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Abstract
Real-world structural optimisation problems involve multiple loading conditions and design constraints, with responses typi-
cally depending on states of discretised governing equations. Generally, one uses gradient-based nested analysis and design 
approaches to solve these problems. Herein, solving both physical and adjoint problems dominates the overall computational 
effort. Although not commonly detected, real-world problems can contain linear dependencies between encountered physical 
and adjoint loads. Manually keeping track of such dependencies becomes tedious as design problems become increasingly 
involved. This work proposes using a Linear Dependency Aware Solver (LDAS) to detect and exploit such dependencies. 
The proposed algorithm can efficiently detect linear dependencies between all loads and obtain the exact solution while 
avoiding unnecessary solves entirely and automatically. Illustrative examples demonstrate the need and benefits of using an 
LDAS, including a run-time experiment.

Keywords Computational efficiency · Topology optimisation · Adjoint · Linear dependency

1 Introduction

In structural optimisation, particularly in topology optimisa-
tion, the self-adjoint compliance minimisation problem is 
often studied (Rozvany et al. 1989). One can obtain design 
sensitivities for gradient-based optimisation at a marginal 
computational cost due to the self-adjointness of the prob-
lem. This advantage has likely contributed to the popularity 
of studying the compliance minimisation problem. However, 
as Rozvany et al. (1993) pointed out almost three decades 
ago: “Self-adjoint problems, such as design for a single 
stress, a single compliance or single natural frequency con-
straint do not represent a real-world situation, because most 

practical structures are subject to several load conditions 
and design constraints.” Almost three decades later, solving 
large-scale linear problems considering multiple physical 
loads and a large variety of responses—hereafter denoted by 
compound problems—is becoming increasingly attainable as 
available computational power increases. However, regard-
less of available computational power, efficient numerical 
implementations remain essential.

Typically, finding the state corresponding to a load, i.e. 
the solution to the governing equations dominates the over-
all computation time during optimisation. As Borrvall and 
Petersson (2001) report, the computational time of such pro-
cedures approaches 97% for minimum compliance problems 
considering a single physical load, where computation times 
increase further when considering compound problems.

Finding a solution to these systems of linear equations 
generally consists of two steps: preprocessing and solving 
(Amir and Sigmund 2010). The preprocessing for direct 
methods requires the (generally expensive) matrix factori-
sation, and solving requires finding the exact solution via 
comparatively inexpensive back-substitutions (Davis 2006). 
In contrast, iterative methods require the construction of a 
preconditioner, and they subsequently generate a sequence 
of approximate solutions until convergence (Saad 2003). The 
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relative cost of preconditioner construction and the iterative 
solution process depends on many factors, such as the type 
of preconditioner and condition number. The preprocessing 
information can be repeatedly reused for subsequent solves 
within the same design iteration when this involves a system 
matrix with equivalent partitioning. This possibility holds 
for both solution methods.

Three strategies can be distinguished to lower the compu-
tational effort of solving large-scale linear systems of gov-
erning equations in structural optimisation, i.e. reduction of 

i the number of design iterations,
ii the computational effort per solve, and
iii the number of solves per design iteration.

The first technique has shown great potential to reduce com-
putational effort, for instance using advanced sequential 
approximate optimisation schemes (e.g. see (Bruyneel et al. 
2002; Li and Khandelwal 2015)). However, these approaches 
are out of scope for this discussion, independent of the pre-
sented methodology.

A common approach to reduce computation time per 
linear solve is to employ parallel computing (Borrvall and 
Petersson 2001; Aage et al. 2017), a technique which dis-
tributes the computational effort. However, to reduce this 
effort, approximation techniques should be considered, such 
as approximated reanalysis (Kirsch 1991; Amir 2015), itera-
tive solution techniques (Borrvall and Petersson 2001; Amir 
et al. 2010, 2014), and approximated model order reduction 
(Ma et al. 1993; Choi et al. 2019). Alternatively, static con-
densation (Guyan 1965; Irons 1965) allows for exact model 
order reduction, decreasing the system dimensionality with-
out loss of information (e.g. see (Yang and Lu 1996)). For a 
comprehensive review of techniques aiming to decrease the 
computational effort per solve in the context of topology 
optimisation, the reader is referred to the recent work by 
Mukherjee et al. (2021).

The third category—approaches to reduce the number of 
solves per design iterations—includes the adjoint sensitivity 
analysis method itself, for instance, when applied to most 
self-adjoint problems (Arora and Haug 1979; Vanderplaats 
1980; Belegundu 1986). For problems considering many 
physical static loads, Zhang et al. (2020) reduce the number 
of deterministic loads to a single approximated load using 
sampling schemes. Recent study shows that static condensa-
tion allows for a reduction of the number of factorisations/
preconditioning steps and the number of solves in multi-
partition problems; which are problems that, as a result of 
changing boundary conditions, require multiple different 
partitions of the stiffness matrix (Koppen et al. 2022b).

In contrast to that study, in this paper, we focus on com-
pound problems with a single partitioning of the system 
matrix. We introduce another method of the third category 

that reduces the number of solves per design iteration design 
problems with equivalent partitioning of degrees of freedom. 
Different boundary condition values can be handled as long 
as the partition remains the same. We herein assume linear 
state-based optimisation problems under (quasi-)static load-
ing, which constitutes a significant fraction of all problems 
studied in the topology optimisation community (Bend-
søe and Sigmund 2004). By automatically detecting linear 
dependencies between physical and adjoint loads, unneces-
sary solves in compound problems involving the same parti-
tion of system matrix can be avoided entirely while main-
taining equal accuracy of the solution of the states. To help 
the reader recognise linear dependencies that may arise in 
common design optimization problems, we distinguish three 
cases of such linear dependency: 

i Linearly-Dependent Physical-Physical (LDPP) loads. 
Such cases are common in design problems involving 
multiple loading conditions with applied loads of vary-
ing magnitudes, for example, present in the case study 
of Sect. 4. Optimisation problems with LDPP loads are 
relatively easily detected manually and regularly avoided 
by the user.

ii Linearly-Dependent Adjoint-Physical (LDAP) load 
pairs. Typical problems include cases where the adjoint 
load depends linearly on the corresponding physical 
load, as common in conventional self-adjoint1 prob-
lems (Belegundu 1986; Rozvany et al. 1993). The most 
well-known design problem in the topology optimisa-
tion community involving such load pairs is the classi-
cal compliance minimisation problem. Such cases are 
typically detected by academics in this field but may be 
overlooked otherwise.

iii Mixed Linear Dependencies (MLD), i.e. cases where 
physical loads or adjoint loads can be written as a linear 
combination of previously considered physical or adjoint 
loads. MLDs also include linear dependencies between 
adjoint loads and between non-corresponding adjoint 
and physical loads (as well as any linear combination). 
These MLDs are the most general situation and the most 
difficult to foresee and consider by hand. Such cases are 
expected in problems with multiple response functions 
depending on multiple states. More specifically, such 
cases often occur when the locations where the loads 

1 It is a common misconception that self-adjoint problems always 
exhibit an LDAP pair, as such problems can (and originally were) 
often of analytical nature and do not require a solve to obtain sensi-
tivities (e.g. design for a single natural frequency) (Shield and Prager 
1970; Rozvany et  al. 1993). Also, problems that exhibit an LDAP 
pair are by no definition per se self-adjoint (e.g. the optimisation for 
deflection constraints constitutes a non-self-adjoint problem, although 
exhibiting an LDAP pair (Rozvany et al. 1993)).
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are applied and the locations of the performance meas-
ures coincide, such as typical in the design of compliant 
mechanisms. These MLDs will be elaborately clarified 
in all numerical examples.

A user will typically be unaware of the presence and type 
of most of such linear dependencies. A Linear Dependency 
Aware Solver (LDAS) can be employed to detect and exploit 
any linear dependency, including any of the three aforemen-
tioned types, automatically. In this work, we demonstrate the 
need and benefits of an LDAS in the context of gradient-based, 
structural optimisation for compound problems and provide 
one such solver in the form of a simple algorithm to auto-
matically detect and exploit any linear dependence in a (pos-
sibly large) set of loads. The focus is on MLDS since these 
linear dependencies are typically the hardest to detect. How-
ever, due to the generality of the method, it also automati-
cally resolves unnecessary solves in LDPP and LDAP pairs. 
Thus, it is ensured that only the minimum number of linear 
solves is performed in each iteration. This advantage makes the 
approach suitable for general-purpose structural and topology 
optimisation implementations. Note that the presented algo-
rithm does not exclude other additional techniques to reduce 
the computational effort and time, such as parallel computing, 
approximate modelling, or reduced order techniques, which 
can be implemented alongside the presented methodology.

2  Method

Consider a general inequality-constrained nonlinear struc-
tural optimisation problem

with objective f ∈ ℝ , m inequality constraints g ∈ ℝ
m and 

N design variables x ∈ 𝕏
N ⊆ ℝ

N.

2.1  Response and sensitivity analysis

The responses (objective and constraint functions) com-
monly depend on physical states U ∶=

[

u1,… , ua
]

∈ ℝ
n×a , 

where n is the dimensionality of the discretised governing 
equations and a the number of states. These states implicitly 
depend on the design variables, i.e. � = �[�] . We consider 
a setting in which these physical states are obtained by solv-
ing a linear system of discretised governing equations, i.e.

with F[x] ∶=
[

f1[x],… , fa[x]
]

∈ ℝ
n×a the physical loads and 

K[x] ∈ ℝ
n×n a design-dependent, symmetric, and non-sin-

gular system matrix. In the following we assume the system 

(1)
min
x∈�N

f [x]

s.t. g[x] ≤ 0

(2)�[�]� = �[�],

in Eq. (2) constitutes a single partition, thus the physical 
loads are applied on the system under the same boundary 
conditions.

In gradient-based optimisation, the sensitivities of the 
responses to the design variables are required to update the 
design variables. For structural optimisation problems with 
a large ratio of the number of design variables to the number 
of state-based response functions, commonly, the adjoint 
method is applied to efficiently obtain this sensitivity infor-
mation (Arora and Haug 1979; Vanderplaats 1980). To this 
end, consider the augmented response

with �j ∶=
[

�j,1,… , �j,a

]

∈ ℝ
n×a . Here, a suitable choice of 

the adjoint states �j can circumvent calculation of the com-
putationally expensive derivative ��

�xk
 (Vanderplaats 1980). 

Doing so, full differentiation of Eq. (3) yields

with

where �gj
��

 is referred to as the adjoint loads of response gj.
Each of the physical and adjoint loads can be linearly 

dependent on any combination of previously considered 
loads and thus can be reconstructed as their linear combina-
tion. Exploiting possible linear dependence can significantly 
reduce the costs required to find all states. Consider a set 
of a loads, of which b are linearly-independent, then the 
computational effort scales roughly with b

a
 , as only b solves 

are required to reconstruct all states. To avoid unnecessar-
ily solving Eqs. (2) and (5) for linear-dependent loads we 
propose 

i to compute each load’s dependency on previous loads, 
and

ii to keep track of the states corresponding to linearly-
independent loads.

Various possible methods exist to check for linear depend-
ency and necessary bookkeeping. We consider one such 
algorithm that detects linear dependencies and builds 
orthogonal bases of linear-independent loads and their cor-
responding states.

2.2  Orthogonalisation and reconstruction

Consider the non-empty orthogonal bases of loads F  
and states U  of length c. One can investigate the linear 

(3)Lj[�,�[�]] = gj[�,�[�]] − �j ∶ (�[�]� − �[�]).

(4)
dLj

dxk
=

�gj

�xk
− �j ∶

(

��

�xk
�

)

,

(5)�[�]�j =
�gj

��
,
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dependency of a load �  (e.g. a physical load �  or adjoint 
load �g

��
 ) with respect to F  by applying the last step of the 

well-known Gram–Schmidt orthogonalisation procedure2 
(Laplace 1820; Gram 1883; Schmidt 1907). The residual � 
is obtained via

with Fi the ith load in F  . A possible implementation is given 
by the pseudo-code Algorithm 1.

If the norm of the residual � is zero, then � is linearly 
dependent to basis F  . As a result, the corresponding state � 
(or adjoint state � ) is linearly dependent on basis U . Thus, 
the state � may be reconstructed via

As such, one can obtain the exact numerical solution of state 
� , while avoiding solving the governing equations for loads 
� . However, if the norm of the residual vector � is non-zero 
(or bigger than a relatively small value � ), � is linearly inde-
pendent with respect to basis F  and the expensive solve 
cannot be avoided.

We solve for the state � corresponding to residual load � 
defined by

Subsequently load � and state � are added to bases F  and 
U , respectively. Since � is orthogonal with respect to basis 
F  , so is � to U . As a result, both enriched bases F  and U 
remain orthogonal. The state � is then reconstructed from 
Eqs. (6) and (7). The above procedure can be repeated using 
the enriched bases, as defined in Algorithm 2. Due to the 

(6)� ∶= � −

c
∑

i=1

�iFi, with �i =
Fi ⋅ �

Fi ⋅ Fi

,

(7)� =

c
∑

i=1

�iUi.

(8)�[�]� = �.

general nature of the algorithm, the proposed procedure 
is independent of the type of dependencies as defined in 
Sect. 1. The equivalence of solutions is extensively verified 
for many test problems.

Although Algorithm 2 introduces additional computa-
tional operations, i.e. computing vector norms and orthog-
onality coefficients, their computational cost is typically 
negligible compared to the costs of solving a system of 
equations, as illustrated in Sect. 5. The computational effort 
increases with the number of loads to consider, however, 
remains negligible as long as the number of loads (both 
physical and adjoint) is smaller than the dimensionality 
of the load vectors. Furthermore, these operations do not 
change when considering distributed-memory parallelism. 
Alternatively, for loads that do not depend on the states, it 
is possible to rearrange Algorithm 2 to determine all the 
independent loads first and evaluate their solutions in paral-
lel afterwards.

3  Analytical example

Compound problems may appear in any real-world problem, 
modelled by (a sequence of) linear governing equations. Typi-
cal examples of compound problems are formulations with 
multiple loading conditions and multiple response functions 
in which the degrees of freedom of (some of) the loads coin-
cide with (some of) the degrees of freedom that define the 
response functions. For example, one may think of the design 
of a structure with multiple critical loading conditions, where 
the displacements of a loading condition are measured at 
the same degrees of freedom where the loads are applied at 
another loading condition. A direct example of this are multi-
input–multi-output compliant mechanisms, see e.g. (Frecker 
et al. 1999) or (Liu and Korvink 2009). The problem formu-
lation of such mechanisms includes multiple physical loads 
and responses, all applied to, or dependent on, the input and 
output degrees of freedom of the mechanism. As a result, 

2 Although the method is named after Jørgen Pedersen Gram and 
Erhard Schmidt, Pierre-Simon Laplace had been familiar with it 
before, see (Leon et al. 2013).
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MLD is commonly present. However, it generally remains 
unnoticed. To clarify the cases in which one might encounter 
linear dependency, we here exemplify the three different types 
of unnecessary solves, as introduced in Sect. 1.

3.1  Problem formulation

Consider the two degrees of freedom spring model as depicted 
in Fig. 1. Note that this example—after applying static con-
densation—can exactly represent any single-input–single-
output compliant mechanism, see e.g. (Wang 2009; Hasse 
et al. 2017). Therefore, this two degrees of freedom example 
is fully representative of large-scale linear problems consider-
ing multiple physical loads and responses while better suited 
to illustrate the proposed method.

3.2  Problem analysis

Next, we analyse the properties of this optimisation problem in 
light of the proposed method, with a specific emphasis on the 
required number of systems of equations that are to be solved.

3.2.1  Forward analysis

The physical and adjoint states can be obtained by solving 
the design-dependent discretised governing equations fol-
lowing Eqs. (2) and (5). A set of the following three physical 
loads is considered:

The first residual by definition equals the first load, that is 
�1 = �1 . As a result, the state �1 = �1 . Since the basis is ini-
tially empty when this load is considered, the resulting load 
and state are directly added to corresponding bases. The sec-
ond residual is calculated via Eq. (6), that is

Since �2 is non-zero, the first and second physical loads are 
linearly-independent. The corresponding physical state �2 is 
obtained by solving for the non-zero load �2 via Eq. (8). As a 

(9)� =

[[

1

0

] [

1

2

] [

4

4

]]

.

(10)�2 = �2 − �1F1 =

[

0

2

]

.

result the following bases, consisting of orthogonal vectors, 
are obtained after solving for the first two loads:

The second physical state is now reconstructed following 
Eq. (7) and reads

The third physical load can be written as a linear combina-
tion of the current orthogonal basis F  , resulting in a zero 
residual load �3 = � . These are thus LDPP loads. Thus the 
basis U can be used to reconstruct the third physical state 
without an additional solve as in Eq. (7), i.e.

3.2.2  Sensitivity analysis

Now consider a response function g1
[

�2
]

 that is a measure 
for the strain energy due to load �2 , i.e.

The second adjoint load for this response is linearly depend-
ent on the corresponding physical load �2 as

thus this is an LDAP pair, and consequently �4 = � . As a 
result, one can use the basis U  to reconstruct the second 
adjoint state, which yields

with �j,i the adjoint state of response j with respect to state 
i. Note that both the first and third adjoint loads of this 
response, that is �g1

��1
 and �g1

��3
 are zero, and thus so are �1,1 and 

�1,3.
Finally consider a (fictitious) response function g2

[

�1, �3
]

 
that depends on both degrees of freedom of the first state 
and third state via

The adjoint loads for this response function can be written as

(11)F =
[

�1, �2
]

and U =
[

�1, �2
]

.

(12)�2 = �1U1 + �2 = �1 + �2.

(13)�3 = �1U1 + �2U2 = 4�1 + 2�2.

(14)g1
[

�2
]

=
1

2
�2 ⋅ �2.

(15)
�g1

��2
=

1

2
�2,

(16)�1,2 =
1

2
�2 = �1U1 + �2U2 =

1

2
�1 +

1

2
�2,

(17)g2
[

�1, �3
]

=

[

2

1

]

⋅ �1 +

[

1

3

]

⋅ �3.

Fig. 1  One-dimensional two degrees of freedom compliant mecha-
nism model
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Note that both adjoint loads are linearly dependent on a com-
bination of previously considered loads, i.e. an MLD. In this 
case, the adjoint loads are both linearly dependent on both 
loads in basis F  . As a result, one may again use the states in 
U to reconstruct the adjoint states via

The loads, states, and bases of this example are summarised 
in Table 1.

3.2.3  Concluding remarks

Six solves are required when all loads (physical and 
adjoint) are considered. If both LDPPs and LDAP pairs 
are taken into account, only three solves are needed. 
Finally, considering MLDs (and thus also LDPPs and 
LDAP pairs), only two solves are required. Although the 
presented example is simplified, more complex MLDs do 
appear in large-scale compound problems, as will be dem-
onstrated in Sects. 4 and 5.

(18)

�g2

��1
=

[

2

1

]

= 2�1 +
1

2
�2 and

�g2

��3
=

[

1

3

]

= �1 +
3

2
�2.

(19)�2,1 = 2�1 +
1

2
�2 and �2,3 = �1 +

3

2
�2.

4  Numerical example 1: design of a bridge

In this section we demonstrate the use of an LDAS for a 
practically relevant numerical example. The emphasis will 
be on the potential gain, not on formulation, design or opti-
mization convergence aspects.

4.1  Problem formulation

Consider the design of a simplified bridge-deck support-
ing structure. A schematic of the problem setting, together 
with an optimised design, is shown in Fig. 2. The engi-
neer has selected a set of crucial loading conditions and 
(derived) constraints based on an extensive set of require-
ments and loading conditions, as typical in the design of 
such a bridge.

The aim is to design a stiff bridge with limited material 
for a given set of four loading conditions considering three 
points of interest: one at a quarter, one at the middle and 

Table 1  Overview of both 
physical and adjoint loads and 
states, as well as the orthogonal 
bases encountered in the 
illustrative example presented 
in Fig. 1

The right-hand side displays the load and states vectors expressed as linear combinations of the corre-
sponding bases given on the left-hand side

F Loads

�1 = �1 �2 �1 �2 �3
�g1

��2

�g2

��1

�g2

��3
[

1

0

] [

0

2

] [

1

0

] [

1

2

] [

4

4

]
[

1

2

1

]
[

2

1

] [

1

3

]

�1 �1 + �2 4�1 + 2�2
1

2
�1 +

1

2
�2 2�1 +

1

2
�2 �1 +

3

2
�2

U States
�1 = �1 �2 �1 �2 �3 �1,2 �2,1 �2,3

�1 �1 + �2 4�1 + 2�2
1

2
�1 +

1

2
�2 2�1 +

1

2
�2 �1 +

3

2
�2

Fig. 2  Optimised result of topology optimization problem Eq. (20). 
The solution (800 × 120 finite elements and design variables) satis-
fies all constraints (all active) and the optimization process terminated 

in 59 design iterations. Corresponding displacements at the DOF of 
interest are listed in Table 3

Table 2  Magnitude of forces 
applied at DOFs 1, 2 and 3 
(numbered as assigned in 
Fig. 2) for loading conditions 
(LC) 1, 2, 3 and 4

DOF LC

1 2 3 4

1 3 0 0 1
2 0 2 0 1
3 0 0 3 1
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one at three-quarters of the bridge deck. The magnitudes 
of forces applied to the DOFs of interest for the four load-
ing conditions are as shown in Table 2. Furthermore, it is 
decided that the difference in deformations from loading 
conditions with concentrated loads and combined loads must 
be restricted. As such, the design has to satisfy several con-
straints on the deflection of the points of interest under the 
given loading conditions.

The topology optimization problem formulation reads

The objective is to minimise the strain energy Ej , or equiva-
lently maximise the stiffness, under the four loading con-
ditions by finding design variables xk that are bounded by 
𝕏 = {x ∈ ℝ | 0 ≤ x ≤ 1} . Constraint gv[�] limits the maxi-
mum material usage by fraction v = 0.5 . Constraint gu

i
 limits 

the difference in displacement of DOF i between loading 
conditions i and 4 to u = 20 . Herein ui,j

[

�j[�]
]

 is defined as 
the displacement at DOF of interest i for loading condition j.

An optimised solution is shown in Fig. 2. The displace-
ments at the DOFs of interest for the four loading conditions 
of this constrained optimised design are shown in Table 3. 
Note that the deformations at the points of interest now sat-
isfy the imposed restrictions.

4.2  Problem analysis

Now we analyse the potential gain of using an LDAS for 
solving this bridge design optimization problem.

4.2.1  Forward analysis

Let us first consider the objective of the problem formulation 
posed in Eq. (20). The objective is a function of the states of 

(20)

min
x∈�N

f [x] ∶

4
∑

j

Ej

[

uj[x]
]

s.t. gv[x] ∶ v[x] ≤ v

gu
1
[x] ∶ u1,1[x] − u1,4[x] ≤ u

gu
2
[x] ∶ u2,2[x] − u2,4[x] ≤ u

gu
3
[x] ∶ u3,3[x] − u3,4[x] ≤ u

four loading conditions, that is f
[

�1, �2, �3, �4
]

 . Straightfor-
ward analysis would thus require four solves. However, upon 
closer inspection, it can be observed that the fourth loading 
condition uniquely uses LDPP loads. The fourth state �4 can, 
thus, be written as a linear combination of states �1 , �2 and 
�3 . No solves are required for the forward analysis of the 
constraints since all states have previously been determined 
to calculate the objective. Thus, using an LDAS to solve 
Eq. (20) can save the user one of the four solves required in 
the forward analysis, thus requiring three solves per design 
iteration.

4.2.2  Sensitivity analysis

Straightforward sensitivity analysis of the objective requires 
four more solves. However, the adjoint loads df

d�i
 for 

i = 1, 2, 3, 4 can all be written as a linear combination of �1 
and �2 and �3 , that is four LDAP pairs. Considering the addi-
tional constraint functions, the number of solves required for 
sensitivity analysis quickly increases. Each constraint 
depends on two states, thus requiring two adjoint solves per 
constraint. This sensitivity analysis thus requires a total of 
six additional solves. Closer inspection, similar to the pre-
ceding section, brings to light the MLDs in these constraints; 
all the adjoint loads can be written as a linear combination 
of physical loads �1 , �2 and �3 . Using an LDAS thus avoids all 
of the ten solves, and the sensitivity analysis would not 
require any solve.

4.2.3  Concluding remarks

A straightforward implementation to solve the bridge 
design problem would require a total of fourteen solves per 
design iteration, four for the forward analysis and ten for 
the sensitivity analysis. Using an LDAS one only requires 
three solves per design iteration. That is a decrease in the 
number of solves by almost 80%.

5  Numerical example 2: design 
of a multi‑DOF compliant mechanism

To further demonstrate the benefits of the proposed method, 
we consider as illustrative case study the topology optimisation 
of a planar, multiple degree-of-freedom micro-mechanism for 
use, for example, as analogue gate in a mechanical computer 
(Larsen et al. 1997). Note that the focus here is not on the opti-
misation (problem formulation) of the micro-mechanism but 
on demonstrating the numerical benefits of an LDAS.

Table 3  Displacements at DOF 
1 and 2 for loading conditions 1, 
2 and 3 of the optimised design 
with deformation constraints

DOF LC

1 2 3 4

1 96 65 34 76
2 97 170 97 150
3 34 65 96 76
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5.1  Problem formulation

Consider the design problem depicted in Fig.  3a. The 
domain consists of four points of interest, each consisting 
of two Degrees Of Freedom (DOFs), ux and uy , respectively. 
The target is to design a monolithic compliant mechanism 
that doubles a unit input motion at DOF 6 to the output 
motion at DOF 4 and a unit input motion at DOF 8 to an 
equivalent magnified output motion at DOF 2. Thus we con-
sider two independent kinematic DOFs. Furthermore, we 
also consider parasitic motion, input coupling and output 
coupling: all remaining DOFs—apart from the intended 
input and output—are restricted to displace a maximum of 
0.1% of the input motion.

The force paths have to cross, making this a challeng-
ing problem that is not necessarily intuitive for engineers 
to solve. Therefore we solve this problem using topology 
optimisation (Bendsøe and Sigmund 2004). We consider 
the following compound topology optimisation problem 
formulation3:

The objective is to minimise the strain energy Ej , or equiva-
lently maximise the stiffness, by finding design variables sk 
that are bounded by 𝕏 = {x ∈ ℝ | 0 ≤ x ≤ 1} . Constraint 
gv[�] limits the maximum material usage by fraction 
v = 0.25 . The other constraints enforce a minimum displace-
ment at the input DOFs ( gin

j,j
 ), limit cross talk ( gct

i,j
 ) to toler-

ance uct , and enforce the transmission between input and 
output displacements ( gt

i,j
 ) within a tolerance ut . In the next 

subsection these constraints will be further explained.

(21)

min
x∈�N

f [x] ∶
∑

j

Ej

[

uj[x]
]

∀ j ∈ {1, 3, 5, 7}

s.t.

gv[x] ∶ v[x] ≤ v

gin
j,j
[x] ∶ uj,j

[

uj[x]
]

≥ uin ∀ j ∈ {6, 8}

gct
i,j
[x] ∶ ui,j

[

uj[x]
]

≤ uct

− ui,j
[

uj[x]
]

≤ uct

∀ i, j ∈

{

{1, 2, 3, 5, 7, 8}, {6}

{1, 3, 4, 5, 6, 7}, {8}

gt
i,j
[x] ∶ Jkui,j

[

uj[x]
]

− uj,j
[

uj[x]
]

≤ ut

uj,j
[

uj[x]
]

− Jkui,j
[

uj[x]
]

≤ ut

∀ i, j ∈

{

{4}, {6}

{2}, {8}

Fig. 3  Design of a planar, decoupled multiple degrees of freedom 
compliant mechanism as described in Sect.  5.1. From left to right: 
a the initial design with the four points of interest each with two 

degrees of freedom ( ux , uy ), b the topology as obtained from the opti-
mization, and c a prototype model in deformed configuration

3 We do not claim this formulation is (best) suited for the considered 
problem, we merely employ this formulation for demonstration of the 
proposed method.
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This problem formulation consists of standard, well-docu-
mented response functions as well as corresponding sensitivity 
analysis. An extensive description is therefore omitted. For an 
in-depth discussion on the design of compliant mechanisms 
using topology optimisation, the reader is referred to earlier 
works, such as (Ananthasuresh et al. 1994; Frecker et al. 1997; 
Sigmund 1997, 2001) and the review of Cao et al. (2013) and 
references therein. For works regarding multiple degrees of 
freedom systems, the works by (Frecker et al. 1999; Zhan and 
Zhang 2010; Alonso et al. 2014; Zhu et al. 2018; Koppen et al. 
2022a) may be consulted.

The proposed compound topology optimisation problem 
Eq. (21) was discretised using 200 by 200 finite elements (and 
design variables). The design variable field is blurred using a 
linear convolution operator with a filter radius of two elements 
to eliminate modelling artefacts(Bruns and Tortorelli 2001).

A post-processed (via design variable thresholding) version 
of a solution is shown in Fig. 3b. This solution is obtained 
from a uniform initial guess in 58 design iterations using the 
method of moving asymptotes (Svanberg 1987). This solu-
tion adheres to the constraints imposed and, thus, satisfies the 
design requirements on displacement transmission and maxi-
mum parasitic motion. As expected, the solution to the topol-
ogy optimisation problem using an LDAS is fully equivalent 
to the reference method.

Note the presence of rigid bodies and hinges and their loca-
tion and connections. The resulting deformation and displace-
ments of the DOFs of interest for one of the use-cases are 
displayed by the prototype in Fig. 3c. A movie of the proto-
type—available as supplementary material and provided on 
Github (Sect. 5.3)—demonstrates that the intended functional-
ity has been achieved.

5.2  Problem analysis

Let us analyse the properties of this optimisation problem in 
light of the proposed method, with a specific emphasis on the 
required number of systems of equations to be solved.

5.2.1  Forward analysis

The objective function f [�] is a summation of strain energies, 
obtained by analysing the deformed structure under a unit load 
at DOFs {1, 3, 5, 7} . The internal strain energy corresponding 
to each displacement field �j reads as

where �j is found by solving the system of equations

(22)Ej =
1

2
�j ⋅�[�]�j,

(23)�[�]�j = �j,

with �j the unit load vector that contains zeros at all entries 
except at DOF j of interest. To evaluate the objective func-
tion, the system of equations (Eq. (23)) needs to be solved 
repeatedly, since the four physical loads are linearly-inde-
pendent. By minimising these strain energy terms, the 
motion corresponding to these DOFs is restricted in the 
resulting structure. None of the points of interest can sig-
nificantly move in the x-direction.

Constraints gin
j,j
[�] are required to enforce a minimum 

displacement of uin at uj,j with j the DOFs of interest 6 and 
8, requiring two additional solves. Note, ui,j denotes the 
displacement at DOF i due to a unit load at DOF j. One 
may observe that the remaining displacement-based con-
straints are only dependent on �6 and �8 . Since these were 
previously evaluated to determine gin

j,j
[�] , inspection shows 

that no additional solves are required for the forward 
analysis.

Constraints gct
i,j
[�] are imposed to limit the crosstalk (para-

sitic motion) ui,j of DOFs {1, 2, 3, 5, 7, 8} due to a unit load 
at DOF 6 and the motion of DOFs {1, 3, 4, 5, 6, 7} due to a 
unit load at DOF 8 from below by −uct and from above by 
uct , with uct = 0.001uin . The number of crosstalk constraints 
is found by multiplying two kinematic DOF, six constraints 
per kinematic DOF, and two bounds per constraint, resulting 
in 24 constraint functions.

Constraints gt
i,j
[�] enforce a desired input–output trans-

mission Jk ∶=
uout,k

uin,k
 for kinematic DOF k with a maximum 

transmission deviation of ut = 0.1uin . The input–output 
transmission for the first kinematic mode is defined as the 
motion transmission from DOF 2 to DOF 4 J1 ∶=

u4,6

u6,6
 , and 

the second input–output transmission is defined as the 
motion transmission from DOF 8 to DOF 2 J2 ∶=

u2,8

u8,8
 . This 

introduces four constraints, as each constraint is bound from 
below and above.

All response functions combined require 32 response 
functions to be evaluated for this optimisation problem, 
which are fully resolved by performing a total of six solves 
(four for the objective and two for gin

j,j
[�]).

5.2.2  Sensitivity analysis

To obtain the sensitivities of the responses to the design 
variables, one generally loops over the responses, and con-
secutively calculates the corresponding sensitivities.

For the considered problem, the adjoint loads of the 
objective are linearly dependent on corresponding physical 
loads, i.e. they form four LDAP pairs. In this case �Ej

��j
= �j , 

and thus �j,j = �j . Thus, to obtain the sensitivities of the 
objective no additional solves are required.

The adjoint loads corresponding to gin
j,j
[�] read
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which can be written as a linear combination of the physical 
loads �6 and �8 previously considered to evaluate gin

j,j
[�].

The sensitivities of the crosstalk constraints gct
i,j
[�] exhibit 

MLDs. Furthermore, for i = {1, 3, 5, 7} and j = {6, 8} the 
following holds

and the adjoint loads are therefore linearly dependent on 
non-corresponding physical loads. However, for i, j = {2, 6} 
and i, j = {4, 8} the adjoint load can not be written as (a 
combination) of previously evaluated physical and/or adjoint 
loads and the corresponding systems of equations (Eq. (5)) 
need to be solved accordingly. Note, only two solves are 
required as the adjoint loads for the constraints related to 
lower and upper bounds are linear-dependent (these only 
show a sign difference).

Lastly, the adjoint loads corresponding to transmission 
constraint gt

i,j
[�] are given by

which can all be written as a summation of the previous 
adjoint loads of gin

i,j
[�] (or physical loads �6 and �8 and gct

i,j
[�] . 

For such ‘combined’ loads it can be particularly obscure to 
manually express them as a linear combination of previous 
physical and/or adjoint loads.

5.2.3  Concluding remarks

The problem analysis reveals that if no linear dependencies 
are taken into account, 40 systems of equations need to be 
solved (of which 34 in the sensitivity analysis), as opposed 
to the minimum of 8 when considering all linear dependen-
cies (MLDs). That is, one may expect a maximum decrease 
of computational effort by 80%. If only LDAP pairs are con-
sidered (this is generally the case), then 34 equations have 
to be solved. If, in addition to this, it is recognised that the 
adjoint loads of the constraints on lower and upper bounds 
only differ by a sign (and are thus linearly-dependent), one 
still has to solve 20 systems of equations. The results of the 
foregoing problem analysis are summarised in Table 4, aid-
ing in the detection of linear dependency between loads and 
calculation of states.

Although manually finding all linear dependencies and 
their corresponding coefficients is achievable and yields 
significant savings, it is time-consuming, cumbersome, 

(24)
�gin

j,j
[�]

��j
=

1

uin
�j,

(25)
�gct

i,j
[�]

��j
= ±

1

uct
�j = ±

1

uct
�j,

(26)
�gt

i,j
[�]

��j
= ±

(

Jk

ut
�i −

1

ut
�j

)

,

and error-prone. Moreover, it does not readily permit 
implementation in commercial software. In the follow-
ing, we demonstrate how an LDAS, such as Algorithm 2 
provides the same result in an automated manner with neg-
ligible computational overhead.

5.3  Verification by run‑time experiment

The following discusses a run-time measurement com-
parison between the LDAS and manual implementations 
considering LDAP pair and MLD detection. This com-
parison is based on the design problem as proposed and 
analysed in Sects. 5.1 and 5.2. We aim to measure the 
run-time of a single design iteration using an automatic 
LDAS for solving the linear systems involved in a single 
design iteration of the problem proposed in Sect. 5.1, and 
compare this to the run-time required for manual imple-
mentations. In addition, we also focus on the attained per-
formance improvements across a range of discretisations, 
indicated by the number of DOFs n, for a single design 
iteration. Assuming the physical and adjoint loads do not 
alter during the optimization process, the linear dependen-
cies remain constant throughout the optimization process. 
Therefore, the computational effort of a complete optimi-
zation process simply scales with the number of design 
iterations. All presented run times are normalised to the 
implementation without exploiting linear dependencies. 
From the previous problem analysis, we found the number 
of solves required for each method: 40 for no detection, 34 
considering LDAP, and 8 when including MLD, already 
hinting at potential performance improvements.

In order to consider the influence of different types 
of solution methods, we define the ratio �  as the ratio 
between the computational effort a solution method 
requires for preprocessing and the effort required for a 
solve. To capture a wide range of solution methods, we 
opt to compare two extremes:

• A high-� solution method with predominant effort in the 
preprocessing; we opt here for a direct method, such as a 
Cholesky factorisation (Benoit 1924) with back-substi-
tution, and

• A low-� solution method with predominant effort in solv-
ing the equations. We opt here for an iterative solution 
process, such as Incomplete Cholesky preconditioning 
with Conjugate Gradient (Saad 2003).

The presented experiments consider a moderate number of 
DOFs: small enough to highlight the change in performance 
as the number of DOFs is increased while large enough to 
ensure the computational effort and run-time are dominated 
by preprocessing and solving. These aspects are therefore 



Efficient computation of states and sensitivities for compound structural optimisation…

1 3

Page 11 of 14 273

Table 4  Result of the problem 
analysis (Sect. 5.2); relation 
between loads and DOF of 
interest. The horizontal axis 
states the eight DOFs of 
interest, and the vertical axis 
the physical and adjoint loads, 
respectively

Loads 1 2 3 4 5 6 7 8

�1 1
�3 1
�5 1
�7 1
�6 1
�8 1
�f

��1

1
�f

��3

1
�f

��5

1
�f

��7

1

�gin
6,6

��6

1

uin

�gin
8,8

��8

1

uin

�gct
1,6

��6

1

uct

�gct
1,6

��6

−
1

uct

�gct
2,6

��6

1

uct

�gct
2,6

��6

−
1

uct

⋮

�gct
8,6

��6

1

uct

�gct
8,6

��6

−
1

uct

�gct
1,8

��8

1

uct

�gct
1,8

��8

−
1

uct

�gct
3,8

��8

1

uct

�gct
3,8

��8

−
1

uct

⋮

�gct
7,8

��8

1

uct

�gct
7,8

��8

−
1

uct

�gt
4,6

��6

J4,6

ut
−

1

ut

�gt
4,6

��6

−
J4,6

ut

1

ut

�gt
2,8

��8

J2,8

ut
−

1

ut

�gt
2,8

��8

−
J2,8

ut

1

ut
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emphasised in the following analysis, and other compu-
tational overhead is assumed negligible4. In all cases, we 
reused the preprocessing information (factorisation/precon-
ditioner) when possible. The results of this run-time experi-
ment are shown in Fig. 4. The figures show the normalised 
run-time t̂ , i.e. normalised to the run-time required without 
any linear dependency detection, of the solves required for 
a single design iteration, both for high and low-� methods.

For high-� solution methods, the gains for LDAS and 
MLD converge towards each other, indicating the rela-
tive overhead of the LDAS decreases with problem size. It 
should be noted that the ideal normalised run-time t̂ = 0.2 is 
not achieved for high-� methods since the chosen preproc-
essing is relatively expensive (or vice versa, the solve is rela-
tively cheap), thereby limiting the possible gains in run-time 
in this situation to t̂ = 0.4 . Clearly, the maximum achievable 
gain is higher for low-� solution methods (the difference is 
fully defined by the difference in � ). Counting the number 
of linearly-independent solves of the different schemes gives 
an accurate estimate of relative computational efficiency. 
For the presented example, an 80% reduction may indeed 
be expected using an LDAS with a low-� solution method.

Regardless of the solution method, taking into account 
only LDAP pairs is not computationally efficient compared 
to using an LDAS for this problem. For both high-� and low-
� solution methods, the overhead of the LDAS is negligible 
for problems of moderate to large size.

6  Conclusions

The computational effort required to solve a gradient-
based structural optimisation problem in a nested analysis 
and design setting is typically dominated by finding solu-
tions to state equations. However, in real-world optimi-
sation problems—that are typically compound, i.e. they 
consider multiple combinations of physical loading con-
ditions and a wide variety of response functions—many 
avoidable linear system solves are executed regardless. 
This paper proposes the use of linear dependency aware 
solvers, complementary to methods aiming to reduce the 
total number of design iterations, or the cost per solve, by 
effectively reducing the number of solves per design itera-
tion without compromising accuracy of the solution. The 
proposed concept leverages the linearity of the systems of 
equations—a trait present in many commonly considered 
topology optimisation problems—to automatically omit 
expensive solves if the solutions can be expressed as a 
linear combination of previously evaluated solutions for a 
given design iteration.

We proposed one such algorithm that is simple, as 
illustrated by the provided supplementary Python and 
MATLAB implementations of Algorithm  2, and can 
be integrated non-intrusively into existing optimisation 
software. Although the potential benefits of the pro-
posed method hinge on the presence of linear dependen-
cies of the problem at hand, it has been illustrated that 
the accompanying overhead is negligible, allowing the 
method to be applied freely and achieving significant 
performance improvements when linear dependencies 
are abundant. Additionally, the concept does not restrict 
other methods to reduce the computational time per solve, 
such as parallel computing, approximation techniques, or 

Fig. 4  Normalised run-time t̂  versus number of DOFs n of three 
implementations: LDAP ( ∙ ), MLD ( ∙ ) and LDAS ( ▴ ). Herein LDAP 
and MLD are implementations that manually detect linear dependen-
cies. The LDAP implementation detects only adjoint-physical load 
pairs, whereas the MLD implementation detects all linear depend-
encies. The LDAS implementation uses automatic detection, with 
a slight overhead to the manual MLD implementation. The figures 

include both a high-� and low-� solution method to solve the system 
of equations related to the numerical example presented in Sect.  5. 
For each of the six data points, the measurements are averaged over 
respectively 1000, 250, 64, 16, 4 and 1 repeated experiments on a 
high performance computing cluster to obtain a stable time measure-
ment

4 Although very little computational overhead is present in the man-
ual approaches, the required problem analysis (Sect. 5.2) is time-con-
suming and error-prone.
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model order reduction, which allows the user to focus 
on the design problem formulation and avoids laborious 
manual linearly dependency analysis altogether.

7  Supplementary information

This article is supplemented with numerical implementa-
tions, i.e. a MATLAB and Python implementation of Algo-
rithm 1 and Algorithm 2, as well as media files related to the 
prototype model from Fig. 3c.
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