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Abstract The clustering coefficient of an unweighted network has been extensively used to

quantify how tightly connected a neighbor is around a node, and it has been widely adopted for

assessing the quality of nodes in a social network. The computation of the clustering coefficient

is challenging because it requires counting the number of triangles in the graph. Several recent

works have proposed efficient sampling, streaming, and MapReduce algorithms that make it

possible to overcome this computational bottleneck.

As a matter of fact, the intensity of the interaction between nodes, which is usually represented

with weights on the edges of the graph, is also an important measure of the statistical cohe-

siveness of a network. Recently, various notions of weighted clustering coefficient have been

proposed but all those techniques are hard to implement on large-scale graphs.

In this work we show how standard sampling techniques can be used to obtain efficient esti-

mators for the most commonly used measures of weighted clustering coefficient. Furthermore,

we propose a novel graph-theoretic notion of clustering coefficient in weighted networks.

1. INTRODUCTION

In recent years, we have observed a growing attention to the study of the structural

properties of social networks [15, 17] as result of the fast increase of the amount of social

network data available for research. A widely adopted measure of the graph structure of a

social network is the clustering coefficient [33]. The local clustering coefficient of a node

is defined as the probability that any two neighbors of a node are themselves neighbors.

The clustering coefficient of a graph is the average local clustering coefficient of the nodes

of the graph.

The clustering coefficient is used to measure how tightly interconnected the com-

munity is around a node. The degree of closeness of any two neighbors of a node is also

interpreted as an index of trust of the node itself. The local clustering coefficient of a node

has been proved, for example, to be a relevant feature for detecting spam nodes on the Web

[3] and high-quality users in social networks [3].

Computing the clustering coefficient of a network is a challenging computational

task because it reduces to counting the number of triangles in a graph. This task can be

naı̈vely executed in O(n3) time or it can be reduced to matrix multiplication. The problem

of computing the local clustering coefficient for every node of the network is even more

challenging. Several recent works have proposed a variety of efficient methods for fast
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computation of clustering coefficient in large-scale networks based on random sampling

[11], streaming algorithms [7, 13], and MapReduce parallel computation [29].

However, most of the studies on the structural properties of social networks have

focused on unweighted networks. In practice, many real-world networks exhibit varying

degrees of intensity and heterogeneity in the connections that are usually modeled with

positive real weights on edges. Weights on edges are used, for instance, to measure the

number of messages exchanged between friends or the number of links between hosts.

Because the statistical level of cohesiveness in a network should, in principle, depend also on

the weight of the edges, some recent interesting works have started to investigate weighted

networks [21]. Several new notions of weighted clustering coefficient have also been

introduced ([2, 23], among others), but, unfortunately, no efficient method for estimating

the weighted clustering coefficient has been presented thus far.

Computing the exact values of the weighted clustering coefficient is at least as

difficult as for the unweighted clustering coefficient. Sampling is the key for an efficient

and accurate approximation [7, 11]. In the unweighted case, the key to the design of an

unbiased estimator is the ability to draw uniformly at random a neighbor pair of a node

and reporting 1 if and only if the neighbor pair is connected. The problem of drawing a

neighbor pair can be efficiently solved in linear time if the two neighbors can be determined

independently. The sampling of the two edges of a neighbor pair cannot be independent if

the contribution to the clustering coefficient depends on the weights of the edges [2, 23],

thus leading to a superlinear sampling complexity. Nevertheless, in this paper we show that,

for several measures of weighted clustering coefficient, it is possible to obtain an efficient

linear time estimator.

Our contributions. We summarize, following, the main contributions of our work:

1. We show how to obtain efficient estimators for several standard definitions of weighted

clustering coefficient.

2. Our sampling algorithm are easily parallelizable too. We also develop a scalable

MapReduce implementation of our estimators Our implementation uses two rounds

of MapReduce, it sends a number of messages across machines limited by the number

of nodes times the number of samples required. The load for each machine is limited by

the number of samples used by the algorithm times the maximum degree of a node in a

graph.

3. We introduce a novel notion of weighted clustering coefficient. We base our proposal

on the observation that edges with large weights are more likely to play a role in the

social network. Our model defines a family of unweighted random graphs with edges

existing with different probabilities. The probability of an edge depends on its weight.

The larger the weight, the higher the probability. Each graph of the family of random

graphs is an unweighted graph. The local weighted clustering coefficient of a node is

defined as the expected local clustering coefficient in the family of random graphs. Our

definition naturally extends to the weighted clustering coefficient of the entire graph.1

4. We also design a polynomial time algorithm to compute the value of the weighted

clustering coefficient and a sampling technique to estimate it efficiently. The computation

of the weighted clustering coefficient in our model does not require the generation of

1We note that our definition of weighted random graph is different from the definition of [10]
and it is more in line with the standard definition used in data mining and biology [12].
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all graphs of the family. That would be computationally prohibitive. We show that a

dynamic program is able to compute the exact local weighted clustering coefficient

in polynomial time.2 The computational complexity of this exact computation is still

prohibitive in practice. We are, however, able to design an efficient estimator also for

this new definition of clustering coefficient.

5. We perform experiments that show interesting properties of the weighted clustering

coefficient.

1.1. Related Works

A survey of several approaches to clustering coefficient in weighted networks can be

found in [26]. In [24], the definition of clustering coefficient is based on the average weight

on the edges of a triangle. In [2], the definition of the local clustering coefficient of a node

depends only on the weights of the two edges incident to the node but not on the weight of

the third edge of the triangle. In [20], it is adopted as the standard unweighted definition

with the exception that triangles are weighted by the edge that closes the triangle. In [23],

the weight is considered only in the numerator of the definition of clustering coefficient,

whereas the denominator is the one of the unweighted case. In [36], the weight of a triangle

is obtained by multiplying the weights of the edges. Other proposals that are substantially

different from our approach can also be found in [14, 37]. The study of the clustering

coefficient in several classes of random unweighted graphs can be found in [4].

The problem of estimating the clustering coefficient is closely related to the problem

of counting the number of triangles in a graph. This is computationally expensive even

on graphs of moderate size, because of the time complexity needed to enumerate all the

length-two paths of the graph. Several works proposed efficient heuristics [16, 28] with

computational results reported for graphs of large size. More recently, there are algorithms

that have been designed under the MapReduce [9] programming model. Using a MapReduce

infrastructure, [29] proposed algorithms for computing the exact number of triangles and

the clustering coefficient of graphs. Randomized algorithms for counting triangles were also

implemented under the MapReduce paradigm [25]. Finally, to estimate the total number

of triangles in a graph, it is possible to use also matrix sketches [19], unfortunately, it is

not clear how to extend this approach to the local clustering coefficient. A related measure

is also the transitivity coefficient of a graph [22]. Techniques adopted for estimating the

clustering coefficient usually extend to the transitivity coefficient.

A natural approach for problems in massive networks is to provide approximate

solutions based on the application of data stream and random sampling algorithms. These

algorithms usually provide an (1 ± ǫ) approximation of the number of triangles with

probability 1 − δ. The number of samples and amount of memory needed depends on the

quality of the approximation. Data stream algorithms for estimating the number of triangles

of a graph have been considered in [13, 32]. Semistreaming algorithms have been proposed

in [3]. A sampling-based algorithm for estimating the clustering coefficient of a graph is

given in [27].

2The problem of computing a core decomposition in an uncertain graph with different proba-
bilities on edges has been considered in [5]. The authors show how to compute the expected degree
of an uncertain graph in polynomial time. This method cannot, however, be applied to speed up the
computation of the the novel notion of weighted clustering coefficient that we propose.
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2. PRELIMINARIES

Let G = (V,E) be an undirected graph with n = |V | and m = |E| edges. For every

vertex v ∈ V , let N (v,G) denote its neighborhood, i.e., N (v,G) = {u ∈ V : ∃(u, v) ∈ E}.

The clustering coefficient Cv(G) of a vertex v ∈ V is defined as the probability that a random

pair of its neighbors is connected by an edge, i.e., Cv(G) :=

∣

∣

{

(u,w)∈E:u,w∈N (v,G)

}∣

∣

(|N (v,G)|

2 )
. In the

case of |N (v,G)| < 2, we define Cv(G) := 0. The clustering coefficient C(G) of G is the

average clustering coefficient of its vertices, i.e., C(G) = 1
n

·
∑

v∈V Cv(G).

Let us denote by W (v,G) = {〈u,w〉 : u,w ∈ N (v,G)} the set of wedges of vertex

v in graph G, i.e., the set of distinct paths of length two centered at v.

We denote by w : E → ℜ+ the positive weight on the edges of the graph. Let

W = maxe∈Ew(e) be the maximum weight of an edge. We normalize the edge weights in

a way that their range varies in [0, 1]. Denote by p : E → [0, 1] the normalized weights.

We denote with 1C , the indicator variable for the event C. In the experimental section, we

will use the following classic normalization: p(e) = 1
1+log W/w(e)

.

Finally, we say that we have an (ǫ, δ) estimator for a measure M , if we can estimate

M within an ǫ multiplicative factor with probability at least 1 − δ.

2.1. Generalizations of Clustering Coefficient in Weighted Networks

In this article, we consider three generalizations of the clustering coefficient in

weighted networks. In particular, we focus our attention to two definitions [2, 23] that

well represent two general approaches to the problem: in one case the weights of the edges

are added, in the other case they are multiplied. We additionally introduce a novel def-

inition that is particularly relevant when the weights on the edges can be interpreted as

probabilities.3

Onnela et al. The first definition of clustering coefficient that we consider was

introduced by Onnela et al. [23]:

WCOnnela
v =

∑

〈u,w〉∈W (v,G) ŵ(e(v, u))ŵ(e(v,w))ŵ(e(u,w))

|N (v,G)| (|N (v,G)| − 1)
,

where, with w(e(v, u)), we indicate the weight of the edge e(v, u) and ŵ(e(·, ·)) =
w(e(·,·))

W
.

Barrat et al. The second definition of clustering coefficient that we consider was

introduced by Barrat et al. [2]:

WCBarrat
v =

∑

〈u,w〉∈W (v,G)(w(e(v, u)) + w(e(v,w)))1e(u,w)

(|N (v,G)| − 1)
(
∑

v∈e w(e)
) ,

where 1e(u,w) is equal to 1 if the edge (u,w) exists and 0 otherwise.

Weighted clustering coefficient for probabilistic networks. The last mea-

sure that we analyze is novel. The basic idea is that the normalized weights can be inter-

preted as probabilities of existence of the edges in the graph. More formally, define the

class of random graph Gn,p with edge e appearing independently with probability p(e).

Each graph G′ = (V,E′) ∈ Gn,p is an edge subset E′ of E. The probability of G′ is

p(G′) =
∏

e∈E′ p(e)
∏

e/∈E′(1 − p(e)).

3This setting is particularly relevant when graphs are generated by using inference models
[12].
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The weighted clustering coefficient WCv of a vertex v ∈ V is defined as the expected

clustering coefficient over the class of graphs Gn,p: WCrandom
v = EG′∈Gn,p

Cv(G′).

3. COMPUTING THE WEIGHTED CLUSTERING COEFFICIENT IN

PROBABILISTIC NETWORKS

In this section we give a polynomial algorithm to compute the new definition of

weighted clustering coefficient efficiently. Note that at first sight our problem seems com-

putationally very challenging because there are exponentially many possible realizations

of the neighborhood of each node.4

Our first algorithmic contribution is to show that the problem is in P, we give an algo-

rithm with complexity O(|N (v,G)|4). Our algorithm is based on a dynamic program that

computes incrementally the contribution of each neighbor pair to the clustering coefficient

of each node.

Unfortunately, our exact algorithm is too slow to run on real networks where the

maximum degree is typically very large (in the order of millions for Twitter or Google+);

fortunately, in the next section, we show that the new measure has an efficient (ǫ, δ)

estimator.

Recall that the unweighted clustering coefficient of a node v is defined as the proba-

bility that a randomly selected pair of its neighbors is connected by an edge; based on this,

we can give an alternative definition of weighted clustering coefficient for probabilistic

networks. Let χ (u,w) be a random variable that has value 1 if the randomly selected pair is

(u,w) and 0 otherwise. We have Cv(G) :=
∑

u,w∈N (v,G)∧(u,w)∈E Pr(χ (u,w) = 1), where

each pair is counted only once. In the following, we shorten N (v,G′) to N ′(v). Using

this definition, we can rewrite the weighted clustering coefficient for v as WCrandom
v =

EG′∈Gn,p

[
∑

u,w∈N ′(v)∧(u,w)∈E′ Pr(χ (u,w) = 1|G′)
]

.

Now, by defining ξ (u,w) as a random variable that has value 1 if and only if

u,w ∈ N ′(v) ∧ (u,w) ∈ E′, and by denoting with 1ξ (u,w) its indicator function, we have

WCrandom
v

= EG′∈Gn,p

⎡

⎣

∑

u,w∈N ′(v)∧(u,w)∈E′

Pr(χ (u,w) = 1|G′)

⎤

⎦

= EG′∈Gn,p

[

∑

u,w∈N (v)

(

1ξ (u,w)Pr(χ (u,w) = 1|G′)

)]

=
∑

u,w∈N (v)

EG′∈Gn,p

[

1ξ (u,w)Pr(χ (u,w) = 1|G′)

]

=
∑

u,w∈N (v)

(

Pr(ξ (u,w) = 1) ∗ EG′∈Gn,p

[

1ξ (u,w)Pr(χ (u,w) = 1|G′)

∣

∣

∣

∣

ξ (u,w) = 1)

])

=
∑

u,w∈N (v)

(

Pr(u,w ∈ N ′(v) ∧ (u,w) ∈ E′) ∗ Pr(χ (u,w) = 1|ξ (u,w) = 1)

)

.

4Note that enumerating all the triangles in the graph would not work in this setting because of
the dependency induced by the number of wedges in the realization of the random graph.
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Now, the first term of the sum can be easily computed because Pr(u,w ∈

N ′(v) ∧ (u,w) ∈ E′) = p(eu,v)p(ew,v)p(ew,u). The second term is still problematic.

In fact, Pr(χ (u,w) = 1|ξ (u,w) = 1) depends on all the possible instantiations of G′, and

so it potentially involves the computation of exponentially many terms.

In the following, we show how to compute it efficiently using dynamic programming.5

Note that Pr(χ (u,w) = 1|ξ (u,w) = 1) = Pr(χ (u,w) = 1|u,w ∈ N ′(v)) because the

existence of the edge (u,w) does not change the probability of selecting u and w as random

neighbors of v. And Pr(χ (u,w) = 1|u,w ∈ N ′(v)) is the probability that a pair u,w of

neighbors of v are selected conditioned on the fact that u,w ∈ N ′(v).

To compute this probability, we use the equivalence between the following two

processes. The first selects two elements uniformly at random without replacement from a

set S, and the second computes a random permutation of the elements in the set S and then

returns the first two elements of the permutation.

Using this equivalence, we can rephrase the probability Pr(χ (u,w) = 1|u,w ∈

N ′(v)) as the probability that in a random permutation of the nodes in N (v), u, and w are

the two nodes with the smallest positions in N ′(v). Note that, for this to happen, either u

and w are the first two nodes in the permutation of the nodes in N (v), or none of the nodes

that are in positions smaller than u and w appear in N ′(v).

Now, leveraging on this fact, we give a quadratic dynamic program to compute

Pr(χ (u,w) = 1|ξ (u,w) = 1). Consider an arbitrary order to the nodes in N (v) \ {u,w},

z1, z2, . . . , z|N (v)|−2. In our algorithm, we implicitly construct all the possible permutations

incrementally, and at the same time we estimate the probability that u,w are selected in

each permutation. More specifically, initially we analyze the permutations containing only

the elements {u,w}, then those containing the elements {u,w, z1}, then those containing

the elements {u,w, z1, z2}, and so on so until we get the probability for each permutation

containing all the elements in N (v).

The key ingredient of our algorithm is the following observation. Once we have com-

puted the probability for all the permutations containing the nodes {u,w, z1, z2, . . . , zi−1},

to extend our computation to the permutations containing also the node zi , we have to

consider only two scenarios: in the firstzi appears after u,w in the permutation; in this case,

the probability that u and w are the nodes in N ′(v) with the two smallest positions is the

same. In the second, zi appears before either of u or of w, conditioned on this event, the

probability that u and w are the nodes in N ′(v) with the two smallest positions decreases

by a multiplicative factor 1 − p(ev,zi
).

We are now ready to state our dynamic program more formally. Let M be a square

matrix of dimension |N (v)| − 1 such that Mi,j , for j ≤ i, contains the probability that in

a random permutation of nodes {u,w, z1, z2, . . . , zi} u and w are preceded by exactly j

elements in the permutation but they are in the first and second positions when we consider

the ordering induced only to nodes in N ′(v). Note that M0,0 is equal to 1, because in this

case, we consider permutations containing only {u,w}. Similarly, we can compute M1,0

and M1,1. In particular, for M1,0 we require that z1 is in a position after u and w, so we

have M1,0 = 1
3
M0,0. Instead, M1,1 = 2

3
(1 − p(ev,zi

))M0,0. More generally, we have that for

5Unfortunately, to the best of our knowledge, there is no analytic technique to estimate this
quantity correctly or with a close approximation without using a dynamic programming.
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j ≤ i,

Mi,j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

i − 1

i + 1
Mi−1,0 if j = 0

i − j − 1

i + 1
Mi−1,j +

j + 1

i + 1
p(ev,zi

)Mi−1,j−1 if j < i

and j > 0
i

i + 1
p(ev,zi

)Mi−1,j−1 if j = i

,

where p(∗) = 1 − p(∗).

Once we have computed the matrix M , we can compute Pr(χ (u,w) = 1|u,w ∈

N ′(v)), in fact, we have that Pr(χ (u,w) = 1|u,w ∈ N ′(v)) =
∑|N ′(v)|−2

i=0 M|N ′(v)|−2,i . So

we have

WCrandom
v =

∑

u,w∈N (v)

⎛

⎝

1

2
p(eu,v)p(ew,v)p(ew,u) ∗

⎛

⎝

|N ′(v)|−2
∑

i=0

M|N ′(v)|−2,i

⎞

⎠

⎞

⎠ .

We summarize our algorithm to compute WCrandom
v here:

Algorithm (exact WCrandom
v )

Input: The weighted subgraph induced by v ∪ N (v).

Output: WCrandom
v .

WCrandom
v = 0.

for all u,w ∈ N (v) do

Compute the matrix M for u,w

Using M , compute the probability p that (u, v,w) is a triangle and is selected

WCrandom
v + = p

Output WCrandom
v .

Note that the above algorithm has complexity O(|N (v)|4), so it is too slow to run

on large networks. For this reason, we study in the next section efficient estimators for the

weighted clustering coefficient.

4. EFFICIENT ESTIMATORS FOR THE WEIGHTED

CLUSTERING COEFFICIENT

We propose efficient (ǫ, δ) estimators for the various definitions of weighted clustering

coefficient. Our estimators that use basic concentration theory are similar to that presented

in [6, 31]. They are the first linear estimators for the weighted clustering coefficient, to the

best of our knowledge.

Onnela et al. Recall the definition of Onnela et al. [23] given in Section 2.

In this definition, the weighted clustering coefficient is equal to the total normalized

weight of the triangles containing v, averaged by the number of wedges centered on v. Thus,
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if we sample the wedges uniformly at random, using the Hoeffding bound and the fact that

the normalized weights6 are in [0, 1], we get an efficient (ǫ, δ) estimator for WCOnnela
v .

More formally, let X1, . . . , Xs be identical random variables that, with probability
1

|N (v,G)|(|N (v,G)|−1)
, have value ŵ(e(v, u)) ŵ(e(v,w))ŵ(e(u,w)) for every wedge < u,w >.

Then, E
[
∑s

i=1 Xi

]

= sWCOnnela
v . Furthermore, by the Hoeffding bound, we have that:

P (|X − E[
∑s

i=1 Xi]| ≤ ǫE[
∑s

i=1 Xi]) ≤ e
ǫ2E[

∑s
i=1

Xi ]

3 = e
ǫsWCOnnela

v
3 So, if we want δ >

e
ǫsWCOnnela

v
3 , it suffices to have s ∈ O(log 1

δ
· 1

ǫ2·WCOnnela
v

) samples.

Lemma 4.1. There is a sampling-based algorithm that, with probability 1 − δ, returns a

(1 ± ǫ)-approximation of the local weighted clustering coefficient WCOnnela
v of a vertex v

of a weighted graph G. It needs O(log 1
δ

· 1
ǫ2·WCOnnela

v
) samples.

In the following, we present the pseudocode to compute this estimator:

Algorithm (sampling WCOnnela
v )

Input: The weighted subgraph induced by v ∪ N (v).

Output: Approximate WCOnnela
v .

for all i = 1 to s do

sample a random wedge < u,w > uniformly from N (v)

If (u,w) ∈ E then set Xi ← w(u, v)
1/3w(u,w)

1/3w(v,w)
1/3

else set Xi ← 0

Output X := 1
s

·
∑s

i=1 Xi .

Furthermore, note that, for the sampler, we need to be able to sample only random

wedges and this can be easily done in linear time.

Barrat et al. Recall the definition of Barrat et al. [2] given in Section 2. In this

case, the weighted clustering coefficient is not an explicit average, so we cannot use the

Hoeffding bound directly as before. Nevertheless, note that we can define WCBarrat
v as

the average value of the random variable X, where X has value 1e(u,w) with probability
w(e(v,u))+w(e(v,w))

(|N (v,G)|−1)(
∑

v∈e w(e))
for all 〈u,w〉 ∈ W (v,G).

Using this alternative definition combined with the Chernoff bound, we get that by

using k samples of the wedges weighted with the correct probability we can get good

estimation of WCBarrat
v .

More formally, let X1, . . . , Xs identical random variable that with probability
∑

<u,w>:1e(u,w)=1
(w(e(v,u)) +w(e(v,w)))

(|N (v,G)|−1)(
∑

v∈e w(e))
have value 1 or 0 otherwise. Then, E

[
∑s

i=1 Xi

]

=

sWCBarrat
v . Furthermore, by Chernoff bound we have that

P

(

∣

∣

∣

∣

X − E

[

s
∑

i=1

Xi

]

∣

∣

∣

∣

≤ ǫE

[

s
∑

i=1

Xi

])

≤ e
ǫ2E[

∑s
i=1

Xi]
3

= e
ǫsWCBarrat

v
3 .

So, if we want δ > e
ǫsWCBarrat

v
3 , it suffices to have s ∈ O(log 1

δ
· 1

ǫ2·WCBarrat
v

) samples.

6Note that, for this to work, it is fundamental that the weight on the edges has been normalized,
and so are in [0, 1].
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Lemma 4.2. There is a sampling-based algorithm, which, with probability 1 − δ, returns

a (1 ± ǫ)-approximation of the local weighted clustering coefficient WCBarrat
v of a vertex v

of a weighted graph G. It needs O(log 1
δ

· 1
ǫ2·WCBarrat

v
) samples.

At first sight, it might look as though we need quadratic time to sample a wedge

with the correct probability, but also, in this case, it is possible to get a sample in linear

time. In fact, to sample an edge with the correct probability, it is enough to sample the first

edge e1 with probability p1(e1) =
(|N (v,G)|−2)w(e1)+(

∑

v∈e w(e))

2(|N (v,G)|−1)(
∑

v∈e w(e))
and the second one e2 with

probability p2(e2|e1) =
w(e1)+w(e2)

(|N (v,G)|−2)w(e1)+(
∑

v∈e w(e))
. The probability to sample pair e1, e2 is

exactly p1(e1)p2(e2|e1) + p1(e2)p2(e1|e2) =
w(e1)+w(e2)

(|N (v,G)|−1)
∑

v∈e w(e)
. However, it is also easy

to verify that
∑

e p1(e) = 1 and
∑

e �=e1
p2(e|e1) = 1. We present the pseudocode for this

estimator also:

Algorithm (sampling WCBarrat
v )

Input: The weighted subgraph induced by v ∪ N (v).

Output: Approximate WCBarrat
v .

for all i = 1 to s do

sample the first edge e1 = (u, v) of the wedge with probability equal to p1(e1) =
(|N (v,G)|−2)w(e1)+(

∑

v∈e w(e))

2(|N (v,G)|−1)(
∑

v∈e w(e))

sample the second edge e2 = (u,w) of the wedge with probability equal to

p2(e2|e1) =
w(e1)+w(e2)

(|N (v,G)|−2)w(e1)+(
∑

v∈e w(e))

If (u,w) ∈ Ei then set Xi ←
w(u,v)+w(v,w)

(|N (v,G)|−1)
∑

v∈e w(e)

else set Xi ← 0

Output X := 1
s

·
∑s

i=1 Xi .

Weighted clustering coefficient for probabilistic networks. The algorithm

is based on sampling a random wedge 〈u,w〉 ∈ W (v,G′) from a random graph G′ ∈ Gn,p

and checking whether (u,w) ∈ G′. The core idea of our sampler is to generate for a node v,

s neighbor realizations N (v)1, . . . ,N (v)s uniformly at random from Gn,p. Then, for each

realization, sample a random wedge < u,w > uniformly from N (v)i and check if the

wedge is part of a triangle in the realization. The estimation of the clustering coefficient is

equal to the number of wedges that are part of a triangle divided by s.

Algorithm (sampling WCrandom
v )

Input: The weighted subgraph induced by v ∪ N (v).

Output: Approximate WCrandom
v .

Sample s neighbor realization N (v)1, . . . ,N (v)s uniformly at random from Gn,p

for all i = 1 to s do

sample a random wedge < u,w > uniformly from N (v)i
If (u,w) ∈ Ei then set Xi ← 1

else set Xi ← 0

Output X := 1
s

·
∑s

i=1 Xi .

For the sake of completeness, we give a simple analysis of the algorithm, following.

We first show that the expected value of Xi is exactly WCrandom
v .
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We have for each i ∈ {1, . . . , s}: E[Xi] = EG′∈Gn,p
[ |{(u,w)∈E′:u,w∈N (v,G′)}|

(|N (v,G′ )|

2 )
] =

EG′∈Gn,p
[Cv(G′)] = WCrandom

v .

Then, we use the fact that, for 0 − 1 random variables, we have Var [Xi] ≤ E[X2
i ] =

E[Xi] = WCrandom
v .

Now, we analyze the variance of X. Since the Xi are mutually independent, we

get Var [X] = Var
[

1
s

·
∑s

i=1 Xi

]

= 1
s2 ·

∑s
i=1 Var [Xi] ≤

WCrandom
v

s
. Finally, we can ap-

ply the Chebyshev inequality. This gives us Pr
[
∣

∣X − E[X]
∣

∣ ≥ ǫ · E[X]
]

≤ Var[X]
(ǫ·E[X])2 ≤

WCrandom
v

s·ǫ2·(WCrandom
v )2 = 1

s·ǫ2·WCrandom
v

.

If s ≥ 3
ǫ2·WCrandom

v
, then with probability 2

3
, the algorithm sampling WCrandom

v approxi-

mates the weighted clustering coefficient of vertex v in G within a relative error of (1 ± ǫ).

In order to amplify the probability of success, we run the algorithm �(log 1
δ
) times and

return the median of all results. This leads to the following corollary:

Lemma 4.3. There is a sampling-based algorithm, which with probability 1 − δ, returns

a (1 ± ǫ)-approximation on the local weighted clustering coefficient WCrandom
v of a vertex

v of a weighted graph G. It needs O(log 1
δ

· 1
ǫ2·WCrandom

v
) samples.

5. PARALLEL IMPLEMENTATION

In this section, we first give a brief introduction to the MapReduce [9] framework

and then we describe a highly optimized and scalable MapReduce implementation of our

sampling algorithms. In particular, here we focus on parallelizing the algorithm to estimate

WCrandom
v ; the other sampling strategies can be parallelized in a very similar way. In the

experimental section, we report experimental results showing that this implementation is

extremely fast in practice.

The MapReduce framework is designed to simplify the implementation of parallel

algorithms at very large scale. In the MapReduce framework, the data is processed in tuples

composed of 〈key, value〉. The computation proceeds in rounds. In the Map phase, each

machine receives all the values associated with a specific key k, then it executes some

computation and output 〈key, value〉 tuples with potentially different key k′. A Shuffle

phase aggregates all tuples with same key k′ that are sent to the same physical machine.

Finally, in the Reduce phase, each machine performs a computation that depends only on

the tuples with the same key k′ outputted from the Mapper, and output 〈key, value〉 tuples

with key equal to the input k′.

To write a MapReduce program, it is typically important to design an algorithm

that (i) minimizes the number of MapReduce rounds that are involved; (ii) minimizes the

amount of communication between machines; and (iii) balances the working load across

different machines. In the following, we show how these requirements are achieved in the

implementation of our sampling algorithm in MapReduce.

We assume that the input graph is stored in 〈key, value〉 tuples, representing the

adjacency list of each node. In the first Map phase, each machine reads the adjacency

list of a node u. For sample i = 1, . . . , s, the machine constructs a realization of the

neighborhood of a node u, Ni(u), according to Gn,p and samples a pair of random neighbors

(vi, wi) ∈ Ni(u). Then it sends a message with key wi and value i, (u, vi) to the machine
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that controls node wi .
7 The informal meaning of these messages is that node u asks node wi

whether edge (wi, vi) exists in the i-th realization so that we can infer that triangle u, vi, wi

exists in realization i. Finally, node u also sends its adjacency list to itself in order to be

able to answer the requests of other nodes.

In the first Reduce phase, node u receives its own adjacency list and various requests

i, (w, vi) to check the existence of edge (u, vi) in realization Ni(u). If the test is positive, it

writes a value 〈u,w〉 with its own key indicating that it is incident to a triangle with node

w in one of the samples.

In the second Map phase, each node v reads the values written in the previous Reduce

phase and, for each detected triangle 〈v, u〉, sends a message 〈u, 1〉 to the other node u

certifying the existence of the triangle. Finally, in the last Reduce step, each node receives

the number of sampled triangles and simply computes its clustering coefficient by dividing

it by the number of samples.

The implementation presented above uses two rounds of MapReduce, it sends a

number of messages across machines upper bounded by the number of nodes times the

number of samples required. The load for each machine is upper bounded by the number

of samples used by the algorithm times the maximum degree of a node in a graph.

6. EXPERIMENTS

The main goal of this section is to show experimentally some properties of the

weighted clustering coefficient and to show the speed-up obtained by our simple estimators.

We start by describing a classical application of the clustering coefficient and the

dataset that we will use in our experiment.

Then, we analyze experimentally different techniques to map integer weights to

weights between [0, 1]. In particular, we compare two mapping techniques and we analyze

the trade-off between them. Note that this mapping is needed for two of our three clustering

coefficient measures.8

We then compare the performance of the three weighted clustering coefficient mea-

sures with the classic unweighted clustering. Our findings are quite encouraging, in fact,

we observe that the weighted clustering performance is always at least as good as the

unweighted clustering coefficient and our new notion of weighted clustering coefficient

outperforms the classic unweighted notion.

Finally, we analyze the scalability of our approach. In particular, we run our algorithm

using a different number of machines on networks of increasing sizes. We observe that our

algorithm is highly scalable and it can fully leverage on parallelization to improve its

performances.

Dataset and experiment settings. The clustering coefficient is a fundamental

topological property of networks and also one of the most used topological features in

7Note that a naı̈ve implementation of the sampling procedure would have running time quadratic
in the size of the adjacency list. Fortunately, this is not necessary; in fact, it is possible to select a
random pair of neighbors in linear time. In particular, it is enough to assign to each neighbor a random
number and then select the two neighbors with the smallest assigned values. In this way, each pair of
nodes has the same probability of being selected, and so we can obtain a random sample.

8Experimentally, we observed that a nonlinear mapping performs better than the linear mapping
proposed by Onnela et al.
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Dataset Nodes Edges

Patents[18] 3,774,768 16,518,948

Pokec[30] 1,632,803 30,622,564

LiveJournal[1] 4,847,571 68,993,773

Orkut[34] 3,072,441 117,185,083

Friendster[34] 65,608,366 1,806,067,135

Table I Network statistics.

machine learning on graphs. Indeed, it has been used to detect spam on the Web [3] and

malicious users in social networks [35].

For this reason, we study the effectiveness of weighted clustering coefficient by

studying its power as a machine learning feature. In particular, we focus on the specific case

in which we are interested in detecting spam on the Web. Toward this end, we use a publicly

available dataset [8] composed of a collection of hosts manually labeled (spam/nonspam)

by a group of volunteers and by the weighted host graph network. The graph is composed

of 114,529 hosts in the .UK domain, and there are 5709 hosts marked as “nonspam” and

344 hosts marked as “spam.” Even if the web graph is directed in this section, we ignore

the directionality of the edges for simplicity.9 Finally, we note that there are 2058 hosts

marked as nonspam and 93 hosts marked as spam with clustering coefficient larger than 0

(for any weighted or unweighted definition of clustering coefficient).

In our experiments we are interested in analyzing only the correlation between various

definitions of the clustering coefficient and the integrity of a host. To do it, for each definition,

we first compute the corresponding score for each labeled node, then we rank all the labeled

nodes with scores larger than 0 according to their scores and compute the precision of each

position i of the ranking as the percentage of nonspam hosts before position i. This measure,

even if simplistic, gives a good intuition of the correlation between the clustering coefficient

and the goodness of a page.

Finally, to analyze the scalability of our algorithm, we consider five graphs from

the Stanford Network Analysis Project (SNAP) repository: Friendster, Orkut, LiveJournal,

Pokec, and Patents. Those graphs are unweighted, so we assign a random weight between

[0, 1] to every edge, independently. In Table I we report some basic statistics on the graphs.

6.1. Building the Probabilistic Graph

Two of the analyzed definitions of weighted clustering coefficient cannot be applied

if the edges’ weights are not in [0, 1]. In this subsection we analyze different techniques to

build a probabilistic graph from the input graph by mapping the weights to probability in

[0, 1]. As a case of study, we analyze the effect of different mappings on the .UK domain

graph.

Let us define eW and ew, respectively, the maximum and the minimum weight of an

edge in the input graph. A first natural technique to construct our probabilistic graph is to use

9Note that all the discussed notion of the clustering coefficient can be extended to capture the
directionality of the edges.
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Figure 1 Comparison between the two mapping strategies M1 and M2.

a linear mapping between [ew, eW ] and [0, 1]. This mapping, though, has a serious drawback

for our probabilistic definition: in practice, the weights on the edges are distributed as a

power law and so ew/eW is very small (for example, in our case of study, it is 1/2579857). So,

if we use this mapping, we would have very small weights on the edges of the graph and

this would, in turn, imply an extremely small realization probability for every triangle in

the graph.

To solve this issue in our experiment, we consider two nonlinear mapping functions

M1,M2. Both functions are mapping between [ew, eW ] and [0, 1]; more formally, we have

that both M1,M2 : [ew, eW ] → [0, 1]. In particular, we define M1(w) =
log(w−ew + 1)

log(eW −ew + 1)

and M2(w) = 1

1+log
(

eW −ew + 1

w−ew + 1

) . To compare those two mappings, we run our approximation

algorithm for estimating WCrandom
v for all the nodes in the graph, and we compare the

precision of rankings that we obtain by using the two different rankings. In this experiment,

to compute the weighted clustering coefficient, we execute 3200 samples per node, and to

compute the average precision and the standard deviation we rerun the algorithm four times

with different random seeds. In Figure 1 and in the rest of this section, we plot the average

precisions using lines and the standard deviations using shadows around the lines.

From the experiments, it is possible to conclude that the two mapping strategies have

similar performances, although M1 seems to perform slightly better. For this reason, for the

rest of this section we focus only on results obtained using the mapping M1.

6.2. Performances of the Sampling Algorithm

Now that we have defined our mapping strategy and built our probabilistic graph,

we can focus on the performance of our sampling algorithm. Here, we first analyze the

running time of the sampling algorithm presented in Section 4 when we vary the number of
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Figure 2 Running time vs. number of seeds and precision when we vary the number of samples between 50,

100, 200, and 3200.

samples used in the algorithm and we compare its running time with the running time of the

algorithms that consider all the triangles to compute the unweighted clustering coefficient

or the weighted clustering coefficient defined by Barrat et al. [2].

Then, we analyze how the precision of the ranking varies as a function of the number

of samples performed by the algorithm. In Figure 2 we show the average running time of the

sampling algorithm when we vary the number of samples relative to the running time of the

optimal algorithm. It is interesting to note that the running time increases almost linearly

with the number of seeds, showing that the algorithm efficiently uses all the parallelization

offered by the MapReduce framework. Furthermore, it is quite interesting to note the huge

difference in running time between the sampling algorithm and the quadratic algorithm

that considers all the triangles. In fact, when we used 50, 100, 200, and 400 samples, the

sampling algorithm was 900 times faster than the quadratic algorithm, and even when we

used 2000 samples, the sampling algorithm is still 120 times faster!

Now, we turn our attention to the effects of varying the number of samples on the

precision of the algorithm. In Figure 3 we show how the precision curve of the new notion

of weighted clustering coefficient changes when we use 50, 100, 200, or 3200 samples (we

notice a similar trend also with 400, 800, 1600 samples and for other clustering coefficient

definitions, we do not show them in the figure, in order to maintain clarity). Also, in this

case, we plot the average precisions with lines and the standard deviations with the shadows

around the lines. From the plots, it seems that few samples are enough to obtain a good

estimation of the weighted clustering coefficient.

There are several interesting observations to make here.

First, as predicted from Lemma 4.3, for all the measures the standard deviation

decreases very quickly as the number of samples used by our algorithm increases.

Second, for WCrandom
v the length of the ranking computed by our algorithm decreases

when we use a smaller number of samples. This is probably due to the fact that several
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Figure 3 Precision vs. ranking position of the sample algorithm when we vary the number of samples among 50,

100, 200, and 3200.

nodes are incident to a small number of triangles and sos by executing a small number of

samples we do not discover them.

The third observation is probably the most striking: the precision of ranking provided

by WCrandom
v decreases when we use larger numbers of samples. We hypothesize that this

phenomenon can be explained using the same explanation that we used for our second

observation. In fact, also in this case, nodes that have small degrees are not likely to

appear in the ranking when we consider few samples. But for nodes of small degrees, the

clustering coefficient is probably not a meaningful indicator of their trustfulness. To verify

this hypothesis, in the next subsection we analyze how the precision of the rankings changes

when we consider only nodes with degrees above a specified threshold.

Motivated from the last observation, here we analyze the relationship between the

degree of a node and the correlation between its clustering coefficient and its trustfulness

for WCrandom
v . To do this, we analyze the precision of the rankings of nodes when we are

restricted only to nodes with weighted or unweighted degree above a specific threshold.

In Figure 4, we analyze the precision of the rankings computed by our sampling

algorithm by using 3200 samples when we restrict computation to nodes with unweighted

degree at least 0, 5, 10, and 20.

We observe a trend similar to that observed in Figure 3, suggesting that there is an

interesting relationship between the degree of a node and the correlation of its weighted

clustering coefficient with its trustfulness.

6.3. Comparison Between Different Definitions

In this subsection, we compare the three definitions of weighted clustering coefficient

with the classic definition of unweighted clustering coefficient. We show that the new
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Figure 4 Precision of the sample algorithm when we restrict only to nodes with unweighted degree bigger than

0, 5, 10 and 20 for WCrandom
v .

definition is always comparable with the other two and at various points of the ranking, it

performs significantly better.

In Figure 5 we show the ranking obtained using the four definitions. For the classic

unweighted definition we compute the clustering coefficient of each node exactly. For the

three weighted clustering coefficient definitions we approximate the clustering coefficient

using 3200 samples per node.

It is possible to note that the two previous definitions of clustering coefficient have very

similar performances and performances very similar to the classic unweighted definition,

whereas the ranking obtained by our new definition has higher precision for the first

positions in the ranking and then has performances comparable with the rankings obtained

using the other definitions.

Finally, we compare the performances of our new definition with the performances of

the definition given by Barrat et al. when we restrict computation to nodes with unweighted

degree above a specific threshold. We think that this case is of particular interest because

we showed in the previous subsection that there is an interesting relationship between the

degree of a node and the correlation between its weighted clustering coefficient and its

trustfulness.

In Figure 6, we present the comparison between the two definitions when we restrict

our attention to nodes of degree larger than 0, 5 and 20.

Also in this case, we observe that the two definitions have very similar performances.

6.4. Scalability of Our Algorithm

In this final subsection, we analyze the scalability of our new algorithm. In order to do

it, we analyze five public datasets available in the SNAP repository: Orkut, Patents, Pokec,
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Figure 5 Comparison between the precision rankings obtained by classic definition of clustering coefficient

(CC), the definition by Barrat et al. (B. et al.), the definition of Onnela et al. (O. et al.), and our new definition

(Random).

Figure 6 Comparison between the precision rankings obtained by the definition by Barrat et al. (B. et al.) and

our new definition (WC) when we restrict computation to node of degree larger than 0, 5 and 20.
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Figure 7 Running time of the algorithm on different networks with different resources. Note that all the numbers

shown in the plots are relative. In particular, on the y axis we present the running times as the relative running time

in comparison with the fastest run of algorithm on the smallest graph, and on the x axis we present the number as

a multiplicative factor of the minimum number of machines used x2, x5, x10, and x20.

LiveJournal and Friendster. The five graphs have increasing numbers of edges (each dataset

has roughly twice as many edges as the previous one). The input dataset are unweighted,

so before we run our algorithm, we assign a random weight between 0 and 1 to every edge.

In this experiment we are interested in analyzing the running time of the algorithm

when we increase the number of machines available and when we increase the size of the

network analyzed.

In Figure 7, we present the running time of the algorithm on different networks with

different resources. Note that all the numbers shown in the plots are relative. In particular,

on the y axis we present the running times as the relative running time in comparison with

the fastest run of algorithm on the smallest graph, and on the x axis we present the number

as a multiplicative factor of the minimum number of machines used.

It is interesting to note that our algorithm is able to leverage on parallelization to

speed-up computation on very large graphs. Note, for example, that by increasing the

number of machines by a factor of 10, it is possible to reduce the running time on the

Friendster graph of roughly a factor of 10. It is also worth noticing that we do not obtain

much gain by increasing the number of machines by a factor of 20; this is probably due to

a trade-off between computational power and cost of communication within machines.

7. CONCLUSIONS

In this work we present sampling techniques to obtain efficient estimators for several

measures of weighted clustering coefficient together with their MapReduce implementa-

tion. We also propose a novel graph-theoretic notion of clustering coefficient in weighted

networks defined as the expected unweighted clustering coefficient on a family of random
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graphs. Moreover, we show on an application related to web spam detection that the no-

tions of weighted clustering coefficient compare with the standard notion of unweighted

clustering coefficient as a machine learning feature to assess the quality of nodes in a

social network. Given the importance of weighted networks to model the strength of the

interaction between nodes in a graph, we hope that our work will prompt more study on the

relevance of weighted graph mining features to characterize the inner structure of social

networks.
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May 28–29, 2012.

[31] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. “Doulion: Counting Triangles in

Massive Graphs with a Coin.” Proceedings of the 15th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Paris, France, June 28 – July 1, 2009. ACM 2009,

pp. 837–846.

[32] C. E. Tsourakakis, M. N. Kolountzakis, and G. L. Miller. “Triangle Sparsifiers.” J. Graph

Algorithms Appl. 15(6): 703–726 (2011).

[33] D. J. Watts and S. H. Strogatz. “Collective Dynamics of Small-World Networks.” Nature 393,

440–442 (1998).

[34] J. Yang and J. Leskovec. “Defining and Evaluating Network Communities Based on Ground-

Truth.” Knowl. Inf. Syst. 42(1): 181–213 (2015).

[35] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai. “Uncovering Social Network

Sybils in the Wild.” TKDD 8(1): 2:1–2:29 (2014).

[36] B. Zhang, S. Horvath, et al. “A General Framework for Weighted Gene Co-Expression Network

Analysis.” Stat Appl Genet Mol Biol. 2005;4:Article17.

[37] Y. Zhang, Z. Zhang, J. Guan, and S. Zhou. “Analytic Solution to Clustering Coefficients on

Weighted Networks.” Journal of Statistical Mechanics: Theory and Experiment, 2010.


