
mathematics of computation, volume 27, number 123, july, 1973

Efficient Computer Manipulation of Tensor Products

with Applications to Multidimensional Approximation

By V. Pereyra and G. Scherer

Abstract. The objective of this paper is twofold :

(a) To make it possible to perform matrix-vector operations in tensor product spaces,

using only the factors (n-p1 words of information for ®"=1 A¡, A¡ £ £(£", E")) instead of

the tensor-product operators themselves ((/>2)" words of information).

(b) To produce efficient algorithms for solving systems of linear equations with coef-

ficient matrices being tensor products of nonsingular matrices, with special application to the

approximation of multidimensional linear functionals.

1. Introduction. The use of multilinear algebra in applied numerical analysis

has been rare. However, this is not the case in theoretical numerical analysis. In

recent times, interest has grown in the use of tensor product interpolation rules

in such different areas as multidimensional numerical quadrature [6], finite elements

[4], interpolation and approximation.

Despite this widespread theoretical interest, there are practically no algorithms

for performing the various tasks required by these applications. This paper attempts

to start filling the gap.

We shall consider some of the basic operations in tensor spaces, and we shall

indicate ways and means to perform them on a digital computer using a high level

programming language. The aim is, of course, towards economy, both in arithmetic

and storage, simplicity, sequential processing, and thus optimization in the manipula-

tion of subscripts.

After giving some basic notations in Section 2, we pass on to describe

an algorithm for performing the Kronecker product matrix-tensor multiplication

(Ax (x) • • ■ (x) Ak)x. It is clear from the beginning that a computer implementation of

an algorithm which wants to be independent of the number of factors k must avoid

the use of multi-indexed arrays. This holds even more if considerations on economy

in index manipulations and storage are taken into account. It turns out, as we explain

in Sections 3 and 4, that the whole process can be carried out sequentially and in

a fairly simple manner.

In Section 5, we deal with systems of linear equations of the form

Mi ® ••• ® Ak)x = b.

The idea in all cases is, of course, to be able to work with the factors A¡ indi-

vidually, and never form explicitly the tensor product (x) A¡. This is achieved in a

Received March 8, 1972.

AMS (MOS) subject classifications (1970). Primary 65D15, 65F30; Secondary 65N30, 15-04,
15A69.

Key words and phrases. Computer manipulation of tensor products, multidimensional functional

approximation, construction of finite elements, tensor product systems.

Copyright© 1973, American Mathematical Society

595

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

596 V. PEREYRA AND G. SCHERER

fairly straightforward way, and the practicality of the algorithms and the code offered

are supported by the numerical results of Section 6, which show applications in

tri-dimensional Lagrange interpolation.

This algorithm, coupled with the efficient, one-dimensional techniques of [1], [5],

should provide a powerful tool in many applications.

Those readers only interested in the algorithmic part of this paper, and who

are ready to accept the validity of the recursion (3.2), should direct their attention

to Sections 4, 5, 6 and skip the more formal (and somewhat heavy) manipulations

of Sections 2 and 3.

The authors would like to acknowledge the very expert and kind handling of

this paper by the editor, and also the excellent suggestions of one of the referees.

2. Tensor Product Spaces. In this section, we shall introduce some necessary

notation and well-known properties of tensor product spaces which will be needed

in the sequel. For details, we refer to [3].

Let Uu U2, ■ ■ ■ , Uk be Euclidean spaces of dimensions zz,, n2, ■ ■ ■ , nk, respectively,

and let U*x, U%, ■ ■ ■ , U*k be their duals.

As usual, if x is an element of the Euclidean space U, we denote by x* the linear

functional (element of U*) defined by

Vy£!/, **(y) = (x, y) (where (,) denotes inner product).

The tensor product space U formed with Ux, U2, • ■ ■ , Uk will be denoted by

Ux (x) U2 ® • • ■ (x) Uk, and it will be the set of all linear combinations of the symbols

(2.1) Xi (x) x2 (x) • • • (x) xk, with x, G U,.

Let us suppose that the tensor product space U is formed with s spaces {U, \,

i = I, ■ ■ ■ , s, and / spaces [U*},j= 1, • • ■ , /, where the U* are the duals of some

of the spaces [/,. Then we shall call its elements s times contravariant and / times

covariant tensors, or is, /)-tensors for short.

Any element of U = Ux ® ■ ■ • ® U, ® U* ® • • ■ ® U* can be generated

as a linear combination of elements of the form

x, ® • • • ® xs (x) x* (x) • ■ ■ (g) x* ,

where the ï, £ (/,, x* G U*.

From a is, /)-basis-tensor, we can obtain a (5 — 1, / — l)-basis-tensor by cozz-

traction of one contravariant and one covariant component, provided they belong

to dual spaces

(2 2) cfcx) = c,(x, ® • • • ® X, ® xf, ® • • • ® X*)

= xf,(x,)-(Xl ® *< ® x, ® x* ® ** ® xf,),

where z, = /.

The operator c\ is extended linearly to all U and is called the contraction of the

/'th contravariant with the /;th covariant component.

Given two tensors u, v, belonging to two spaces U, V, we define the tensor product

of u and v as the element of U ® V:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

EFFICIENT COMPUTER MANIPULATION OF TENSOR PRODUCTS 597

u®v = (Eí/:;;:::;;;e„® ■•• ® e!t® e* ® ••• ® e*)

®(Z^;;::":i:;f„'® ••• ® f,,-® f*-® ••• ® f*o

= Z«'::::::^.:^":.:^.,®---®^® ̂
® • • ■ ® f... ® e* ® • • • ® e* ® f* , ® •.. ® f* ,.

Observe that we have chosen to collect first all the contravariant components,

and then all the covariant ones. This we shall always do.

Any linear operator A G £(/7) can be thought of as a (1, 1) tensor, TA. In fact,

if ¡e,j is a basis for U, and {e*j is the dual basis, then we can associate with A (in

a 1-1 correspondence) the tensor TA — Z; i^e¡) ® e*> ar>d obtain Ax through tensor

multiplication and contraction

(2.3) Ax = cl[22 Ae¡ ® x ® e*-) = Z e*(x)^(e; = 22 x,A;.

Observe that Ae¡ = a, is the y'th column of the matrix representation of A in

the basis (e¿}.

If Ait i = 1, • • • , k, are linear operators from {/, into {/,, then A = Ax ® • • • ® Ak

is a linear operator from U = Ux ® ■ • • ® Uk into itself, defined by

(2.4) iA, ® ■ • • ® Ak)ixx ® • • • ® xk) = /l,x, ® • • • ® ^X*,

and extended to all {/ by linearity.

If the A, are nonsingular, then it is well known that A is nonsingular and that

(2.5) Mi ® • ■ • ® A)"1 = a;' ® • • • ® Al\

As is usually done, whenever there is no possibility of confusion, we shall use

the same symbol to designate a linear operator or its matrix (tensor) representation

in a given basis.

3. Computation with Tensor Product Linear Operators. Our objective now is

to describe the computation of y = (.4, ® A2 ® • • ■ ® Ak)-x, using a minimum

of storage and index manipulation.

To fix ideas, let us consider first in detail the case k = 2:

y = Mi ® A2)x, where x = 22 Z *...,e...i ® e*,.2,

and A¡ = (a,,,,,.), z'¡ = 1, ■ ■ ■ , zz;, ;, = 1, ■•■ ,«,,/= 1, 2.

We shall show that y can be obtained via transformation of A, ® A2 into a

tensor, followed by a tensor multiplication and two index contractions.

The matrix A = Ax ® A2 is associated with the (zz, -zz2, «i -zz2)-tensor

Ta = Ta, ® TA,

= 22 «¿.í,,ie¡..i ® ef,,, ® Z «. = /5.2e.3.2® e*,2
11, í i J'2,1'2

Z '!¡,f„ifl¡1¡!,!e,',.i ® els,2® ef,,, ® e*,2.
t" 1,12 . Í1. i 9

As in the one-dimensional case, we compute c\c\{TA ® x).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

598 V. PEREYRA AND G. SCHERER

We observe that this is equivalent to

cl(TA, ® cliTA. ® *)) = ¿(TA, ® Z Z)Z«.....2*.,..(ei..î®e.liI)

= Z Z (Z «..»..i(Z o.-,...2*.l.,))e.-,.i ® eia,2,

which by definition is equal to the desired product

Mi® A2)x = y.

In order to simplify the notation, we shall, in the following, omit the indices

identifying the spaces.

We shall systematically use the indices iu jt, st for objects associated with U¡

or its dual, which should make clear to what spaces, basis, etc. we are referring.

Also, we will use, when possible, multi-indices i = (iu • • • /'*), etc.

With this notation, we have es = e,, ® • • • ® e,t.

We consider now the general case k 2: 2.

Let x = Zi *iei> and> for A. = Ax ® • • • ® Ak, let

(3.1) TA = Ta,®---® TAl.

It is well known that

y = Mi® ••• ® Ak)x = Z (Z «<,<, ■•• «<»i»*j)«i-

We shall obtain y recursively, in a form appropriate for implementation on a

digital computer.

We define yu> = x, and in general

(3.2) y«-'-1' =c1k+xiTAt_,®Ylk-')), t - 0, 1, • • • , k - 1.

In the following lemma, we prove that the tensor y<0) obtained in this form is

really y = Ax.

We use the following notation:

i< = (*i, • • • , <,), if = (fi+i, • ■ ■ . z't).

Lemma 1. Let y<0) be obtained recursively by formula (3.2). Then y((" = y.

Proof. By formula (3.2),

(3.3)

y'*"1' = cl+xiTAt ® yU)) = clfTAt ® x)

= cl+,((Z a.»/»«.» ® e*) ® Z *.e.)

= Z Z (Z a<*.^«-,.Je.-t ® es«-,-
t'4 St-i \ 81; '

(Observe the change in the order of the basis vectors !)

We assume for an induction argument that

y(* ° = Z Z(Z a¡t-i+..»*-.+> •• «<i.**M-i.M-.»)«i*-i»® *«-■'
ik-l* Sfc-j ^Si-i* '

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

EFFICIENT COMPUTER MANIPULATION OF TENSOR PRODUCTS 599

If we now apply TAk_,:

TAk-,®y{k' " = Z Z Z 22an-,,ik-,yn-",sk-t
»*-(it-t* S*-J ít-í

O.*•e,*_,® ei)b_,.® esi_,® e?_,,

and finally

y'4-'-1' =cUxiTAt-t®ylk-n)

~ 2-t zLd 2~t \ 2~t aik-tsk-tyik-t*,sk-t)

•e,„-, ® eu_,. ® est_,_,

2—1 2-1 \ 2-1 ait-i»t-i ' ' ' aí«»i-*st-i-ist-i-i*J
lk-t-i* Sfc-i-i ^S Jt — í — i * '

as we wished to prove.

Clearly, y(0) = Ax. □

4. Computer Implementation. The implementation of the computation of

Ax, using a high level computer language, is facilitated very much by the develop-

ments of Section 3.

Our aim is to avoid the wasteful use of multi-indexed arrays by organizing the

data in such a way that its processing is as sequential as possible. This will tend to

minimize index manipulation and paging.

The main bridge between multilinear algebra and computer programming is

provided by the following storage convention:

Storage Convention. The components t¡ of tensors of the form

T = Zi.e,..®e,,® ••• ®eit
i

will be stored in one-dimensional arrays according to:

begin

)■■= i;
for ix := 1 step 1 zzzz/z/ nx do

for i2:= 1 step 1 until n2 do

for ik:= 1 step 1 zzzz/z7 zzj, do

begin

71/]:= '.,.,-<*;
J-.-J+ i;
end

end;

The implied order of the factor spaces t/,,, i/,s, • • • , Uik, given by the subindices

of the basis vectors, is of primary importance. That order changes in the recursive

algorithm of Section 3, and this will be the cue for the data handling.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

600 V. PEREYRA AND G. SCHERER

We assume that the matrices A¡ are stored row by row in a linear array A, starting

with Ak and going backwards up to Ax. Thus

Ail) <— axx, Ai2) <— a\2, ■ ■ ■ , Ain\ + 1) <— a^1, ••• , AHnx-n2 ■ ■ ■ nk)2) <— al„,n,.

We also assume that the components of the vector x are given in a linear array

X as explained in the storage convention above.

We define mk = IX** M»-
With the data stored in this fashion, the first contraction cl+fTAl¡ ® y{h)) is

readily obtained by means of the code (confront (3.3)):

procedure CONTRACT ink, mk, N, A, X); integer nk, mk, N; real array A, X;

begin integer I, J, k, Inic, i, s, t;

real SUM;

real array Y[l : N];

label 1: k : = 1; Inic := 1;

label 2: for i : = 1 step 1 mzz/z7 nk do

begin J : = 1;

for s : = 1 step 1 until mk do

begin I : = Inic; SUM : = 0;

for / : = 1 step 1 wzz/z7 nk do

begin SUM : = SUM + A[I] X X[J];
/:= /+ 1;/:- J+ 1;

end;

Y[k]:= SUM;fc:= k + 1;
ezzzi;

Inic : = /;

label 3: end;

for i : = 1 step 1 tzzz/z7 N do

m- mi
finish: end;

This code follows exactly the ordering of the indices indicated by the tensor

products and the storage convention. It produces a result y'*-1' that is stored in

such a way that the next contraction can also be performed sequentially, and so on.

Observe that the index s has taken the place of the multi-index st_i of (3.3).

This index s simply counts the number of sub vectors of dimension zz,. in which the

one-dimensional array X must be subdivided.

If we put zzz, = IX*, Hf, N = I7*,i n¡> and M = Z;-i M/>tnen the complete
product y = Ax can be obtained by means of the following procedure:

procedure TENSOR PRODUCT (M, N, k, n, A, X); integer M, N, k;
integer array n[l : k]; real array A[l : M]; X[l : N];

begin integer mk, nk, L;

nk : = n[k]; mk : = N/nk;

other matrix: CONTRACT (nk, mk, N, A, X);

ifik — I) go to finish;
/c:= k - l;mk:= N/n[k];

go to other matrix;

finish: end;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

EFFICIENT COMPUTER MANIPULATION OF TENSOR PRODUCTS 601

5. Tensor Product Systems of Equations. We would like to consider now the

solution of systems of equations of the form

(5.1) (If,® ••• ® Wk)y = x

where the W(are nonsingular linear operators from the zz,-dimensional vector space

Ui (i = 1, • ■ ■ , k) into itself. Naturally, x, y G Ux ® ■ ■ ■ ® Uk.

From (2.5), we have that the solution to this system is simply given by

(5.2) y = iW;1® ■■■ ® W~kl)x.

Thus, after inversion of the W¡, we can apply the algorithm of Section 4 directly.

Of course, it is seldom wise to solve a system of equations by inverting the matrix

of coefficients [2, Chapter 2, Section 1.1], and we shall look for a different approach.

Let V~i, Li be upper and lower triangular matrices respectively such that V¡ =

Li Wi. Thus,

iLx ® L2 ® ■ ■ ■ ® Lk)-iWx ®W2®---®Wk)

= iVi® v*® ■■■ ® Vk).

The system (5.1) becomes, after multiplication by ® L{,

(5.4) iVx® ■■■ ® Vk)y = (Li ® - • • ® Lk)x.

We assume that the nonzero elements of the matrices K, and L, are stored in

one-dimensional arrays V and L in the same way as the Ai were stored in Section 4.

With a small modification in the code to take into account the special form of

the factors L„ we can use the same procedure described in Section 4 in order to

obtain

(5.5) b = (L,® ••• ®L,)x.

To compute the solution of the system (K, ® • • • ® Vk)y = b given by

(5.6) y= iVT1® ...® Ob,

basically, we will use, recursion (3.2).

For this purpose, Ak-t is replaced by Vkit, and y(t> by b. If we make the as-

sumption that b and all the intermediary vectors ya~n are stored in the same way

as in (3.2), then each step of the recursion, in this case is equivalent to the solution

of mk^t upper triangular systems with matrix of coefficients Ft_(. The right-hand

sides of these systems are the vectors obtained by partitioning the present y(*~n in

subvectors of length zz4_,.

Here we have to point out an important difference between the algorithm of

Section 4 and the present one. In the code described in Section 4, the vectors y(*-,_1)

resulted automatically in the appropriate storage mode. This was a consequence

of a convenient ordering of the loops, and it was possible because the components

of y'*"'-" were computed one at a time.

In the present situation though, we shall process y(*~" by whole blocks of length

zz4_,, and the returning blocks will not be in the proper ordering for sequential process-
ing of y(*-'-u.

Let O, be the ordering associated with the tensor product space

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

602 V. PEREYRA AND G. SCHERER

U = t/*_<+1 ® Uk.t+2 ® • • ■ ® Uk ® Ux ® U2 ® • • • ® Uk.„

t = 0, 1, • •• ,k - 1,

according to the storage convention of Section 4.

For a given multi-index s, let zrs = s be the cyclic permutation that sends s¡

into i,+i if 1 ^ i < k, and sk into sx.

For 0 & t £ k — I, T* is defined by repeated application of zr. Clearly, (s?_,, s4_,)

= zr's.

We shall also use K = (1, ■ ■ • , k).
For a given tensor 5£ Î/, each of its components

has the linear address (in the order 0„ and calling s = x's, ê = zr'K)

t-i t

(5.7) add0l(/3î) = E Ci,- - D II «¿. + §*.
i-l j-i+1

Putting/> - 1 = Zî-Ï isi - U IIî-î+i "zr. + ih-i - I), q = sk, we obtain, from

(5.7),

(5.8) add0l(z3î) = ip - l)n¿tk + q.

Observe that p is the block number in the partition of B in blocks of size n&k,

while q is the position of the component in its block.

We now need to compute the linear address corresponding to bSi_,.,ai_, in the

ordering 0,+], associated with the tensor product USk_,_,. ® Ust_,_,.

Of course, we know that if s' = zrs and K' = wEL then

(5.9) add0l+1(¿s) = is'x - 1) ft zz*(, + ¿ « - 1) Û »^- + **•
»"■•2 ;-2 »-J + 1

But, since nKi, = zz¿t, it turns out that H*_2 nKr = mi,. Also, since sj = s,-!,

we have that

t-l k k-2 k-l

z is'i -1) n nKi. + 5« = z & -on »a + ¿*-i = p,
i—2 i-i+l i=l i-7+l

and s'x = sk = q, where p and q were defined just before formula (5.8).

Therefore, replacing these values in (5.9), we obtain the simple address mapping

(5.10) add0l+1(/3,.8) = iq - l)zzz¿i + p.

In the Appendix, we give an ALGOL procedure which reorders the returning

blocks of the process of b'*"", using formulae (5.8), (5.10).

6. Numerical Tests and Possible Applications. The algorithm described in the

earlier sections was used for the solution of systems of the form (Wx ® ■ ■ ■ ® Wk)y

= x with Wi transposed Vandermonde matrices. The program was written in

FORTRAN-G and tested on an IBM 360/50 computer. It was run in double-precision,

which corresponds to 14 hexadecimal digits in the mantissa. We shall refer to this

program as procedure TENSP.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

EFFICIENT COMPUTER MANIPULATION OF TENSOR PRODUCTS 603

For the solution of the resulting transposed Vandermonde systems, we used

a double-precision version of the procedure dvand (see [1]).

The results of our procedure TENSP were compared with a program that uses

the full Kronecker product matrix and solves the system (5.1) by Gaussian elimina-

tion using the IBM supplied routine DGELG. It is quite obvious that this second

approach is counter indicated in practically all cases, but we include it since we know

of cases in which it is used anyway. Our hopes of seeing a complete breakdown due

to ill-conditioning were disappointed because another factor made it impossible

to proceed with values of zz above 5: storage. In fact, for k = 3 and n = 6, we would

have needed 373248 bytes of memory, just for storing the matrix ! Also, the factor

time was growing very fast. Compare with the relevant data for our algorithm.

Observe also that there is a significant loss of accuracy.

The table below shows the results obtained in the case k = 3, with all the IF,

equal and for different sizes «, ■ n + 1.

Table 1

n+ 1

10

15

IHL TENSP*

0.4996 X 10"1S

0.0

0.63144 X 10"

0.7835 X 10"

0.3472 X 10"

IHL DGELG

0.0

0.3035 X 10"13

0.2043 X 10"

* | \r\ I» is the maximum norm of the difference between the exact and the computed solutions.

The vector alpha [0 : n] defines the matrices W{, and its elements are of the form

alpha [j] = j/n.

Given a function /(z,, z2, z3) and an appropriate right-hand side vector x, the

solution to the system of linear equations will be formed by the coefficients of the

polynomial
n

Pizx,z2,z,)= Z yt,i,iÀ%'z»
¡i.H.ii-O

that interpolates / at certain points.

In fact, if we consider the function /(z„ z2, z3) = z\, and define x by

L:= 1;

for / : = 0 step 1 until n do
for J : = 0 step 1 until n do

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

604 V. PEREYRA AND G. SCHERER

or k : = 0 step 1 until zz do

begin

X[L] : = alpha [/] ** n;
L:= L+l;
end;

then we shall have that Pizx, z2, z3) = fx, since f(zx, z2, z3) is interpolated exactly.

Thus, the solution vector will be

v(n+1).+1 = 1; v, = 0 otherwise.

Some further data on these computer runs:

CPU time for DGELG; n = 5 : 2'42.39".
CPU time for TENSP; n = 5, 10, 15 : 55.40".
Storage for TENSP; zz = 15: 64000 bytes.

Storage for DGELG; zz = 5: 150,000 bytes.

By using the procedures pvand of [1], or vanderconf and dualconf of [5], it is

possible to apply this algorithm to a large variety of problems in multidimensional

interpolation of the Lagrange and Hermite type, numerical hyper-cubature, con-

struction of tensor product finite elements, etc. The most remarkable points, we

think, are the efficiency and simplicity of the algorithms and, overall, their ability

to solve problems which are traditionally avoided because of their purported ill-

conditioning. We mean by this, problems involving the solution of Vandermonde

systems which, for moderate sizes, can be solved directly, accurately, and efficiently

by our methods. See [1], [5] for more details.

Appendix. Below, we give an ALGOL procedure for the reordering of y(*~"

(see Section 5, (5.8), (5.10)).

procedure ORDENAR (X, Y, mk, nk, N);

Comment Parameter list:

X[f]: starting vector, length: XT*., zz, = mk X nk = N,

Y[s]: reordered vector;

integer mk, nk, N, t, I, J, s;

real array X, Y;

begin t := 1;

for J : = 1 step 1 until mk do
for I : = 1 step 1 until nk do
begin s := (I — 1) X mk + J;

Y[s]:=X[t];

t = t + 1;
end;

end;

Departamento de Computación

Universidad Central de Venezeula

Apartado 59002
Caracas, Venezuela 105

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

EFFICIENT COMPUTER MANIPULATION OF TENSOR PRODUCTS 605

Departamento de Física Atómica y Molecular

Instituto Venezolano de Investigaciones Científicas

Apartado 1827
Caracas, Venezuela

1. Â. Björck & V. Pereyra, "Solution of Vandermonde systems of equations," Math.
Comp., v. 24, 1970, pp. 893-903. MR 44 #7721.

2. E. Isaacson & H. B. Keller, Analysis of Numerical Methods, Wiley, New York,
1966. MR 34 #924.

3. N. Jacobson, Lectures in Abstract Algebra, Vol. 1, Van Nostrand, Princeton, N.J.,
1951. MR 12, 794.

4. G. Birkhoff, M. H. Schultz & R. S. Varga, "Piecewise Hermite interpolation in one
and two variables with applications to partial differential equations," Numer. Math., v. 11,
1968, pp. 232-256. MR 37 #2404.

5. G. Galimberti & V. Pereyra, "Solving confluent Vandermonde systems of Hermite
type," Numer. Math., v. 18, 1971, pp. 44-60.

6. P. J. Davis & P. Rabinowitz, Numerical Integration, Blaisdell, Waltham, Mass., 1967.
MR 35 #2482.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

