Hindawi

Security and Communication Networks
Volume 2021, Article ID 6688168, 15 pages
https://doi.org/10.1155/2021/6688168

Research Article

WILEY

Hindawi

Efficient Concurrent Execution of Smart Contracts in

Blockchain Sharding

Yan Wang,l’2 Jixin Li,' Wansheng Liu,' and Aiping Tan

1

College of Information, Liaoning University, Shenyang 110036, China
2State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

Correspondence should be addressed to Aiping Tan; aipingtan@lnu.edu.cn

Received 13 November 2020; Revised 8 January 2021; Accepted 1 February 2021; Published 19 February 2021

Academic Editor: Abdelouahid Derhab

Copyright © 2021 Yan Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Throughput performance is a critical issue in blockchain technology, especially in blockchain sharding systems. Although
sharding proposals can improve transaction throughput by parallel processing, the essence of each shard is still a small blockchain.
Using serial execution of smart contract transactions, performance has not significantly improved, and there is still room for
improvement. A smart contract concurrent execution strategy based on concurrency degree optimization is proposed for
performance optimization within a single shard. This strategy is applied to each shard. First, it characterizes the conflicting
contract feature information by executing a smart contract, analyzing the factors that affect the concurrent execution of the smart
contracts, and clustering the contract transaction. Second, in shards with high transaction frequency, considering the execution
time, conflict rate, and available resources of contract transactions, finding a serializable schedule of contract transactions by
redundant computation and a Variable Shadow Speculative Concurrency Control (SCC-VS) algorithm for smart contract
scheduling is proposed. Finally, experimental results show that the strategy increases the concurrency of smart contract execution

by 39% on average and the transaction throughput of the whole system by 21% on average.

1. Introduction

Blockchain technology can be described as a distributed
append-only ledger over a large peer-to-peer (P2P) network
and has demonstrated great promise for utility in several
fields including the Internet of Things (IoT), financial assets,
the sharing economy, and copyright maintenance [1-3].
However, with the increasing transaction scale on the
blockchain, the performance defects of the current block-
chain platform are gradually being exposed (e.g., low
throughput and lack of concurrency) [4-6], and the current
platform is increasingly unable to meet the needs of large-
scale applications. As an effective means to improve system
performance, sharding proposals are applied to the block-
chain system. Elastico is the earliest transaction sharding
proposal facing the public chain. It divides the nodes in the
network into multiple independent shards; each shard
contains multiple nodes so that different shards can process
irrelevant transactions in parallel and linearly improve the

processing ability of the blockchain system. Although the
introduction of sharding proposals can realize parallel
processing between shards [7-9], the essence of each shard is
still a small blockchain system, and a smart contract (SC) is
executed in a serial way [10-12]. There is no significant
improvement in the internal performance of the shard, so
the SC may be limited by the performance of the shard. If the
address within one shard has a high transaction frequency,
the shard will generate a large amount of transaction in-
formation, which will lead to increased data conflicts while
causing shard congestion [13].

To improve the performance of a single shard, we
propose an SC concurrent execution strategy. First, the
information of SC characteristics in a conflict is recorded,
the collected information is used as an important reference
factor to solve contract conflicts, and the subsequent smart
contract transactions (SCTs) are clustered. Second, to im-
plement concurrent execution of the optimized processed
transaction set, we propose a Variable Shadow Speculative

mailto:aipingtan@lnu.edu.cn
https://orcid.org/0000-0002-5137-3953
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6688168

Concurrency Control (SCC-VS) algorithm, which com-
prehensively considers the SC execution time E,, conflict rate
C,, and available resources R, relying on redundant com-
putation to find a serializable scheduling, which effectively
solves the performance degradation problem caused by the
increased number of SCTs.

We summarize the contributions of this paper as follows:

(1) We propose a feature information collection tech-
nology for SC. This method makes full use of the
information resources of SC, records real-time sta-
tistics of the SC feature information that conflicts
occur in the TSM-Module, and collects the feature
information as the next important reference factor to
resolve the SC conflict.

(2) We design a clustering technology for SCTs. First, the
SCTs are initially partitioned by traversing the col-
lected feature information. Second, the execution
time E; and conflict rate C, of SCTs are predicted.
Based on the predicted values, the aggregate function
is used to divide again. Finally, we obtain three sets:
Set_J, Set_A, and Set_u (Set_6, Set_A, and Set_y are
obtained by the Concurrency Degree Optimization
Processing Module, and the priority of execution in
the Transaction Scheduling Management Module is
from high to low). By changing the distribution of
SCTs, the optimal processing of their concurrency is
realized.

(3) We propose an SCC-VS algorithm for SC schedul-
ing. This algorithm comprehensively considers the
three dimensions of SCTs: execution time E,, conflict
rate C,, and available resources R. It relies on re-
dundant computation to find a serializable sched-
uling and executes the optimized SCTs concurrently.
The problem of transaction blocking and restart
caused by the existing methods is alleviated, and the
system resources are effectively utilized.

(4) We implement the prototypes of the Concurrency
Degree Optimization Processing Module (CDO-Mod-
ule) and the Transaction Scheduling Management
Module (TSM-Module) and apply them to the test
environment. Many simulation experiments are run to
verify the performance Turing improvement.

The paper is organized as follows: In Section 2, we review
related work. In Section 3, we present a CDO-Module and
explain its implementation in detail. In Section 4, we present
a TSM-Module and analyze the theory. We present simu-
lations and evaluations in Section 5 and conclude in Section
6.

2. Related Work

One important way to improve the performance of block-
chain systems is to realize the concurrent execution of SC. In
[14], Luu et al. first proposed introducing a secure sharding
protocol into the public chain platform, aiming to build a
sharding network structure that can achieve parallel com-
puting. Although that approach improves the throughput to

Security and Communication Networks

a certain extent, it uses a non-Turing complete language to
create SC, and the flexibility of SC is insufficient and re-
stricted in some cases. Dickerson et al. proposed a two-stage
concurrent execution protocol of SCs based on the Lock
method [15], which aimed to improve the performance of SC
execution. However, since the Lock method belongs to a
pessimistic concurrency control algorithm, poor scalability,
serious blocking problems will occur when the conflict rate
between SCTs is high; the experiment proves that the effi-
ciency is not high. Anjana et al. proposed another SC ex-
ecution framework based on the timestamp ordering
method [16], allowing SCTs to be executed concurrently in
an optimistic manner, optimistic concurrency control can be
performed under low-conflict loads because lock synchro-
nization is avoided. If frequent data conflicts occur between
SCs, many transaction restarts will be caused. The multi-
version concurrency control mechanism proposed by Zhang
and Zhang [17] allows the validator to verify the consistency
and certainty of blocks by executing SCTs concurrently,
which accelerates the speed of block verification, but the
corresponding work of the miner was not discussed in depth.

In addition, the concurrency control algorithm has a
direct effect on the execution efficiency of SC. The existing
Speculative Concurrency Control (SCC) algorithm is not
very suitable for the blockchain sharding environment. For
example, in [18], an improved SCC-2S algorithm was
proposed for uncertain real-time spatial transactions, which
aimed to ensure the freshness of data and did not meet the
requirement to increase the concurrency. The SCC-NS al-
gorithm introduced in [19] aimed to correct conflicts
speculatively using redundant resources, but it also has a
huge system overhead problem. Reference [20] provided a
detailed comparison and quantitative evaluation of major
sharding mechanisms, along with our insights analyzing the
features and restrictions of the existing solutions. However,
there was no clear description of the sharding mechanism
for SCTs and no analysis of the security of efficient con-
current execution of smart contracts in the context of
blockchain sharding. Reference [21] proposed a secure and
effective construction scheme for blockchain networks,
which built a directed acyclic graph (DAG) blockchain
network through the network link protocol, and carried the
sharding technology on the DAG blockchain to realize the
parallel processing of transactions. However, this method
did not study the performance improvement within each
shard. A comparison of the main contributions between
existing work is shown in Table 1.

3. CDO-Module

For clarity, this paper defines transactions on SCs as SCTs.
An SCT code is executed once by the miner and multiple
times by the validator. For a blockchain system in the
context of shard, the maximum concurrency of transaction
execution is a very important performance index, where
concurrency refers to the number of SCTs executed con-
currently. High concurrency can not only improve the
utilization of system resources but also maximize trans-
action throughput. Because the existing SC execution

Security and Communication Networks 3
TABLE 1: A comparison of existing contributions.
Proper Sharding Lock Timestamp ordering Multiversion concurrency control SCC
perty protocol method method mechanism algorithm
Smart contract Available Available Available Available N/A
Concurrency Yes Yes Yes Yes Yes
Efficiency High Low Middle High Middle
Security Poor Favorable Favorable Favorable Moderate
Energy saving Partial Partial Yes Partial No

strategies are not optimized for high-concurrency services,
this work constructs the Concurrency Degree Optimization
Processing Module (CDO-Module). This module contains
two subunits: a Feature Information Acquisition Unit
(FIA-Unit) and a Classification and Monitoring Unit
(CAM-Unit). With the introduction of sharding proposal,
all network SCTs are mapped to different shards for pro-
cessing. To reduce the performance decline caused by
excessive SCTs in a single shard, the SCTs after sharding
proposal will be preprocessed in the CDO-Module.

3.1. FIA-Unit. To assist the efficient operation of the
TSM-Module, this work sets up FIA-Unit. This unit will
record statistics of the SC feature information on conflicts
in the TSM-Module in real time and use the collected
feature information as an important reference factor to
resolve SC conflicts. This feature information includes the
corresponding SC account address and related member
functions with high conflict frequency. A Feature Infor-
mation Statistics Table (FIS-Table) is generated based on
the mined feature information, and the table is maintained
by FIA-Unit. FIS-Table records two types of data: Con-
flicting Contract Account Sets (C-CA Sets) and High-
Conflict Rate Member Functions Sets (H-CRMF Sets).
Existing strategies adopt only a type of concurrency
control method to resolve conflicts between SCs but do not
consider how to make full use of the SC information

Tser W

ser

Wser/ (W

resources to further improve the concurrency in their
execution [22]. The essence of SC is a reusable, immutable,
and automatically executed computer program that runs
on the network, which cannot be actively executed. Its
interaction mode is divided into the external call and in-
ternal call [23]; that is, Externally Owned Accounts (EOA)
call SC and Contract Accounts (CA) call SC. Corre-
spondingly, FIA-Unit’s statistical analysis of feature in-
formation is divided into statistical analysis of C-CA Sets
and H-CRMF Sets. When the TSM-Module executes the SC
concurrently, it will record the new conflicts and feed them
back to FIA-Unit. Among them, the conflicting SC account
address is recorded in the C-CA Sets of FIS-Table, and the
relevant SC functions with a higher conflict frequency are
recorded in the H-CRMF Sets to ensure the continuous
update of the statistics in FIS-Table. Figure 1 shows the
infrastructure model of each module and unit.

3.2. CAM-Unit. Because the distribution of SCTs has a great
impact on the performance of concurrent execution, this
work uses the CAM-Unit. This unit divides SCTs into dif-
ferent sets by relevant factors to optimize the concurrency.
At the same time, CAM-Unit will limit the number of SCTs
executed, which fixes the calculation load, reduces the
probability of conflicts, and keeps the concurrency speedup
ratio S.,, within the ideal range. In the case of n nodes, the
Scon €xpression is shown as follows:

+W 0

ser con)

con =
TCOn ser

where T, represents the time for serially executing SCTs,
and T, represents the time for concurrently executing
SCTs. Wi, represents the load of the serial part, W,
represents the load of the concurrent part, and 9 is the
proportion of the serial part; thatis,0 = W/ (W, + W
1-0= Wcon/ (Wser + Wcon)'

Subsequent SCTs are preliminarily classified by tra-
versing FIS-Table to determine whether each SC has “feature
information.” For reclassification, the estimated execution
time E; and conflict rate C, of SCTs must be comprehensively

ser con) >

T W + Weonln) (Wieed (Weer + Wen)) + (Weon/n)/ (Wer + Weon)) 0+ (1 - 0)/n)

(1)

considered. The complete grouping process is shown in
Figure 2.

3.2.1. The Value of Execution Time (E,). The sharding design
scheme can map many SCTs in the network to different
shards by category. Therefore, for the value of E; for the SCT,
we assume that “similar jobs have similar execution times”
and use the E; of the completed SC to predict the E; of similar
SCs. Suppose that to estimate the E; of a contract transaction
Jsc, the specific steps are as follows:

Security and Communication Networks

CDO-Module TSM-Module

FIA-Unit CAM-Unit | SCC-VS)
Enter/
il il Execution/
Generate = =3
Informatlon il el
collection SCTs grouping E(e cution> >
@ G Serializable
—. N enerate scheduling
FIS-Table Quantity monitoring \—’E(g

¥

Conflict record

Feature information feedback

FIGURE 1: Infrastructure model.

| Phasel Phase II Phase 11 Phase IV
Traverse FIS-Table N———» Set_u
Conf%Y—» f(ExC) @ Y—> SetA

N Set_0

FIGURE 2: Subsequent contract set grouping process.

(1) Taking into account the fact that the SCTs are ac- B, 815 82 < Sy C1, Gy, .., C,, are transformed by the
companied by Bandwidth Consumption, Storage following calculation method:
Consumption, Calculation Consumption, etc., a
template is first determined, and the above three y; =
consumption factors are regarded as three attribute ’
values: Bandwidth Consumption (Mbps), Storage
Consumption (MB), and Calculation Consumption

x; — mmlsjgn{xj}

maxlsjgn{xj} - minlsjgn{xj}

(2)

(4) In set G<SC y» use equation (3) to calculate the nu-

(hash/s) as the constituent elements of the template.
In this paper, B, S, and C are used, respectively, that
is, {B, S, C}.

(2) A maximum of three consumption factors needs to

be limited before an SCT J is issued. According to
the template {B, S, C}, select SCTs similar to J,. and
form a set Gy ;.

(3) Because the properties of the three attribute values in

the template {B, S, C} are different and usually have
different dimensions and orders of magnitude, to
ensure the reliability of the results, the original data
needs to be standardized first; that is, the min-max
standardized method is adopted to carry out the
linear transformation of the original data and map it
to the interval of [0,1], to eliminate the dimensional
influence between different dimensions and facilitate
the subsequent calculation. The sequences By, B,, ...,

Sim (]ic’]gc) =

merical s1m11ar1ty between] and JI., and M SCs
similar to Ji are selected to form the set G ;.
Euclidean Metric is usually used to measure distance.
The larger the value, the farther the distance. In this
paper, the reciprocal is taken, and the farther the
distance is, the closer the reciprocal value is to 0,
which indicates that the similarity between SCTs is
lower. Slm(]SC, J1.) based on the three numerical
attribute values of B, S, and C is defined as follows:

1

2 2 2
1+\AB,-—BJ-| +s;-s)| +|ci - ¢
(3)

(5) After obtaining a similar set G . j, of Js, the actual E, of

the SCTs in G j, can be used to predict the E; of .

Security and Communication Networks

The average method is used in this paper; that is, the
average value of E; of the SC in G, is used as the
prediction time of J;., and the calculation equation is as
follows:

_XLR 4
E () = 255, @

where R; is the actual E; of the ith SC in G .

3.2.2. The Value of Conflict Rate (C,). The SC conflict rate
refers to the probability of an SC conflicting with any other
SC when it is executed, and it is ideally judged based on the
current conflict situation. Because the SCs cannot be stat-
ically analyzed [24], it is impossible to know whether there
will be a conflict before the SC is executed, so it is impossible
to judge the probability of an SC conflict based on the system
status at a certain moment. Considering that the high in-
cidence of conflict is mainly caused by a few popular SCsin a
certain period of time, we assume that “the short-term
conflict rate of the transaction execution period has a greater
impact on the predicted value.” The C, of an SCT is predicted
by the conflict rate of the past period. Besides because the
contract conflict rate has nonlinear characteristics, it is not
suitable to use the linear regression equation to calculate the
contract conflict rate. Therefore, this paper uses the weighted
moving average method [25] based on feedback value to
predict the C, of an SCT. The specific steps are as follows:

(1) The weighted moving average method is used to
calculate the original conflict rate C,. The weighted
moving average method has the characteristics of
simple logic and high prediction accuracy. It takes
time as the standard and gives the larger weight to
the data closer to the prediction time. This can make
up for the lack of equal treatment of all data by the
moving average method and sensitive response to
recent trends in data. The basic calculation method
of the original conflict rate C, is shown in the fol-
lowing equation:

c = 91U + GoUpp + -+ iUy
r { *
219
C, represents the n prediction result; U,,_; represents
the conflict rate detected in the n _i time period; i

represents the number of reference values; and g;
represents the weight value of the i reference value.

(5)

(2) The weighted moving average method has a high
accuracy for short-term prediction, but the weights
of the method need to be set in advance and will not
change when the weights are determined, so the
accuracy of the original C, cannot be effective
feedback. This also limits the accuracy of contract
conflict rate prediction. In order to further improve
the accuracy of the prediction, we need to calculate
the feedback value, so that the results of each pre-
diction can be fed back to the next calculation of the

prediction results. The calculation method is shown
in the following equation:

_ 2 X (G,)
" 2 Vm '

F,, represents the feedback value of the n time; CI™™
represents the final prediction value of the n—m
time; v, is the weight value; and F, greater than 1
predicted value is too large and less than 1 means

that the predicted value is too small.

(3) We can see from equations (5) and (6) that the
calculation of initial prediction value C, and feed-
back value F,, are used to calculate the weight value g
and v; selecting the appropriate weights has a great
influence on the final prediction results. Considering
that the prediction of C, has obvious time charac-
teristics, the closer observation value is to the pre-
diction point, the greater the effect is on the result. In
this paper, the attenuation factor k is considered to
determine the weight value. The initial value of the
weight of g in equation (7) is 1. The calculation
equation of weight g; is

g =92, 7)

1

F (6)

The initial value of the weight in equation (8) is 1.
The calculation equation of weight v; is

v; = . (8)

(4) The concept of feedback value is based on the cal-
culated value of the weighted moving average
method. The final C, predicted value is equal to the
ratio of weighted moving average value to feedback
value. The calculation method is as follows:

C, = 9)

After calculating the estimated execution time E, and
conflict rate C, of an SCT, it is necessary to consider them
comprehensively and judge the threshold value. The cal-
culation equation of the aggregation function is as follows:

P(TSC)=f(Et,C7,)=f(X-LEU—:+(1—(x)-g—:], (10)

where « is a parameter; w, and w, are the weights of E, and
C,, respectively.

First, by traversing FIS-Table, the SCTs without “feature
information” are recorded in Set_§&. Second, the P decision
must specify a threshold . If P> f3, the SCT is recorded in
Set_A; otherwise, it is recorded in Set_y. Finally, the sub-
sequent SCTs are divided into three groups: Set_4, Set_A, and
Set_u. The SCTs in Set_¢ have the lowest conflict probability
and the shortest execution time; the set is given the highest
priority when the SCTs are executed, followed by Set_A.

Set_u has the highest conflict probability and the longest
execution time, so the set is given the lowest priority. The
SCTs in Set_§, Set_A, and Set_y will be executed concur-
rently in turn by the SCC-VS algorithm of TSM-Module,
while the Set_§, Set_A, and Set_u will be executed serially.

4. TSM-Module

To achieve concurrent execution of the optimized SCTs, this
work sets up the Transaction Scheduling Management
Module (TSM-Module), which uses an improved SCC al-
gorithm to execute SCs concurrently. The Speculative
Concurrency Control algorithm is based on the optimistic

N(Tsc) = f[Cr (Tsc)’Et (Tsc)’R(Tsc)]

where ¢ is a constant coefficient, e is a constant, R, is the
average amount of idle resources in the system, C.(T;.)
represents the conflict rate of the contract transaction T,
E(T,.) represents the execution time of T, and R(T.)
represents the amount of idle resources available for T
execution.

Through the analysis and research of the concurrency
problem of SC and the existing work, this paper adopts the
two-stage concurrent execution framework of smart con-
tracts. As shown in Figure 3 below, it takes into account the
execution efficiency of the main node (miner node in the
PoW, leader node in the BFT) at the same time, the playback
efficiency of validation node can be guaranteed. Usually, an
SCT is executed twice in its full life cycle. The first time main
node creates a block; the second time validation node verifies
the block. Specifically, the client will first broadcast the SCT
to each node. In the first execution stage (the main execution
stage), the main node collects a batch of SCTs, then uses the
concurrency control algorithm to realize the concurrent
execution of the SCTs, then packages the SCTs and records
the conflict record in the execution process into the block.
Finally, broadcast to the validation node. After receiving the
consensus block, the validation node enters the second
execution stage (verification stage), uses the conflict record
transmitted by the main node to playback the same batch of
SCTs, and deterministically calculates a new state transfer,
generating the same serializable scheduling as the main node
to verify the validity of the block.

The SC concurrent execution strategy based on con-
currency degree optimization proposed in this paper con-
sists of two parts. The first part is based on CDO-Module to
optimize the concurrency degree of SCTs. The second part is
based on the SCC-VS algorithm to execute SCTs concur-
rently. The complete operating mechanism is shown in
Figure 4.

First, in the blockchain sharding environment, each
node obtains a set of SCTs from the P2P network, and each
transaction is associated with the SC function. Each SC

Security and Communication Networks

method and relies on redundant computing to find a seri-
alizable scheduling. This algorithm can reduce the blocking
and restart of SCTs while preprocessing the conflicts.
According to SCC-NS [26], the number of shadows gen-
erated is positively related to the degree of concurrency, but
at the cost of a high amount of calculation. Therefore, after
balancing the two factors of concurrency and computational
cost, a Variable Shadow Speculative Concurrency Control
(SCC-VY) algorithm is proposed. The SCC-VS dynamically
calculates the number of shadows N required by SCTs from
the three aspects of execution time E;, conflict rate C,, and
available resources R, as shown in the following equation:

C(T) + B (T,) + MO T

, (11)
¢

L

function consists of multiple steps such as lookup, insert,
and delete on shared data items. The concurrency of the
SCTs is optimized with the help of CDO-Module. After
entering the first stage—the main stage—to execute SCs
concurrently, the miner node loads the optimized SCTs into
an isolated sandbox environment in this stage, uses SCC-VS
(see Algorithm 1) to identify conflicts, and allows the main
node to record the conflicted relationship and specific
conflict data items in real time, thus forming the conflict
record. And then, the miner that executes concurrently
proposes a block, which is composed of a contract trans-
action set, conflict records, the final status, the hash value of
the previous block, and other information. It is verified by
other validators in the P2P network. SCC-VS consists of five
rules. The process of SCC-VS algorithm is shown in Al-
gorithm 1.

Go later to the second stage—validation stage; the val-
idator verifies the block proposed by the concurrent miner.
The concurrent validator analyzes the conflict record in the
block to identify the conflict relationship between SCTs.
Because all conflicting relationships between SCTs have been
identified by the miner, the validator can execute the set of
SCTs in a concurrent, deterministic manner with the help of
the conflicting records provided by the miner. After suc-
cessful execution of the SCTs, the validator compares the
calculated final state with that given by the concurrent
miner. If the final state matches, then it is proved that the
block proposed by the concurrent miner is valid. At this
point, it is necessary to feedback the new conflict record to
CDO-Module to update its maintained FIS-Table. Finally,
the block is added to the blockchain and miners are
rewarded accordingly.

TSM-Module uses SCC-VS, which will greatly reduce
transaction blocking and restart problems. At the same time,
it guarantees that the SCTs achieve higher concurrency at a
lower computational cost when executed.

Moreover, we also conducted a detailed analysis on the
security of the blockchain sharding model used in this paper,

Security and Communication Networks

O
)
Client Validator Validator Miner Validator Validator
[
S ——»
® ©) ©) ©) ©)
@
©) ©) ® ®
@ @ @ @
® ® ® ®
]]]]]
B SCTs @ Verification block

@ Verification transactions

@ Concurrent execution

@ Consensus

® Concurrency verification
I Submit

FIGURE 3: Two-stage concurrent execution process for smart contracts.

o
® e o Execution environment Miner
:
Optimization Smart Generate
contract v‘
®
© o]
CDO-Module Consensus
Check/update algorithm
world status
|
1
1
1
1
|
L
P2P network
®

@©: Miner receive various SCTs from the network.
(®: CDO-Module optimizes the concurrency of SCTs.
(®: Execute smart contracts concurrently and calculate final status.

(®: Generate a contract set from the miner.

(®: Generate a block and submit.
(®: The new block is sent to the whole network node.

(@: Update new conflicts to CDO-Module.

FIGURE 4: Logical system model.

aiming at several common attack modes in the blockchain
network: Distributed Denial-of-Service Attack, 51% Attack,
Empty Block Attack, and Sybil Attack.

The first is Distributed Denial-of-Service (DDoS) attack.
It is a special form of denial-of-service attack based on DoS.
It is a distributed, coordinated, large-scale attack. By
flooding the network with a large number of useless requests,
the attacker tries to overload the system, which leads to the
fact that the users in the network cannot access the network

resources normally and paralyzes the system. DDoS attacks
are usually launched by an attacker to take control of an
internal platform or to demand a ransom from the injured
party. In the sharding model we used, if we want to carry out
DDoS attack, we must include all nodes in the blockchain
network into the attack scope, which may cause the system
to crash. As we add more nodes to the blockchain network,
the number of nodes will increase and the attack cost will be
too much for the attacker.

8 Security and Communication Networks

(A) Start Rule: When the execution of a new transaction T’ is requested, create and execution an Optimistic shadow T¢
(1) Compute the number of shadows N (T.);

(2) Pessimistic Shadows (T.) < 0;

(3) ReadSet (TY) < o;

(4) WriteSet (T.) < ¢;

(B) Read Rule: Whenever a transaction T ., wishes to read object X, a conflict may be found out, then

(1) ReadSet (T‘ZSC r>) —{X}

(2) if (Pessimistic Shadows (T . ,y) <N(T<Sc) —1) then {

> € Tsc’

{sc,r,

(2.1) Fork a new pe551mlst1c shadow T<SC o
(2.2) WaitFor (T<Scr>) —{(T (sey)» Xbs
(2.3) Pessimistic Shadow (T (. ,y) < Pessimistic Shadow (T . ,y) + 1}

(2.4) else if (Pessimistic Shadows (T (s ,y) ¢ N(T (5. 5) — 1) then{Abort (T (. 5)};

(C) Write Rule: Whenever a transaction T' s wishes to write object X, a conflict may be found out, then
(1) WriteSet (T<SC u>) {X};

(2) if (Pessimistic Shadows (T (s.,;) <N(T<SC W)~
(2.1) Fork a new pess1mlst1c shadow T<SC S
(2.1.1) WaitFor (T<SC) AT gy) Xbs
(2.1.2) Pessimistic Shadow (T (. ,y) < Pessimistic Shadow((T (. ,,) + 1}

(2.2) else if (existence conflict) then {

(2.2.1) Abort the shadow Tf o and replace it by a new shadow T? Csor>

(2.2.2) WaitFor (T<Sc) e {(T ey Xbs

(3) else if (Pessimistic Shadows (T (. ,,y) = N(T (s ,;5) — 1) then {Abort T v}

(D) Blocking Rule: Block a pessimistic shadow Tk at the earliest point at which it wishes to read on object X

(E) Commit Rule: whenever it is decided to commit an optimistic shadow 1%y on behalf of a transaction Ty, then

1) then{

(1) Abort other pessimistic shadows except T, s
(2) Deal with everything that conflicts with T .,

ALGORITHM 1: A Variable Shadow Speculative Concurrency Control (SCC-VS).

The second is Sybil attack, which means that the at-
tacker uses a single node to forge multiple virtual iden-
tities and make them exist in the P2P network, to reduce
the robustness of the network, interfere with the normal
activities of the network, and other purposes. In a
blockchain sharding environment, an attacker would also
need to create multiple accounts to carry out a Sybil at-
tack. However, the sharding design scheme used in this
paper can restrict the validation nodes to a certain extent;
that is, the validation nodes need to pledge a certain
number of tokens before entering the shard to verify the
transaction, which makes it very difficult for the attacker
to create a large number of identities in a short time.

Then, there is the 51% attack, which is the most famous
type of attack in the blockchain. For example, in the Bitcoin
network, once an attacker controls more than 51% of the
computing power of the whole network, the attacker can
tamper with the historical data in the network and indirectly
grasp the right of keeping accounts in the Bitcoin network.
In the blockchain sharding environment, the attack method
can be understood as more than 51% of the validation nodes
in the shard jointly commit crimes, that is, conspiracy attack.
However, two conditions must be satisfied for the occur-
rence of conspiracy attack in shard:

(1) The number of malicious nodes in the shard should
be greater than 2/3 of the total number of nodes in
the shard

(2) Malicious nodes should collude together for joint
evil

If more than 51% but not more than 2/3 of the validation
nodes work together, there will be no consensus, i.e., con-
sensus timeout. The sharding design scheme used in this
paper will limit the number of consensus timeouts, which
effectively reduces the probability of the occurrence of this
type of attack. When consensus timeouts occur several times
in a row, we will abandon the transaction and reassigned the
transaction, so 51% attack cannot be implemented.

Finally, there is the Empty Block attack, in which miners
fill the block head without verifying any transactions to solve
the consensus problem as soon as possible, to be able to
publish the block faster, and get the block reward during the
competitive mining process. Although the empty block
attack does not affect the effectiveness of the blockchain, if
the frequent occurrence of empty blocks will lead to the
continuous accumulation of transaction requests, the
transaction memory pool continues to grow, and the average
transaction confirmation time becomes longer.

This situation is similar to the 51% attack. We only need
to appropriately expand the sharding scale and optimize the
performance within a single shard to solve this problem.
Moreover, compared with the empty block attack, there is no
reason for miners to do so, which exploits the principle of
€conomics.

From the above analysis, it can be seen that the
sharding design scheme used in this paper has a certain
resistance capability to several common attack modes,
which can ensure the normal operation of the blockchain
sharding system using the strategy proposed in this

paper.

Security and Communication Networks

TaBLE 2: Configuration of the experimental environment.

Deploy Detailed description

oS CentOS 8.0

CPU Intel Xeon Silver 4110 CPU @2.1GHzx 16 core
Memory 160 GB

JDK version 1.8

Network adapter

Gigabit Broadcom NetXtreme II BCM5709 1000BaseT

o)

Speedup over serial
[38] w > wu [o)} ~

—

=

(=}

100 200 300

400 500 600

Number of transactions

Serial
—o— Lock miner

BTO miner
SCC-VS miner

FIGURE 5: Accelerated changes as transaction flow increases.

5. Experiments

In this section, the performance of the proposed SC con-
current execution strategy based on concurrency degree
optimization is verified by experiments. Since the existing SC
models of blockchain are all single-threaded models (such as
Ethereum’s EVM) [27], the SC concurrent execution strategy
proposed in this paper is difficult to be implemented in the
real blockchain system. As a result, this experiment completes
all performance reviews on a server and uses Java language to
simulate real smart contract execution [28, 29]. The load
generator implemented experimentally in this section syn-
thetically considers the number of SCTs and accounts for
generating the corresponding load for each set of experi-
ments. Distribution of transaction types adopts random
classes to achieve uniform distribution. The data access mode
accords with the Zipfian distribution to simulate the SCTSs’
conflict scenario. Specifically, the larger the parameter, the
higher the conflict rate between the SCTs. The server con-
figuration required to run the experiment is shown in Table 2.

Because this paper focuses on the concurrent execution
of SCs, it simplifies the POW and other related factors in the
process. The experiment mainly focuses on the following
aspects of performance: (1) when the SCTs increases, the
comparison of acceleration changes in each method; (2)
when the conflict rate increases, the comparison of accel-
eration changes in each method; (3) when the number of
nodes increases, the comparison of throughput changes in
each method; (4) as the number of shards increases, the

throughput of individual shard and the whole system
changes; (5) as the number of shards increases, the storage
overhead of the nodes changes; (6) the conflict records in
FIS-Table change as the number of SCTs increases; (7) the
Cumulative Distribution Function (CDF) [30] of the esti-
mated execution time and actual execution time of SC is
achieved; and (8) the throughput result of the security ex-
periment. All experimental results are the average values
taken after multiple executions to reduce errors.

The experiment compares the smart contract concurrent
execution strategy proposed in this paper with the other two
traditional concurrency control algorithms and uses the
results of serial execution as a baseline to simulate the av-
erage acceleration in each method. By analyzing the ex-
perimental results in Figure 5, it can be seen that when the
transaction flow is low, the use of the Lock algorithm rel-
atively does not bring about acceleration or even a slow-
down. This is because the additional overhead caused by
conflict processing has an impact on concurrent perfor-
mance. With the continuous increase in transaction flow on
the platform, the Lock algorithm starts to slow down sim-
ilarly to the BTO algorithm after a period of acceleration.
Based on the optimization of concurrency and the im-
provement in transaction blocking and restarting, the
proposed strategy can mitigate the performance degradation
caused by increased transaction flow.

From the analysis of the experimental results in Figure 6,
it can be seen that with increasing conflict rate, the accel-
eration caused by the three methods shows a downward

10

trend. When the conflict rate is close to 68%, using the BTO
algorithm to execute SCs is slower than serial execution. In
contrast, the Lock algorithm, which uses the pessimistic
method as an example, is more adaptable to situations with a
higher conflict rate. However, due to the increased conflict
rate, the probability of cross-shard interaction is also in-
creasing, and the complexity is becoming increasingly higher
[31], so the overall trend is also declining, but the overall
implementation is still slightly better than the above two
ways.

According to the experimental results shown in Figure 7,
strategies proposed in this paper can be compatible with
sharding proposals and still maintain the characteristic of
linear scalability; that is, with increasing number of nodes
and network volume, processing performance can be im-
proved by parallelizing the data flow. Under the traditional
method, even if SCs are executed concurrently, as more
nodes are added, their trading speed will still decrease.

Under the cooperation of CDO-Module and TSM-
Module, the strategy proposed in this paper improves the
SCTs’ execution efficiency and the whole system’s
throughput by optimizing the performance of each shard.
We compare it with the traditional sharding blockchain,
taking Elastico public blockchain as an example. Elastico
first proposed to adopt the sharding model in the public
blockchain system [32], which almost completes the linear
expansion of the throughput of the block. Analyzing the
experimental results in Figure 8, under the traditional
method, although the network-wide TPS increases as the
number of shards increase, the TPS of a single shard is still
low, only approximately 50, and there is no significant
performance improvement. While the strategy proposed in
this paper guarantees the performance improvement of a
single shard, the throughput of the whole system also reaches
a high level.

For the overhead of sharding storage, we calculate the
amount of data stored in each shard. Because cross-shard
SCTs will be stored by multiple shards, we sent 5%, 10%,
15%, and 20% cross-shard SCTs in this experiment. Analysis
of the experimental results in Figure 9 shows that the storage
overhead of each node decreases as the total number of
shards increases. In the case of the same number of shards,
the more cross-shard SCTs, the greater storage overhead.
Furthermore, we note that storage optimization mechanisms
can be used to further reduce storage overhead.

We use the SCC-VS algorithm to implement con-
current execution of SCs in the TSM-Module. At the same
time, the miner will propose a new block, which consists
of information such as the set of SCTs, the conflict record,
the final state, and the hash value of the previous block.
TSM-Module feeds back the feature information in the
conflict record to the FIA-Unit, the purpose of which is to
achieve the preprocessing of SCTs. Figure 10 shows the
relationship between the number of SCTs and conflict
records of four types of SCs (i.e,, a, b, ¢, and d) under
different concurrent control algorithms. By analyzing the
experimental results shown in Figure 10, we can see that
no matter what method is adopted, the conflict records in
FIS-Table will increase with increasing SCTs. However,

Security and Communication Networks

the SCC-VS algorithm proposed in this paper shows
better performance due to its application in a single shard,
which diverts many SCTs into different shards and op-
timizes the degree of concurrency between SCTs.

Currently, because of the small number of SCTs in the
block, the storage of conflict records between SCTs in the
block will not consume too much space. Therefore,
storing conflict records of SCTs in a block does not
consume much space. Over time, if conflict records in-
crease, more storage space will be consumed. Hence, it is
important to provide the best conflict record or to
properly implement concurrent execution of SCs without
a conflicting record.

In the CAM-Unit, E; for the SC must be predicted. To
verify the effectiveness of the method, the Cumulative
Distribution Function (CDF) of the estimated-E, and actual
E; of four different SCs are given in Figure 11. This graph
describes the probability that the estimated-E,; and actual E,
of four different types of SCs fall within any time interval.
Through the execution of four SCs, we find that the actual
runtime corresponding to the same probability density is
slightly smaller than the E; we calculated. Causes of this
situation, on the one hand, due to the decreasing execution
time, on the other hand, because we generally overestimate
the runtime of the four SCs during this experiment. It can be
seen in Figure 11 that the actual E; distribution of the four
SCs is smooth, while the estimated-E; is ladder-shaped,
which shows that the estimated-E, calculated by this method
is relatively rough. Therefore, for the prediction algorithm in
this paper, it is easier to obtain a good prediction effect (e.g.,
b and d type contracts) for SCTs with a ladder-shaped actual
E; distribution.

In order to evaluate the resistance of the blockchain
sharding system using the concurrent execution strategy
proposed in this paper to malicious nodes, we set up 60
nodes, among which 15 nodes are malicious nodes and the
other 45 nodes are honest nodes, as shown in Figure 12. The
honest node confirms all transactions it receives, while the
malicious node stops verifying transactions and is rejected as
the master node each time it is elected. In this way, we test
the security of the scheme in this paper to verify its resistance
to malicious nodes in the long run.

Figure 13 is the throughput result of the security ex-
periment. After calculation, it can be seen that the average
transaction throughput of the blockchain system using
traditional random sharding technology is about 412.3 TPS.
The average transaction throughput of the blockchain
sharding system using the strategy proposed in this paper is
about 525.1 TPS, higher than that of the traditional scheme.
The reason is that the malicious node stops validating the
transaction and is rejected as the master node each time it is
elected. At this point, the other nodes in the shard broadcast
the emergency message and start the rollback program and
then select a new master node. In this process, the shard
stops working and the transaction cannot be verified before
the new master node is elected, resulting in a rapid decline in
throughput. However, overall, the overall average
throughput of the strategy proposed in this paper is still
better than that of the traditional scheme.

Security and Communication Networks

No. of blocks

Figure 7: Throughput change with increasing number of nodes.

Speedup over serial

0 '

0.0 0.2 0.4 0.6 0.8 1.0
Conflict percentage
—4— Serial —#— BTO miner
—e— Lock miner —¥— SCC-VS miner

FIGURE 6: Accelerated changes as conflict rates increase.

14 4

12 A

10 4

20 30 40 50 60
Number of nodes
mm [ock miner

mm BTO miner
- SCC-VS miner

11

12

F1GUrE 8: Single/full network TPS changes when the number of shards increases.

Storage percentage (%)

FIGURE 9: Storage per node decreases as the number of shards increases.

100

80

60

04 N\

s0 oSS

Security and Communication Networks

oL M [| [| | | I L

2 3 4 5 6 7
Number of shards

= Single-shard TPS (SCC-VS)
Overall TPS (SCC-VS)
Single-shard TPS (Elastico)
Overall TPS (Elastico)

1 2 3 4 5 6 7 8 9 10

Number of shards
0% cross-shard SCTs 15% cross-shard SCTs
—— 5% cross-shard SCTs ~ —— 20% cross-shard SCT's

—— 10% cross-shard SCTs

Security and Communication Networks

200

400

175 350

150 300

—
N
@

250

200

75 150

Conlflict records in FIS-Table
S
3

Conlflict records in FIS-Table

50 100

25 50

0 0
100 200 300 400 500 600 100
Number of SCTs

200 300 400

Number of SCTs

500 600

—o— Lock miner —e— Lock miner
—#— BTO miner

SCC-VS miner

(b

—#— BTO miner
SCC-VS miner

(a)

Conflict records in FIS-Table
G

30

25

[S)
=]

0

100 200

300 400
Number of SCTs

—e— Lock miner
—#— BTO miner
SCC-VS miner

(c)

100

80

60

40

Conlflict records in FIS-Table

20

0

100 200 300 400

Number of SCTs

500

—e— Lock miner
—#— BTO miner
SCC-VS miner

(d)

FIGURE 10: (Varying SCTs) Average number of conflict records in FIS-Table. (a-d) Number of SCTs.

1.0 1.0

~ 038 ~ 08

123 =

a =)

&) Q

o =

2 2

% 0

5o R

= =

2 2

5 E

2 2

] 5

£ 04 204

2 2

k] 2

= =

£ £

© 02 © 02
0.0 0.0

0 20 40 60 80 100 0 20 40 60 80 100

Transaction execution time (s) Transaction execution time (s)

—— Actual time —— Actual time

——— Estimated time

(a)

——— Estimated time

(b)

Cumulative distribution function (CDF)

0.8

0.6

0.4

0.2

0.0

0 20 40 60 80

Transaction execution time (s)

—— Actual time

——— Estimated time

(c)

Cumulative distribution function (CDF)

600

0.8

0.6

0.4

0.2

0.0

0 20 40 60 80 100

Transaction execution time (s)

—— Actual time

——— Estimated time

(d)

Figure 11: Distribution of estimated time and actual execution time. (a-d) Transaction execution time (s).

13

14

Security and Communication Networks

Transactions

' Verify T
O Reject

. Honest nodes

Q Malicious nodes

The honest node confirms all
transactions it receives

The malicious node stops
validating the transaction and
is rejected as the master node

each time it is elected

— 4

FIGURE 12: The behavior mode of nodes.

Throughput

40 60

Transaction execution time (s)

Traditional random sharding method
— Sharding method adopted in this paper

FIGUure 13: The results of security experiment.

6. Conclusions

In this paper, we propose a smart contract concurrent ex-
ecution strategy based on concurrency degree optimization.
Firstly, the CDO-Module is used to collect the feature in-
formation of conflicting SCs and carry out the concurrency
degree optimization processing for the subsequent SCTs.
Secondly, through the TSM-Module, the proposed SCC-VS
algorithm is used to execute the SCTs after optimization. The
experimental results show that the strategy ensures the
execution of SCs in single shard with a higher concurrency
degree, and the performance within each shard is further
improved, so that the whole blockchain sharding system can
meet higher transaction throughput.

Data Availability

The data used to support the findings of this study are in-
cluded in this article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the National Key R&D
Program of China (2019YFB1406002), in part by the Na-
tional Natural Science Foundation of China (61903356), and
in part by Key Scientific Research Projects of Liaoning
Provincial Department of Education (LZD202002).

References

[1] S. Misra, A. Mukherjee, A. Roy, N. Saurabh,
Y. Rahulamathavan, and M. Rajarajan, “Blockchain at the
edge: performance of resource-constrained IoT networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 1, pp. 174-183, 2021.

[2] T. Alharbi, “Deployment of blockchain technology in soft-
ware defined networks: a survey,” IEEE Access, vol. 8,
pp. 9146-9156, 2020.

[3] G.Yu,T.Z. Nie, X. H. Li et al,, “Distributed data management

technology in blockchain system-challenges and prospects,”

Chinese Journal of Computers, vol. 12, no. 42, pp. 1-27, 2019.

S. Nathan, P. Thakkar, and B. Vishwanathan, “Performance

benchmarking and optimizing hyperledger fabric blockchain

platform,” 2018.

M. Liu, R. Yu, and Y. Teng, “Performance optimization for

blockchain-enabled industrial Internet of Things (IIoT) sys-

tems: a deep reinforcement learning approach,” IEEE

Transactions on Industrial Informatics, vol. 6, no. 15,

pp. 3559-3570, 2019.

I. Eyal, A. E. Gencer, and E. G. Sirer, “Bitcoin-NG: a scalable

blockchain protocol,” 2016.

[7]1 Y. Li, K. Zheng, and Y. Yan, “EtherQL: a query layer for
blockchain system,” 2017.

[8] K. Croman, C. Decker, and L. Eyal, “On scaling decentralized
blockchains,” 2016.

[9] C. Liu, Y. Xiao, and V. Javangula, “NormaChain: a block-
chain-based normalized autonomous transaction settlement
system for IoT-based E-commerce,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 4680-4693, 2018.

(4]

(5]

(6]

Security and Communication Networks

[10] S. Wang, L. Ouyang, and Y. Yuan, “Blockchain-enabled smart
contracts: architecture, applications, and future trends,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 11, no. 49, pp. 1-12, 2019.

[11] Q. F. Shao, C. Q. Jin, and Z. Zhang, “Blockchain technology:
architecture and progress,” Chinese Journal of Computers,
vol. 5, no. 41, pp. 969-988, 2018.

[12] Y. Lian, T. Wei-Tek, and L. Guannan, “Smart-contract exe-
cution with concurrent block building,” 2017.

[13] D. Jia, J. Xin, and Z. Wang, “ElasticChain: support very large
blockchain by reducing data redundancy,” 2018.

[14] L. Luu, V. Narayanan, and C. Zheng, “A secure sharding
protocol for open blockchains,” 2016.

[15] T. Dickerson, P. Gazzillo, and M. Herlihy, “Adding con-
currency to smart contracts,” Distributed Comput, vol. 33,
no. 3-4, pp. 209-225, 2020.

[16] P.S. Anjana, S. Kumari, and S. Peri, “Entitling concurrency to
smart contracts using optimistic transactional memory,”
Computer Science, vol. 4, no. 7, pp. 508-524, 2018.

[17] A. Zhang and K. Zhang, “Enabling concurrency concurrent
execution of smart contractson smart contracts using mul-
tiversion ordering,” 2018.

[18] S.Hamdi, E. Bouazizi, and S. Faiz, “A speculative concurrency
control in real-time spatial big data using real-time nested
spatial transactions and imprecise computation,” 2017.

[19] Q. Luo and L. Zhang, “Predictable concurrency control al-
gorithm in real-time database,” Computer Science, vol. 31,
no. 10, pp. 87-92, 2004.

[20] G. S. Yu, X. Wang, K. Yu et al, “Survey: sharding in
blockchains,” IEEE Access, vol. 8, pp. 14155-14181, 2020.

[21] C. X. Qin, B. Guo, Y. Shen et al., “A secure and effective
construction scheme for blockchain networks,” Security and
Communication Networks, vol. 2020, Article ID 8881881, 2020.

[22] P.S. Anjana, S. Kumari, and S. Peri, “An efficient framework
for optimistic concurrent execution of smart contracts,” 2019.

[23] K. Christidis and M. Devetsikiotis, “Blockchains and smart
contracts for the Internet of Things,” IEEE Access, vol. 4,
pp. 2292-2303, 2016.

[24] 1. Grishchenko, M. Maffei, and C. Schneidewind, “Founda-
tions and tools for the static analysis of Ethereum smart
contracts,” 2018.

[25] C.-Y.Lin, S.-H. Sheu, T.-S. Hsu, and Y.-C. Chen, “Application
of generally weighted moving average method to tracking
signal state space model,” Expert Systems, vol. 30, no. 5,
pp. 429-435, 2013.

[26] A. Bestavros and S. Braoudakis, “S.C.C.nS: A family of
speculative concurrency control algorithms for real-time
databases,” 1993.

[27] Z.1.Wang, H. Jin, W. Q. Dai et al., “Ethereum smart contract
security research: survey and future research opportunities,”
Frontiers Comput, vol. 15, no. 2, 2021.

[28] A. Ghaffar, M. A. Sarwar, Z. Abubaker et al., “Smart contracts
for research lab sharing scholars data rights management over
the Ethereum blockchain network,” 2019.

[29] F. Spoto, “Enforcing determinism of Java smart contracts,” 2020.

[30] H. Okagbue, M. O. Adamu, and T. A. Anake, “Closed form
expression for the inverse cumulative distribution function of
Nakagami distribution,” Wireless Networks, vol. 26, no. 7,
pp. 5063-5084, 2020.

[31] H. Jin, X. Dai, and J. Xiao, “Towards a novel architecture for
enabling interoperability amongst multiple blockchains,” 2018.

[32] Y. Dong and R. Boutaba, “Elasticoin: low-volatility crypto-
currency with proofs of sequential work,” IEEE ICBC,
vol. 2019, pp. 205-209, 2019.

15

