For the first experiment with three spatial dimensions we

consider the scattering of a transverse magnetic plane wave

from a PEC sphere. We assume the sphere has a uniform

random radius in the interval , where is the

wavelength of the incident field. The use of one random

variable is not a limitation of the method but is done for

logistical reasons to have reasonable computation times. Since

this experiment has only one random dimension, a sixth order

Legendre-Gauss-Lobatto quadrature is used for collocation in

the random space. For the spatial discretization we use fourth

order elements and a sample mesh is presented in Figure 19

which is restricted to the surface of the sphere. Figure 20

shows the average of the RCS and the possible variations
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Fig. 17. RCS for the cylinder problem at higher frequency. Results are shown
with the mean RCS as well as one standard deviation.
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Fig. 18. RCS for the rocket problem at higher frequency. Results are shown
with the mean RCS as well as one standard deviation.

around its average value. The uncertainty in the radius of the

sphere affects the RCS mainly in the sideband.

F. Three-dimensional rocket

For the second experiment with three spatial dimensions we

consider the scattering of a transverse magnetic plane wave

from a PEC rocket. The orientation of the scattering plane

and the scattering angle is is given in Figure 21 along with

a geometric description of the rocket. The scattering angle

of the incident field is assumed to be random with uniform

distribution in the interval . As in the case for the

sphere, the use of one random variable is not a limitation of the

method but is done for logistical reasons to have reasonable

computation times. A fourth Legendre-Gauss-Lobatto is used

for collocation in the one-dimensional random space. For this

calculation the physical space is discretized with degree five

polynomials in each element. Figure 22 shows the mesh used

Fig. 19. One sample of a surface mesh for the sphere with a random radius.
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Fig. 20. RCS for the sphere problem. Results are shown with the mean RCS
as well as one standard deviation.

restricted to the surface of the rocket and Figure 23 shows

the average of the RCS and the possible variations around

its average value. The uncertainty in the direction of the

incident field affects the RCS mainly near the local maxima

and minima points of the RCS.

VI. POSSIBLE EXTENSIONS TO OTHER TYPES OF

UNCERTAINTIES

For convenience the numerical examples presented in three

spacial dimensions only use one random dimension unlike

the two-dimension examples which used multi-dimensional

random spaces. This restriction to one random dimension

was done only to keep the total computational time tractable.

The method presented for applying the randomness in two

spacial dimension should generalize to three dimensions with

an appropriate choice of the correlation between neighboring

points in three dimensions.

So far, we only have discussed PEC objects with random

shapes and uncertainties in the incident field, however the

approach described above can equally be used for other

types of uncertainties. For example, instead of being purely
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Fig. 22. The surface mesh for the three-dimensional rocket.
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Fig. 23. RCS for the three-dimension rocket problem. Results are shown
with the mean RCS as well as one standard deviation.

reflective, the object can be material with a random shape. In

that case, it is necessary to mesh the entire domain and define

a permittivity that will takes some value inside the object

and another value outside. For material objects, the shape of

the objects can be moved randomly in the same way as a

PEC object. In [2], the uncertainty in shape of a material

object was studied and the approach used was limiting the

uncertainty to be modeled by a single random variable. Other

types of uncertainties were also studied (randomness of the

source term to mimic a slight variation in the frequency of the

source, randomness of the permittivity), however the method

used was only efficient for random spaces of small dimension.

The approach presented in this paper is more general since it

allows efficient simulations, even when the size of the random

space is large.

VII. CONCLUSION

In this paper, we have proposed a way to model the un-

certainty in shape for different objects and study its influence

on the RCS, computed from the solution of the time-domain

Maxwell’s equations. It was shown that the modeling of

the object with a random shape could be rewritten into a

problem with a fixed shape but with Maxwell’s equations

having random coefficients. We have proposed an efficient way

of solving this stochastic equation based on Stroud’s cubature

formulae. The proposed approach has a number of significant

advantages: it is as simple as a Monte-Carlo simulation and

for a given level of accuracy, it requires less outcomes to be

computed. We have shown that for non-smooth objects (like

the square), it was preferable to use the Stroud-3 method

instead of the Stroud-2 one. For all the examples with two

spatial dimensions treated here, the number of independent

random variables used to generate the random surface was

between 14 and 21, showing the efficiency of the proposed

method for a relatively high dimension of the random space.

We have also presented results for simulations in three spatial

dimensions with a single random variable.
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