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Abstract
Westudy the computation of the zero set of theBargmann transformof a signal contam-
inated with complex white noise, or, equivalently, the computation of the zeros of its
short-time Fourier transform with Gaussian window. We introduce the adaptive mini-
mal grid neighbors algorithm (AMN), a variant of a method that has recently appeared
in the signal processing literature, and prove that with high probability it computes the
desired zero set. More precisely, given samples of the Bargmann transform of a signal
on a finite grid with spacing δ, AMN is shown to compute the desired zero set up to a
factor of δ in the Wasserstein error metric, with failure probability O(δ4 log2(1/δ)).
We also provide numerical tests and comparison with other algorithms.
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1 Introduction

1.1 The Bargmann Transform and its Zeros

The Bargmann transform of a real variable function f ∈ L2(R) is the entire function

F(z) = ( 2
π

) 1
4 e−z2/2

∫

R

f (t)e−t2+2t z dt, z ∈ C. (1.1)

Originally introduced as a link between configuration and phase space in quantum
mechanics [7], the Bargmann transform was later recognized as a powerful tool in
signal analysis [11] because it encodes the correlations between the signal f and the

time–frequency shifts of the Gaussian function g(t) = ( 2
π

) 1
4 e−t2 :

e−i xye− 1
2 (x2+y2)F(x − iy) =

∫

R

f (t)g(t − x)e2i t y dt, x, y ∈ R. (1.2)

In the jargon of time–frequency analysis, the right-hand side of (1.2) is known as the
short-time Fourier transform of f with Gaussian window, and measures the contribu-
tion to f (t) of the frequency y near t = x .

In practice, the values of the short-time Fourier transform of a signal f are only
available on (a finite subset of) a grid

{(δk, δ j) : k, j ∈ Z}, δ > 0, (1.3)

andpossibly only approximately sodue to numerical errors. Thegoal ofGabor analysis
is to extract useful information about f from such limitedmeasurements. Equivalently,
by (1.2), the task is to capture the analytic function F given a limited number of its
samples on a grid. This second point of view led to the most conclusive results in
Gabor theory, such as the complete description of all grids (1.3) for which the Gabor
transform fully retains the original analog signal f [11, 21, 23, 24].

While Gabor signal analysis has traditionally focused on large values of the short-
time Fourier transform (1.2), recent work has brought to the foreground the rich
information stored in its zeros, especially when the signal is contaminated with noise.
Heuristically, the zeros of the Bargmann transform of noise exhibit a rather rigid ran-
dom pattern with predictable statistics, from which the presence of a deterministic
signal can be recognized as a salient local perturbation [13, 14, 16]. Remarkably, the
Bargmann transform of white noise has been identified as a certain Gaussian analytic
random function [5, 6], and consequently, the well-researched statistics of their zero
sets [19, 22] can be leveraged in practice [15, Chapters 13 and 15], [5]. The particular
structure observed in the zeros of the Bargmann transform under even a moderate
amount of white noise has also been invoked as explanation for the sparsity resulting
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from certain nonlinear procedures to sharpen spectrograms [16], as the zeros of the
Bargmann transform are repellers of the reassignment vector field [15, Chapter 12].
The practical exploitation of such insights requires an effective computational link
between finitely given data on the one hand and zeros of Bargmann transforms of
analog signals on the other.

1.2 Computation of Zero Sets

Suppose that the values of the Bargmann transform F of a signal f are given on a grid

� = {δk + iδ j : k, j ∈ Z}, δ > 0, (1.4)

and we wish to compute an approximation of {F = 0}, the zero set of F , within the
square

�L = {x + iy : |x |, |y| ≤ L}. (1.5)

More realistically, we only have access to samples of F on those grid points near the
computation domain, e.g., on

�L = {δk + iδ j : k, j ∈ Z, |δk|, |δ j | ≤ L}. (1.6)

The inverse of the spacing of the grid, 1/δ, will be called the resolution of the data.

1.2.1 Thresholding

The most naive approach to compute {F = 0} is thresholding: one selects all grid
points λ such that |F(λ)| is below a certain threshold ε > 0:

e− 1
2 |λ|2 |F(λ)| < ε. (1.7)

The normalizing weight e− 1
2 |λ|2 is motivated by (1.2), as the short-time Fourier trans-

form of a typical signal can be expected to be bounded. One disadvantage of this
approach is that it requires an educated choice for the threshold ε. Moreover, computa-

tions with various reasonable choices of thresholds, such as quantiles of e− 1
2 |λ|2 |F(λ)|

calculated over all grid points λ, either fail to compute many of the zeros or capture
too many points (see Fig. 1).

1.2.2 Extrapolation

One may consider using the samples of F on the finite grid (1.6) to reconstruct the
signal f , resample F at arbitrarily high density, and thus calculate more easily the zero
set {F = 0}. However, computation of zeros through extrapolation may be inaccurate:
while the samples of F on the infinite grid (1.4) determine F as soon as

√
π · δ < 1

[11, 21, 24], the truncation errors involved in the approximation of F near �L from
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Fig. 1 Calculation of zero sets by thresholding: Values below the same threshold (marked by circles) fail
to detect some zeros and at the same time cannot clearly separate other zeros

finite data (1.6) can only be neglected at very high-resolution 1/δ. Even if the values of
F are successfully extrapolated to a higher resolution grid, the remaining computation
is still not trivial, as, for example, simple thresholding may fail even at high resolution
(see Fig. 4 and Sect. 5).

1.2.3 Minimal Grid Neighbors

A greatly effective numerical recipe for the computation of zeros of the Bargmann
transform can be found in the code accompanying [13]—although not explicitly
described in the text. A grid point λ is selected as a numerical approximation of a

zero if e− 1
2 |λ|2 |F(λ)| is minimal among grid neighbors, i.e.,

e− 1
2 |λ|2 |F(λ)| ≤ e− 1

2 |μ|2 |F(μ)|, |λ − μ|∞ = δ, (1.8)

where |z|∞ = max{|x |, |y|}. The subset of points that pass the test furnish the com-
putation of {F = 0}. This method, which we call minimal grid neighbors (MGN),
performs impressively as long as the grid resolution is moderately high. Indeed, we
understand that the method is behind the simulations in [15, Chapter 15] which quite
faithfully reproduce the statistics of the zeros of the Bargmann transform of complex
white noise (that are known analytically [5, 19]). The MGN algorithm was also used
to produce the plots in [5], as pointed out in [5, Sect. 5.1.1.]; see also [6, Sect. 5], [20,
Sect. IV], and [1]. Heuristically, the test (1.8) succeeds in identifying zeros due to the

analyticity of F , which implies that |F(z)|e− 1
2 |z|2 does not have nonzero local minima

[19, Sect. 8.2.2]. Remarkably, (1.8) is also effective even if the comparison involves
only neighboring grid points.
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The MGN algorithm performs equally well when calculating the zeros of the
Bargmann transform of a signal

f = f1 + σ · N (1.9)

composed of a deterministic real-variable function f1 plus complex white noise with
variance σ 2 > 0. The presence of a certain amount of randomness must be behind the
success of the algorithm, as, for σ = 0, the method cannot be expected to succeed.
Indeed, one can engineer a deterministic signal f where the detection of zeros fails,
as the value of its Bargmann transform F can be freely prescribed on any given finite
subset of the computation domain [24]. We are unaware of performance guarantees
for MGN.

1.3 Contribution

In this article, we introduce a variant of MGN, called adaptive minimal grid neighbors
(AMN). The algorithm is based on a comparison similar to (1.8) but incorporates
an adaptive decision margin, that depends on the particular realization of F . While
AMN has the same mild computational complexity and similar practical effectiveness
as MGN, we are able to estimate the accuracy and confidence of the computation with
AMN in terms of the grid resolution. In this way, we show that AMN is probably
approximately correct for the signal model (1.9), in the sense that it computes the zero
set with high probability up to the resolution of the data.

On the one hand, we present what to the best of our knowledge are the first formal
guarantees for the approximate computation of zero sets of analytic functions from
grid values. In fact, besides its main purpose of computation with specific data, the
AMN algorithm offers a computationally attractive and provably correct method to
simulate zero sets of theGaussian entire function (2.10), by running the procedurewith
simulated inputs. On the other hand, our analysis is a first step toward understanding
the performance of MGN.

2 Main Result

2.1 The Adaptive Minimal Neighbors Algorithm

We now introduce a new algorithm to compute zero sets of Bargmann transforms.
Suppose again that samples of an analytic function F : C → C are given on those
points of the grid (1.4) that are near the computation domain (1.5), say, on

�L+2δ = {δk + iδ j : k, j ∈ Z, |δk|, |δ j | ≤ L + 2δ}. (2.1)
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For each grid point λ strictly inside the computation domain, λ ∈ �L = � ∩ �L ,
we use the neighboring sample at λ+ δ to compute the following comparison margin:

ηλ = e− 1
2 |λ|2 max

{ |F(λ)| , 3
4

∣∣e−δλ̄F(λ + δ) − F(λ)
∣∣}. (2.2)

The margin ηλ therefore depends on the particular realization of F . To motivate the
definition, note that, when λ = 0, the maximum in (2.2) is taken over |F(0)| and
the absolute value of an incremental approximation of ∂ F(0), where ∂ F = 1

2 (
d

dx F −
i d

dy F). The comparisonmargin thus incorporates the size and oscillation of F at z = 0.
In general, ηλ has a similar interpretation with respect to the covariant derivative

∂̄∗F(z) = z̄ F(z) − ∂ F(z), (2.3)

and, indeed, ηλ is defined so that

ηλ ≈ e− 1
2 |λ|2 max

{|F(λ)|, 3
4

∣∣∂̄∗F(λ)
∣∣ δ

}
. (2.4)

The differential operator ∂̄∗F plays a distinguished role in the analysis of vanishing
orders of Bargmann transforms [10, 12] because it commutes with the translational
symmetries of the space that they generate (the Bargmann–Fock shifts defined in Sect.
3.2).

The first step of the algorithm selects all grid points λ ∈ �L that pass the following
comparison test:

e− 1
2 |μ|2 |F(μ)| ≥ e− 1

2 |λ|2 |F(λ)| + ηλ, whenever |λ − μ|∞ = 2δ, μ ∈ �. (2.5)

In contrast to (1.8), the comparison in (2.5) does not involve the immediate grid
neighbors of λ but rather those points lying on the square centered at λ with half-side-
length 2δ; see Fig. 2.

(In particular, the test only involves grid points μ ∈ �L+2δ .) Intuitively, the larger
distance between λ andμ permits neglecting the error in the differential approximation
(2.4).

The use of non-immediate neighbors in (2.5) introduces a certain redundancy in
the selection of numerical zeros, because the comparison boxes delimited by {μ :
|λ − μ|∞ = 2δ} overlap and, as a consequence, one zero of F can trigger multiple
positive tests; see Fig. 3. The second step of the algorithm sieves the selected points to
enforce aminimal separation of 5δ between different points. The algorithm is formally
specified below.

Remark 2.1 The constants 3/4 in (2.6), 2 in (2.7), and 5 in (2.8) are to some extent
arbitrary, and other choices lead to similar results. These particular values are chosen to
aid the exposition rather than to optimize practical performance. In fact, these choices
are suboptimal at low resolutions (see Sect. 5).
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Fig. 2 The selection step of AMN

Fig. 3 Sliding the test box

2.2 Performance Guarantees for AMN

To study the performance of the AMN algorithm, we introduce the following input
model, which, as we will explain, corresponds to the Bargmann transform of an arbi-
trary signal contaminated with complex white noise of an arbitrary intensity.

123



Foundations of Computational Mathematics

Algorithm AMN: Compute zero set of F inside �L = [−L, L]2
Input: A domain length L ≥ 1, a grid spacing parameter δ > 0 and samples of a function F : C → C on
the grid points �L+2δ = � ∩ [−(L + 2δ), L + 2δ]2.
Selection step: For each grid point λ ∈ �L = �∩�L inside the target domain�L , we define the following
comparison margin:

ηλ = e− 1
2 |λ|2 max

{ |F(λ)| , 3
4

∣
∣e−δλ̄F(λ + δ) − F(λ)

∣
∣}. (2.6)

The grid point λ is then selected if the following test is satisfied:

e− 1
2 |μ|2 |F(μ)| ≥ e− 1

2 |λ|2 |F(λ)| + ηλ, whenever |λ − μ|∞ = 2δ, μ ∈ �. (2.7)

(Note that the test (2.7) only involves grid points μ ∈ �L+2δ .)
Let Z1 be the set of all selected grid points.

Sieving step: Use an off-the-shelf clustering algorithm to select a subset Z ⊂ Z1 that is 5δ separated:

inf
{|λ − μ|∞ : λ, μ ∈ Z, λ �= μ

} ≥ 5δ (2.8)

and maximal with respect to this property, i.e., no proper superset satisfies (2.8).
(One concrete implementation of the sieving step is described in Sect. 5.2.1.)

Output: The set Z.

2.2.1 Input Model

We consider a random entire function on the complex plane

F = F1 + σ · F0, (2.9)

where F1 : C → C is a deterministic entire function, F0 is a (zero mean) Gaussian
analytic function with correlation kernel:

E
{

F0(z) · F0(w)
} = ezw̄, z, w ∈ C, (2.10)

and σ > 0 is the noise level. We assume that the deterministic function F1 satisfies
the quadratic exponential growth estimate

|F1(z)| ≤ A · e
1
2 |z|2 , z ∈ C, (2.11)

for some constant A ≥ 0.
As for F0, the assumption means that for each z1, . . . , zn ∈ C, (F0(z1), . . . ,

F0(zn)) is a normally distributed (circularly symmetric) complex random vector, with
mean zero and covariance matrix

[
ezk z�

]
k,�

. Alternatively, F0 can be described as

F0(z) =
∑

n≥0

ξn√
n! z

n, (2.12)
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where (ξn)n≥0 are independent standard complex random variables [19].

2.2.2 Discussion of the Model

The random function F0 is the Bargmann transform of standard complex white noise
N . As each realization of complex white noise is a tempered distribution, the com-
putation of its Bargmann transform (1.1) is also to be understood in the sense of
distributions, as in [8]. (See [6] and [17, Sect. 5.1] for a detailed discussion on this,
and alternative approaches.)

We can similarly interpret F1 as the Bargmann transform of a distribution f 1 on the
real line [8]. The assumption (2.11) means precisely that f 1 belongs to themodulation
space M∞(R) consisting of distributions with Bargmann transforms bounded with
respect to the standard Gaussian weight—or, equivalently, with bounded short-time
Fourier transforms [9]. The modulation space M∞(R) includes all square-integrable
functions f 1 ∈ L2(R) and also many of the standard distributions used in signal
processing.

In summary, the input model (2.9) corresponds exactly to the Bargmann transform
of a random signal

f = f 1 + σ · N , (2.13)

where f 1 ∈ M∞(R) and σ · N is complex white noise with standard deviation σ .

2.2.3 Performance Analysis

We now present the following performance guarantees, pertaining to the computation
domain (1.5) and the acquisition grid (2.1). To avoid immaterial technicalities, we
assume that the corners of the computation domain lie on the acquisition grid.

Theorem 2.2 Fix a domain width L ≥ 1, a noise level σ > 0, and a grid spacing δ > 0
such that L/δ ∈ N. Let a realization of a random function F as in (2.9) with (2.10)
and (2.11) be observed on �L+2δ , and let Z be the output of the AMN algorithm.

There exists an absolute constant C such that, with probability at least

1 − C L2 exp

(
A2

8σ 2

)
max

{
1, log2(1/δ)

}
δ4, (2.14)

there is an injective map  : {F = 0} ∩ �L → Z with the following properties:
• (Each zero is mapped into a near-by numerical zero)

|(ζ) − ζ |∞ ≤ 2δ, ζ ∈ {F = 0} ∩ �L . (2.15)

• (Each numerical zero that is away from the boundary arises in this form)
For each λ ∈ Z ∩ �L−2δ , there exists ζ ∈ {F = 0} ∩ �L such that λ = (ζ).

A proof of Theorem 2.2 is presented in Sect. 4. We remark some aspects of the result.
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• The AMN algorithm does not require knowledge of the noise level σ and is homo-
geneous in the sense that F and cF , with c ∈ C \ {0}, produce the same output.

• Within the estimated success probability, the computation is accurate up to a factor
of the grid spacing.

• The analysis concerns an arbitrary deterministic signal impacted by noise and is
uniform over the class (2.11). As usual in such smoothed analysis, the success
probability grows as the signal to noise ratio A/σ decreases, because randomness
helps preclude the very untypical features that could cause the algorithm to fail [25].
In fact, in the noiseless limit σ = 0, the algorithm could completely fail, since
F1 can be freely prescribed on any finite subset of the plane [24]. For example,
irrespectively of its values on the acquisition grid, the deterministic function F1

could have a cluster of zeros of small diameter that would trigger a single positive
minimality test. The proof of Theorem 2.2 shows that such examples are fragile,
as the addition of even a moderate amount of noise regularizes the geometry of
the zero set.

• Up to a small boundary effect, the guarantees in Theorem 2.2 comprise an estimate
on the Wasserstein distance between the atomic measures supported on {F =
0} ∩ �L and on the computed set Z. More precisely, for a tolerance θ > 0 let
us define the boundary-corrected Wasserstein pseudo-distance between two sets
U , V ⊆ C as

WL,θ (U , V ) = inf


max
z∈U

|(z) − z|∞,

where the infimum is taken over all injective maps  : U → V such that V ∩
�L−θ ⊆ (U ). (The definition is not symmetric in U and V , but this is not
important for our purpose.) Then, Theorem 2.2 reads

P

[
WL,2δ ({F = 0} ∩ �L ,Z) > 2δ

]
≤ C L2 exp

(
A2

8σ 2

)
max

{
1, log2(1/δ)

}
δ4.

• The presented analysis concerns a signal contaminated with complex white noise.
This is a mathematical simplification; we believe that with more technical argu-
ments a similar result can be derived for real white noise. The case of colored
noise seems more challenging and will be the object of future work.

2.3 Numerical Experiments

In Sect. 5, we report on numerical experiments that compare the AMN andMGN algo-
rithms. We also include a modified version of thresholding (ST), that uses a threshold
proportional to the grid spacing and incorporates a sieving step as in AMN (while
standard thresholding without sieving performs extremely poorly, as seen in Fig. 1).

The performance of AMN, MGN, and ST is first tested indirectly, by using these
algorithms to simulate the zero sets of the randomfunctions in the inputmodel (2.9).We
then compare theoretically derived statistics of the zeros of (2.9) to empirical statistics
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AMN and MGN ST

(A) f1(t) = exp(−t2), A = 1 (B) f1(t) = t exp(−t2), A = 100

Fig. 4 A realization of e− 1
2 |z|2 |(F0(z)+F1(z))|with F1 the Bargmann transform of f 1. The deterministic

functions are scaled to obtain the prescribed A. Zeros computed with AMN, MGN, and ST are calculated
from grid samples with δ = 2−9. Zeros fromAMN andMGN coincide (circle), while ST (cross) fails either
by detecting false zeros (left) or by not capturing all of them (right)

obtained from the output of AMN and MGN under various simulated realizations of
(2.9).

Second,we performa consistency experiment that aims at estimating the probability
of computing a low-distortion parametrization of the zero set of F , as in Theorem
2.2. Specifically, we simulate a realization of the random input F sampled at high-
resolution and use the output ofAMNorMGNas a proxy for the ground truth {F = 0}.
We then test the extent to which this set is captured by the output of AMN, MGN, or
ST from lower resolution subsets of the same simulated data.

The performance of AMN and MGN is almost identical, although the minimal
resolution at which MGN starts to perform well is slightly lower than that for AMN.
(This is to be expected, as the constants 2 and 5 used in (2.7) and (2.8) are not adequate
for low resolutions, cf. Remark 2.1.) Both AMN and MGN significantly outperform
ST. See also Fig. 4 for an illustration.

The favorable performance of AMN is interesting also when the input is just noise,
as it gives a fast and provably accurate method to simulate the zeros of the Gaussian
entire function (2.10). (The simulations that we present in Sect. 5 use certain heuristic
shortcuts to accelerate the simulation of the input (2.10)—see Sect. 5.1; although we
do not formally analyze these, they are implicitly validated, as the simulated point
process reproduces the expected theoretical statistics.)

All numerical experiments can be reproduced with openly accessible software and
our code is available at https://github.com/laescudero/discretezeros. Our implemen-
tation of the Bargmann transform uses [4].
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2.4 Organization

Section 3 introduces the notation and basic technical tools about analytic functions,
Bargmann–Fock shifts, and their applications to random functions and their zeros.
Theorem 2.2 is proved in Sect. 4, while numerical experiments are presented in detail
in Sect. 5. Conclusions and outlook on future directions are discussed in Sect. 6.

3 Preliminaries

3.1 Notation

For a complex number z = x + iy, we use the notation |z|∞ = max{|x |, |y|}, while
|z| denotes the usual absolute value. The zero set of F is denoted by {F = 0}. The
differential of the (Lebesgue) area measure on the plane will be denoted for short dm,
while the measure of a set E is |E |. With a slight abuse of notation, we also denote
the cardinality of a finite set Z by |Z |. Squares on the complex plane are denoted by
Qr (z) = {w ∈ C : |z − w|∞ ≤ r}. For two nonnegative functions f , g, we write
f � g if there exists an absolute constant C such that f (x) ≤ Cg(x), for all x . We
write f � g if f � g and g � f .

TheWirtinger derivative of a function F : C → C is ∂ F = 1
2 (

d
dx F − i d

dy F). When
we need to stress on which variable the derivative is taken we write subindices, e.g.,
∂w F(z, w).

A Gaussian entire function (see [19, Ch. 2] and [22]) is a random function
F : C → C that is almost surely entire, and such that for every z1, . . . , zn ∈ C,(
F(z1), . . . , F(zn)

)
is a circularly symmetric complex normal vector. We will be only

concerned with the random function F given in (2.9). We also use the notation (1.4),
(1.5), (1.6), possibly for distinct values of L .

3.2 Bargmann–Fock Shifts and Stationarity of Amplitudes

The analysis of the AMN algorithm is more transparent when formulated in terms of
the Bargmann–Fock shifts. For a function F : C → C, we let

Fw(z) = e− 1
2 |w|2−zw F(z + w). (3.1)

The amplitude of an entire function F is defined as the weighted magnitude

G(z) = e− 1
2 |z|2 |F(z)|, (3.2)

and satisfies

Gw(z) := G(z + w) = e− 1
2 |z|2 |Fw(z)|. (3.3)
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The comparison margin of the AMN algorithm (2.6) can be expressed in terms of
Bargmann–Fock shifts as

ηλ = max
{ |Fλ(0)| , 3

4

∣∣Fλ(δ) − Fλ(0)
∣∣}, (3.4)

and leads to the approximation (2.4) because

|F ′
λ(0)| = e− 1

2 |λ|2 ∣∣∂̄∗F(λ)
∣∣ .

(Here and throughout we write F ′
λ(0) for ∂[Fλ](0).) Similarly, in terms of amplitudes,

the test (2.7) reads

G(μ) = e− 1
2 |μ−λ|2 |Fλ(μ − λ)| ≥ |Fλ(0)| + ηλ = G(λ) + ηλ, μ ∈ �, |μ − λ|∞ = 2δ. (3.5)

With respect to the input model (2.9) we note that, if F0 is the (zeromean) Gaussian
entire function with correlation kernel (2.10), then the Bargmann–Fock shifts F0 �→
F0

w preserve the stochastics of F0, as they leave its covariance kernel invariant. As
a consequence, for any w ∈ C, F0

w(0),
[
F0

w

]′
(0) are independent standard complex

normal random variables (with zero mean and variance 1). Indeed, by the mentioned
invariance it suffices to consider w = 0, and, in this case, F0

w(0),
[
F0

w

]′
(0) are the

coefficients ξ0 and ξ1 in (2.12).

3.3 Minimum Principle for Amplitudes

The following weighted version of the minimum principle is at the core of the success
of MGN and AMN.

Lemma 3.1 Let F : C → C be entire, r > 0, and assume that

|F(0)| ≤ |F(z)|e− 1
2 |z|2 , for all z ∈ C such that |z|∞ = r . (3.6)

Then, there exists z ∈ C with |z|∞ ≤ r such that F(z) = 0.

Proof Let D := {z ∈ C : |z|∞ < r} and suppose that F does not vanish on D̄. Then,
the function

H(z) = e
1
2 |z|2

|F(z)|

is well defined on D̄ and satisfies

log H(0) ≥ log H(z), z ∈ ∂ D. (3.7)

By the analyticity of F , � log |F | = 0 and thus

�
[
log H(z)

] = �
[ |z|2

2 − log |F(z)|
]

= 2.
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Hence, the maximum principle for subharmonic functions together with (3.7) implies

that log H(z) and therefore |F(z)|e− 1
2 |z|2 is constant on D. For z ∈ D, we compute

0 = ∂z
[|F(z)|2e−|z|2] = ∂z

[
F(z) e−|z|2]F(z)

= [
∂z F(z) − z̄F(z)

]
F(z) e−|z|2 .

As F is nonvanishing on D, it follows that ∂z F − z̄F = 0 on D, and therefore

0 = ∂z̄[∂z F − z̄F] = −F,

on D. This contradiction shows that F must vanish on D̄. ��

3.4 Linearization

In what follows, we derive basic facts about the input model (2.9), and always assume
that (2.10) and (2.11) hold.

The following is a strengthened version of [19, Lemma 2.4.4].

Lemma 3.2 Let F be as in (2.9). Then, there exists an absolute constant C > 0 such
that for all L ≥ 1 and t ≥ A,

P

[

sup
w∈�L ,|z|≤10

|z|−2
∣∣Fw(z) − (

Fw(0) + F ′
w(0)z

)∣∣ > t

]

≤ C L2e−(t−A)2/(8σ 2),

P

[

sup
w∈�L ,|z|≤10

|z|−2
∣
∣Fw(z)e− 1

2 |z|2 − (
Fw(0) + F ′

w(0)z
)∣∣ > t

]

≤ C L2e−(t−A)2/(8σ 2).

Proof We consider the Taylor expansion of F :

F(z) = F(0) + F ′(0)z + E2(z)z
2,

where E2 can be bounded in terms of the amplitude (3.2) as

sup
|z|≤10

|E2(z)| �
∫

|ζ |≤12
|F(ζ )| dm(ζ ) �

∫

|ζ |≤12
|G(ζ )| dm(ζ ).

We also note that for |z| ≤ 10,

|F(z) − F(z)e− 1
2 |z|2 | = |F(z)|∣∣1 − e− 1

2 |z|2 ∣∣

� |z|2
∫

|ζ |≤12
|F(ζ )| dm(ζ ) � |z|2

∫

|ζ |≤12
|G(ζ )| dm(ζ ).
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Hence, for |z| ≤ 10,

∣∣F(z) − (
F(0) + F ′(0)z

)∣∣ � |z|2
∫

|ζ |≤12
|G(ζ )| dm(ζ ),

∣
∣F(z)e− 1

2 |z|2 − (
F(0) + F ′(0)z

)∣∣ � |z|2
∫

|ζ |≤12
|G(ζ )| dm(ζ ).

We apply the previous bounds to Fw, note that, by (3.3), Gw(z) = G(z + w), and
obtain that for |z| ≤ 10,

Aw(z) := |z|−2
∣∣Fw(z) − (

Fw(0) + F ′
w(0)z

)∣∣ �
∫

|ζ−w|≤12
|G(ζ )| dm(ζ ),

Bw(z) := |z|−2
∣∣Fw(z)e− 1

2 |z|2 − (
Fw(0) + F ′

w(0)z
)∣∣ �

∫

|ζ−w|≤12
|G(ζ )| dm(ζ ).

Hence,

sup
|z|≤10,w∈�L

Aw(z) + Bw(z) � sup
w∈�L

∫

|ζ−w|≤12
|G(ζ )| dm(ζ ) � sup

|ζ |≤L+12
|G(ζ )|.

Let G0 and G1 be the amplitudes corresponding to F0 and F1, respectively. Then by
(2.11),

|G(ζ )| ≤ σ ·
∣∣∣G0(ζ )

∣∣∣ + |G1(ζ )| ≤ A + σ · |G0(ζ )|, ζ ∈ C.

Hence,

P

[
sup

|ζ |≤L
|G(ζ )| > t

]
≤ P

[
sup

|ζ |≤L

∣
∣∣G0(ζ )

∣
∣∣ >

t − A

σ

]
.

To conclude, we claim that the following excursion bound holds:

P

[
sup

|ζ |≤L
|G0(ζ )| > t

]
≤ C L2e−t2/8, t ≥ 0,

where C > 0 is an absolute constant. For L ≤ 1/4, this follows, for example, from
[19, Lemma 2.4.4]. In general, we cover the domain with � L2 squares of the form
w + [−1/4, 1/4]2, apply the previously mentioned bound to G0

w(z) = G0(z + w),
and use a union bound. This completes the proof. ��

3.5 Almost Multiple Zeros

It is easy to see that, almost surely, the random function (2.9) has no multiple zeros.
In the analysis of the AMN algorithm, we will also need to control the occurrence of
zeros that are multiple up to a certain numerical precision, in the sense that F and
its derivative are simultaneously small. The following lemma is a first step in that
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direction, as it controls the probability of finding a grid point that is an almost multiple
zero.

Lemma 3.3 Let F be as in (2.9) and α, β > 0. Then, the probability that for some
grid point λ ∈ �L the following occurs:

|Fλ(0)| ≤ α, and |F ′
λ(0)| ≤ β (3.8)

is at most C L2α2β2δ−2σ−4, where C is an absolute constant.

Proof For each grid point λ ∈ �L , Fλ(0) and F ′
λ(0) are independent complex normal

variables with possibly nonzero means μ1, μ2 and variance σ 2. Therefore,

P
(|Fλ(0)| ≤ α

) = 1

πσ 2

∫

|ζ |≤α

e− 1
σ2

|ζ−μ1|2 dm(ζ ), (3.9)

P
(|F ′

λ(0)| ≤ β
) = 1

πσ 2

∫

|ζ |≤β

e− 1
σ2

|ζ−μ2|2 dm(ζ ). (3.10)

By Anderson’s lemma [2], the right-hand sides of (3.9) and (3.10) are maximal
when μ1 = 0 and μ2 = 0, respectively. Direct computation in those cases yields
P(|Fλ(0)| ≤ α) � α2σ−2 and P(|F ′

λ(0)| ≤ β) � β2σ−2. By independence, the
probability of (3.8) is � α2β2σ−4. On the other hand, there are � L2δ−2 grid points
under consideration, so the conclusion follows from the union bound. ��

3.6 First Intensity of Zeros

The following proposition is not used in the proof of Theorem 2.2, but rather as a
benchmark in the numerical experiments (Sect. 5).

Proposition 3.4 Let F be as in (2.9). Then for every Borel set B ⊂ C,

E[|{z ∈ B : F(z) = 0}|] =
∫

B
ρ1(ζ ) dm(ζ )

where

ρ1(ζ ) = 1

π
e− 1

σ2

∣∣F1(ζ )
∣∣2e−|ζ |2

(

1 + e−|ζ |2

σ 2

∣
∣∣∂ζ F1(ζ ) − ζ F1(ζ )

∣
∣∣
2
)

. (3.11)

Proof The set of zeros and thusρ1(ζ ) does not change if we scale F by a fixed constant.
Hence, by considering the function 1

σ
F in place of F , we can assume that σ = 1. The

expected number of points {z ∈ B : F(z) = 0} of a Gaussian random field F is given
by Kac–Rice’s formula:

E[|{z ∈ B : F(z) = 0}|] =
∫

B
E

[ |det DF(ζ )| ∣
∣ F(ζ ) = 0

]
pF(ζ )(0) dm(ζ ), (3.12)
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where pF(ζ )(0) is the probability density of F(ζ ) at 0; see, e.g., [3, Th. 6.2].
We first compute the value

pF(ζ )(0) = 1

π
e−|ζ |2e−∣∣F1(ζ )

∣∣2e−|ζ |2
. (3.13)

Second, since F is analytic, the determinant in (3.12) can easily be seen to sim-
plify to |det DF(ζ )| = ∣∣∂ζ F(ζ )

∣∣2. The joint vector (F(z), ∂z F(z)) has mean
(F1(z), ∂z F1(z)) and covariance

Cov[(F(z), ∂z F(z))] =
(

e|z|2 ze|z|2

ze|z|2 (1 + |z|2)e|z|2

)

. (3.14)

Following a Gaussian regression approach, see, e.g., [3, Prop. 1.2], the conditional
expectation of

∣∣∂ζ F(ζ )
∣∣2 given F(ζ ) = 0 is the same as the expectation of |W |2,

where W = ∂ζ F1(ζ ) − ζ F1(ζ ) + W0 and W0 is a circularly symmetric complex

Gaussian random variable with variance e|ζ |2 (and zero mean). Thus,

E
[ |det DF(ζ )| ∣∣ F(ζ ) = 0

] = e|ζ |2 +
∣∣∣∂ζ F1(ζ ) − ζ F1(ζ )

∣∣∣
2
. (3.15)

Inserting (3.15) and (3.13) into (3.12) yields (3.11). ��

4 Proof of Theorem 2.2

We present the proof of Theorem 2.2 in several steps. The strategy is twofold: (i)
to show that computed zeros are close to true ones, we relate the comparison test
(2.7) to a similar property involving non-grid points and apply the minimum principle
from Lemma 3.1; (ii) to show that true zeros do trigger a detection, we show that the
test (2.7) is satisfied by linearly approximating the input function. The two objectives
are in tension: while a large comparison margin ηλ would facilitate (i) by absorbing
possible oscillations between a grid and a close-by non-grid point, a small margin
makes the comparison test easier to satisfy and thus facilitates (ii). The core of the
proof consists in showing that the adaptive margin (2.6) strikes the desired balance
with high probability.

Initially, we bound the Hausdorff distance between the exact and computed zero
sets (showing that each of the sets lies in a small neighborhood of the other). We then
refine this conclusion to a bound on the Wasserstein distance by analyzing the sieving
step.

4.1 Preparations

Let L , σ , δ, and F satisfy the assumptions of the theorem, and denote by Z1 the
set produced by the AMN algorithm after the selection step. Recall that L ≥ 1. By
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choosing a sufficiently large constant in (2.14), we can assume that δ ≤ 1/5; otherwise,
the success probability would be trivial. For the same reason, we can assume that

δ4 exp

(
A2

8σ 2

)
≤ 1. (4.1)

4.2 Excluding bad Events

We let γ = 8σ and wish to apply Lemma 3.2 with t = γ
√
log(1/δ). By (4.1),

δ4 exp

(
A2

16σ 2

)
≤ δ4 exp

(
A2

8σ 2

)
≤ 1.

Hence, t ≥ A and we can apply Lemma 3.2 to conclude that

∣∣Fw(z) − (
Fw(0) + F ′

w(0)z
)∣∣ ≤ γ · √log(1/δ) · |z|2 ≤ 2γ · √

log(1/δ) · |z|2∞,

(4.2)
∣∣
∣Fw(z)e− 1

2 |z|2 − (
Fw(0) + F ′

w(0)z
)∣∣
∣ ≤ γ · √

log(1/δ) · |z|2 ≤ 2γ · √
log(1/δ) · |z|2∞,

(4.3)

for all w ∈ �L+1 and |z| ≤ 10, except for an event of probability at most C L2 exp
[−

(t − A)2/(8σ 2)
]
, where C is an absolute constant. Since (t − A)2 ≥ t2

2 − A2, we
further have

C L2 exp

(
− (t − A)2

8σ 2

)
≤ C L2 exp

(
A2

8σ 2

)
δ

γ 2

16σ2 = C L2 exp

(
A2

8σ 2

)
δ4.

Second, we select a large absolute constant κ > 1 to be specified later, and use
Lemma 3.3 with

α = κγ · √
log(1/δ) · δ2,

β = 2κγ · √
log(1/δ) · δ,

to conclude that, for each grid point λ ∈ �L+2δ ,

either |Fλ(0)| > α, or |F ′
λ(0)| > β, (possibly both), (4.4)

except for an event with probability at most � L2 log2(1/δ)δ4.
Overall we have excluded events with total probability

� L2 exp

(
A2

8σ 2

)
log2(1/δ)δ4.
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In what follows, we show that under the complementary events the conclusions of
Theorem 2.2 hold.

4.3 The True Zeros are Adequately Separated

We claim that, by taking κ sufficiently large, the set {F = 0} ∩ �L+2δ satisfies:

inf
{
|ζ − ζ ′|∞ : ζ, ζ ′ ∈ {F = 0} ∩ �L+2δ, ζ �= ζ ′} > 7δ. (4.5)

Suppose that ζ, ζ ′ ∈ {F = 0} ∩ �L+2δ are such that 0 < |ζ − ζ ′|∞ ≤ 7δ. Since
L/δ ∈ N, we can select a lattice point λ ∈ �L+2δ such that 0 < |λ − ζ | ≤ δ. We now
use repeatedly (4.2) and (4.3).

First, we use (4.2) with w = ζ and z = ζ ′ − ζ , and note that Fζ (ζ
′ − ζ ) = 0 and

Fζ (0) = 0 while |ζ − ζ ′| ≤ √
2|ζ − ζ ′|∞ ≤ 7

√
2δ ≤ 10 to obtain:

∣∣∣F ′
ζ (0)

∣∣∣
∣∣ζ ′ − ζ

∣∣ ≤ γ · √
log(1/δ) · |ζ ′ − ζ |2.

Since ζ �= ζ ′, we conclude:
∣∣
∣F ′

ζ (0)
∣∣
∣ ≤ γ · √

log(1/δ) · |ζ ′ − ζ |. (4.6)

Second, we similarly apply (4.3) with w = ζ and z = λ − ζ , to obtain

∣∣∣Fζ (λ − ζ ) · e− 1
2 |λ−ζ |2 − F ′

ζ (0) · (λ − ζ )

∣∣∣ ≤ γ · √
log(1/δ) · |λ − ζ |2.

Combining the last equation with (4.6) yields

∣∣∣Fζ (λ − ζ ) · e− 1
2 |λ−ζ |2

∣∣∣ ≤ γ · √
log(1/δ) ·

(
|λ − ζ |2 + |ζ ′ − ζ | · |λ − ζ |

)
. (4.7)

Third, we apply (4.2) with w = λ and z = ζ − λ to obtain

∣∣Fλ(0) + F ′
λ(0) · (ζ − λ)

∣∣ ≤ γ · √log(1/δ) · |ζ − λ|2. (4.8)

Note that |Fλ(0)| = ∣∣Fζ (λ − ζ )
∣∣ · e− 1

2 |λ−ζ |2 . Hence, combining (4.7) and (4.8) we
obtain:

|Fλ(0)| ≤ γ · √
log(1/δ) ·

(
|λ − ζ |2 + |ζ ′ − ζ | · |λ − ζ |

)
,

∣∣F ′
λ(0)

∣∣ · |λ − ζ | ≤ γ · √
log(1/δ) ·

(
2|λ − ζ |2 + |ζ ′ − ζ | · |λ − ζ |

)
.

Since 0 < |λ − ζ | ≤ δ and |ζ − ζ ′|∞ ≤ 7δ, we conclude that

|Fλ(0)| ≤ γ · √log(1/δ) ·
(
|λ − ζ |2 + |ζ ′ − ζ | · |λ − ζ |

)
≤ 11 · γ · δ2 · √

log(1/δ),
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∣∣F ′
λ(0)

∣∣ ≤ γ · √log(1/δ) · (
2|λ − ζ | + |ζ ′ − ζ |) ≤ 12 · γ · δ · √

log(1/δ).

Assuming as we may that κ > 11, this contradicts (4.4). Thus, (4.5) must indeed hold.

4.4 Linearization Holds with Estimated Slopes

For each λ ∈ �L , we use the notation

τλ = Fλ(δ) − Fλ(0)

δ
,

and observe that, by (4.2),

∣
∣τλ − F ′

λ(0)
∣
∣ ≤ γ · √

log(1/δ) · δ. (4.9)

Combining this with (4.3), we conclude that for |z|∞ ≤ 2δ and λ ∈ �L ,

∣
∣Fλ(z)e

− 1
2 |z|2 − (

Fλ(0) + τλz
)∣∣ ≤ ∣

∣Fλ(z)e
− 1

2 |z|2 − (
Fλ(0) + F ′

λ(0)z
)∣∣ + |z| ∣∣F ′

λ(0) − τλ

∣
∣

≤ 2γ · √log(1/δ) · |z|2∞ + |z| · γ · √
log(1/δ) · δ (4.10)

≤ (8 + 2
√
2) · γ · δ2 · √

log(1/δ).

≤ 11 · γ · δ2 · √
log(1/δ). (4.11)

4.5 After the Selection Step, Each True Zero is Close to a Computed Zero

We show that

({F = 0} ∩ �L) ⊆ Z1 + Qδ/2(0). (4.12)

(Recall that Z1 is the set produced after the selection step, while the cube Qδ(0) is
defined in Sect. 3.1.)

Let ζ ∈ �L be a zero of F . Since L/δ ∈ N, we can find λ ∈ �L such that
|ζ − λ|∞ ≤ δ/2. We show that λ ∈ Z1.

Let us first prove that

|τλ| ≥ κγ
√
log(1/δ) · δ. (4.13)

Suppose to the contrary that |τλ| < κγ
√
log(1/δ)·δ.Wewill show that this contradicts

(4.4). Assuming as we may that κ ≥ 1, by (4.9),

|F ′
λ(0)| ≤ (

κγ + γ
)√

log(1/δ) · δ ≤ β,

while, by (4.2),
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|Fλ(0)| = |Fλ(0) − Fλ(ζ − λ)|
≤ ∣

∣Fλ(ζ − λ) − (
Fλ(0) + F ′

λ(0)(ζ − λ)
)∣∣ + ∣

∣F ′
λ(0)(ζ − λ)

∣
∣

≤ γ
√
log(1/δ)|ζ − λ|2 + |F ′

λ(0)||ζ − λ|

≤ γ
√
log(1/δ)

(√
2δ

2

)2

+ |F ′
λ(0)|

√
2δ

2

≤ γ

2

√
log(1/δ)δ2 +

√
2

2
(κγ + γ )

√
log(1/δ)δ2

=
(
1 + √

2

2
+

√
2

2
κ

)
γ
√
log(1/δ)δ2

≤ α,

provided κ ≥ 1+√
2

2−√
2
. This indeed contradicts (4.4). We conclude that (4.13) holds.

Second, we show that λ ∈ Z1 by showing that the test (2.7) is satisfied. By (4.10),
and since |ζ − λ|∞ ≤ δ/2, we have

|Fλ(0)| ≤ ∣∣Fλ(ζ − λ)e− 1
2 |ζ−λ|2 − (Fλ(0) + τλ(ζ − λ))

∣∣ + |τλ||ζ − λ|

≤ 2γ
√
log(1/δ)δ2 +

√
2

2
|τλ|δ. (4.14)

Choosing κ ≥ 8
3−2

√
2
, (4.14) and (4.13) further imply

|Fλ(0)| ≤
(
3 − 2

√
2

4
+

√
2

2

)
|τλ| δ = 3

4
|τλ| δ. (4.15)

Hence,

ηλ = 3

4
|τλ|δ. (4.16)

Let μ ∈ � be an arbitrary lattice point with |μ − λ|∞ = 2δ. By (4.11),

|Fλ(μ − λ)|e− 1
2 |μ−λ|2 = |Fλ(μ − λ)e− 1

2 |μ−λ|2 − Fλ(ζ − λ)e− 1
2 |ζ−λ|2 |

= ∣∣Fλ(μ − λ)e− 1
2 |μ−λ|2 − (Fλ(0) + τλ(μ − λ))

− Fλ(ζ − λ)e− 1
2 |ζ−λ|2 + (Fλ(0) + τλ(ζ − λ)) + τλ(μ − ζ )

∣∣

≥ |τλ||μ − ζ | − (11 + 2)γ
√
log(1/δ)δ2

≥ |τλ||μ − ζ |∞ − 13γ
√
log(1/δ)δ2

≥ |τλ|(|μ − λ|∞ − |ζ − λ|∞) − 13γ
√
log(1/δ)δ2

≥ 3

2
|τλ|δ − 13γ

√
log(1/δ)δ2.
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Together with (4.14), this implies

|Fλ(μ − λ)|e− 1
2 |μ−λ|2 ≥ |Fλ(0)| + 3 − √

2

2
|τλ|δ − 15γ

√
log(1/δ)δ2.

Finally, we use (4.13) to analyze the obtained comparison margin against (4.16):

3 − √
2

2
|τλ|δ − 15γ

√
log(1/δ)δ2

≥ 3

4
|τλ|δ + 3 − 2

√
2

4

(
κγ

√
log(1/δ)δ2

)
− 15γ

√
log(1/δ)δ2

= 3

4
|τλ|δ +

(
3 − 2

√
2

4
κ − 15

)
γ
√
log(1/δ)δ2

≥ ηλ,

where we fixed the value of κ so that 3−2
√
2

4 κ − 15 ≥ 0. Therefore, the point λ passes
the selection test (2.7) (as formulated in (3.5)), i.e., λ ∈ Z1, as claimed.

4.6 After the Selection Step, Each Computed Zero is Close to a True Zero

We show that

Z1 ⊆ {F = 0} + Q2δ(0). (4.17)

Let λ ∈ Z1 be a computed zero, and let us find a zero z of F with |λ − z|∞ ≤ 2δ. In
terms of the Fock shift Fλ, the success of the test (2.7) reads,

|Fλ(μ)|e− 1
2 |μ|2 ≥ |Fλ(0)| + ηλ, for all μ ∈ � such that |μ|∞ = 2δ; (4.18)

see (3.5). For an arbitrary z ∈ C with |z|∞ = 2δ, we can find a lattice point μ ∈ �

with |μ|∞ = 2δ such that |z − μ| = |z − μ|∞ ≤ δ/2. Hence, by (4.11),

|Fλ(z)e
− 1

2 |z|2 − Fλ(μ)e− 1
2 |μ|2 | ≤ ∣∣Fλ(z)e

− 1
2 |z|2 − (

Fλ(0) + τλz
)∣∣

+ ∣∣Fλ(μ)e− 1
2 |μ|2 − (

Fλ(0) + τλμ
)∣∣

+ |τλ| |z − μ|
≤ 1

2 |τλ|δ + 22γ · √log(1/δ)δ2.

By (4.4) and (4.9), either |τλ|δ ≥ κγ
√
log(1/δ) · δ2 or |Fλ(0)| ≥ κγ

√
log(1/δ) · δ2 ≥

|τλ|δ. Choosing κ ≥ 88 ensures in the first case that

|Fλ(z)e
− 1

2 |z|2 − Fλ(μ)e− 1
2 |μ|2 | ≤ 3

4
|τλ|δ ≤ ηλ
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and in the second case

|Fλ(z)e
− 1

2 |z|2 − Fλ(μ)e− 1
2 |μ|2 | ≤ 3

4
|Fλ(0)| ≤ ηλ.

Combining this with (4.18), we conclude that

|Fλ(z)|e− 1
2 |z|2 ≥ |Fλ(0)|, for all z ∈ C such that |z|∞ = 2δ. (4.19)

By Lemma 3.1, there exists wλ ∈ C with |wλ| ≤ 2δ such that Fλ(wλ) = 0. This
means that zλ := wλ + λ is a zero of F that satisfies |zλ − λ|∞ ≤ 2δ, as desired.

4.7 Definition of theMap8

We now look into the sieving step of the AMN algorithm and analyze the final output
set Z.

Given ζ ∈ {F = 0}∩�L , we claim that there exists λ ∈ Z such that |ζ −λ|∞ ≤ 2δ.
Suppose to the contrary that

|ζ − λ|∞ > 2δ, λ ∈ Z. (4.20)

By (4.12), there exists μ ∈ Z1 such that |ζ −μ|∞ ≤ δ/2. By (4.20), Z � Z∪ {μ}. We
claim that Z ∪ {μ} is 5δ-separated. For this, it suffices to check that

|μ − λ|∞ > 4δ, λ ∈ Z.

If λ ∈ Z, by (4.17), there exist ζ ′ ∈ {F = 0} such that |ζ ′ −λ|∞ ≤ 2δ. If ζ ′ = ζ , then
|ζ − λ|∞ ≤ 2δ, contradicting (4.20). Thus, ζ �= ζ ′, while, ζ ′ ∈ Z + Q2δ ⊂ �L+2δ .
Hence, we use (4.5) to conclude that

|μ − λ|∞ ≥ |ζ − ζ ′|∞ − |μ − ζ |∞ − |λ − ζ ′|∞ ≥ 7δ − δ/2 − 2δ > 4δ.

Thus, the set is 5δ-separated:

inf
{
|λ − λ′|∞ : λ, λ′ ∈ Z ∪ {μ}, λ �= λ′} ≥ 5δ,

contradicting themaximality of Z. It follows that a point λ ∈ Z such that |ζ −λ|∞ ≤ 2δ
must exist. We choose any such point, and define (ζ) = λ.

4.8 Verification of the Properties of8

By construction, the map  satisfies (2.15). We now show the remaining properties.
To show that  is injective, assume that (ζ) = (ζ ′). Then, by (2.15),

|ζ − ζ ′|∞ ≤ |(ζ) − ζ |∞ + |(ζ ′) − ζ ′|∞ ≤ 4δ.
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Hence, by (4.5), we must have ζ = ζ ′.
Finally, assume that λ ∈ Z ∩ �L−2δ and use (4.17) to select a zero ζ ∈ {F = 0}

such that |ζ − λ|∞ ≤ 2δ. Then ζ ∈ �L , and, by (2.15),

|(ζ) − λ|∞ ≤ |(ζ) − ζ |∞ + |ζ − λ|∞ ≤ 4δ. (4.21)

As λ,(ζ ) ∈ Z and Z is 5δ-separated (see (2.8)), we conclude that λ = (ζ), as
claimed.

This concludes the proof of Theorem 2.2. ��

5 Numerical Experiments

In this section, we perform a series of tests of the AMN algorithm and compare its
performance with MGN and thresholding supplemented with a sieving step (ST).

5.1 Simulation

We first discuss how to simulate samples from the input model (2.9). To make simu-
lations tractable, we introduce a fast method to draw samples of the Gaussian entire
function F0 given by (2.10) on the finite grid (1.6). The method is based on the rela-
tion between the Bargmann transform and the short-time Fourier transform (1.2) and
amounts to discretizing the underlying signal f .

We fix L > 0, T > 0, and δ > 0. For convenience, we further let σ = 1 and
assume that T δ−1 is an integer. Recall that we also assumed that Lδ−1 is an integer.

To model a discretization of N , we take i.i.d. noise samples in the interval [−T −
L, T + L] ⊆ R spaced by a distance δ. More specifically, we consider a random
vector w = (w−(T +L)δ−1 , . . . , w(T +L)δ−1), where the elements ws ∼ NC(0, δ) are
independent, i.e., E[wsws] = δ, and E[wsws′ ] = 0 for s �= s′. Here, ws can be
interpreted as an integration of N over the interval [δs, δ(s + 1)].

Let f 1 : R → C, ϕ = g|[−T ,T ] the restriction of g(t) = ( 2
π
)
1
4 e−t2 to the compact

support [−T , T ] and define

Ĥ(k + i j) :=
T δ−1+k∑

s=−T δ−1+k

(
ws + δ f 1(δs)

)
ϕ(δ(s − k))e−2is jδ2 , (5.1)

for k, j ∈ {−Lδ−1, . . . , Lδ−1}. The mean of Ĥ is given by

E[Ĥ(k + i j)] = δ

T δ−1+k∑

s=−T δ−1+k

f 1(δs)ϕ (δ(s − k))e−2is jδ2 , k, j ∈ {−Lδ−1, . . . , Lδ−1},
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and approximates the integral

∫ ∞

−∞
f 1(t)g(t − x)e−2iyt dt = e−i xye− 1

2 (x2+y2)F1(z),

with x = δk and y = δ j . Furthermore, the covariance of Ĥ is

Cov
(
Ĥ(k + i j), Ĥ(k′ + i j ′)

)

= δ

T δ−1+k′∑

s=−T δ−1+k′
ϕ

(
δ(s − k′)

)
ϕ (δ(s − k))e−2is( j− j ′)δ2 .

For small δ and sufficiently large T , this is an approximation of the integral

∫ ∞

−∞
g
(
t − δk′)g

(
t − δk

)
e−2i t( j− j ′)δ dt = e− u2+v2+x2+y2

2 ei(uv−xy)e(x−iy)(u+iv),

(5.2)

with x = δk, y = δ j , u = δk′, and v = δ j ′. Therefore, if we take T large enough so
that we can ignore the numerical error introduced by the truncation of the normalized
Gaussian window g, we obtain in (5.1) a random Gaussian vector whose covariance
structure approximates the right-hand side of (5.2) on the grid �L , provided that δ is
small.

To obtain a vector whose covariance structure approximates (2.10), we proceed as
follows. By conjugating z in (5.1) and multiplying by the deterministic factor e−i xy ,

we obtain an approximate sampling of (2.9) with weight e− 1
2 |z|2 :

e− 1
2 |z|2 F(z) ≈ e−i xy Ĥ(z̄) (5.3)

for z = δk + iδ j . We carry out all computations with the weighted function (5.3), as
the unweighted version can lead to floating point arithmetic problems. Note that, for

a grid point λ, the comparison margin (2.6) can be expressed in terms of e− 1
2 | · |2 F( · )

as

ηλ = max
{
e− 1

2 |λ|2 |F(λ)| , 3
4

∣∣e
1
2 δ(2i Im(λ)+δ)e− 1

2 |λ+δ|2 F(λ + δ) − e− 1
2 |λ|2 F(λ)

∣∣}.

5.2 Specifications for the Experiments

5.2.1 Implementation of the Sieving Step in AMN

In order to fully specify the AMN algorithm, we need to fix an implementation of
the sieving step, which provides a subset Z ⊆ Z1 satisfying (2.8), and such that no
proper superset Z1 ⊇ Z̃ � Z satisfies (2.8). We choose an implementation that uses
knowledge of the input F to decide which points are to be discarded. We assume that
Z1 is non-empty, otherwise Z is trivial.
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Algorithm S1: Obtain a maximal subset that is 5δ separated.

Input: Values of a function F on a grid �L . A discrete non-empty set Z1 ⊆ �L .

Step 1: Copy the set Z1 to Zaux
1 .

Step 2: Consider the (pre)ordered set (Zaux
1 ,�), where

λ � μ ⇐⇒ e− 1
2 |λ|2 |F(λ)| ≤ e− 1

2 |μ|2 |F(μ)| , λ, μ ∈ �L . (5.4)

Step 3: Choose a minimal point λ ∈ (Zaux
1 , �).

Step 4: Add λ to Z .
Step 5: Remove all μ ∈ Zaux

1 such that

0 ≤ |λ − μ|∞ ≤ 4δ. (5.5)

Step 6: If the set Zaux
1 is not empty, repeat Steps 3–6. If the set Zaux

1 is empty, then the algorithm ends.
Output: The set Z.

The resulting set Z ⊆ Z1 always satisfies (2.8). Moreover, any superset Z̃ �

Z included in Z1 must contain some of the discarded points μ ∈ Z1, which by
construction satisfy (5.5) for some λ ∈ Z , and therefore Z̃ is not 5δ separated. Thus,
Z is indeed maximal with respect to (2.8).

The choice of λ ∈ Z aux
1 in Step 3 of S1 is not essential. Our particular choice

is motivated by finding the zeros of F ; however, we did not observe any significant
performance difference when using other algorithms than S1 as the sieving step of
AMN.

5.2.2 Specification of the Compared Algorithms

Given the values of a function F : C → C on the grid �L , we consider the following
three algorithms to compute an approximation of {F = 0} ∩ �L−1.

• AMN: the AMN algorithm run with domain length L − 1 and with sieving step
S1 implemented as described in Sect. 5.2.1,

• MGN: outputs the set of all grid points λ ∈ �L−1 such that

e− 1
2 |λ|2 |F(λ)| ≤ e− 1

2 |μ|2 |F(μ)|, |λ − μ|∞ = δ. (5.6)

• ST: outputs the set of grid points λ ∈ �L−1 obtained as the result of applying the
sieving algorithm S1 to

{
λ ∈ �L−1 : e− 1

2 |λ|2 |F(λ)| ≤ 2δ
}

.

Note that each of the algorithms relies only on the samples of F on �L+2δ−1. The
use of a common input grid �L simplifies the notation when considering various grid
spacing parameters δ.
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5.2.3 Varying the Grid Resolution

In the numerical experiments, we start with a small minimal spacing value δ = δHi,
that provides a high-resolution approximation in (5.1), and simulate F as in Sect. 5.1.
We then incrementally double δ to produce coarser grid resolutions and subsample F
accordingly. More precisely, each element of the grid �L can be written as

λk,l = (−L + kδ) + i(−L + lδ),
0 ≤ k ≤ M,

0 ≤ l ≤ N ,
(5.7)

for adequate M , N > 0. If F is given on �L , we subsample it by setting

S(F)(λk,l) := F
(
λ2k+i2l

)
, (5.8)

for values (k, l) such that the indices 2k + i2l are valid.

5.3 Faithfulness of Simulation of Zero Sets

As a first test, we simulate random inputs from the model (2.9), as specified in Sect.
5.1, apply the above-described three different algorithms, and test whether this pro-
cess faithfully simulates the zero sets of the random function (2.9). To this end, we
estimate first or second order statistics on the computed zero sets by averaging over
several realizations of (2.9), and compare them to the corresponding expected values
concerning the zero sets of (2.9).

5.3.1 No Deterministic Signal

Wefirst consider the case F1 ≡ 0 and σ = 1 in (2.9). Let F̂δHi
1 , . . . , F̂δHi

R be R indepen-
dent realizations of samples of (2.9) on a grid �L with resolution δ = δHi, simulated
as in Sect. 5.1. These are then subsampled with (5.8) yielding Fδk

r = S(k)(FδHi
r ) and

used as input for AMN, MGN, and ST, as specified in Sect. 5.2.2. The corresponding
output sets are denoted Ẑ δ

r where we omit the dependence on the method to simplify
the notation. These sets should approximately correspond to {Fr = 0} ∩ �L−1, for R
independent realizations of (2.9). We now put that statement to test.

The expected number of zeros of the random function F on a Borel set � ⊆ C is

E[|{F = 0} ∩ �|] =
∫

�

1

π
dm(ζ ) = |�|

π
, (5.9)

see, e.g., [19, Sect. 2.4]. We define the following empirical estimator for the first
intensity ρ1 = 1/π :

ρ̂(�, r , δ) = |Ẑ δ
r ∩ �|
|�| . (5.10)
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Table 1 Empirical means ± standard deviations of the estimation errors ρ̂(�, r , δ) − 1/π for � = �L−1,
L = 7, and 1000 independent realizations

δ AMN MGN ST

2−4 −0.00120 ± 0.01171 −0.00048 ± 0.01150 +0.01868 ± 0.02858

2−5 −0.00062 ± 0.01164 −0.00057 ± 0.01162 +0.02189 ± 0.04047

2−6 −0.00065 ± 0.01156 −0.00064 ± 0.01155 +0.02280 ± 0.05391

2−7 −0.00068 ± 0.01153 −0.00068 ± 0.01153 +0.02354 ± 0.06774

2−8 −0.00062 ± 0.01155 −0.00062 ± 0.01155 +0.02424 ± 0.07429

2−9 −0.00067 ± 0.01158 −0.00067 ± 0.01158 +0.02390 ± 0.07237

Benchmark values for a faithful computation are 0 for the mean and 0.01165 for the standard deviation

If the computed set Ẑ δ
r were replaced by {F = 0} in (5.10), the estimator would

be unbiased. The mean of the estimation error ρ̂(�, r , δ) − 1/π thus measures the
quality of the algorithm used to compute Ẑ δ

r , as it should be close to zero when the
algorithm is faithful. In Table 1, we present the empirical means and the empirical
standard deviations of the estimation error over R = 1000 independent realizations
Fδ

r for L = 7, � = �L−1, T = 6, and various grid sizes δ.
To derive a benchmark for the empirical standard deviation of ρ̂(�, r , δ) − 1/π ,

we express the variance of |{F = 0}∩�|/|�| in terms of the second intensity function
ρ2(ζ, ζ ′) of {F = 0} as follows:

E

[(
|{F = 0} ∩ �| − |�|

π

)2]

= E
[|{F = 0} ∩ �| · (|{F = 0} ∩ �| − 1)

] − |�|2
π2 + |�|

π

=
∫

�

∫

�

ρ2(ζ, ζ ′) dm(ζ ) dm(ζ ′) − |�|2
π2 + |�|

π
. (5.11)

A formula for ρ2(ζ, ζ ′) is provided in [18] and numerical integration over � = �L−1
results in

√
Var[|{F = 0} ∩ �|/|�|] ≈ 0.01165. We see in Table 1 that the methods

AMN and MGN almost perfectly match the expected mean and standard deviation
while ST does not.

5.3.2 Deterministic Signal Plus Noise

We now consider the input model (2.9) with F1 �= 0 and σ = 1. We choose F1

from Table 2 and rescale it so that A = supζ∈C e− 1
2 |ζ |2 |F1(ζ )| holds for the signal

intensities A = 1 and 100.
We only test first-order statistics of the computed zero sets. The benchmark is

provided by Proposition 3.4: the expected number of zeros of F in � is

E[|{F = 0} ∩ �|] =
∫

�

ρ1(ζ ) dm(ζ ), (5.12)
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Table 2 Functions f 1 and their
Bargmann transforms
F1 = B( f )

f 1 F1

f 1(t) = ( 2
π )

1
4 e−t2 F1(ζ ) = 1

f 1(t) = ( 2
π )

1
4 2te−t2 F1(ζ ) = ζ

where ρ1 is given by (3.11) (with σ = 1). For each of the tested algorithms, we define
an estimator for the error resulting from replacing {F = 0} in (5.12) by the computed
set Ẑ δ

r (for 1 ≤ r ≤ R):

β̂(�, r , δ) = |Ẑ δ
r ∩ �| − ∫

�
ρ1(ζ ) dm(ζ )

|�| . (5.13)

As before, we simulate R = 100 realizations of F = F0 + F1 on a grid with a
certain spacing δ. The empirical average of β̂(�, r , δ) over all realizations is denoted
β̂R(�, δ). As ρ1 is not constant when F1 �= 0, this time we calculate β̂R(�, δ) on
� = �L1 for several values of L1.

The results for δ = 2−9 are depicted in Fig. 5. We see that the performance of
AMN and MGN is indistinguishable, while ST may perform poorly even at such high
resolution. Lower grid resolutions yield similar results.

Construction of U and φ

Input: Two subsets of �L−1: Z̃δHi and ẐδLo .

Step 1: Choose a total order on Z̃δHi . Let U and U ′ be empty sets. If Z̃δHi is empty, output U = ∅ and
φ = ∅. Otherwise proceed to Step 2.

Step 2: Let λ be the first element of Z̃δHi \ (
U ∪ U ′).

Step 3: Let
(λ) = {

μ ∈ ẐδLo \ φ(U ) : |λ − μ|∞ ≤ 2δLo
}
.

If (λ) is non-empty, add λ to U , and choose φ(λ) ∈ (λ) such that

∣∣λ − φ(λ)
∣∣∞ = min

μ∈(λ)

∣∣λ − μ
∣∣∞.

If (λ) is empty, add λ to U ′.
Step 4: If Z̃δHi \ (

U ∪ U ′) is non-empty, repeat Steps 2–4.

Output: The set U and the map φ.

5.4 Failure Probabilities and Consistency as Resolution Decreases

Having tested the statistical properties of the computed zero sets under the input model
(2.9), we now look into the accuracy of the computation for an individual realization
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Fig. 5 Empirical mean of β̂(�, r , δ) for different choices of f 1 and A, increasing domain � = �L1 for
L1 < L , and the three methods. Note the different scale in the bottom right plot illustrating a systematic
error in the ST method

F . We aim to test the existence of a map as in Theorem 2.2, that assigns true zeros
to computed ones with small distortion and almost bijectively. As a proxy for the
(unavailable) ground truth {F = 0}, we will use the output of AMN from data at very
high resolution (computations with MGN yield indistinguishable results). We thus
conduct a consistency experiment, where the zero set of the same realization of F is
computed from samples on grids of different resolution, and the existence of a map as
in Theorem 2.2 between both outputs is put to test.

Suppose that samples of a function F are simulated on a high-resolution grid �L

with spacing δ = δHi and restricted to the low-resolution grid�L with spacing δ = δLo
by subsampling.We compute Z̃ δHi ⊆ �L−1 from the high-resolution data usingAMN,
and Ẑ δLo ⊆ �L−1 from the low-resolution data, using one of the algorithms described
in Sect. 5.2.2.

Second we construct a set U ⊆ Z̃ δHi and a map φ : U → Ẑ δLo
r with the following

greedy procedure:
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The resulting function φ is injective and satisfies

|φ(λ) − λ|∞ ≤ 2δLo.

We say that the computation of Ẑ δLo
r was certified to be accurate if

Z̃ δHi
r ⊆ U and Ẑ δLo

r ∩ �(L−1)−2δLo ⊆ φ(U ). (5.14)

In this case, the map φ satisfies properties analogous to the ones in Theorem 2.2.
Conceivably, other such maps may exist even if the one constructed in the greedy
fashion fails to satisfy (5.14). We define the following computation certificate:

M(Z̃ δHi , Ẑ δLo) =
{
0 if (5.14) holds

1 otherwise.

The experiment to estimate failure probabilities as a function of the grid resolutions
is fully specified as follows.We consider the input model (2.9) with σ = 1.We choose

F1 from Table 2 and rescale it so that A = supζ∈C e− 1
2 |ζ |2 |F1(ζ )| holds for the signal

intensities A = 1 and 100. We fix L > 0 and δHi > 0 and let F̂δHi
1 , . . . , F̂δHi

R be R
independent realizations of samples of (2.9) on a grid �L with resolution δ = δHi,
simulated as in Sect. 5.1. These are then subsampled j times with (5.8) yielding
Fδk

r = S(k)(FδHi
r ), 1 ≤ k ≤ j .

We use AMN with input FδHi
r to obtain a set Z̃ δHi

r . Further, for each 1 ≤ k ≤ j ,
we use each of the algorithms M = AMN, MGN, or ST with input Fδk

r to obtain
sets Ẑ δk

r ,M . Finally, we compute all the certificates M(Z̃ δHi
r , Ẑ δk

r ,M ) and average them
over all realizations to obtain the following estimated upper bound for the failure
probability of the method M with grid spacing δ = δk :

p(δk, M) := 1

R

R∑

r=1

M(Z̃ δHi
r , Ẑ δk

r ,M ). (5.15)

We present in Table 3 values obtained for p(δk, M) for a resolution starting as high
as δHi = 2−9, with a truncation of the window g at T = 6, in the target domain
�L−1 for L = 7, and R = 1000 realizations of a zero-mean F . We also present the
results for F1 as in Table 2, rescaled to achieve a signal intensity A = 1 or A = 100.
We see that both AMN and MGN deliver very low failure probabilities (with MGN
slightly outperformingAMNat lower resolutions). In contrast, STdelivers large failure
probabilities even at high resolution.

6 Conclusions and Outlook

We analyzed the AMN algorithm under a stochastic input model aimed to describe
the performance of the method in practice [25]. One limitation of our analysis is the
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assumption that grid samples of the Bargmann transform are exactly given, while,
more realistically, acquired data corresponds to averages of the signal values resulting
from analog to digital conversion and numerical integration. Second, we considered
complex-valuedwhite noise,while in practice noisemay also be colored or real-valued.
We understand that the techniques used to prove Theorem 2.2 are general enough to
allow for a refinement of the result in these directions. Similarly, we expect to be able
to adapt our analysis of AMN to other ensembles of analytic functions, which are
relevant in connection to other signal transforms. A more challenging open direction
is the investigation of rigorous performance guarantees for MGN, which remains the
algorithm of choice in practice.
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