
Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization (2022) 65: 273
https://doi.org/10.1007/s00158-022-03378-8

RESEARCH PAPER

Efficient computation of states and sensitivities for compound
structural optimisation problems using a Linear Dependency Aware
Solver (LDAS)

Stijn Koppen1 · Max van der Kolk1 · Sanne van den Boom2 · Matthijs Langelaar1

Received: 23 February 2022 / Revised: 6 August 2022 / Accepted: 19 August 2022 / Published online: 15 September 2022
© The Author(s) 2022

Abstract
Real-world structural optimisation problems involve multiple loading conditions and design constraints, with responses typi-
cally depending on states of discretised governing equations. Generally, one uses gradient-based nested analysis and design
approaches to solve these problems. Herein, solving both physical and adjoint problems dominates the overall computational
effort. Although not commonly detected, real-world problems can contain linear dependencies between encountered physical
and adjoint loads. Manually keeping track of such dependencies becomes tedious as design problems become increasingly
involved. This work proposes using a Linear Dependency Aware Solver (LDAS) to detect and exploit such dependencies.
The proposed algorithm can efficiently detect linear dependencies between all loads and obtain the exact solution while
avoiding unnecessary solves entirely and automatically. Illustrative examples demonstrate the need and benefits of using an
LDAS, including a run-time experiment.

Keywords Computational efficiency · Topology optimisation · Adjoint · Linear dependency

1 Introduction

In structural optimisation, particularly in topology optimisa-
tion, the self-adjoint compliance minimisation problem is
often studied (Rozvany et al. 1989). One can obtain design
sensitivities for gradient-based optimisation at a marginal
computational cost due to the self-adjointness of the prob-
lem. This advantage has likely contributed to the popularity
of studying the compliance minimisation problem. However,
as Rozvany et al. (1993) pointed out almost three decades
ago: “Self-adjoint problems, such as design for a single
stress, a single compliance or single natural frequency con-
straint do not represent a real-world situation, because most

practical structures are subject to several load conditions
and design constraints.” Almost three decades later, solving
large-scale linear problems considering multiple physical
loads and a large variety of responses—hereafter denoted by
compound problems—is becoming increasingly attainable as
available computational power increases. However, regard-
less of available computational power, efficient numerical
implementations remain essential.

Typically, finding the state corresponding to a load, i.e.
the solution to the governing equations dominates the over-
all computation time during optimisation. As Borrvall and
Petersson (2001) report, the computational time of such pro-
cedures approaches 97% for minimum compliance problems
considering a single physical load, where computation times
increase further when considering compound problems.

Finding a solution to these systems of linear equations
generally consists of two steps: preprocessing and solving
(Amir and Sigmund 2010). The preprocessing for direct
methods requires the (generally expensive) matrix factori-
sation, and solving requires finding the exact solution via
comparatively inexpensive back-substitutions (Davis 2006).
In contrast, iterative methods require the construction of a
preconditioner, and they subsequently generate a sequence
of approximate solutions until convergence (Saad 2003). The

Responsible Editor: YoonYoung Kim

 * Stijn Koppen
 s.koppen@tudelft.nl

1 Precision & Microsystems Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft,
The Netherlands

2 Structural Dynamics, Netherlands Institute for Applied
Scientific Research (TNO), Molengraaffsingel 8,
2629 JD Delft, The Netherlands

http://orcid.org/0000-0002-7709-2201
http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-022-03378-8&domain=pdf

 S. Koppen et al.

1 3

273 Page 2 of 14

relative cost of preconditioner construction and the iterative
solution process depends on many factors, such as the type
of preconditioner and condition number. The preprocessing
information can be repeatedly reused for subsequent solves
within the same design iteration when this involves a system
matrix with equivalent partitioning. This possibility holds
for both solution methods.

Three strategies can be distinguished to lower the compu-
tational effort of solving large-scale linear systems of gov-
erning equations in structural optimisation, i.e. reduction of

i the number of design iterations,
ii the computational effort per solve, and
iii the number of solves per design iteration.

The first technique has shown great potential to reduce com-
putational effort, for instance using advanced sequential
approximate optimisation schemes (e.g. see (Bruyneel et al.
2002; Li and Khandelwal 2015)). However, these approaches
are out of scope for this discussion, independent of the pre-
sented methodology.

A common approach to reduce computation time per
linear solve is to employ parallel computing (Borrvall and
Petersson 2001; Aage et al. 2017), a technique which dis-
tributes the computational effort. However, to reduce this
effort, approximation techniques should be considered, such
as approximated reanalysis (Kirsch 1991; Amir 2015), itera-
tive solution techniques (Borrvall and Petersson 2001; Amir
et al. 2010, 2014), and approximated model order reduction
(Ma et al. 1993; Choi et al. 2019). Alternatively, static con-
densation (Guyan 1965; Irons 1965) allows for exact model
order reduction, decreasing the system dimensionality with-
out loss of information (e.g. see (Yang and Lu 1996)). For a
comprehensive review of techniques aiming to decrease the
computational effort per solve in the context of topology
optimisation, the reader is referred to the recent work by
Mukherjee et al. (2021).

The third category—approaches to reduce the number of
solves per design iterations—includes the adjoint sensitivity
analysis method itself, for instance, when applied to most
self-adjoint problems (Arora and Haug 1979; Vanderplaats
1980; Belegundu 1986). For problems considering many
physical static loads, Zhang et al. (2020) reduce the number
of deterministic loads to a single approximated load using
sampling schemes. Recent study shows that static condensa-
tion allows for a reduction of the number of factorisations/
preconditioning steps and the number of solves in multi-
partition problems; which are problems that, as a result of
changing boundary conditions, require multiple different
partitions of the stiffness matrix (Koppen et al. 2022b).

In contrast to that study, in this paper, we focus on com-
pound problems with a single partitioning of the system
matrix. We introduce another method of the third category

that reduces the number of solves per design iteration design
problems with equivalent partitioning of degrees of freedom.
Different boundary condition values can be handled as long
as the partition remains the same. We herein assume linear
state-based optimisation problems under (quasi-)static load-
ing, which constitutes a significant fraction of all problems
studied in the topology optimisation community (Bend-
søe and Sigmund 2004). By automatically detecting linear
dependencies between physical and adjoint loads, unneces-
sary solves in compound problems involving the same parti-
tion of system matrix can be avoided entirely while main-
taining equal accuracy of the solution of the states. To help
the reader recognise linear dependencies that may arise in
common design optimization problems, we distinguish three
cases of such linear dependency:

i Linearly-Dependent Physical-Physical (LDPP) loads.
Such cases are common in design problems involving
multiple loading conditions with applied loads of vary-
ing magnitudes, for example, present in the case study
of Sect. 4. Optimisation problems with LDPP loads are
relatively easily detected manually and regularly avoided
by the user.

ii Linearly-Dependent Adjoint-Physical (LDAP) load
pairs. Typical problems include cases where the adjoint
load depends linearly on the corresponding physical
load, as common in conventional self-adjoint1 prob-
lems (Belegundu 1986; Rozvany et al. 1993). The most
well-known design problem in the topology optimisa-
tion community involving such load pairs is the classi-
cal compliance minimisation problem. Such cases are
typically detected by academics in this field but may be
overlooked otherwise.

iii Mixed Linear Dependencies (MLD), i.e. cases where
physical loads or adjoint loads can be written as a linear
combination of previously considered physical or adjoint
loads. MLDs also include linear dependencies between
adjoint loads and between non-corresponding adjoint
and physical loads (as well as any linear combination).
These MLDs are the most general situation and the most
difficult to foresee and consider by hand. Such cases are
expected in problems with multiple response functions
depending on multiple states. More specifically, such
cases often occur when the locations where the loads

1 It is a common misconception that self-adjoint problems always
exhibit an LDAP pair, as such problems can (and originally were)
often of analytical nature and do not require a solve to obtain sensi-
tivities (e.g. design for a single natural frequency) (Shield and Prager
1970; Rozvany et al. 1993). Also, problems that exhibit an LDAP
pair are by no definition per se self-adjoint (e.g. the optimisation for
deflection constraints constitutes a non-self-adjoint problem, although
exhibiting an LDAP pair (Rozvany et al. 1993)).

Efficient computation of states and sensitivities for compound structural optimisation…

1 3

Page 3 of 14 273

are applied and the locations of the performance meas-
ures coincide, such as typical in the design of compliant
mechanisms. These MLDs will be elaborately clarified
in all numerical examples.

A user will typically be unaware of the presence and type
of most of such linear dependencies. A Linear Dependency
Aware Solver (LDAS) can be employed to detect and exploit
any linear dependency, including any of the three aforemen-
tioned types, automatically. In this work, we demonstrate the
need and benefits of an LDAS in the context of gradient-based,
structural optimisation for compound problems and provide
one such solver in the form of a simple algorithm to auto-
matically detect and exploit any linear dependence in a (pos-
sibly large) set of loads. The focus is on MLDS since these
linear dependencies are typically the hardest to detect. How-
ever, due to the generality of the method, it also automati-
cally resolves unnecessary solves in LDPP and LDAP pairs.
Thus, it is ensured that only the minimum number of linear
solves is performed in each iteration. This advantage makes the
approach suitable for general-purpose structural and topology
optimisation implementations. Note that the presented algo-
rithm does not exclude other additional techniques to reduce
the computational effort and time, such as parallel computing,
approximate modelling, or reduced order techniques, which
can be implemented alongside the presented methodology.

2 Method

Consider a general inequality-constrained nonlinear struc-
tural optimisation problem

with objective f ∈ ℝ , m inequality constraints g ∈ ℝ
m and

N design variables x ∈ 𝕏
N ⊆ ℝ

N.

2.1 Response and sensitivity analysis

The responses (objective and constraint functions) com-
monly depend on physical states U ∶=

[

u1,… , ua
]

∈ ℝ
n×a ,

where n is the dimensionality of the discretised governing
equations and a the number of states. These states implicitly
depend on the design variables, i.e. � = �[�] . We consider
a setting in which these physical states are obtained by solv-
ing a linear system of discretised governing equations, i.e.

with F[x] ∶=
[

f1[x],… , fa[x]
]

∈ ℝ
n×a the physical loads and

K[x] ∈ ℝ
n×n a design-dependent, symmetric, and non-sin-

gular system matrix. In the following we assume the system

(1)
min
x∈�N

f [x]

s.t. g[x] ≤ 0

(2)�[�]� = �[�],

in Eq. (2) constitutes a single partition, thus the physical
loads are applied on the system under the same boundary
conditions.

In gradient-based optimisation, the sensitivities of the
responses to the design variables are required to update the
design variables. For structural optimisation problems with
a large ratio of the number of design variables to the number
of state-based response functions, commonly, the adjoint
method is applied to efficiently obtain this sensitivity infor-
mation (Arora and Haug 1979; Vanderplaats 1980). To this
end, consider the augmented response

with �j ∶=
[

�j,1,… , �j,a

]

∈ ℝ
n×a . Here, a suitable choice of

the adjoint states �j can circumvent calculation of the com-
putationally expensive derivative ��

�xk
 (Vanderplaats 1980).

Doing so, full differentiation of Eq. (3) yields

with

where �gj
��

 is referred to as the adjoint loads of response gj.
Each of the physical and adjoint loads can be linearly

dependent on any combination of previously considered
loads and thus can be reconstructed as their linear combina-
tion. Exploiting possible linear dependence can significantly
reduce the costs required to find all states. Consider a set
of a loads, of which b are linearly-independent, then the
computational effort scales roughly with b

a
 , as only b solves

are required to reconstruct all states. To avoid unnecessar-
ily solving Eqs. (2) and (5) for linear-dependent loads we
propose

i to compute each load’s dependency on previous loads,
and

ii to keep track of the states corresponding to linearly-
independent loads.

Various possible methods exist to check for linear depend-
ency and necessary bookkeeping. We consider one such
algorithm that detects linear dependencies and builds
orthogonal bases of linear-independent loads and their cor-
responding states.

2.2 Orthogonalisation and reconstruction

Consider the non-empty orthogonal bases of loads F
and states U of length c. One can investigate the linear

(3)Lj[�,�[�]] = gj[�,�[�]] − �j ∶ (�[�]� − �[�]).

(4)
dLj

dxk
=

�gj

�xk
− �j ∶

(

��

�xk
�

)

,

(5)�[�]�j =
�gj

��
,

 S. Koppen et al.

1 3

273 Page 4 of 14

dependency of a load � (e.g. a physical load � or adjoint
load �g

��
) with respect to F by applying the last step of the

well-known Gram–Schmidt orthogonalisation procedure2
(Laplace 1820; Gram 1883; Schmidt 1907). The residual �
is obtained via

with Fi the ith load in F . A possible implementation is given
by the pseudo-code Algorithm 1.

If the norm of the residual � is zero, then � is linearly
dependent to basis F . As a result, the corresponding state �
(or adjoint state �) is linearly dependent on basis U . Thus,
the state � may be reconstructed via

As such, one can obtain the exact numerical solution of state
� , while avoiding solving the governing equations for loads
� . However, if the norm of the residual vector � is non-zero
(or bigger than a relatively small value �), � is linearly inde-
pendent with respect to basis F and the expensive solve
cannot be avoided.

We solve for the state � corresponding to residual load �
defined by

Subsequently load � and state � are added to bases F and
U , respectively. Since � is orthogonal with respect to basis
F , so is � to U . As a result, both enriched bases F and U
remain orthogonal. The state � is then reconstructed from
Eqs. (6) and (7). The above procedure can be repeated using
the enriched bases, as defined in Algorithm 2. Due to the

(6)� ∶= � −

c
∑

i=1

�iFi, with �i =
Fi ⋅ �

Fi ⋅ Fi

,

(7)� =

c
∑

i=1

�iUi.

(8)�[�]� = �.

general nature of the algorithm, the proposed procedure
is independent of the type of dependencies as defined in
Sect. 1. The equivalence of solutions is extensively verified
for many test problems.

Although Algorithm 2 introduces additional computa-
tional operations, i.e. computing vector norms and orthog-
onality coefficients, their computational cost is typically
negligible compared to the costs of solving a system of
equations, as illustrated in Sect. 5. The computational effort
increases with the number of loads to consider, however,
remains negligible as long as the number of loads (both
physical and adjoint) is smaller than the dimensionality
of the load vectors. Furthermore, these operations do not
change when considering distributed-memory parallelism.
Alternatively, for loads that do not depend on the states, it
is possible to rearrange Algorithm 2 to determine all the
independent loads first and evaluate their solutions in paral-
lel afterwards.

3 Analytical example

Compound problems may appear in any real-world problem,
modelled by (a sequence of) linear governing equations. Typi-
cal examples of compound problems are formulations with
multiple loading conditions and multiple response functions
in which the degrees of freedom of (some of) the loads coin-
cide with (some of) the degrees of freedom that define the
response functions. For example, one may think of the design
of a structure with multiple critical loading conditions, where
the displacements of a loading condition are measured at
the same degrees of freedom where the loads are applied at
another loading condition. A direct example of this are multi-
input–multi-output compliant mechanisms, see e.g. (Frecker
et al. 1999) or (Liu and Korvink 2009). The problem formu-
lation of such mechanisms includes multiple physical loads
and responses, all applied to, or dependent on, the input and
output degrees of freedom of the mechanism. As a result,

2 Although the method is named after Jørgen Pedersen Gram and
Erhard Schmidt, Pierre-Simon Laplace had been familiar with it
before, see (Leon et al. 2013).

Efficient computation of states and sensitivities for compound structural optimisation…

1 3

Page 5 of 14 273

MLD is commonly present. However, it generally remains
unnoticed. To clarify the cases in which one might encounter
linear dependency, we here exemplify the three different types
of unnecessary solves, as introduced in Sect. 1.

3.1 Problem formulation

Consider the two degrees of freedom spring model as depicted
in Fig. 1. Note that this example—after applying static con-
densation—can exactly represent any single-input–single-
output compliant mechanism, see e.g. (Wang 2009; Hasse
et al. 2017). Therefore, this two degrees of freedom example
is fully representative of large-scale linear problems consider-
ing multiple physical loads and responses while better suited
to illustrate the proposed method.

3.2 Problem analysis

Next, we analyse the properties of this optimisation problem in
light of the proposed method, with a specific emphasis on the
required number of systems of equations that are to be solved.

3.2.1 Forward analysis

The physical and adjoint states can be obtained by solving
the design-dependent discretised governing equations fol-
lowing Eqs. (2) and (5). A set of the following three physical
loads is considered:

The first residual by definition equals the first load, that is
�1 = �1 . As a result, the state �1 = �1 . Since the basis is ini-
tially empty when this load is considered, the resulting load
and state are directly added to corresponding bases. The sec-
ond residual is calculated via Eq. (6), that is

Since �2 is non-zero, the first and second physical loads are
linearly-independent. The corresponding physical state �2 is
obtained by solving for the non-zero load �2 via Eq. (8). As a

(9)� =

[[

1

0

] [

1

2

] [

4

4

]]

.

(10)�2 = �2 − �1F1 =

[

0

2

]

.

result the following bases, consisting of orthogonal vectors,
are obtained after solving for the first two loads:

The second physical state is now reconstructed following
Eq. (7) and reads

The third physical load can be written as a linear combina-
tion of the current orthogonal basis F , resulting in a zero
residual load �3 = � . These are thus LDPP loads. Thus the
basis U can be used to reconstruct the third physical state
without an additional solve as in Eq. (7), i.e.

3.2.2 Sensitivity analysis

Now consider a response function g1
[

�2
]

 that is a measure
for the strain energy due to load �2 , i.e.

The second adjoint load for this response is linearly depend-
ent on the corresponding physical load �2 as

thus this is an LDAP pair, and consequently �4 = � . As a
result, one can use the basis U to reconstruct the second
adjoint state, which yields

with �j,i the adjoint state of response j with respect to state
i. Note that both the first and third adjoint loads of this
response, that is �g1

��1
 and �g1

��3
 are zero, and thus so are �1,1 and

�1,3.
Finally consider a (fictitious) response function g2

[

�1, �3
]

that depends on both degrees of freedom of the first state
and third state via

The adjoint loads for this response function can be written as

(11)F =
[

�1, �2
]

and U =
[

�1, �2
]

.

(12)�2 = �1U1 + �2 = �1 + �2.

(13)�3 = �1U1 + �2U2 = 4�1 + 2�2.

(14)g1
[

�2
]

=
1

2
�2 ⋅ �2.

(15)
�g1

��2
=

1

2
�2,

(16)�1,2 =
1

2
�2 = �1U1 + �2U2 =

1

2
�1 +

1

2
�2,

(17)g2
[

�1, �3
]

=

[

2

1

]

⋅ �1 +

[

1

3

]

⋅ �3.

Fig. 1 One-dimensional two degrees of freedom compliant mecha-
nism model

 S. Koppen et al.

1 3

273 Page 6 of 14

Note that both adjoint loads are linearly dependent on a com-
bination of previously considered loads, i.e. an MLD. In this
case, the adjoint loads are both linearly dependent on both
loads in basis F . As a result, one may again use the states in
U to reconstruct the adjoint states via

The loads, states, and bases of this example are summarised
in Table 1.

3.2.3 Concluding remarks

Six solves are required when all loads (physical and
adjoint) are considered. If both LDPPs and LDAP pairs
are taken into account, only three solves are needed.
Finally, considering MLDs (and thus also LDPPs and
LDAP pairs), only two solves are required. Although the
presented example is simplified, more complex MLDs do
appear in large-scale compound problems, as will be dem-
onstrated in Sects. 4 and 5.

(18)

�g2

��1
=

[

2

1

]

= 2�1 +
1

2
�2 and

�g2

��3
=

[

1

3

]

= �1 +
3

2
�2.

(19)�2,1 = 2�1 +
1

2
�2 and �2,3 = �1 +

3

2
�2.

4 Numerical example 1: design of a bridge

In this section we demonstrate the use of an LDAS for a
practically relevant numerical example. The emphasis will
be on the potential gain, not on formulation, design or opti-
mization convergence aspects.

4.1 Problem formulation

Consider the design of a simplified bridge-deck support-
ing structure. A schematic of the problem setting, together
with an optimised design, is shown in Fig. 2. The engi-
neer has selected a set of crucial loading conditions and
(derived) constraints based on an extensive set of require-
ments and loading conditions, as typical in the design of
such a bridge.

The aim is to design a stiff bridge with limited material
for a given set of four loading conditions considering three
points of interest: one at a quarter, one at the middle and

Table 1 Overview of both
physical and adjoint loads and
states, as well as the orthogonal
bases encountered in the
illustrative example presented
in Fig. 1

The right-hand side displays the load and states vectors expressed as linear combinations of the corre-
sponding bases given on the left-hand side

F Loads

�1 = �1 �2 �1 �2 �3
�g1

��2

�g2

��1

�g2

��3
[

1

0

] [

0

2

] [

1

0

] [

1

2

] [

4

4

]
[

1

2

1

]
[

2

1

] [

1

3

]

�1 �1 + �2 4�1 + 2�2
1

2
�1 +

1

2
�2 2�1 +

1

2
�2 �1 +

3

2
�2

U States
�1 = �1 �2 �1 �2 �3 �1,2 �2,1 �2,3

�1 �1 + �2 4�1 + 2�2
1

2
�1 +

1

2
�2 2�1 +

1

2
�2 �1 +

3

2
�2

Fig. 2 Optimised result of topology optimization problem Eq. (20).
The solution (800 × 120 finite elements and design variables) satis-
fies all constraints (all active) and the optimization process terminated

in 59 design iterations. Corresponding displacements at the DOF of
interest are listed in Table 3

Table 2 Magnitude of forces
applied at DOFs 1, 2 and 3
(numbered as assigned in
Fig. 2) for loading conditions
(LC) 1, 2, 3 and 4

DOF LC

1 2 3 4

1 3 0 0 1
2 0 2 0 1
3 0 0 3 1

Efficient computation of states and sensitivities for compound structural optimisation…

1 3

Page 7 of 14 273

one at three-quarters of the bridge deck. The magnitudes
of forces applied to the DOFs of interest for the four load-
ing conditions are as shown in Table 2. Furthermore, it is
decided that the difference in deformations from loading
conditions with concentrated loads and combined loads must
be restricted. As such, the design has to satisfy several con-
straints on the deflection of the points of interest under the
given loading conditions.

The topology optimization problem formulation reads

The objective is to minimise the strain energy Ej , or equiva-
lently maximise the stiffness, under the four loading con-
ditions by finding design variables xk that are bounded by
𝕏 = {x ∈ ℝ | 0 ≤ x ≤ 1} . Constraint gv[�] limits the maxi-
mum material usage by fraction v = 0.5 . Constraint gu

i
 limits

the difference in displacement of DOF i between loading
conditions i and 4 to u = 20 . Herein ui,j

[

�j[�]
]

 is defined as
the displacement at DOF of interest i for loading condition j.

An optimised solution is shown in Fig. 2. The displace-
ments at the DOFs of interest for the four loading conditions
of this constrained optimised design are shown in Table 3.
Note that the deformations at the points of interest now sat-
isfy the imposed restrictions.

4.2 Problem analysis

Now we analyse the potential gain of using an LDAS for
solving this bridge design optimization problem.

4.2.1 Forward analysis

Let us first consider the objective of the problem formulation
posed in Eq. (20). The objective is a function of the states of

(20)

min
x∈�N

f [x] ∶

4
∑

j

Ej

[

uj[x]
]

s.t. gv[x] ∶ v[x] ≤ v

gu
1
[x] ∶ u1,1[x] − u1,4[x] ≤ u

gu
2
[x] ∶ u2,2[x] − u2,4[x] ≤ u

gu
3
[x] ∶ u3,3[x] − u3,4[x] ≤ u

four loading conditions, that is f
[

�1, �2, �3, �4
]

 . Straightfor-
ward analysis would thus require four solves. However, upon
closer inspection, it can be observed that the fourth loading
condition uniquely uses LDPP loads. The fourth state �4 can,
thus, be written as a linear combination of states �1 , �2 and
�3 . No solves are required for the forward analysis of the
constraints since all states have previously been determined
to calculate the objective. Thus, using an LDAS to solve
Eq. (20) can save the user one of the four solves required in
the forward analysis, thus requiring three solves per design
iteration.

4.2.2 Sensitivity analysis

Straightforward sensitivity analysis of the objective requires
four more solves. However, the adjoint loads df

d�i
 for

i = 1, 2, 3, 4 can all be written as a linear combination of �1
and �2 and �3 , that is four LDAP pairs. Considering the addi-
tional constraint functions, the number of solves required for
sensitivity analysis quickly increases. Each constraint
depends on two states, thus requiring two adjoint solves per
constraint. This sensitivity analysis thus requires a total of
six additional solves. Closer inspection, similar to the pre-
ceding section, brings to light the MLDs in these constraints;
all the adjoint loads can be written as a linear combination
of physical loads �1 , �2 and �3 . Using an LDAS thus avoids all
of the ten solves, and the sensitivity analysis would not
require any solve.

4.2.3 Concluding remarks

A straightforward implementation to solve the bridge
design problem would require a total of fourteen solves per
design iteration, four for the forward analysis and ten for
the sensitivity analysis. Using an LDAS one only requires
three solves per design iteration. That is a decrease in the
number of solves by almost 80%.

5 Numerical example 2: design
of a multi‑DOF compliant mechanism

To further demonstrate the benefits of the proposed method,
we consider as illustrative case study the topology optimisation
of a planar, multiple degree-of-freedom micro-mechanism for
use, for example, as analogue gate in a mechanical computer
(Larsen et al. 1997). Note that the focus here is not on the opti-
misation (problem formulation) of the micro-mechanism but
on demonstrating the numerical benefits of an LDAS.

Table 3 Displacements at DOF
1 and 2 for loading conditions 1,
2 and 3 of the optimised design
with deformation constraints

DOF LC

1 2 3 4

1 96 65 34 76
2 97 170 97 150
3 34 65 96 76

 S. Koppen et al.

1 3

273 Page 8 of 14

5.1 Problem formulation

Consider the design problem depicted in Fig. 3a. The
domain consists of four points of interest, each consisting
of two Degrees Of Freedom (DOFs), ux and uy , respectively.
The target is to design a monolithic compliant mechanism
that doubles a unit input motion at DOF 6 to the output
motion at DOF 4 and a unit input motion at DOF 8 to an
equivalent magnified output motion at DOF 2. Thus we con-
sider two independent kinematic DOFs. Furthermore, we
also consider parasitic motion, input coupling and output
coupling: all remaining DOFs—apart from the intended
input and output—are restricted to displace a maximum of
0.1% of the input motion.

The force paths have to cross, making this a challeng-
ing problem that is not necessarily intuitive for engineers
to solve. Therefore we solve this problem using topology
optimisation (Bendsøe and Sigmund 2004). We consider
the following compound topology optimisation problem
formulation3:

The objective is to minimise the strain energy Ej , or equiva-
lently maximise the stiffness, by finding design variables sk
that are bounded by 𝕏 = {x ∈ ℝ | 0 ≤ x ≤ 1} . Constraint
gv[�] limits the maximum material usage by fraction
v = 0.25 . The other constraints enforce a minimum displace-
ment at the input DOFs (gin

j,j
), limit cross talk (gct

i,j
) to toler-

ance uct , and enforce the transmission between input and
output displacements (gt

i,j
) within a tolerance ut . In the next

subsection these constraints will be further explained.

(21)

min
x∈�N

f [x] ∶
∑

j

Ej

[

uj[x]
]

∀ j ∈ {1, 3, 5, 7}

s.t.

gv[x] ∶ v[x] ≤ v

gin
j,j
[x] ∶ uj,j

[

uj[x]
]

≥ uin ∀ j ∈ {6, 8}

gct
i,j
[x] ∶ ui,j

[

uj[x]
]

≤ uct

− ui,j
[

uj[x]
]

≤ uct

∀ i, j ∈

{

{1, 2, 3, 5, 7, 8}, {6}

{1, 3, 4, 5, 6, 7}, {8}

gt
i,j
[x] ∶ Jkui,j

[

uj[x]
]

− uj,j
[

uj[x]
]

≤ ut

uj,j
[

uj[x]
]

− Jkui,j
[

uj[x]
]

≤ ut

∀ i, j ∈

{

{4}, {6}

{2}, {8}

Fig. 3 Design of a planar, decoupled multiple degrees of freedom
compliant mechanism as described in Sect. 5.1. From left to right:
a the initial design with the four points of interest each with two

degrees of freedom (ux , uy), b the topology as obtained from the opti-
mization, and c a prototype model in deformed configuration

3 We do not claim this formulation is (best) suited for the considered
problem, we merely employ this formulation for demonstration of the
proposed method.

Efficient computation of states and sensitivities for compound structural optimisation…

1 3

Page 9 of 14 273

This problem formulation consists of standard, well-docu-
mented response functions as well as corresponding sensitivity
analysis. An extensive description is therefore omitted. For an
in-depth discussion on the design of compliant mechanisms
using topology optimisation, the reader is referred to earlier
works, such as (Ananthasuresh et al. 1994; Frecker et al. 1997;
Sigmund 1997, 2001) and the review of Cao et al. (2013) and
references therein. For works regarding multiple degrees of
freedom systems, the works by (Frecker et al. 1999; Zhan and
Zhang 2010; Alonso et al. 2014; Zhu et al. 2018; Koppen et al.
2022a) may be consulted.

The proposed compound topology optimisation problem
Eq. (21) was discretised using 200 by 200 finite elements (and
design variables). The design variable field is blurred using a
linear convolution operator with a filter radius of two elements
to eliminate modelling artefacts(Bruns and Tortorelli 2001).

A post-processed (via design variable thresholding) version
of a solution is shown in Fig. 3b. This solution is obtained
from a uniform initial guess in 58 design iterations using the
method of moving asymptotes (Svanberg 1987). This solu-
tion adheres to the constraints imposed and, thus, satisfies the
design requirements on displacement transmission and maxi-
mum parasitic motion. As expected, the solution to the topol-
ogy optimisation problem using an LDAS is fully equivalent
to the reference method.

Note the presence of rigid bodies and hinges and their loca-
tion and connections. The resulting deformation and displace-
ments of the DOFs of interest for one of the use-cases are
displayed by the prototype in Fig. 3c. A movie of the proto-
type—available as supplementary material and provided on
Github (Sect. 5.3)—demonstrates that the intended functional-
ity has been achieved.

5.2 Problem analysis

Let us analyse the properties of this optimisation problem in
light of the proposed method, with a specific emphasis on the
required number of systems of equations to be solved.

5.2.1 Forward analysis

The objective function f [�] is a summation of strain energies,
obtained by analysing the deformed structure under a unit load
at DOFs {1, 3, 5, 7} . The internal strain energy corresponding
to each displacement field �j reads as

where �j is found by solving the system of equations

(22)Ej =
1

2
�j ⋅�[�]�j,

(23)�[�]�j = �j,

with �j the unit load vector that contains zeros at all entries
except at DOF j of interest. To evaluate the objective func-
tion, the system of equations (Eq. (23)) needs to be solved
repeatedly, since the four physical loads are linearly-inde-
pendent. By minimising these strain energy terms, the
motion corresponding to these DOFs is restricted in the
resulting structure. None of the points of interest can sig-
nificantly move in the x-direction.

Constraints gin
j,j
[�] are required to enforce a minimum

displacement of uin at uj,j with j the DOFs of interest 6 and
8, requiring two additional solves. Note, ui,j denotes the
displacement at DOF i due to a unit load at DOF j. One
may observe that the remaining displacement-based con-
straints are only dependent on �6 and �8 . Since these were
previously evaluated to determine gin

j,j
[�] , inspection shows

that no additional solves are required for the forward
analysis.

Constraints gct
i,j
[�] are imposed to limit the crosstalk (para-

sitic motion) ui,j of DOFs {1, 2, 3, 5, 7, 8} due to a unit load
at DOF 6 and the motion of DOFs {1, 3, 4, 5, 6, 7} due to a
unit load at DOF 8 from below by −uct and from above by
uct , with uct = 0.001uin . The number of crosstalk constraints
is found by multiplying two kinematic DOF, six constraints
per kinematic DOF, and two bounds per constraint, resulting
in 24 constraint functions.

Constraints gt
i,j
[�] enforce a desired input–output trans-

mission Jk ∶=
uout,k

uin,k
 for kinematic DOF k with a maximum

transmission deviation of ut = 0.1uin . The input–output
transmission for the first kinematic mode is defined as the
motion transmission from DOF 2 to DOF 4 J1 ∶=

u4,6

u6,6
 , and

the second input–output transmission is defined as the
motion transmission from DOF 8 to DOF 2 J2 ∶=

u2,8

u8,8
 . This

introduces four constraints, as each constraint is bound from
below and above.

All response functions combined require 32 response
functions to be evaluated for this optimisation problem,
which are fully resolved by performing a total of six solves
(four for the objective and two for gin

j,j
[�]).

5.2.2 Sensitivity analysis

To obtain the sensitivities of the responses to the design
variables, one generally loops over the responses, and con-
secutively calculates the corresponding sensitivities.

For the considered problem, the adjoint loads of the
objective are linearly dependent on corresponding physical
loads, i.e. they form four LDAP pairs. In this case �Ej

��j
= �j ,

and thus �j,j = �j . Thus, to obtain the sensitivities of the
objective no additional solves are required.

The adjoint loads corresponding to gin
j,j
[�] read

 S. Koppen et al.

1 3

273 Page 10 of 14

which can be written as a linear combination of the physical
loads �6 and �8 previously considered to evaluate gin

j,j
[�].

The sensitivities of the crosstalk constraints gct
i,j
[�] exhibit

MLDs. Furthermore, for i = {1, 3, 5, 7} and j = {6, 8} the
following holds

and the adjoint loads are therefore linearly dependent on
non-corresponding physical loads. However, for i, j = {2, 6}
and i, j = {4, 8} the adjoint load can not be written as (a
combination) of previously evaluated physical and/or adjoint
loads and the corresponding systems of equations (Eq. (5))
need to be solved accordingly. Note, only two solves are
required as the adjoint loads for the constraints related to
lower and upper bounds are linear-dependent (these only
show a sign difference).

Lastly, the adjoint loads corresponding to transmission
constraint gt

i,j
[�] are given by

which can all be written as a summation of the previous
adjoint loads of gin

i,j
[�] (or physical loads �6 and �8 and gct

i,j
[�] .

For such ‘combined’ loads it can be particularly obscure to
manually express them as a linear combination of previous
physical and/or adjoint loads.

5.2.3 Concluding remarks

The problem analysis reveals that if no linear dependencies
are taken into account, 40 systems of equations need to be
solved (of which 34 in the sensitivity analysis), as opposed
to the minimum of 8 when considering all linear dependen-
cies (MLDs). That is, one may expect a maximum decrease
of computational effort by 80%. If only LDAP pairs are con-
sidered (this is generally the case), then 34 equations have
to be solved. If, in addition to this, it is recognised that the
adjoint loads of the constraints on lower and upper bounds
only differ by a sign (and are thus linearly-dependent), one
still has to solve 20 systems of equations. The results of the
foregoing problem analysis are summarised in Table 4, aid-
ing in the detection of linear dependency between loads and
calculation of states.

Although manually finding all linear dependencies and
their corresponding coefficients is achievable and yields
significant savings, it is time-consuming, cumbersome,

(24)
�gin

j,j
[�]

��j
=

1

uin
�j,

(25)
�gct

i,j
[�]

��j
= ±

1

uct
�j = ±

1

uct
�j,

(26)
�gt

i,j
[�]

��j
= ±

(

Jk

ut
�i −

1

ut
�j

)

,

and error-prone. Moreover, it does not readily permit
implementation in commercial software. In the follow-
ing, we demonstrate how an LDAS, such as Algorithm 2
provides the same result in an automated manner with neg-
ligible computational overhead.

5.3 Verification by run‑time experiment

The following discusses a run-time measurement com-
parison between the LDAS and manual implementations
considering LDAP pair and MLD detection. This com-
parison is based on the design problem as proposed and
analysed in Sects. 5.1 and 5.2. We aim to measure the
run-time of a single design iteration using an automatic
LDAS for solving the linear systems involved in a single
design iteration of the problem proposed in Sect. 5.1, and
compare this to the run-time required for manual imple-
mentations. In addition, we also focus on the attained per-
formance improvements across a range of discretisations,
indicated by the number of DOFs n, for a single design
iteration. Assuming the physical and adjoint loads do not
alter during the optimization process, the linear dependen-
cies remain constant throughout the optimization process.
Therefore, the computational effort of a complete optimi-
zation process simply scales with the number of design
iterations. All presented run times are normalised to the
implementation without exploiting linear dependencies.
From the previous problem analysis, we found the number
of solves required for each method: 40 for no detection, 34
considering LDAP, and 8 when including MLD, already
hinting at potential performance improvements.

In order to consider the influence of different types
of solution methods, we define the ratio � as the ratio
between the computational effort a solution method
requires for preprocessing and the effort required for a
solve. To capture a wide range of solution methods, we
opt to compare two extremes:

• A high-� solution method with predominant effort in the
preprocessing; we opt here for a direct method, such as a
Cholesky factorisation (Benoit 1924) with back-substi-
tution, and

• A low-� solution method with predominant effort in solv-
ing the equations. We opt here for an iterative solution
process, such as Incomplete Cholesky preconditioning
with Conjugate Gradient (Saad 2003).

The presented experiments consider a moderate number of
DOFs: small enough to highlight the change in performance
as the number of DOFs is increased while large enough to
ensure the computational effort and run-time are dominated
by preprocessing and solving. These aspects are therefore

Efficient computation of states and sensitivities for compound structural optimisation…

1 3

Page 11 of 14 273

Table 4 Result of the problem
analysis (Sect. 5.2); relation
between loads and DOF of
interest. The horizontal axis
states the eight DOFs of
interest, and the vertical axis
the physical and adjoint loads,
respectively

Loads 1 2 3 4 5 6 7 8

�1 1
�3 1
�5 1
�7 1
�6 1
�8 1
�f

��1

1
�f

��3

1
�f

��5

1
�f

��7

1

�gin
6,6

��6

1

uin

�gin
8,8

��8

1

uin

�gct
1,6

��6

1

uct

�gct
1,6

��6

−
1

uct

�gct
2,6

��6

1

uct

�gct
2,6

��6

−
1

uct

⋮

�gct
8,6

��6

1

uct

�gct
8,6

��6

−
1

uct

�gct
1,8

��8

1

uct

�gct
1,8

��8

−
1

uct

�gct
3,8

��8

1

uct

�gct
3,8

��8

−
1

uct

⋮

�gct
7,8

��8

1

uct

�gct
7,8

��8

−
1

uct

�gt
4,6

��6

J4,6

ut
−

1

ut

�gt
4,6

��6

−
J4,6

ut

1

ut

�gt
2,8

��8

J2,8

ut
−

1

ut

�gt
2,8

��8

−
J2,8

ut

1

ut

 S. Koppen et al.

1 3

273 Page 12 of 14

emphasised in the following analysis, and other compu-
tational overhead is assumed negligible4. In all cases, we
reused the preprocessing information (factorisation/precon-
ditioner) when possible. The results of this run-time experi-
ment are shown in Fig. 4. The figures show the normalised
run-time t̂ , i.e. normalised to the run-time required without
any linear dependency detection, of the solves required for
a single design iteration, both for high and low-� methods.

For high-� solution methods, the gains for LDAS and
MLD converge towards each other, indicating the rela-
tive overhead of the LDAS decreases with problem size. It
should be noted that the ideal normalised run-time t̂ = 0.2 is
not achieved for high-� methods since the chosen preproc-
essing is relatively expensive (or vice versa, the solve is rela-
tively cheap), thereby limiting the possible gains in run-time
in this situation to t̂ = 0.4 . Clearly, the maximum achievable
gain is higher for low-� solution methods (the difference is
fully defined by the difference in �). Counting the number
of linearly-independent solves of the different schemes gives
an accurate estimate of relative computational efficiency.
For the presented example, an 80% reduction may indeed
be expected using an LDAS with a low-� solution method.

Regardless of the solution method, taking into account
only LDAP pairs is not computationally efficient compared
to using an LDAS for this problem. For both high-� and low-
� solution methods, the overhead of the LDAS is negligible
for problems of moderate to large size.

6 Conclusions

The computational effort required to solve a gradient-
based structural optimisation problem in a nested analysis
and design setting is typically dominated by finding solu-
tions to state equations. However, in real-world optimi-
sation problems—that are typically compound, i.e. they
consider multiple combinations of physical loading con-
ditions and a wide variety of response functions—many
avoidable linear system solves are executed regardless.
This paper proposes the use of linear dependency aware
solvers, complementary to methods aiming to reduce the
total number of design iterations, or the cost per solve, by
effectively reducing the number of solves per design itera-
tion without compromising accuracy of the solution. The
proposed concept leverages the linearity of the systems of
equations—a trait present in many commonly considered
topology optimisation problems—to automatically omit
expensive solves if the solutions can be expressed as a
linear combination of previously evaluated solutions for a
given design iteration.

We proposed one such algorithm that is simple, as
illustrated by the provided supplementary Python and
MATLAB implementations of Algorithm 2, and can
be integrated non-intrusively into existing optimisation
software. Although the potential benefits of the pro-
posed method hinge on the presence of linear dependen-
cies of the problem at hand, it has been illustrated that
the accompanying overhead is negligible, allowing the
method to be applied freely and achieving significant
performance improvements when linear dependencies
are abundant. Additionally, the concept does not restrict
other methods to reduce the computational time per solve,
such as parallel computing, approximation techniques, or

Fig. 4 Normalised run-time t̂ versus number of DOFs n of three
implementations: LDAP (∙), MLD (∙) and LDAS (▴). Herein LDAP
and MLD are implementations that manually detect linear dependen-
cies. The LDAP implementation detects only adjoint-physical load
pairs, whereas the MLD implementation detects all linear depend-
encies. The LDAS implementation uses automatic detection, with
a slight overhead to the manual MLD implementation. The figures

include both a high-� and low-� solution method to solve the system
of equations related to the numerical example presented in Sect. 5.
For each of the six data points, the measurements are averaged over
respectively 1000, 250, 64, 16, 4 and 1 repeated experiments on a
high performance computing cluster to obtain a stable time measure-
ment

4 Although very little computational overhead is present in the man-
ual approaches, the required problem analysis (Sect. 5.2) is time-con-
suming and error-prone.

Efficient computation of states and sensitivities for compound structural optimisation…

1 3

Page 13 of 14 273

model order reduction, which allows the user to focus
on the design problem formulation and avoids laborious
manual linearly dependency analysis altogether.

7 Supplementary information

This article is supplemented with numerical implementa-
tions, i.e. a MATLAB and Python implementation of Algo-
rithm 1 and Algorithm 2, as well as media files related to the
prototype model from Fig. 3c.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results A Python and MATLAB implementation of
Algorithms 1 and 2 are available at GitHub: https:// github. com/ artof
scien ce/ LDAS.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aage N, Andreassen E, Lazarov BS et al (2017) Giga-voxel computa-
tional morphogenesis for structural design. Nature 550(7674):84–
86. https:// doi. org/ 10. 1038/ natur e23911

Alonso C, Ansola R, Querin OM (2014) Topology synthesis of multi-
input-multi-output compliant mechanisms. Adv Eng Softw
76:125–132. https:// doi. org/ 10. 1016/j. adven gsoft. 2014. 05. 008

Amir O (2015) Revisiting approximate reanalysis in topology optimiza-
tion: on the advantages of recycled preconditioning in a minimum
weight procedure. Struct Multidisc Optim 51(1):41–57. https://
doi. org/ 10. 1007/ s00158- 014- 1098-7

Amir O, Sigmund O (2010) On reducing computational effort in topol-
ogy optimization: how far can we go? Struct Multidisc Optim
44(1):25–29. https:// doi. org/ 10. 1007/ s00158- 010- 0586-7

Amir O, Stolpe M, Sigmund O (2010) Efficient use of iterative solv-
ers in nested topology optimization. Struct Multidisc Optim
42(1):55–72. https:// doi. org/ 10. 1007/ s00158- 009- 0463-4

Amir O, Aage N, Lazarov B (2014) On multigrid-CG for efficient
topology optimization. Struct Multidisc Optim 49(5):815–829.
https:// doi. org/ 10. 1007/ s00158- 013- 1015-5

Ananthasuresh GK, Kota S, Gianchandanif Y (1994) A methodical
approach to the design of compliant micromechanisms. In: Tech

digest of the solid-state sens and actuator workshop https:// doi.
org/ 10. 31438/ trf. hh1994. 43

Arora J, Haug E (1979) Methods of design sensitivity analysis in struc-
tural optimization. AIAA J 17(9):970–974

Belegundu A (1986) Interpreting adjoint equations in structural opti-
mization. J Struct Eng 112(8):1971–1976. https:// doi. org/ 10. 1061/
(ASCE) 0733- 9445(1986) 112: 8(1971)

Bendsøe MP, Sigmund O (2004) Topology optimization. Springer,
Berlin. https:// doi. org/ 10. 1007/ 978-3- 662- 05086-6

Benoit C (1924) Note sur une méthode de résolution des équations
normales provenant de l’application de la méthode des moindres
carrés a un système d’équations linéaires en nombre inférieur a
celui des inconnues. — application de la méthode a la résolution
d’un système defini d’équations linéaires. Bulletin Géodésique
2(1):67–77. https:// doi. org/ 10. 1007/ bf030 31308

Borrvall T, Petersson J (2001) Large-scale topology optimization in
3D using parallel computing. Comput Methods Appl Mech Eng
190(46–47):6201–6229. https:// doi. org/ 10. 1016/ S0045- 7825(01)
00216-X

Bruns TE, Tortorelli D (2001) Topology optimization of non-linear
elastic structures and compliant mechanisms. Comput Methods
Appl Mech Eng 190(26–27):3443–3459. https:// doi. org/ 10. 1016/
S0045- 7825(00) 00278-4

Bruyneel M, Duysinx P, Fleury C (2002) A family of MMA approxi-
mations for structural optimization. Struct Multidisc Optim
24(4):263–276. https:// doi. org/ 10. 1007/ s00158- 002- 0238-7

Cao L, Dolovich AT, Zhang WJ (2013) On understanding of design
problem formulation for compliant mechanisms through topol-
ogy optimization. Mech Sci 4(2):357–369. https:// doi. org/ 10.
5194/ ms-4- 357- 2013

Choi Y, Oxberry G, White D, et al (2019) Accelerating design opti-
mization using reduced order models. arXiv preprint arXiv:
1909. 11320

Davis TA (2006) Direct methods for sparse linear systems. SIAM
Frecker MI, Ananthasuresh GK, Nishiwaki S et al (1997) Topologi-

cal synthesis of compliant mechanisms using multi-criteria opti-
mization. J Mech Des Trans ASME 119(2):238. https:// doi. org/
10. 1115/1. 28262 42

Frecker MI, Kikuchi N, Kota S (1999) Topology optimization of
compliant mechanisms with multiple outputs. Struct Optim
17(4):269–278. https:// doi. org/ 10. 1007/ BF012 07003

Gram JP (1883) Ueber die entwickelung reeller functionen in rei-
hen mittelst der methode der kleinsten quadrate. Journal für die
reine und angewandte Mathematik 1883(94):41–73

Guyan R (1965) Reduction of stiffness and mass matrices. AIAA J
3(2):380–380. https:// doi. org/ 10. 2514/3. 2874

Hasse A, Franz M, Mauser K (2017). Synthesis of compliant mecha-
nisms with defined kinematics. https:// doi. org/ 10. 1007/ 978-3-
319- 45387-3_ 20

Irons B (1965) Structural eigenvalue problems - elimination of
unwanted variables. AIAA J 3(5):961–962. https:// doi. org/ 10.
2514/3. 3027

Kirsch U (1991) Reduced basis approximations of structural dis-
placements for optimaldesign. AIAA J 29(10):1751–1758

Koppen S, Langelaar M, van Keulen F (2022) A simple and versatile
topology optimization formulation for flexure synthesis. Mech
Mach Theory. https:// doi. org/ 10. 1016/j. mechm achth eory. 2022.
104743

Koppen S, Langelaar M, van Keulen F (2022) Efficient multi-parti-
tion topology optimization. Comput Methods Appl Mech Eng
393(114):829. https:// doi. org/ 10. 1016/j. cma. 2022. 114829

Laplace PS (1820) Théorie analytique des probabilités. Courcier
Larsen U, Sigmund O, Bouwstra S (1997) Design and fabrication

of compliant micromechanisms and structures with negative
Poisson’s ratio. J Microelectromech Syst 6(2):99–106. https://
doi. org/ 10. 1109/ 84. 585787

https://github.com/artofscience/LDAS
https://github.com/artofscience/LDAS
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nature23911
https://doi.org/10.1016/j.advengsoft.2014.05.008
https://doi.org/10.1007/s00158-014-1098-7
https://doi.org/10.1007/s00158-014-1098-7
https://doi.org/10.1007/s00158-010-0586-7
https://doi.org/10.1007/s00158-009-0463-4
https://doi.org/10.1007/s00158-013-1015-5
https://doi.org/10.31438/trf.hh1994.43
https://doi.org/10.31438/trf.hh1994.43
https://doi.org/10.1061/(ASCE)0733-9445(1986)112:8(1971)
https://doi.org/10.1061/(ASCE)0733-9445(1986)112:8(1971)
https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1007/bf03031308
https://doi.org/10.1016/S0045-7825(01)00216-X
https://doi.org/10.1016/S0045-7825(01)00216-X
https://doi.org/10.1016/S0045-7825(00)00278-4
https://doi.org/10.1016/S0045-7825(00)00278-4
https://doi.org/10.1007/s00158-002-0238-7
https://doi.org/10.5194/ms-4-357-2013
https://doi.org/10.5194/ms-4-357-2013
http://arxiv.org/abs/1909.11320
http://arxiv.org/abs/1909.11320
https://doi.org/10.1115/1.2826242
https://doi.org/10.1115/1.2826242
https://doi.org/10.1007/BF01207003
https://doi.org/10.2514/3.2874
https://doi.org/10.1007/978-3-319-45387-3_20
https://doi.org/10.1007/978-3-319-45387-3_20
https://doi.org/10.2514/3.3027
https://doi.org/10.2514/3.3027
https://doi.org/10.1016/j.mechmachtheory.2022.104743
https://doi.org/10.1016/j.mechmachtheory.2022.104743
https://doi.org/10.1016/j.cma.2022.114829
https://doi.org/10.1109/84.585787
https://doi.org/10.1109/84.585787

 S. Koppen et al.

1 3

273 Page 14 of 14

Leon SJ, Björck Å, Gander W (2013) Gram-schmidt orthogo-
nalization: 100 years and more. Numer Linear Algebra Appl
20(3):492–532

Li L, Khandelwal K (2015) An adaptive quadratic approxima-
tion for structural and topology optimization. Comput Struct
151:130–147

Liu Z, Korvink J (2009) Using artificial reaction force to design com-
pliant mechanism with multiple equality displacement constraints.
Finite Elem Anal Des 45(8–9):555–568. https:// doi. org/ 10. 1016/j.
finel. 2009. 03. 005

Ma ZD, Kikuchi N, Hagiwara I (1993) Structural topology and shape
optimization for a frequency response problem. Comput Mech
13(3):157–174. https:// doi. org/ 10. 1007/ bf003 70133

Mukherjee S, Lu D, Raghavan B et al (2021) Accelerating large-
scale topology optimization: state-of-the-art and challenges.
Arch Comput Methods Eng 1:3. https:// doi. org/ 10. 1007/
s11831- 021- 09544-3

Rozvany G, Sigmund O, Lewiński T et al (1993) Exact optimal
structural layouts for non-self-adjoint problems. Struct Optim
5(3):204–206. https:// doi. org/ 10. 1007/ bf017 43359

Rozvany GI, Zhou M, Rotthaus M et al (1989) Continuum-type opti-
mality criteria methods for large finite element systems with a
displacement constraint. Part I. Struct Optim 1(1):47–72. https://
doi. org/ 10. 1007/ BF017 43809

Saad Y (2003) Iterative methods for sparse linear systems. Soc Ind
Appl Math. doi 10(1137/1):9780898718003

Schmidt E (1907) Zur theorie der linearen und nicht linearen integral-
gleichungen zweite abhandlung. Math Ann 64(2):161–174

Shield RT, Prager W (1970) Optimal structural design for given deflec-
tion. Zeitschrift für angewandte Mathematik und Physik ZAMP
21(4):513–523

Sigmund O (1997) On the design of compliant mechanisms using
topology optimization. Mech Struct Mach 25(4):493–524. https://
doi. org/ 10. 1080/ 08905 45970 89454 15

Sigmund O (2001) Design of multiphysics actuators using topology
optimization - Part I: One-material structures. Comput Methods
Appl Mech Eng 190(49–50):6577–6604. https:// doi. org/ 10. 1016/
S0045- 7825(01) 00251-1

Svanberg K (1987) The method of moving asymptotes-a new method
for structural optimization. Int J Numer Methods Eng 24(2):359–
373. https:// doi. org/ 10. 1002/ nme. 16202 40207

Vanderplaats G (1980) Comment on “Methods of Design Sensitivity
Analysis in Structural Optimization’’. AIAA J 18(11):1406–1407

Wang MY (2009) Mechanical and geometric advantages in compliant
mechanism optimization. Front Mech Eng China 4(3):229–241.
https:// doi. org/ 10. 1007/ s11465- 009- 0066-1

Yang R, Lu C (1996) Topology optimization with superelements.
AIAA J 34(7):1533–1535. https:// doi. org/ 10. 2514/3. 60028

Zhan J, Zhang X (2010) Topology optimization of multiple inputs and
multiple outputs compliant mechanisms using the ground struc-
ture. In: ICIMA 2010 - 2010 2nd int conf on ind mechatron and
autom, vol 1, pp 20–24. https:// doi. org/ 10. 1109/ ICIND MA. 2010.
55381 11

Zhang XS, de Sturler E, Shapiro A (2020) Topology optimization with
many right-hand sides using mirror descent stochastic approxima-
tion-reduction from many to a single sample. J Appl Mech 87(5).
https:// doi. org/ 10. 1115/1. 40459 02

Zhu B, Chen Q, Jin M, Zhang X (2018) Design of fully decoupled
compliant mechanisms with multiple degrees of freedom using
topology optimization. Mech Mach Theory 126:413–428. https://
doi. org/ 10. 1016/j. mechm achth eory. 2018. 04. 028

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.finel.2009.03.005
https://doi.org/10.1016/j.finel.2009.03.005
https://doi.org/10.1007/bf00370133
https://doi.org/10.1007/s11831-021-09544-3
https://doi.org/10.1007/s11831-021-09544-3
https://doi.org/10.1007/bf01743359
https://doi.org/10.1007/BF01743809
https://doi.org/10.1007/BF01743809
https://doi.org/10.1080/08905459708945415
https://doi.org/10.1080/08905459708945415
https://doi.org/10.1016/S0045-7825(01)00251-1
https://doi.org/10.1016/S0045-7825(01)00251-1
https://doi.org/10.1002/nme.1620240207
https://doi.org/10.1007/s11465-009-0066-1
https://doi.org/10.2514/3.60028
https://doi.org/10.1109/ICINDMA.2010.5538111
https://doi.org/10.1109/ICINDMA.2010.5538111
https://doi.org/10.1115/1.4045902
https://doi.org/10.1016/j.mechmachtheory.2018.04.028
https://doi.org/10.1016/j.mechmachtheory.2018.04.028

	Efficient computation of states and sensitivities for compound structural optimisation problems using a Linear Dependency Aware Solver (LDAS)
	Abstract
	1 Introduction
	2 Method
	2.1 Response and sensitivity analysis
	2.2 Orthogonalisation and reconstruction

	3 Analytical example
	3.1 Problem formulation
	3.2 Problem analysis
	3.2.1 Forward analysis
	3.2.2 Sensitivity analysis
	3.2.3 Concluding remarks

	4 Numerical example 1: design of a bridge
	4.1 Problem formulation
	4.2 Problem analysis
	4.2.1 Forward analysis
	4.2.2 Sensitivity analysis
	4.2.3 Concluding remarks

	5 Numerical example 2: design of a multi-DOF compliant mechanism
	5.1 Problem formulation
	5.2 Problem analysis
	5.2.1 Forward analysis
	5.2.2 Sensitivity analysis
	5.2.3 Concluding remarks

	5.3 Verification by run-time experiment

	6 Conclusions
	7 Supplementary information
	References

