
Efficient Computation of Robust Low-Rank Matrix Approximations in the
Presence of Missing Data using the L1 Norm

Anders Eriksson and Anton van den Hengel
School of Computer Science

University of Adelaide, Australia
{anders.eriksson, anton.vandenhengel}@adelaide.edu.au

Abstract

The calculation of a low-rank approximation of a matrix
is a fundamental operation in many computer vision appli-
cations. The workhorse of this class of problems has long
been the Singular Value Decomposition. However, in the
presence of missing data and outliers this method is not ap-
plicable, and unfortunately, this is often the case in practice.

In this paper we present a method for calculating the
low-rank factorization of a matrix which minimizes the L1

norm in the presence of missing data. Our approach repre-
sents a generalization the Wiberg algorithm of one of the
more convincing methods for factorization under the L2

norm. By utilizing the differentiability of linear programs,
we can extend the underlying ideas behind this approach
to include this class of L1 problems as well. We show that
the proposed algorithm can be efficiently implemented us-
ing existing optimization software. We also provide prelim-
inary experiments on synthetic as well as real world data
with very convincing results.

1. Introduction

This paper paper deals with low-rank matrix approxima-
tions in the presence of missing data. That is, the following
optimization problem

min
U,V
||Ŵ � (Y − UV) ||, (1)

where Y ∈ Rm×n is a matrix containing some mea-
surements, and the unknowns are U ∈ Rm×r and V ∈
Rr×n.We let ŵij represent an element of the matrix Ŵ ∈
Rm×n such that ŵij is 1 if yij is known, and 0 otherwise.
Here || · || can in general be any matrix norm, but in this
work we consider the 1-norm,

||A||1 =
∑
i,j

|aij |, (2)

in particular.
The calculation of a low-rank factorization of a ma-

trix is a fundamental operation in many computer vision
applications. It has been used in a wide range of prob-
lems including structure-from-motion[18], polyhedral ob-
ject modeling from range images[17], layer extraction[12],
recognition[19] and shape from varying illumination[11].

In the case where all of the elements of Y are known the
singular value decomposition may be used to calculate the
best approximation as measured by the L2 norm. It is of-
ten the case in practice, however, that some of the elements
of Y are unknown. It is also common that the noise in the
elements of Y is such that the L2 norm is not the most ap-
propriate. The L1 norm is often used to reduce sensitivity to
the presence of outliers in the data. Unfortunately, it turns
out that introducing missing data and using the L1 norm in-
stead, makes the problem (1) significantly more difficult. It
is firstly a non-smooth problem, so many of the standard op-
timization tools available will not be applicable. Secondly,
it is a non-convex problem so certificates of global optimal-
ity are in general hard to provide. And finally it can also
be very computationally demanding task to solve, when ap-
plied to a real world applications the number of unknowns
are typically very large.

In this paper we will present a method that efficiently
computes a low rank approximation of a matrix in the pres-
ence of missing data, under the L1 norm, by effectively ad-
dressing the issues of non-smoothness and computational
requirements. Our proposed method should be viewed as a
generalization of, one of the more successful algorithms for
the L2 case, the Wiberg method [20].

1.1. Notation

All of the variables used in this paper are either clearly
defined or should otherwise be obvious from the context in
which they appear. Additionally, In denotes a n × n iden-
tity matrix,� and⊗ are the Hadamard and Kronecker prod-
ucts respectively. Upper case roman letters denote matrices

771978-1-4244-6985-7/10/$26.00 ©2010 IEEE

and lower case ones, vectors and scalars. We also use the
convention that v = vec(V), a notation that will be used
interchangeably throughout the remainder of this paper.

2. Previous Work
The subject of matrix approximation has been exten-

sively studied, especially using L2 type norms. A num-
ber of different names for the process are used in the litera-
ture, such as principal component analysis, subspace learn-
ing and matrix or subspace factorization. In this paper we
describe the problem in terms of the search for a pair of ma-
trices specifying a low rank approximation of a measure-
ment matrix, but the approach is equally applicable to any
of these equivalent problems.

For an outstanding survey of many of the existing meth-
ods for least L2-norm factorization see the work of [5]. This
paper also contains a direct quantitative comparison of a
number of key methods. Unfortunately, their comparison
did not include the Wiberg algorithm [20]. This method,
which was first proposed more than 30 years ago, has been
largely misunderstood or neglected by computer vision re-
searchers. An issue which was addressed in the excellent
work of [16], effectively reintroducing the Wiberg algo-
rithm to the vision community. It was also shown there, that
on many problems the Wiberg method outperforms many of
the existing, more recent methods.

The subject of robust matrix factorization has not re-
ceived as much attention within computer vision as it has
in other areas (see [1, 15] for example). This is beginning
to be addressed, however. A very good starting point to-
wards a study of more robust methods, however, is the work
of [9]. One of the first methods suggested was Iteratively
Re-weighted Least Squares which minimizes a weightedL2

norm. The method is unfortunately very sensitive to initial-
ization (see [13] for more detail).

Black and Jepson in [4] describe a method by which it
is possible to robustly recover the coefficients of a linear
combination of known basis vectors that best reconstructs a
particular input measurement. This might be seen as a ro-
bust method for the recovery of V given U in our context.
De la Torre and Black in [9], present a robust approach to
Principal Component Analysis which is capable of recover-
ing both the basis vectors and coefficients, which is based
on the Huber distance.

The L1 norm was suggested by Croux and Filzmoser
in [7] as a method for addressing the sensitivity of the L2

norm to outliers in the data. The approach they proposed
was based on a weighting scheme which applies only at the
level of rows and columns of the measurement matrix. This
means that if an element of the measurement matrix is to be
identified as an outlier then its entire row or column must
also be so identified.

Ke and Kanade in [13] present a factorization method

based on the L1 norm which does not suffer from the lim-
itations of the Croux and Filzmoser approach and which
is achieved through alternating convex programs. This ap-
proach is based on the observation that, under the L1-norm,
for a fixed U , the problem (1) can be written as a linear
problem in V , and vice versa. A succession of improved
matrix approximations can then be obtained by solving a
sequence of such linear programs, alternately fixing U and
V . It was also shown here, that one can also solve the
Huber-norm, an approximation of the L1-norm, in a sim-
ilar fashion, with the difference that each subproblem now
is a quadratic problem. Both these formulations do result in
convex subproblems, for which efficient solvers exist, how-
ever this does not guarantee that global optimality is ob-
tained for the original problem in the L1-norm.

The excellent work by [6] also needs mentioning. Here
they apply Branch and Bound and convex under estimators
to the general problem of bilinear problem, which includes
(1), both under L1 and L2 norms. This approach are prov-
ably globally optimal, but is in general very time consuming
and in practice only useful for small scale problems.

2.1. The Wiberg Algorithm

As previously mentioned the Wiberg algorithm is a nu-
merical method developed for the task of low-rank matrix
approximation with missing data using the L2-norm. We
will in this section give a brief description of the underlying
ideas behind this method in an attempt to motivate some of
the steps taken in the derivation of our generalized version
to come.

The Wiberg algorithm is initially based on the observa-
tion that, for a fixed U in, (1)the L2-norm becomes a linear,
least-squares minimization problem in V ,

min
v
||Wy −W (In ⊗ U)v||22, (3)

W = diag(ŵ), with a closed-form solution given by (4).

v∗(U) =
(
G(U)TG(U)

)−1
G(U)Wy, (4)

where G(U) = (In ⊗ U). Similar statements can also be
made for fixed values of V ,

min
u
||Wy −W (V T ⊗ Im)u||22, (5)

u∗(V) =
(
F (V)TF (V)

)−1
F (V)Wy, (6)

and F (V) = (V T ⊗ Im).
Here it should be mentioned that using (4) and (6), al-

ternatively fixing U while updating V , and vice versa, was
one of the earliest algorithms for finding matrix approxima-
tions in the presence of missing data. This process is also
known as the alternated least squares (ALS) approach. The
disadvantage, however, is that it has in practice been shown

772

to converge very slowly (see [5], for example). The alter-
nated LP and QP approaches of [13] were motivated by this
method.

Continuing with the Wiberg approach, by substituting
(4) into equation (5) we get

min
U
||Wy −WUV ∗(U)||22 = ||Wy − φ(U)||22, (7)

a non-linear least squares problem in U . It is the application
of the Gauss-Newton method [3] to the above problem that
results in the Wiberg algorithm. The difference between
the Wiberg algorithm and ALS may thus be interpreted as
the fact that the former effectively computes Gauss-Newton
updates while the latter carries out exact cyclic coordinate
minimization.

As such, the Wiberg sequence of iterates Uk are gener-
ated by approximating φ by its first order Taylor expansion
at Uk and solving the resulting subproblem

min
δ

= ||Wy − ∂φ(Uk)
∂U

δ||22. (8)

If we let Jk denote the Jacobian ∂φ(Uk)/∂U and we can
write the solution to (8) as

δ∗k =
(
JTk Jk

)−1
JTk Wy, (9)

the well known normal equation. The next iterate Uk+1 is
then given by Uk+1 = Vk + δ∗k.

3. Linear Programming and Differentiation

Before moving on we first need to show some additional
properties of linear programming. This section deals with
the sensitivity of the solution to a linear program with re-
spect to changes in the coefficients of its constraints.

Lets consider a linear program in standard, or canonical
form:

min
x∈Rn

cTx (10)

s.t. Ax = b (11)
x ≥ 0 (12)

with c ∈ Rn, A ∈ Rm×n and b ∈ Rm. It can furthermore
be assumed, without loss of generality, that A has full rank.

This class of problem has been studied extensively for
over a century. As a result there exist a variety of algo-
rithms for efficiently solving (10)-(12). Perhaps the most
known well algorithm is the simplex method of [8]. It is the
approach taken in that algorithm that we will follow in this
section.

First, from [14] (pp. 19-21), we have the following defi-
nition and theorem.

Definition 3.1. Given the set of m linear equations in n
unknowns, Ax = b, let B be be any nonsingular m × m
submatrix made up of columns of A. Then, if all n − m
components of x not associated with columns of B are set
equal to zero, the solution to the resulting set of equations
is said to be a basic solution to (10)-(12) with respect to the
basis B. The components associated to with columns of B
are called basic variables.

Theorem 3.1.
Fundamental theorem of Linear Programming
Given a linear program in canonical form such as (10)-(12),
then if the problem is feasible there always exists an optimal
basic solution.

Given that a minimizer x∗ of the linear program (10)-
(12) may been obtained using some optimization algorithm,
we are interested in the sensitivity of the minimizer with re-
spect to the coefficients of the constraints. That is, we wish
to compute the partial derivatives ∂x∗/∂A and ∂x∗/∂b.
The following theorem is based on the approach of Freund
in [10].

Theorem 3.2. Let B be a unique optimal basis for (10)-
(12) with minimizer x∗ partitioned as x∗ =

[
x∗B
x∗N

]
. Where

x∗B is the optimal basic solution and x∗N = 0 the optimal
non-basic solution.

Reordering the columns of A if necessary, there is a par-
tition of A such that A = [B N], and N are the columns of
A associated with the non-basic variables x∗N . Then x∗ is
differentiable at A, b with the partial derivatives given by

∂x∗B
∂B

= −(x∗B)T ⊗B−1 (13)

∂x∗B
∂N

= 0 (14)

∂x∗B
∂b

= B−1 (15)

∂x∗N
∂A

=
∂x∗N
∂b

= 0. (16)

Proof. Given the set of optimal basic variables, the linear
program 10 can be written

min
xB∈Rm

cTBxB (17)

s.t. BxB = b (18)
xB ≥ 0 (19)
xN = 0 (20)

where cB ∈ Rm contains the elements of c associated with
the basic variables only. SinceB is of full rank and we know
it is an optimal and feasible basis for (10)-(12) it follows
that the solution to BxB = b is both feasible (xB ≥ 0) and
optimal. The above statements represent the foundation of
the simplex method.

773

Now, since by assumption, the basisB is unique we have
that

x∗B = B−1b (21)
x∗N = 0 (22)

and as B is a smooth bijection from Rm onto itself, then x∗

is differentiable with respect to the coefficients in A and b.
Differentiation of (13) becomes

∂x∗B
∂B

= ∂
∂B

(
B−1b

)
(23)

=
(
bT ⊗ Im

)
∂B−1

∂B (24)

= −
(
bT ⊗ Im

) (
B−T ⊗B−1

)
(25)

= −(x∗B)T ⊗B−1. (26)

Equations (14)-(16) follow trivially from the differentiation
of (21) and (22).

In conclusion, by combining the results of theorem 3.1
we can write the derivatives as

∂x∗

∂A
=

[
−(x∗B)T ⊗B−1 0m×(n−m)m

0(n−m)×m2 0(n−m)×(n−m)m

]
(27)

∂x∗

∂b
=

[
B−1

0(n−m)×m

]
. (28)

4. The L1-Wiberg Algorithm
In this section we will present the derivation of a gener-

alization of the Wiberg algorithm to the L1-norm. We will
follow a similar approach to the derivation of the standard
Wiberg algorithm. That is, by rewriting the problem as a
function of U only, then linearizing it, solving the result-
ing subproblem and updating the current iterate using the
minimizer of said subproblem.

Our starting point for the derivation our generalization of
the Wiberg algorithm is again the minimization problem

min
U,V
||Ŵ � (Y − UV) ||1. (29)

Following the approach of section 2.1 we first note that
for fixed U and V it is possible to rewrite the optimization
problem (29) as

v∗(U) = arg min
v
||Wy −W (In ⊗ U)v||1, (30)

u∗(V) = arg min
u
||Wy −W (V T ⊗ Im)u||1, (31)

both linear problem in V and U respectively.
Substituting (30) into equation (31) we obtain

min
U

f(U) = ||Wy −WUV ∗(U)||1 =

= ||Wy − φ1(U)||1. (32)

Unfortunately, this is not a least squares minimization prob-
lem so the Gauss-Newton algorithm is not applicable. Nor
does v∗(U) have an easily differentiable, closed-form so-
lution, but the results of the previous section allow us to
continue in a similar fashion.

It can be shown that, by letting v = v+ − v−, an equiv-
alent formulation of (30) is

min
v+,v−,t,s

[0 0 1T 0]
[
v+

v−

t
s

]
(33)

s.t.
[
−G(U) G(U) −I
G(U) −G(U) −I I

]
︸ ︷︷ ︸

A(U)

[
v+

v−

t
s

]
=
[
−Wy
Wy

]
︸ ︷︷ ︸

b

(34)

v+, v−, t, s ≥ 0 (35)
v+, v− ∈ Rrn, t ∈ Rmn, s ∈ R2mn. (36)

Note that (33)-(36) here is a linear program in canonical
form, allowing us to apply theorem 3.1 directly. Let V ∗(U)
denote the optimal basic solution of (33)-(36). Assuming
that the prerequisites of theorem 3.1 hold, then V ∗(U) is
differentiable and we can compute the Jacobian of the non-
linear function φ1(U) = WUV ∗(U). Using (27) and ap-
plying the chain-rule, we obtain

∂G

∂U
= (Inr ⊗W) (Tr,n ⊗ Im) (vec(In)⊗ Imr)(37)

∂A

∂U
=

[
− ∂G

∂U
∂G
∂U 0

∂G
∂U − ∂G

∂U 0
0
]

(38)

∂v

∂U
= Q

(
(v∗B)T ⊗B−1

) (
QT ⊗ I2mn

) ∂A
∂U

(39)

Here Tm,n denotes the mn × mn matrix for which
Tm,nvec(A) = vec(AT), and Q ∈ Rmn×m is obtained by
removing the columns corresponding to the non-basic vari-
ables of x∗ from the identity matrix Imn. Combining the
above expressions we arrive at

J(U) =
∂

∂U
(WUV ∗(U)) = WG(U)

∂v

∂U
+(

(v∗B)T ⊗W
)
(In ⊗ Tr,n ⊗ Im) (vec(In)⊗ Imr) (40)

The Gauss-Newton method, in the least squares case,
works by linearizing the non-linear part and solving the re-
sulting subproblem. By equation (40) the same can be done
for φ1(U). Linearizing Wy −WUV ∗(U) by its first order
Taylor expansion results in the following approximation of
(32) around Uk

f̃(δ) = ||Wy − J(Uk)(δ − uk)||1. (41)

Minimizing (41)

min
δ
||Wy − J(U)(δ − u)||1 (42)

774

is again a linear problem, but now in δ.

min
δ,t

[0 1T] [δt] (43)

s.t.
[
−J(U)−I
J(U)−I

]
[δt] =

[
−(Wy−W vec(UV ∗))
Wy−W vec(UV ∗)

]
(44)

||δ||1 ≤ µ (45)
δ ∈ Rmr, t ∈ Rmn. (46)

Let δ∗k be the minimizer of (43)-(46), with U = Uk, then
the update rule for our proposed method is simply

Uk+1 = Uk + δ∗k. (47)

Note that in (44) we have added the constraint ||δ||1 ≤ µ.
This is done as a trust region strategy to limit the step
sizes that can be taken at each iteration so to ensure a non-
increasing sequence of iterates. See algorithm 1 below for
details on how the step length µ is handled.

We are now ready to present our complete L1-Wiberg
method in Algorithm 1.

Proper initialization is a crucial issue for any iterative al-
gorithm and can greatly affect its performance. Obtaining
this initialization is highly problem dependent, for certain
applications good initial estimates of the solution are read-
ily available and for others finding a sufficiently good U0

might be considerably more demanding. In this work we ei-
ther initialized our algorithm randomly or through the rank-
r truncation of the singular value decomposition of Ŵ ⊗ Y .

Finally, a comment on the convergence of the proposed
algorithm. We know that, owing to the use of trust region
setting, it can be shown that algorithm 1 will produce a se-
quence of iterates {U0, ..., Uk} with non-increasing func-
tion values, f(U0) ≥ ... ≥ f(Uk) ≥ 0}. We currently have
no proof, however, that the assumptions of theorem 3.1 al-
ways hold, which is a requirement for the differentiability
of V ∗(U). Unfortunately this non-smoothness prevents the
application of the standard tools for proving convergence to
a local minima. In our considerable experimentation, how-
ever, we have never observed an instance in which the algo-
rithm does not converge at a local minima.

5. Experiments

In this section we present a number of experiments car-
ried out to evaluate our proposed method. These include
real and synthetic tests.

We have evaluated the performance of the L1-Wiberg al-
gorithm method against that of two of the state of the art
methods presented by Ke and Kanade in [13], (alternated
LP and alternated QP).

All algorithms were implemented in Matlab. Linear and
quadratic optimization subproblems were solved using lin-
prog and quadprog respectively.

Algorithm 1: L1-Wiberg Algorithm

input : U0, 1 > η2 > η1 > 0 and c > 1
k = 0 ;1

repeat2

Compute the Jacobian of φ1 = J(Uk) using3

(37)-(40) ;
Solve the subproblem (43)-(46) to obtain δ∗k ;4

Let gain =
f(Uk)− f(Uk + δ∗)
f̃(Uk)− f̃(Uk + δ∗)

;
5

if gain ≥ ε then6

Uk+1 = Uk + δ∗ ;7

end8

if gain < η1 then9

µ = η1||δ∗||110

end11

if gain > η2 then12

µ = cµ13

end14

k = k + 1;15

until convergence ;16

Remarks.

• Lines 9-14 are a standard implementation for dealing
with µ, the size of the trust region in the subproblem
(43)-(46).see for instance [2] for further details.

• Typical parameter values used were η1 = 1
4 ,

η2 = 3
4 , ε = 10−3 and c = 2.

• In the current implementation we use a simple
termination criteria. Iteration is stopped when the
reduction in function value f(Uk)− f(Uk+1) is
deemed sufficiently small (≤ 10−6).

5.1. Synthetic Data

The aim of the experiments in this section was to empir-
ically obtain a better understanding of the following prop-
erties of each of the tested algorithm, resulting error, rate of
convergence, execution time and the computational require-
ments.

For the synthetic tests a set of randomly created measure-
ment matrices were generated. The elements of the mea-
surement matrix Y were drawn from a uniform distribution
between [−1, 1]. Then 20% of the elements were chosen
at random and designated as missing by setting the corre-
sponding entry in the matrix Ŵ to 0. In addition, to simu-
late outliers, uniformly distributed noise over [−5, 5] were
added to 10% of the elements in Y .

Since the alternated QP method of Ke and Kanade re-
lies on quadratic programing and as such does not scale as

775

well as linear programs we deliberately kept the synthetic
problems relatively small, with m = 7, n = 12 and r = 3.

Figure 1 shows a histogram of the error produced by each
algorithm on 100 synthetic matrices, created as described
above. It can be seen in this figure that our proposed method

Figure 1. A histogram representing the frequency of different mag-
nitudes of error in the estimate generated by each of the methods.
[Frequency vs. Error]

clearly outperforms the other two. But what should also be
noted here is the poor performance of the alternated linear
program approach. Even though it can easily be shown that
this algorithm will produce a non-increasing sequence of it-
erates, there is no guarantee that it will converge to a local
minima. This is what we believe is actually occurring in
these tests. The alternated linear program converges to a
point that is not a local minima, typically after only a small
number of iterations. Owing to its poor performance we
have excluded this method from the remainder of experi-
ments.

Next we examine the convergence rate of the algorithms.
A typical instance of the error convergence from from both
the AQP and L1-Wiberg algorithms, applied to one of the
synthetic problems, can be seen in figure 2. These figures
are not intended to show the quality of the final solution,
but rather how it quickly it is obtained by the competing
methods.

Figure 3 depicts the performance of the algorithms in
100 synthetic tests and is again intended to show conver-
gence rate rather than the final error. Note the independent
scaling of each set of results and the fact that the Y-axis
is on a logarithmic scale. Again it is obvious that the L1

Wiberg algorithm significantly outperforms the alternated
quadratic programming approach. It can be seen that the
latter method has a tendency to flatline, that is to converge
very slowly after an initial period of more rapid progress.
This is a behavior that has also been observed for alternated
approaches in the L2 instance, see [5].

Table 1 summarizes the same set of synthetic tests. What
should be noted here is the low average error produced
by our method, the long execution time of the alternated

Figure 2. Plots showing the norm of the residual at each iteration
of two randomly generated tests for both the L1 Wiberg and al-
ternated quadratic programming algorithms. [Residual norm vs.
Iteration]

Figure 3. A plot showing the convergence rate of the alternated
quadratic programming and L1-Wiberg algorithms over 100 trials.
The error are presented on a logarithmic scale. [Log Error vs.
Iteration]

quadratic program approach and the poor results obtained
by alternated linear program method.

The results of these experiments, although confined to
smaller scale problems, do indeed demonstrate the promise
of our suggested algorithm.

5.2. Structure from Motion

Next we present an experiment on a real world
application, namely structure from motion. We use
the well known dinosaur sequence, available from
http://www.robots.ox.ac.uk/˜vgg/, contain-

776

Algorithm Alt. LP [13] Alt. QP [13] Wiberg L1(Alg.1)
Error (L1) 4.60 2.29 1.01
Execution Time (sec) 0.16 93.57 1.51
Iterations 4.72 177.64∗ 21.77
LP/QP solved 9.44 355.28∗ 24.13
Time per LP/QP 0.016 0.264∗ 0.061

∗ The alternated QP algorithm was terminated after 200 iterations and 400 solved quadratic programs.

Table 1. The averaged results from running 100 synthetic experiments.

ing projections of 319 points tracked over 36 views. Now,
finding the full 3D-reconstruction of this scene can be posed
as a low-rank matrix approximation task. In addition, as we
are considering robust approximation in this work, we also
included outliers to the problem by adding uniformly dis-
tributed noise [−50, 50] to 10% of the tracked points.

We applied our proposed method to this problem, ini-
tializing it using truncated singular value decomposition as
described in the previous section. For comparison we also
include the result from running the standard Wiberg algo-
rithm. Attempts to evaluate the AQP method on this on
the same data were abandoned when the execution time ex-
ceeded several of hours.

The residual for the visible points of the two different
matrix approximations is given in figure 4. TheL2 norm ap-

Figure 4. Resulting residuals using the standard Wiberg algorithm
(top), and our proposed L1-Wiberg algorithm (bottom).

proximation seems to be strongly affected by the presence
of outliers in the data. The error in the matrix approxima-
tion appears to be evenly distributed among all the elements

of the residual. In the L1 case this does not seem to occur.
Instead the reconstruction error is concentrated to a few el-
ements of the residual. The root mean square error of the
inliers only, as well as execution times are given in table 2

The resulting reconstructed scene can be seen in figure
5.

6. Conclusion
In this paper we have studied the problem of low-rank

matrix approximation in the presence of missing data. We
have proposed a method for solving this task under the ro-
bust L1 norm which can be interpreted as a generalization
of the standard Wiberg algorithm. We have also shown
through a number of experiments, on both synthetic and
real world data, that the L1 Wiberg method proposed is both
practical and efficient and performs very well in comparison
to other existing methods.

Further work in the area will include an investigation
into the convergence properties of the algorithm and par-
ticularly the search for a mathematical proof that the algo-
rithm indeed converges to a local minima. Jointly, the issue
of non-differentiable points of φ1 should also be further in-
vestigated.

7. Acknowledgements
This research was supported under Australian Research

Council’s Discovery Projects funding scheme (project
DP0988439).

References
[1] P. Baldi and K. Hornik. Neural networks and principal com-

ponent analysis: learning from examples without local min-
ima. Neural Netw., 2(1):53–58, 1989. 2

[2] M. Bazaraa, H. Sherali, and C. Shetty. Nonlinear Program-
ming, Theory and Algorithms. Wiley, 1993. 5

[3] A. Bjorck. Numerical Methods for Least Squares Problems.
SIAM, 1995. 3

[4] M. J. Black and A. D. Jepson. Eigentracking: Robust match-
ing and tracking of articulated objects using a view-based
representation. In International Journal of Computer Vision,
volume 26, pages 329–342, 1998. 2

777

Algorithm Alt. QP [13] Wiberg L2 [20] Wiberg L1 (Alg. 1)
RMS Error of Inliers - 2.029 0.862
Execution Time >4 hrs 3 min 2 sec 17 min 44 sec

Table 2. Results from the dinosaur sequence with 10% outliers.

Figure 5. Images from the dinosaur sequence, and the resulting reconstruction using our proposed method.

[5] A. M. Buchanan and A. W. Fitzgibbon. Damped newton al-
gorithms for matrix factorization with missing data. In Con-
ference on Computer Vision and Pattern Recognition, vol-
ume 2, pages 316–322, 2005. 2, 3, 6

[6] M. K. Chandraker and D. J. Kriegman. Globally optimal
bilinear programming for computer vision applications. In
Conference on Computer Vision and Pattern Recognition,
2008. 2

[7] C. Croux and P. Filzmoser. Robust factorization of a data
matrix. In In COMPSTAT, Proceedings in Computational
Statistics, pages 245–249, 1998. 2

[8] G. Dantzig. Linear Programming and Extensions . Princeton
University Press, 1998. 3

[9] F. De La Torre and M. J. Black. A framework for robust
subspace learning. Int. J. Comput. Vision, 54(1-3):117–142,
2003. 2

[10] R. M. Freund. The sensitivity of a linear program solution
to changes in matrix coefficients. Technical report, Mas-
sachusetts Institute of Technology, 1984. 3

[11] H. Hayakawa. Photometric stereo under a light source with
arbitrary motion. Journal of the Optical Society of America
A, 11(11), 1992. 1

[12] Q. Ke and T. Kanade. A subspace approach to layer extrac-
tion. Computer Vision and Pattern Recognition, IEEE Com-
puter Society Conference on, 2001. 1

[13] Q. Ke and T. Kanade. Robust L1 norm factorization in the
presence of outliers and missing data by alternative convex
programming. In Conference on Computer Vision and Pat-
tern Recognition, pages 739–746, Washington , USA, 2005.
2, 3, 5, 7, 8

[14] D. G. Luenberger and Y. Ye. Linear and Nonlinear Program-
ming. Springer, 2008. 3

[15] E. Oja. A simplified neuron model as a principal compo-
nent analyzer. Journal of Mathematical Biology, 15:267–
273, 1982. 2

[16] T. Okatani and K. Deguchi. On the Wiberg algorithm for
matrix factorization in the presence of missing components.
Int. J. Comput. Vision, 72(3):329–337, 2007. 2

[17] H. Shum, K. Ikeuchi, and R. Reddy. Principal component
analysis with missing data and its application to polyhedral
object modeling. pages 3–39, 2001. 1

[18] C. Tomasi and T. Kanade. Shape and motion from image
streams under orthography: a factorization method. Int. J.
Comput. Vision, 9(2):137–154, 1992. 1

[19] M. Turk and A. Pentland. Eigenfaces for recognition. Jour-
nal of Cognitive Neuroscience, 3(1):71–86, 1991. 1

[20] T. Wiberg. Computation of principal components when data
are missing. Proc. Second Symp. Computational Statistics,
pages 229–236, 1976. 1, 2, 8

778

