
MATHEMATICS OF COMPUTATION
Volume 71, Number 239, Pages 1189–1204
S 0025-5718(01)01368-0
Article electronically published on November 20, 2001

EFFICIENT COMPUTATION OF THE EXTREME SOLUTIONS
OF X +A∗X−1A = Q AND X −A∗X−1A = Q

BEATRICE MEINI

Abstract. We propose a new quadratically convergent algorithm, having a
low computational cost per step and good numerical stability properties, which
allows the simultaneous approximation of the extreme solutions of the matrix
equations X +A∗X−1A = Q and X −A∗X−1A = Q. The algorithm is based
on the cyclic reduction method.

1. Introduction

In this paper we are concerned with the design and analysis of a quadratically
convergent algorithm for computing the extremal solutions of the matrix equations

X +A∗X−1A = Q(1.1)

and

X −A∗X−1A = Q,(1.2)

where Q is an m×m Hermitian positive definite matrix, A is an m×m matrix, and
A∗ denotes the conjugate transpose of A. An algorithm is quadratically convergent
(or, equivalently, has a double exponential convergence) if it generates a sequence
{Xn}n of approximations to the solution X such that ||X − Xn|| ≤ γσ2n , for
positive constants σ < 1 and γ, where || · || denotes any matrix norm; if the bound
||X −Xn|| ≤ γσn holds, then we say that the convergence is linear.

In [10] it is shown that, if (1.1) has a positive definite solution X , then there
exist minimal and maximal solutions X− and X+, respectively, such that 0 < X− ≤
X ≤ X+ for any positive definite solution X . Here and hereafter, if X and Y are
Hermitian matrices, X ≤ Y (X < Y ) means that Y − X is positive semidefinite
(definite).

Concerning equation (1.2), in [11] it is proved that there always exists a unique
positive definite solution X+, which is the maximal one, and, if A is nonsingular,
there exists a unique negative definite solution X−, which is the minimal one. Here
maximal and minimal must be intended according to the ordering for Hermitian
matrices that we have introduced above.

We will refer to X− and X+ as the extreme solutions of (1.1), or of (1.2).
Equations (1.1) and (1.2) arise in a wide variety of research areas, which include

control theory, ladder networks, dynamic programming, stochastic filtering and
statistics (see [2, 28] for a list of references concerning (1.1), and [11] for references
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about equation (1.2)). Recently, theoretical properties of the extreme solutions and
numerical methods for their computation have been investigated by several authors
(see the papers [15, 14, 11, 28, 29, 9, 10, 2]). The available numerical methods are
mainly based on fixed point iterations, or on applications of Newton’s algorithm.

In the recent paper [15] the authors analyze convergence properties of fixed point
iterations and of Newton’s method for computing the maximal solutions of (1.1)
and (1.2). They show that the rate of convergence of those algorithms is related to
the spectral radius ρ(X−1

+ A) of the matrix X−1
+ A. The convergence of fixed point

iterations is linear when ρ(X−1
+ A) < 1. However, if ρ(X−1

+ A) is close to 1, the
convergence may be very slow and it is more efficient to apply Newton’s method,
which has a double exponential convergence. On the other hand, the drawback of
the application of Newton’s method is the large computational cost per iteration;
in fact, at each step the solution X of the matrix equation X + BXC = D, where
X , B, C, D are m×m matrices, must be computed.

In this paper we devise a new algorithm that provides the simultaneous approx-
imation of the extreme solutions of (1.1), or of (1.2). The algorithm has a double
exponential convergence, like Newton’s method, and a low computational cost for
each step, like fixed point iterations. Moreover, it shows good numerical stability
properties.

The idea on which this algorithm is based arises from the closeness of equations
(1.1) and (1.2) to certain problems related to Markov chains. Indeed, a similar
(even though more complicated) matrix equation is encountered in the numerical
solution of Markov chains described by Quasi Birth and Death processes (see [23]),
where the fundamental problem is the computation of the minimal nonnegative
solution G of

G = A0 +A1G+A2G
2,(1.3)

with A0, A1, A2 nonnegative matrices such that A0 + A1 + A2 is stochastic (i.e.,
(A0 +A1 +A2)e = e and e is the vector having all the entries equal to one). Here,
minimal means that any other solution is component-wise larger than the minimal
one. The matrix G is related to the minimal nonnegative solution U of the matrix
equation

I − U +A2(I − U)−1A0 = I −A1;(1.4)

in fact, G = (I − U)−1A0 (see [16, 18]). In the field of Markov chains, several
algorithms have been developed for the numerical solution of (1.3) (see [17, 19,
5, 6, 1, 20]). One of the most efficient methods, based on cyclic reduction [13],
is proposed in [5, 6] and consists in generating a sequence of nonlinear matrix
equations of the form (1.3), such that the matrix coefficients quadratically converge
to the coefficients of a linear equation that can be explicitly solved. The procedure
provides the desired solution G and the corresponding matrix U .

In this paper we show that the cyclic reduction algorithm can be efficiently
applied for solving also the matrix equations (1.1) and (1.2). We observe that the
matrix X−1

+ A solves a quadratic matrix equation of the form (1.3) and, according
to the ideas developed in [5, 6], we rewrite the matrix equation in terms of an
infinite block tridiagonal block Toeplitz system. By applying the cyclic reduction
algorithm to this system, we generate a sequence of infinite block tridiagonal block
systems, which are block Toeplitz except for the block entry in position (1, 1). Due
to the nice spectral properties of X−1

+ A, we show that the sequence of matrices
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EFFICIENT COMPUTATION OF THE EXTREME SOLUTION 1191

defining the infinite systems quadratically converges to a block diagonal matrix,
and the first block diagonal entry of these matrices quadratically converges to X+.
More precisely, if we denote by Xn the block entry in position (1, 1) of the infinite
matrix obtained at the n-th step of cyclic reduction, we prove that for equation
(1.1), in the case where ρ(X−1

+ A) < 1 we have ||I − XnX
−1
+ || = O((σ + ε)2·2n)

for any ε > 0 and for any matrix norm || · ||, where σ = ρ(X−1
+ A). For equation

(1.2), it always holds that ρ(X−1
+ A) < 1; thus the double exponential convergence

is always guaranteed. If A is nonsingular, the algorithm provides the simultaneous
approximation of X−, for both equations. Each step of the algorithm only requires
the solution of two linear systems and the computation of three matrix products;
moreover, the conditioning of the matrices defining the linear systems is bounded
from above by a constant.

The performed experiments show that our algorithm is much faster than the
existing ones in many cases.

The paper is organized as follows. In Section 2 we recall theoretical results about
the existence and properties of the solutions. In Sections 3 and 4 we present the
new algorithm and perform some comparisons with the known ones for the solution
of (1.1) and (1.2), respectively. In Section 5 we report some numerical results.

2. Solutions of the matrix equations

X +A∗X−1A = Q and X −A∗X−1A = Q

In this section we recall conditions about the existence of the extreme solutions
of (1.1) and (1.2), and some spectral properties of the matrix X−1

+ A, which will be
used in the subsequent sections to show the convergence of our algorithm.

2.1. The equation X + A∗X−1A = Q. Necessary and sufficient conditions for
the existence of a positive definite solution of (1.1) are provided in [10]. More
specifically, let us introduce the rational matrix function

ψ(λ) = λA+Q + λ−1A∗,(2.1)

defined on the unit circle C of the complex plane, which is Hermitian for any
λ ∈ C. This function is said to be regular if there exists at least a λ ∈ C such that
detψ(λ) 6= 0.

The following fundamental results hold [10]:

Theorem 2.1. Equation (1.1) has a positive definite solution X if and only if
ψ(λ) is regular and ψ(λ) ≥ 0 for all λ ∈ C. Moreover, if equation (1.1) has a
positive definite solution, then it has a maximal and minimal solution X+ and X−,
respectively.

Theorem 2.2. Suppose that A is nonsingular. Then X solves

X +A∗X−1A = I(2.2)

if and only if Y = I −X solves

Y +AY −1A∗ = I.(2.3)

In particular, if Y+ is the maximal solution of (2.3), then X− = I − Y+ is the
minimal solution of (2.2).
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The latter theorem can be easily generalized to the matrix equation (1.1) by
multiplying (2.2) and (2.3) on the right and on the left by Q1/2. Thus, if A is
nonsingular, the minimal solution of (1.1) is X− = Q−Y+, where Y+ is the maximal
solution of the equation

Y +AY −1A∗ = Q.(2.4)

Let r(T ) be the numerical radius of an m×m matrix T , defined as

r(T ) = max{|x∗Tx| : x ∈ Cm, x∗x = 1}.

Concerning the spectral properties of X−1
+ A, it is proved in [28] that ρ(X−1

+ A) ≤
1. In [15] the authors characterize the eigenvalues of X−1

+ A and give necessary and
sufficient conditions so that ρ(X−1

+ A) < 1:

Theorem 2.3. The eigenvalues of X−1
+ A are precisely the eigenvalues of the ma-

trix pencil λF −H, inside the closed unit disk, with half of the partial multiplicities
for each eigenvalue on the unit circle, where

F =

 I 0 0
0 0 0
0 −I 0

 , H =

 0 0 −I
Q −I A∗

−A 0 0

 .
From the above theorem it follows that the eigenvalues of X−1

+ A are the zeros
in the closed unit disk of the polynomial det(−A+ λQ− λ2A∗).

Theorem 2.4. It holds that ρ(X−1
+ A) < 1 if and only if r(Q−1/2AQ−1/2) < 1/2.

Moreover, in [10] the following necessary and sufficient condition is given:

Theorem 2.5. It holds that ψ(λ) > 0 for all λ ∈ C if and only if r(Q−1/2AQ−1/2)
< 1/2.

From the above theorems it follows that X−1
+ A has spectral radius strictly less

than one if and only if ψ(λ) is positive definite on the unit circle.

2.2. The equation X − A∗X−1A = Q. Concerning equation (1.2), in [11] the
authors prove the following interesting results:

Theorem 2.6. The rational matrix function

ψ(λ) = λA+Q− λ−1A∗(2.5)

is nonsingular for any λ ∈ C.

Theorem 2.7. The set of solutions of (1.2) is nonempty, and admits a maximal
element X+ and a minimal element X−. X+ is the unique positive definite solution,
and if A is nonsingular, X− is the unique negative definite solution. Moreover, if
A is nonsingular, X− = Q− Y+, where Y+ is the maximal solution of the equation

Y −AY −1A∗ = Q.(2.6)

Concerning the matrix X−1
+ A, in [11] it is proved that its spectral radius is

strictly less than one, and in [15] the following characterization of the eigenvalues
is given:
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Theorem 2.8. The eigenvalues of X−1
+ A are precisely the eigenvalues of the ma-

trix pencil λF −H inside the unit disk, where

F =

 I 0 0
0 0 0
0 −I 0

 , H =

 0 0 −I
Q −I −A∗
−A 0 0

 .
3. Computation of the extreme solutions of X +A∗X−1A = Q

In this section we describe the new algorithm for the computation of the extreme
solutions of (1.1) and compare it with the known methods.

Throughout this section we suppose that ψ(λ) is regular and positive semidefinite
for any λ ∈ C, where ψ(λ) is given in (2.1), so that the conditions of Theorem 2.1
are satisfied.

Let X be a solution of (1.1). Then, by multiplying on the right both sides of
(1.1) by X−1, we find that

−I +QX−1 −A∗X−1AX−1 = 0.(3.1)

Thus, the matrix G = X−1A solves the quadratic matrix equation

−A+QG−A∗G2 = 0.(3.2)

In addition, if Y is a solution of the matrix equation (2.4), then we have

−I +QY −1 −AY −1A∗Y −1 = 0,(3.3)

and thus H = Y −1A∗ solves the quadratic matrix equation

−A∗ +QH −AH2 = 0.(3.4)

In particular, if X+ is the maximal solution of (1.1) and Y+ is the maximal
solution of (2.4), then the matrix equations (3.2), (3.4) have a solutionG+ = X−1

+ A,
H+ = Y −1

+ A∗, respectively, with spectral radius at most 1. Moreover, for Theorem
2.3, the eigenvalues of G+ and H+ are

λ(G+) = {λ : g(λ) = 0, |λ| ≤ 1}
and

λ(H+) = {λ : h(λ) = 0, |λ| ≤ 1},
respectively, where g(λ) = det(−A + Qλ − A∗λ2), h(λ) = det(−A∗ + Qλ − Aλ2).
Since g(λ) = 0 if and only if g(λ)∗ = 0, and since

g(λ)∗ = det(−A∗ +Qλ̄−Aλ̄2) = h(λ̄),

we conclude that λ is an eigenvalue of G+ if and only if λ̄ is an eigenvalue of H+.
In particular it holds that ρ(G+) = ρ(H+).

The nice relation between the matrix equations (1.1), (2.4) and the quadratic
matrix equations (3.2), (3.4), and the spectral properties of the solutions of the
latter equations allow us to derive a fast algorithm for the simultaneous computation
of X+ and Y+.

If A is nonsingular, the matrix Y+ enables us to recover the minimal solution
X− of (1.1) by means of the relation X− = Q− Y+.

The matrices X+ and Y+ can be simultaneously and efficiently computed by
rewriting the matrix equations (3.1), (3.2), (3.3), (3.4) in terms of infinite linear
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systems, and by applying the cyclic reduction algorithm, according to the ideas
developed in [5, 6, 7]. In fact, we observe that the following equations are satisfied:

Q −A∗ 0
−A Q −A∗

−A Q
. . .

0
. . . . . .




I
G+

G2
+
...

X−1
+ =


I
0
0
...

 ,(3.5)


Q −A 0
−A∗ Q −A

−A∗ Q
. . .

0
. . . . . .




I
H+

H2
+
...

 Y −1
+ =


I
0
0
...

 .(3.6)

By following the strategy successfully devised in [5, 6, 7] for solving nonlinear
matrix equations arising in Markov chains, we apply the cyclic reduction algorithm
to the above systems. This consists in performing an even-odd permutation of
the block rows and columns, followed by one step of Gaussian elimination, thus
generating the sequence of systems:

Xn −A∗n 0
−An Qn −A∗n

−An Qn
. . .

0
. . . . . .




I
G2n

+

G2·2n
+
...

X−1
+ =


I
0
0
...

 ,


Yn −An 0
−A∗n Qn −An

−A∗n Qn
. . .

0
. . . . . .




I
H2n

+

H2·2n
+
...

Y −1
+ =


I
0
0
...

 , n ≥ 0.

(3.7)

The block entries of each system are defined by the following recursions:

A0 = A, Q0 = X0 = Y0 = Q,

An+1 = AnQ
−1
n An,

Qn+1 = Qn −AnQ−1
n A∗n −A∗nQ−1

n An,

Xn+1 = Xn −A∗nQ−1
n An,

Yn+1 = Yn −AnQ−1
n A∗n, n ≥ 0.

(3.8)

Observe that the matrices Qn, Xn and Yn are Hermitian, and thus the two block
tridiagonal matrices in (3.7) are Hermitian.

The spectral theory of Hermitian block Toeplitz matrices [8, 24, 25, 22, 21, 27]
guarantees the positive definitiveness, and thus the nonsingularity, of the blocks
Qn. To prove this, let us introduce the function f : (−π, π) → Hm, defined as
f(θ) = −eiθA+ Q− e−iθA∗, where i is the imaginary unit, and Hm is the set of
m×m Hermitian matrices. Let us denote by

µ1 = inf
θ∈(−π,π)

λmin(f(θ)),

µ2 = sup
θ∈(−π,π)

λmax(f(θ)),
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where λmin(f(θ)) (resp. λmax(f(θ))) is the smallest (resp. largest) eigenvalue of
f(θ).

Since ψ(λ) ≥ 0 for any λ ∈ C, it holds that f(θ) ≥ 0 and µ1 ≥ 0. Moreover,
since ψ(λ) is regular and f(θ) is a trigonometric matrix polynomial, then f(θ) is
positive definite for any θ in the interval (−π, π) except at most a finite number of
points.

From these properties, the following result, which guarantees the applicability of
the cyclic reduction algorithm and the boundness in norm of the sequence {Qn}n,
{Xn}n and {Yn}n, can be proved:

Theorem 3.1. The matrices Qn, Xn, Yn, n ≥ 0, are positive definite, and their
eigenvalues belong to the interval [µ1, µ2]. Moreover, it holds that 0 < Qn+1 ≤ Qn,
0 < Xn+1 ≤ Xn, 0 < Yn+1 ≤ Yn, for n ≥ 0.

Proof. For the properties of cyclic reduction [7, 4, 3], the matrices Qn can be viewed
as a Schur complement in T2n+1−1, where Tn is the n × n block matrix obtained
by truncating the matrix in (3.5) at the block size n; similarly Xn and Yn can
be viewed as Schur complements in T2n and U2n , respectively, where Un is the
n× n block matrix obtained by truncating the matrix in (3.6) at the block size n.
On the other hand, since Tn and Un are Hermitian block Toeplitz matrices, their
eigenvalues belong to the interval [µ1, µ2] (see [8, 24, 25, 22, 21, 27]); moreover,
since the set where f(θ) is positive definite has strictly positive Lebesgue measure,
the matrices Tn and Un are positive definite for any n [8, 24, 25, 22, 21, 27]. In
particular the Schur complements Qn, Xn, Yn are also positive definite and their
eigenvalues belong to the interval [µ1, µ2] (see [26]). From (3.8) it follows that the
sequences {Qn}n, {Xn}n and {Yn}n are monotone.

If ψ(λ) > 0 for any λ ∈ C, then µ1 > 0; thus {Q−1
n }n is bounded in norm, and

the condition number of the matrices {Qn}n is bounded. In this case the sequences
{Xn}n and {Yn}n quadratically converge to X+ and Y+, respectively:

Theorem 3.2. If ψ(λ) > 0 for any λ ∈ C, then for any ε > 0 and for any matrix
norm || · || it holds that

||I −XnX
−1
+ || = O

(
(σ + ε)2·2n

)
, ||I − YnY −1

+ || = O
(

(σ + ε)2·2n
)
,

where σ = ρ(X−1
+ A) < 1. Moreover, it holds that ||An|| = O

(
(σ + ε)2n

)
.

Proof. From (3.7) we obtain that, for any n, the following relations hold:

−I +XnX
−1
+ −A∗nG2n

+ X−1
+ = 0,(3.9)

−An +QnG
2n

+ −A∗nG2·2n
+ = 0,(3.10)

−I + YnY
−1

+ −AnH2n

+ Y −1
+ = 0,(3.11)

−A∗n +QnH
2n

+ −AnH2·2n
+ = 0.(3.12)

From (3.10) and (3.12) we have

An(I −H2·2n
+ G2·2n

+ ) = Qn(I −H2n

+ G2n

+ )G2n

+ .(3.13)

Since ρ(G+) = ρ(H+) = σ < 1 for Theorems 2.4 and 2.5, for any ε > 0 there exists
a matrix norm || · || such that ||G+|| ≤ σ+ε. Thus, since {Qn}n is bounded in norm,
from (3.13) it follows that ||An|| = O

(
(σ + ε)2n

)
. From (3.9) and (3.11) we obtain
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1196 BEATRICE MEINI

that ||I − XnX
−1
+ || = O

(
(σ + ε)2·2n). Similarly, we prove that ||I − YnY −1

+ || =
O
(
(σ + ε)2·2n).
The algorithm for the computation of X+ and X− is synthesized by the following

scheme:

Algorithm 3.1 (Cyclic reduction for (1.1)).

1: Set X0 = Y0 = Q0 = Q, A0 = A.
2: For n = 0, 1, . . . compute

An+1 = AnQ
−1
n An,

Qn+1 = Qn −AnQ−1
n A∗n −A∗nQ−1

n An,

Xn+1 = Xn −A∗nQ−1
n An,

Yn+1 = Yn −AnQ−1
n A∗n,

until ||Xn+1 −Xn||∞ < ε, ||Yn+1 − Yn||∞ < ε, for a fixed error bound ε > 0.
3: Xn+1 provides an approximation to X+, and, if A is nonsingular, Q− Yn+1

provides an approximation to X−.

If we are interested only in the computation of the maximal solution X+ it is
sufficient to skip the computation of the sequence {Yn}n.

One step of the above algorithm requires the solution of two Hermitian linear
systems (i.e., the computation of AnQ−1

n and A∗nQ
−1
n ), with bounded condition

number, and the computation of three matrix products.
If the hypothesis of Theorem 3.2 is not satisfied, then ρ(X−1

+ A) = 1. In this case
{Xn}n, {Yn}n, {Qn}n are still Hermitian positive definite and bounded in norm. In
general, the sequence {Q−1

n }n may be unbounded. However, if the sequence {An}n
converges to zero and the sequence {(X−1

+ A)2n}n is bounded, the sequence {Xn}n
still converges to X+.

Our algorithm can be compared with classical algorithms, which are based on
fixed point iterations or Newton’s method. The basic fixed point iteration consists
in the following:

Algorithm 3.2 (Fixed point iteration for (1.1)).

1: Set X0 = Q.
2: For n = 0, 1, 2, . . . , compute Xn+1 = Q−A∗X−1

n A until ||Xn+1−Xn||∞ < ε.
3: Xn+1 provides an approximation to X+.

In [15] it is proved that {Xn}n converges to X+ with lim supn→∞
n
√
||Xn −X+||

≤ ρ(X−1
+ A)2. Thus the sequence generated by Algorithm 3.2 converges linearly

when ρ(X−1
+ A) < 1. Each step of the above algorithm requires the solution of a

Hermitian linear system and a matrix product; hence the cost of the cyclic reduction
algorithm is roughly twice that of the fixed point iteration. On the other hand, if
we wish to compute also the minimal solution X− with fixed point iterations, we
must apply from scratch the algorithm to the matrix equation (2.4), or apply an
“ad hoc” fixed point iteration described in [10]; thus the computational cost per
step is the same as cyclic reduction.

To avoid possible numerical instability problems due to matrix inversions, the
following inversion free variant is proposed in [15]:
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Algorithm 3.3 (Inversion free fixed point iteration for (1.1)).

1: Set X0 = Q, Y0 = I/||Q||∞.
2: For n = 0, 1, 2, . . . , compute

Yn+1 = Yn(2I −XnYn),
Xn+1 = Q−A∗Yn+1A,

until ||Xn+1 −Xn||∞ < ε.
3: Xn+1 provides an approximation to X+.

The latter algorithm requires four matrix products at each step; in [15] it is
shown that its convergence rate is roughly the same as that of Algorithm 3.2.

Finally, Newton’s method consists in the following:

Algorithm 3.4 (Newton’s method for (1.1)).

1: Set X0 = Q.
2: For n = 1, 2, . . . , compute Ln = X−1

n−1A and solve

Xn − L∗nXnLn = Q− 2L∗nA,(3.14)

until ||Xn −Xn−1||∞ < ε.
3: Xn provides an approximation to X+.

Each step of Newton’s method requires the solution of the Hermitian system
Xn−1Ln = A, one matrix product and the solution of the Stein equation (3.14);
thus the computational cost of each step is much larger than the cost of fixed point
iterations and cyclic reduction. If equation (3.14) is solved with the algorithm
described in [12], the computational time for each iteration is roughly 10–15 times
that for Algorithm 3.2 (see [15]). Moreover, if X−1

+ A has eigenvalues very close to
the unit circle, equation (3.14) can be nearly singular [15]. In [15] it is proved that
the convergence of {Xn}n to X+ is quadratic if ρ(X−1

+ A) < 1, either quadratic or
linear with rate 1/2 if ρ(X−1

+ A) = 1 and all the eigenvalues of X−1
+ A on the unit

circle are semi-simple.
Hence Newton’s method presents the same nice features of cyclic reduction in

terms of convergence, but it is much more expensive in terms of computational cost,
and more difficult to be implemented.

4. Computation of the extreme solutions of X −A∗X−1A = Q

For the computation of the maximal and minimal solutions X+ and X−, respec-
tively, of X − A∗X−1A = Q we can apply a technique similar to the one used in
the previous section. Specifically, we introduce the maximal solution Y+ of (2.6),
and observe that the following hold:

−I +QX−1
+ +A∗X−1

+ AX−1
+ = 0,

−I +QY −1
+ +AY −1

+ A∗Y −1
+ = 0.
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Thus, by setting G+ = X−1
+ A and H+ = Y −1

+ A∗, the following linear systems are
verified: 

Q A∗ 0
−A Q A∗

−A Q
. . .

0
. . . . . .




I
G+

G2
+
...

X−1
+ =


I
0
0
...

 ,


Q A 0
−A∗ Q A

−A∗ Q
. . .

0
. . . . . .




I
H+

H2
+
...

Y −1
+ =


I
0
0
...

 .
(4.1)

The infinite matrices in the above systems are block Toeplitz, but are not Hermitian.
However, if we apply one step of cyclic reduction, we obtain the following systems:

X1 −A∗1 0
−A1 Q1 −A∗1

−A1 Q1
. . .

0
. . . . . .




I
G2

+

G4
+
...

X−1
+ =


I
0
0
...

 ,


Y1 −A1 0
−A∗1 Q1 −A1

−A∗1 Q1
. . .

0
. . . . . .




I
H2

+

H4
+
...

Y −1
+ =


I
0
0
...

 ,
(4.2)

where

A1 = AQ−1A,
Q1 = Q+AQ−1A∗ +A∗Q−1A,
X1 = Q+A∗Q−1A, Y1 = Q+AQ−1A∗.

(4.3)

Thus, after one step of cyclic reduction, we obtain two systems with Hermitian
matrices, with the structure of (3.7), where the diagonal blocks are positive definite
matrices. Hence, one step of cyclic reduction leads to a Hermitian system, as in the
case of equation (1.1). Moreover, observe that the function

ψ1(λ) = λA1 +Q1 + λ−1A∗1

is such that ψ1(λ) > 0 for any λ ∈ C, since ψ1(λ) = Q+ (A+ λ̄A∗)Q−1(A∗ + λA).
If we apply cyclic reduction to systems (4.2), we generate the sequence (3.7), for
n ≥ 1, where

An+1 = AnQ
−1
n An,

Qn+1 = Qn −AnQ−1
n A∗n −A∗nQ−1

n An,
Xn+1 = Xn −A∗nQ−1

n An,
Yn+1 = Yn −AnQ−1

n A∗n, n ≥ 1,

(4.4)

and A1, Q1, X1 and Y1 are defined in (4.3).
Without any assumption, the following convergence result can be proved:
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Theorem 4.1. For the sequences of matrices {Xn}n, {Yn}n, {Qn}n, defined in
(4.4), the following hold:

1. 0 < Xn+1 ≤ Xn, 0 < Yn+1 ≤ Yn, 0 < Qn+1 ≤ Qn, n = 1, 2, . . . ;
2. {Qn}n and {Q−1

n }n are bounded in norm.
Moreover, for any ε > 0 and for any matrix norm || · || it holds that

||I −XnX
−1
+ || = O

(
(σ + ε)2·2n

)
,

||I − YnY −1
+ || = O

(
(σ + ε)2·2n

)
,

||An|| = O
(

(σ + ε)2n
)
,

where σ = ρ(X−1
+ A) < 1.

Proof. The matrices Qn and An, n ≥ 2, can be seen as the matrices generated
by relations (3.8), starting from Q1 and A1 defined in (4.3). Since ψ1(λ) > 0 for
any λ ∈ C, from Theorem 3.1 it follows that Qn is positive definite for any n,
and both sequences {Qn}n and {Q−1

n }n are bounded in norm; the monotonicity of
{Qn}n trivially holds. The convergence properties of the sequences {Xn}n, {Yn}n
and {An}n follow exactly as in the proof of Theorem 3.2. Since by construction
Xn ≥ Xn+1 (resp. Yn ≥ Yn+1) for any n ≥ 1, and since {Xn}n (resp. {Yn}n)
converges to X+ (resp. Y+), it follows that Xn > 0 (resp. Yn > 0) for any n.

From the above theorem, the quadratic convergence is always guaranteed, and
the condition number of Qn is always bounded.

If A is nonsingular, the matrix X− can be recovered from Y+ by means of the
relation X− = Q− Y+ (see [11]).

The resulting algorithm is resumed below:

Algorithm 4.1 (Cyclic reduction for (1.2)).
1: Set

A1 = AQ−1A, Q1 = Q+AQ−1A∗ +A∗Q−1A,

X1 = Q+A∗Q−1A, Y1 = Q+AQ−1A∗.

2: For n = 1, 2, . . . compute

An+1 = AnQ
−1
n An,

Qn+1 = Qn −AnQ−1
n A∗n −A∗nQ−1

n An,

Xn+1 = Xn −A∗nQ−1
n An,

Yn+1 = Yn −AnQ−1
n A∗n,

until ||Xn+1 −Xn|| < ε, ||Yn+1 − Yn|| < ε.
3: Xn+1 provides an approximation to X+, and, if A is nonsingular, Q− Yn+1

provides an approximation to X−.

If we are interested only in X+, it is sufficient to skip the computation of the
sequence {Yn}n.

The above algorithm has the same nice features as Algorithm 3.1, in terms of
computational cost and convergence properties.

We may compare our algorithm with the ones customarily used in the literature,
which we recall below:
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Algorithm 4.2 (Fixed point iteration for (1.2)).
1: Set X0 = Q.
2: For n = 0, 1, 2, . . . , compute Xn+1 = Q+A∗X−1

n A, until ||Xn+1−Xn||∞ < ε.
3: Xn+1 provides an approximation to X+.

Algorithm 4.3 (Newton’s method for (1.2)).
1: Set X0 sufficiently close to X+.
2: For n = 1, 2, . . . , compute Ln = X−1

n−1A and solve

Xn + L∗nXnLn = Q+ 2L∗nA,(4.5)

3: Xn provides an approximation to X+.

The above algorithms present the same characteristics as Algorithms 3.2 and
3.4, in terms of computational cost and convergence rate. Concerning Newton’s
method, the initial guess X0 must be chosen close to the solution X+ in order to
guarantee the convergence [15]; in practice, the starting point X0 is chosen as the
approximation provided after a few steps of fixed point iterations (Algorithm 4.2).

The cyclic reduction algorithm has guaranteed quadratic convergence, low com-
putational cost per iteration, and good numerical stability properties; moreover,
unlike Newton’s method, it does not need an initial guess X0 sufficiently close to
the solution X+.

5. Numerical results

Concerning (1.1), we have compared the proposed Algorithm 3.1 with the fixed
point iterations (Algorithms 3.2 and 3.3), and with Newton’s method (Algorithm
3.4), for the computation of X+; for equation (1.2) we have compared Algorithm
4.1 with the fixed point iteration (Algorithm 4.2).

We implemented the algorithms in Fortran 90, and run the programs on a Pen-
tium II. For the solution of systems (3.14) and (4.5) we have used the Fortran
implementation of [12].

We considered the following problems:

Example 5.1. This is an example concerning (1.1), presented in [15]. The matrices
A and Q are

A =

 0.37 0.13 0.12
−0.30 0.34 0.12
0.11 −0.17 0.29

 , Q =

 1.20 −0.30 0.10
−0.30 2.10 0.20
0.10 0.20 0.65

 .
For the stopping condition of all the algorithms we have chosen ε = 10−11. To reach
the required accuracy, the cyclic reduction (Algorithm 3.1) needs 7 iterations, fixed
point iteration (Algorithm 3.2) 49 iterations, the inversion free variant (Algorithm
3.3) 52 iterations, and Newton’s method (Algorithm 3.4) 6 iterations. The CPU
time needed by all the algorithms is negligible, since it is less than 0.01 seconds.

Example 5.2. We consider again equation (1.1), with Q = I and A symmetric,
whose entries are defined by the following scheme:

1. Fix a real 0 ≤ α < 1/2.
2. For i = 1, . . . ,m:

(a) for j = i, . . . ,m, set ai,j = i2 + j;
(b) compute s1 =

∑i−1
j=1 ai,j , s2 =

∑m
j=i ai,j ;
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Table 1. Example 5.2: number of iterations and errors

CR FPI IF-FPI NM

α Iter. Err. Iter. Err. Iter. Err. Iter. Err.

m = 20

0.4 4 1.4E-15 6 1.2E-14 6 2.3E-14 3 4.0E-15
0.2 5 1.4E-15 11 2.6E-12 11 5.2E-12 4 3.7E-15
0.1 6 1.5E-15 16 2.9E-11 17 1.4E-11 5 3.9E-15
0.01 7 1.3E-15 50 1.7E-10 51 1.5E-10 6 3.1E-15
0.001 9 2.3E-15 141 6.9E-10 142 6.8E-10 8 3.2E-15
0.0001 10 5.7E-15 388 2.4E-09 389 2.4E-09 9 3.7E-15
0 26 5.3E-09 5872 5.8E-05 5873 5.9E-05 24 1.3E-08

m = 40

0.4 4 2.9E-15 6 1.2E-14 6 2.3E-14 3 6.9E-15
0.2 5 2.8E-15 11 2.6E-12 11 5.2E-12 4 6.6E-15
0.1 6 2.3E-15 16 2.9E-11 17 1.4E-11 5 5.9E-15
0.01 7 1.8E-15 50 1.7E-10 51 1.5E-10 6 5.3E-15
0.001 9 1.9E-15 141 6.8E-10 142 6.7E-10 8 5.3E-15
0.0001 10 4.5E-15 388 2.4E-09 389 2.4E-09 9 1.2E-14
0 26 5.0E-09 5822 5.8E-05 5823 5.8E-05 25 9.5E-09

m = 80

0.4 4 5.1E-15 6 1.31E-14 6 1.45E-14 5 4.3E-15
0.2 5 4.4E-15 11 2.6E-12 11 5.2E-12 4 6.6E-15
0.1 6 4.4E-15 16 2.9E-11 17 1.4E-11 5 5.9E-15
0.01 7 3.7E-15 50 1.7E-10 51 1.5E-10 6 5.3E-15
0.001 9 4.9E-15 141 6.8E-10 142 6.7E-10 8 5.3E-15
0.0001 10 5.4E-15 388 2.4E-09 389 2.4E-09 9 1.2E-14
0 26 2.2E-09 5798 5.8E-05 5799 5.8E-05 25 2.4E-09

(c) for j = i, . . . ,m, set

ai,j = ai,j
(1/2− α− s1)

s2
, aj,i = ai,j .

The matrix A obtained in this way is symmetric, nonnegative and such that
Ae = (1/2− α)e, where e is the vector having all the entries equal to 1. Thus the
spectral radius of A is 1/2− α, and r(Q−1/2AQ−1/2) = r(A) = ρ(A) = 1/2− α. If
α = 0, it holds that r(A) = 1/2 and ρ(X−1

+ A) = 1; thus, the hypothesis of Theorem
3.2 are not satisfied. Small values of α provide very critical test problems.

For this example, since Q = I and A is normal with ||A||2 ≤ 1/2, the maximal
solution is given by the matrix [29]

X+ =
1
2

(
I + (I − 4A∗A)1/2

)
.

For the stopping condition of all the tested algorithms we have chosen ε = 10−11

when α > 0, and ε = 10−8 when α = 0. In fact, in the singular case when α = 0
a smaller value of ε does not provide a significantly different relative error of the
computed approximation.

Table 1 reports, for different values of the size m and of the parameter α, the
number of iterations needed to satisfy the stopping conditions and the relative error
||X̃+ − X+||∞/||X+||∞, where X̃+ is the approximation provided by Algorithms
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Table 2. Example 5.2: CPU time

α CR FPI IF-FPI NM

m = 20

0.4 0.01 0.01 0.01 0.04
0.2 0.01 0.01 0.01 0.03
0.1 0.01 0.01 0.01 0.05
0.01 0.01 0.03 0.05 0.06
0.001 0.01 0.09 0.10 0.07
0.0001 0.01 0.25 0.25 0.09
0 0.01 3.50 3.59 0.21

m = 40

0.4 0.04 0.02 0.04 0.19
0.2 0.05 0.04 0.05 0.26
0.1 0.05 0.06 0.09 0.32
0.01 0.05 0.20 0.27 0.38
0.001 0.08 0.54 0.75 0.51
0.0001 0.08 1.45 2.03 0.57
0 0.23 20.00 30.18 1.50

m = 80

0.4 0.24 0.15 0.20 1.51
0.2 0.29 0.30 0.40 2.03
0.1 0.34 0.42 0.64 2.53
0.01 0.41 1.35 1.86 3.00
0.001 0.53 3.70 5.18 4.03
0.0001 0.61 10.38 14.14 4.64
0 1.41 143.26 208.34 11.92

3.1, 3.2, 3.3 and 3.4 (denoted by CR, FPI, IF-FPI and NM, respectively). Table 2
reports the CPU time (in seconds) needed by the same algorithms.

It is worth noting that Algorithm 3.1 shows a good convergence also in the case
α = 0, i.e., ρ(X−1

+ A) = 1, when the hypothesis of Theorem 3.2 are not satisfied.

Example 5.3. This example is taken from [15] and concerns equation (1.2). Here

A =
[

50 20
10 60

]
, Q =

[
3 2
2 4

]
.

For the stopping condition of all the algorithms we have chosen ε = 10−11. The
cyclic reduction (Algorithm 4.1) needs 9 iterations to reach the required accuracy,
while Algorithm 4.2 needs 426 iterations. The residual error of the approximation
provided by Algorithm 4.1 is 2.3 · 10−15, while residual error of the approximation
provided by Algorithm 4.2 is 9.1 · 10−11.
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Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa, Italy

E-mail address: meini@dm.unipi.it

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=93j:15018
http://www.ams.org/mathscinet-getitem?mr=97g:65074
http://www.ams.org/mathscinet-getitem?mr=97k:15036

	1. Introduction
	2. Solutions of the matrix equations[1] X+A*X-1A=Q and X-A* X-1A=Q
	2.1. The equation X+A* X-1A=Q
	2.2. The equation X-A* X-1A=Q

	3. Computation of the extreme solutions of X+A* X-1A=Q
	4. Computation of the extreme solutions of X-A* X-1A=Q
	5. Numerical results
	Acknowledgments
	References

