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Abstract

Generative adversarial networks (GANs) have shown

impressive results in both unconditional and conditional im-

age generation. In recent literature, it is shown that pre-

trained GANs, on a different dataset, can be transferred to

improve the image generation from a small target data. The

same, however, has not been well-studied in the case of con-

ditional GANs (cGANs), which provides new opportunities

for knowledge transfer compared to unconditional setup. In

particular, the new classes may borrow knowledge from the

related old classes, or share knowledge among themselves

to improve the training. This motivates us to study the prob-

lem of efficient conditional GAN transfer with knowledge

propagation across classes. To address this problem, we in-

troduce a new GAN transfer method to explicitly propagate

the knowledge from the old classes to the new classes. The

key idea is to enforce the popularly used conditional batch

normalization (BN) to learn the class-specific information

of the new classes from that of the old classes, with implicit

knowledge sharing among the new ones. This allows for

an efficient knowledge propagation from the old classes to

the new ones, with the BN parameters increasing linearly

with the number of new classes. The extensive evaluation

demonstrates the clear superiority of the proposed method

over state-of-the-art competitors for efficient conditional

GAN transfer tasks. The code is available at: https:

//github.com/mshahbazi72/cGANTransfer

1. Introduction

Generative adversarial networks (GANs) [10, 1] are the

most common models used for image and video genera-

tion, showing very promising results both [21] in uncon-

ditional [14, 41, 16] and conditional [3, 34, 4] setups.

Learning from limited data is a well-studied problem in

the discriminative setup, where the concept of knowledge

transfer [31] between two different but related tasks [42]

or domains [9] is ubiquitous. In contrast, the literature on

transfer learning for generative adversarial models is fairly

limited. One may find this unexpected, since many popular

knowledge transfer methods in discriminative setup, in turn,

use generative schemes [22, 37]. However, the limited liter-

ature is less surprising when the complexity of adversarial

training and the mode collapse are taken into account.

A notable work by Wang et al. [40], first addressed the

problem of training GANs on limited data using a careful

fine-tuning (FT) strategy. Following works [27, 39, 44] are

the variants of [40] that focus on better fine-tuning strate-

gies. On the contrary, Noguchi & Harada [30] proposed

the batch statistics adaptation (BSA) technique, by learning

only the batch normalization parameters on a small target

dataset. As most of the previous works [40, 39, 30] primar-

ily focus on the case of unconditional GANs, we investigate

in a different direction of conditional GANs (cGANs). In

particular, we are interested in producing new classes given

a pre-trained class-conditional cGAN. cGANs are strikingly

interesting due to their capability of handling a large num-

ber of classes with a single network. For example, Big-

GAN [3] can generate images from all 1K classes of Ima-

geNet [8]. In fact, BigGAN is exploited as the pre-trained

network even by the unconditional methods [39, 30]. We

refrain from fine-tuning whenever possible, as we believe

that new classes can be introduced within such powerful

cGANs. Moreover, some powerful pre-trained cGANs, can

potentially be used to add new classes in the lifelong learn-

ing [19, 30, 33, 5] fashion, which however is beyond the

focus of our paper.

In this work, we study how new classes with a limited

amount of samples can be added to pre-trained cGANs us-

ing knowledge transfer across classes. To do so, inspired by

BSA [30], we aim at learning only the batch normalization

(BN) parameters that generally encode the class-specific in-

formation. Our key idea, different from [30], relies on the

assumption that the knowledge between old and new classes

can also be transferred by searching for the similarity be-

tween them. Our experimental setup, however, does not al-

low us to access the old data used for the pre-trained model.

Therefore, the similarity is searched in the conditional space

of the BN parameters, during the training of cGANs. In this

process, we learn the similarity scores explicitly between

old and new classes, and implicitly between new ones. The
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learned old-to-new similarity scores are then used to derive

the batch statistics of new classes from that of old ones.

It is well-established in [2, 13, 38, 19, 36, 11, 6] and

many other works, that learning algorithms can greatly ben-

efit from the shared knowledge between classes. Often,

such similarity is either known or discovered when all the

classes are accessible. In the context of domain generaliza-

tion (or in some special case of adaptation), the source data

is similarly inaccessible partially or completely [32, 47, 23].

However, the latter assumes that the new classes are either

the same or largely overlap with the old ones. Note that

in our case, new classes do not even overlap with the in-

accessible old ones. In addition, almost all aforementioned

works seek similarity in the feature space with an exception

of [6]. However, [6] is primarily designed to serve the dis-

criminative models. Our generative case, on the other hand,

hinders us to access the feature space. We, therefore, rely

on the conditional space of cGANs to establish the sought

class similarities. Up to our knowledge, we learn the inter-

class similarities in the conditional space of the generative

models, for the first time.

In summary, we utilize cross-class knowledge while in-

troducing new classes in cGANs. While doing so, active

searching of similarity scores between new and old classes

with implicit knowledge sharing among new ones is sug-

gested. In this context, we propose a novel method for

finding the similarity between new and old classes with-

out requiring access to the old data. The proposed method

is particularly suitable when transferring knowledge from

pre-trained cGANs.

In summary, the key contributions of our work are as

follows:

• We study the new problem of efficient GAN transfer to

new classes with explicit inter-class knowledge propa-

gation in pre-trained cGANs.

• A novel method for learning similarity between old

and new classes and knowledge sharing within the

new classes is proposed using the batch normalization

statistics of the old classes, in the conditional space of

generative models.

• Our experiments on three benchmark datasets demon-

strate the superiority of our method both in terms of

generated image quality and the convergence speed.

2. Related Work

Class-conditional GANs. Different architectures and loss

functions have been proposed for conditioning GANs on

class labels [24, 26, 17]. The current state-of-the-art meth-

ods for class conditioning commonly employ cGAN with

projection discriminator [26, 25]. In the generator, condi-

tional batch normalization [7] with class-specific scale and

shift parameters are applied to each layer of the generator.

The discriminator, on the other hand, is conditioned on the

class labels by computing the dot product of the last feature

layer and the learnable embedding of the desired class. The

performance of the conditional GANs was further improved

by adding self-attention layers to the generator and the dis-

criminator [43]. BigGAN [3] was able to reach state-of-

the-art performance on image generation from ImageNet,

mainly by using a bigger batch size (2048) and some ar-

chitectural improvements such as a hierarchical latent vari-

able. The conditioning, however, still happens through the

class-conditional batch normalization in the generator and

the projection layer in the discriminator.

Transfer Learning in GANs. Iterative image generation

approaches, such as DGN-AM [29] and PPGN [28], could

be considered as early attempts on transfer learning in im-

age generation by generating images via maximizing the

activation of the neurons of a pre-trained classifier. Trans-

ferGAN [40] is one of the earliest studies addressing trans-

fer learning in GANs. The authors showed that, by simply

fine-tuning a pre-trained network on the target dataset, they

can outperform training from the scratch in terms of image

quality and convergence time. However, naive fine-tuning

on small data still suffers from mode collapse and training

instability. Another method [44] proposes transferring the

low-level layers of the generator and the discriminator from

the pre-trained network, while learning the high-level lay-

ers from scratch for the target data. In a recent study [27],

it is shown that simply freezing the low-level filters of the

discriminator is more effective than previous fine-tuning ap-

proaches. BSA [30], on the other hand, instead of look-

ing for ways of fine-tuning the network, proposed freezing

the weights of the pre-trained generator except the batch

normalization parameters. For the target data, new BN pa-

rameters are learned without fine-tuning the generator. This

allows BSA to add new classes without disturbing the old

ones. MineGAN [39] learns a small fully-connected miner

network at the input of a frozen pre-trained GAN. The miner

learns to shift the prior input distribution to the most suit-

able one for the target data. After training the miner, Mine-

GAN further fine-tunes both the generator and the miner as

the final model. MineGAN is designed to transfer knowl-

edge to a single-class target.

Inter-class Knowledge Transfer. A lot of works have been

emerging on extending models trained on previous exam-

ples/images to perform favorably on new data, and here is

where knowledge transfer becomes essential. For instance,

[38] uses memory and attention modules to transfer labeled

data knowledge to a new class example. A more relevant

work [11] uses the class similarity between source classes

and a target class to improve the classification performance.

[36] is a few-shot meta-learning method that uses the so-

called relation score of a new class example with previous

examples in order to classify the new example. In a more
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Figure 1: (a): A generator trained on a multi-class dataset. (b): The generator, extended by new classes without taking the

old classes into account. (c): The conceptual diagram of our proposed method for conditional GAN transfer with knowledge

propagation across classes. Here �i and �i (1 ≤ i ≤ 5) represent the class-specific parameters.

related work [6], BN layers have been used for knowledge

transfer from old classes, mainly targeting binary classifi-

cation with a brief empirical study on style transfer. The

knowledge transfer framework of [6] separately performs

encoding, pre-selection, and combination of old classes. In

contrast, our method jointly optimizes the prior knowledge

and the transfer process, leading to an efficient learning

paradigm for the generative case.

3. Problem Definition

The task of class-conditional GAN transfer aims at

approximating the target data distribution by transferring

knowledge from the source multi-class data to the target

data using pre-trained GAN models. As shown in Fig. 1 (a),

the pre-trained GAN model consists of one generator G and

one discriminator D, jointly trained on the source multi-

class dataset X = {X1, X2, . . . , XN}, in which Xy is a set

of real images in category y ∈ {1, 2, . . . , N} with the un-

derlying distribution Py(x) ∈ {P1(x), P2(x), . . . , PN (x)}.

In the conditional setup, given a random noise vector z (usu-

ally sampled from N (0, I)) and a class label y as inputs, G

is trained in an adversarial game with D, to generate an im-

age x ∼ Py(x):

x = G(z, y);

z ∼ N (0, I), y ∈ {1, . . . , N} s.t. x ∼ Py(x).
(1)

In the state-of-the-art conditional GANs (e.g., [26, 43,

3]), G is commonly conditioned on the class labels using

conditional batch normalization. Specifically, the layer-

wise output fl, of layer l ∈ {1, . . . , L}, is normalized and

modulated by the class-specific scale �
y
l ∈ {�1

l , . . . , �
N
l }

and shift �
y
l ∈ {�1

l , . . . ,�
N
l } as:

f 0

l = �
y
l

fl − µl

�l

+ �
y
l , (2)

where µl and �l represent the batch mean and variance for

the l-th layer, and f 0

l is the normalized output of the layer .

Thus, the class-specific information is parameterized by the

corresponding scales and shifts.

Transfer learning in conditional GANs can be de-

fined as exploiting pre-trained GAN models to adapt

the generator/discriminator to a new multi-class target

data X 0 = {XN+1, XN+2, . . . , XN+M} with M new cat-

egories {y0}, y0 ∈ {N + 1, . . . , N +M}. Mathematically,

this task can be defined as the following learning problem:

x0 = G0(z, y0);

z ∼ N (0, I), y0 ∈ {N + 1, ..., N +M}

s.t. x0
∼ Py0(x), given G(z, y),

(3)

where G0 is the new generator learned for the new cate-

gories {y0}. It is often desirable that G0 can also generate

the previous classes, as shown in Fig. 1 (b). The problem

of learning such a generator which is capable of generating

images for both {y} and {y0} can be formulated as:

x = G0(z, yf );

z ∼ N (0, I), yf ∈ {1, ..., N +M}

s.t. x ∼ Pyf
(x), given G(z, y),

(4)

where we denote the final category set as {yf} = {y}∪{y0}
and the extended generator as G0.

Transfer learning in the context of GANs is usu-

ally approached by a careful fine-tuning of a pre-trained
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model [40, 39, 27, 44], with or without modifying the ar-

chitecture. These architecture modifications include adding

either new layers or new batch normalization parameters,

to additionally learn the new knowledge of the target data.

Such approaches overlook the shared similarities among the

old and new classes, resulting in an inefficient knowledge

propagation. This motivates us to aim for a more efficient

conditional GAN transfer. In particular, we seek for an ex-

plicit knowledge propagation from old (i.e., source) classes

to the new (i.e., target) ones, along with the possibility of

knowledge sharing among target classes. Fig. 1 (c) concep-

tually illustrates the problem addressed in this paper.

4. Knowledge Transfer Across Classes

We first provide an overview of the proposed method,

followed by the details. Our premise is built upon a known

observation in BigGAN [3], where interpolating between

different classes produces visually meaningful intermedi-

ate images that do not exist in the training data. This im-

plies that the learned class-specific parameters could lie on

a smooth manifold, on which new classes also reside. Con-

sequently, it begs the question: can the similarities between

the source and the target classes–as well as those within

the target–be exploited to learn the target representations?

This question leads us to learn the parameters of the new

classes, while being dependent upon the parameters (rep-

resenting the knowledge) of old classes. More precisely,

we propose to obtain the representation of each target class

by learning a suitable linear combination over the repre-

sentations of the source classes – which we call knowledge

propagation. In addition, we propose a mechanism to en-

able knowledge sharing within target classes, by optimiz-

ing the source knowledge in favor of the multiple target

classes1. We address the exact problem of (4), where the

model aims to generate both new and old classes. Such con-

sideration is often ignored in the literature, with an excep-

tion of BSA [30]. The details of the proposed knowledge

propagation and sharing strategies are presented in Sec. 4.1

and Sec. 4.2, respectively.

4.1. Knowledge Propagation

Following the class-conditioning paradigm discussed in

Sec. 3, we embed the class-specific representations in the

batch normalization (BN) layers as the scale and shift

parameters. Accordingly, knowledge propagation is per-

formed in BN layers. To obtain the BN parameters (�l and

�l in (2)) of each new class, our model linearly combines

the BN parameters of old classes {y} using layer-wise sim-

1Although the focus of our work is on the multi-class target data, our

method can be generalized well to the single-class target as well (See the

supplementary material, Sec. F).
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Figure 2: Intuitive visualization of how different layers

might borrow information from different classes based on

the hierarchy of features such as shape and color (for a bet-

ter visualization, only two layers are illustrated). Pictures in

the figure are obtained from our experiment on AnimalFace

dataset [35] (refer to Fig. 9 for more visualizations).

ilarity scores, learned during the training step:

�
y0

l = [�1
l , �

2
l , . . . , �

N
l ]Sy0

γl
,

�
y0

l = [�1
l ,�

2
l , . . . ,�

N
l ]Sy0

βl
,

y0 ∈ {N + 1, . . . , N +M}, l ∈ {1, . . . , L}.

(5)

Here, Sy0

γl
= [s

(y0,1)
γl , . . . , s

(y0,N)
γl ]> ∈ R

N and similarly

S
y0

βl
∈ R

N are vectors of learned scores for the class y0 in

layer l. Two things are to be noted here. First, we learn the

similarity scores for scale and shift parameters separately.

This is because, the new classes could be similar to some

of the old classes in terms of their distribution mean, while

being similar to another set of classes in terms of intra-class

variance. Secondly, we also learn a different set of scores

per layer, since different layers of the network do not nec-

essarily benefit from the same set of old classes. It is well-

known that different layers of neural networks represent dif-

ferent levels of feature representation. As intuitively shown

in Fig. 2, some layers could be responsible for the general

shape, some for the color and the texture, and some others

for finer details. Such hierarchy of features is also the main

motivation of StyleGAN [16] for using layer-specific styles.

Based on the empirical observations, we propagate class-

specific knowledge only in the generator and simply fine-

tune the discriminator. A similar knowledge propagation in

the discriminator leads to performance degradation in our

experiments. One possible reason for such degradation is

that the knowledge propagation speeds up the over-fitting

problem of the discriminator on small datasets [45].
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4.2. Knowledge Sharing

In addition to knowledge propagation, we propose a

mechanism for knowledge sharing among target classes.

Consider transferring a conditional GAN, pre-trained on

ImageNet classes, to the AnimalFace [35] dataset contain-

ing 20 classes of different animal faces. Although faces of

different animals have their own unique characteristics, they

still share a level of common structure. Therefore, instead

of finding each class representation independently, it is rea-

sonable to exploit the shared knowledge between all target

classes. A basic but indirect example of knowledge sharing

between the target classes can be seen in methods based on

fine-tuning the pre-trained convolutional filters, where all

target classes contribute to optimizing the same filters. The

same, however, does not happen when learning the class-

specific BN parameters independent of other classes.

To empower the knowledge sharing among target classes

in our method, we propose to allow the target classes to

jointly optimize the prior knowledge (pre-training BN pa-

rameters) during knowledge propagation. Optimizing the

prior knowledge will enable the model to obtain a shared

set of intermediate representations, which are more suitable

for all target classes. These shared representations–which

we name pseudo-classes–then can be combined according

to the similarity scores during the knowledge propagation

step. Mathematically, we rewrite the propagation equation

after knowledge sharing as:

�
y0

l = [�̂1
l , �̂

2
l , . . . , �̂

N
l ]Sy0

γl
,

�
y0

l = [�̂1
l , �̂

2
l , . . . , �̂

N
l ]Sy0

βl
,

y0 ∈ {N + 1, . . . , N +M}, l ∈ {1, . . . , l}.

(6)

where [�̂y
l ] and [�̂y

l ] are obtained by updating a copy of the

source BN parameters, forming the shared representations

for layer l. It is important to note that the modified BN pa-

rameters in (6) are used only for learning the new classes.

We do not replace original old BN parameters, as we want

to preserve the old knowledge during the transfer. This pro-

cess does not further increase the number of parameters for

inference, since the updated parameters (and the similarity

scores) are discarded after learning the target BN parame-

ters. Fig. 3 visualizes the proposed approach for knowledge

sharing in conjunction with the knowledge propagation.

4.3. Training with Residuals and Sparsity

For the purpose of generalizability, we also consider the

classes that cannot be represented well only by combining

the shared intermediate representations. To address this is-

sue, we propose to add residual vectors ry
0

γl
and r

y0

βl
to the

scale and shift parameters obtained from knowledge prop-

agation, respectively. However, in order to encourage the

model to use the prior knowledge as much as possible, we

Knowledge
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Pseudo Classes 
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Image from 

pretrained classes

Image from
pseudo classes 

Image from
target classes Source

Figure 3: The visualization the proposed knowledge sharing

and propagation. The sharing takes place in obtaining the

pseudo-classes, by updating the source. The propagation

step combines pseudo-classes to obtain the target. The shar-

ing and the propagation are performed jointly. The images

are obtained from our experiments (Please refer to Fig 7-8).
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Figure 4: An overview of the proposed block for cGAN

transfer with knowledge propagation across classes.

minimize the magnitude of the residual vectors using `2 reg-

ularization. Moreover, to encourage the new classes to learn

from the most relevant prior knowledge, we also add an `1
sparsity regularization on the similarity scores.

In summary, we propose conditional GAN transfer from

a pre-trained GAN to multi-class target data via BN param-

eters of pre-training classes, which are linearly combined

to obtain the new classes’ representations. Moreover, we

enable sharing knowledge within the target classes by al-

lowing them to update the prior knowledge according to the

needs of the target data. An overview of the complete pro-

posed method is illustrated in Fig. 4.

The final loss function of our method follows (7), where

Lg is the adversarial loss [10, 1, 20] used for training the

GAN, Lr is an `2 regularization over the residuals, and Ls
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Method/ Experiment 20/ 600 20/ 300 20/ 100 10/ 600 10/ 300 10/ 100 mFID

Scratch 25.35 47.20 81.90 52.23 62.17 83.68 58.76

TransferGAN 27.67 31.19 48.67 30.58 40.74 64.75 40.60

BSA - early 37.12 32.10 50.88 42.01 40.34 66.76 44.87

BSA - full 28.03 30.89 40.73 30.73 35.62 56.48 37.08

Ours 29.10 30.99 40.04 29.95 35.23 54.95 36.71

Experiment FID KMMD

Scratch* 190 0.96

TransferGAN* 89.2 0.53

PPGN* 139 0.56

MineGAN* 82.3 0.47

BSA** 85.9 0.18

Ours** 71.1 0.16

Table 1: Results of the evaluation and the comparison of the proposed method using FID and KMMD score. Left: transferring

80 classes of CIFAR100 to 20 classes or 10 classes. Different columns report the best FID scores scores in difference cases.

The format A/B means using A classes and B images per class for the target. BSA-early indicates the FID scores for BSA at

the iteration where our method achieves its best FID score. Right: Results of transferring ImageNet to 5 classes of Places365

with 500 samples per class. * adopted from [39]. Some discrepancy between the KMMD scores of * and ** is possible2.

is an `1 regularization over the similarity scores:

L =Lg + �rLr + �sLs,

=Lg + �r

LX

l=1

N+MX

y0=N+1

{||ry
0

γl
||22 + ||ry

0

βl
||22}

+ �s

LX

l=1

N+MX

y0=N+1

{|Sy0

γl
|+ |Sy0

βl
|},

(7)

where, �r and �s are the hyper-parameters associated to

residual and sparsity losses, respectively.

5. Experiments

In this section, we provide the details of our experiments,

the evaluation of our method (cGANTransfer), and its com-

parison with the baseline methods in two different setups.

Then, we provide further analysis of our contributions with

an ablation study and explanatory visualizations.

5.1. Experimental Setup

Datasets: To evaluate our method, we use two main ex-

perimental setups. In the first setup, we pre-train the net-

work on 80 randomly-selected classes of CIFAR100 [18].

The remaining classes are used as the target. To have a

more thorough evaluation, we evaluate our method on CI-

FAR100 with different numbers of target classes and im-

ages per class. For the second setup, we consider the more

challenging task of extending a network pre-trained on Im-

ageNet [8] to the Places365 dataset [46]. Following Mine-

GAN [39], we select 5 classes (i.e., Alley, Arch, Art Gallery,

Auditorium, Ballroom) and down-sample each class to 500

images. In addition, we use AnimalFace dataset [35]–

containing 20 classes–for further analysis and visualiza-

tions. We down-sample each class to contain a maximum

of 100 images.

2Our choice of the width of the Gaussian kernel (σ) for calculating

KMMD may differ from that of [39].

Architecture: For the cGAN architecture, we use Big-

GAN [3] with hinge loss, as it is one of the most widely-

used state-of-the-art cGANs. We use hierarchical noise for

training on ImageNet, but not for CIFAR100, following the

experimental setup of BigGAN [3].

Training: To maintain our experiments in the class exten-

sion setup, we freeze the weights of the generator and only

learn the parameters of our knowledge transfer block. We

also find that, if the hierarchical noise is used (e.g. Ima-

geNet setup), it is also necessary to fine-tune the linear lay-

ers that project the noise into the BN parameter’s space. The

reason might be that these linear layers are optimized to add

the detailed style of the dataset to the generated images. Ex-

periments on CIFAR100 are conducted using a single V100

GPU with a batch size of 50, and the experiments on the sec-

ond setup are performed using 8 V100 GPUs with a batch

size of 256.

5.2. Comparison with the State-of-the-Art

To quantitatively evaluate our method, we use Fréchet

Inception Distance (FID) [12]. We also provide the KMMD

metric (Gaussian kernel with � = 1) for ImageNet setup,

following BSA and MineGAN [30, 39]. We compare our

method against training from the scratch (Scratch), Trans-

ferGAN [40], PPGN [28], MineGAN [39] and BSA [30].

Among these methods, BSA is the only one that performs

the class extension. Therefore, we consider BSA as our

main baseline.

Table1 (left) shows the results for evaluating our method

on CIFAR100 and its comparison with the other methods.

The experiments include two different numbers of classes

(20 and 10), and 3 different numbers of samples per class

(600, 300, 100). As it can be seen, decreasing the num-

ber of training samples degrades the performance of learn-

ing from scratch and TransferGAN significantly. On the

other hand, BSA and our method perform more robustly on

small data. Compared to BSA, our method achieves slightly

better FID scores (possibly because of the less challeng-

ing task on CIFAR) and a significantly better convergence
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Figure 5: The convergence comparison between BSA and

ours on CIFAR (left) and Places365 (right) setups. Note that

the number of iterations is shown above each bar.
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Figure 6: The visual comparison between our proposed

method and baseline methods on Places365. The first three

Competitors’ results are adopted from [39].

speed (more than 4x speed-up on average), as visualized

in Fig. 5 (left). Our method enjoys such speed-up thanks

to the knowledge propagation through the class represen-

tations, as opposed to its counterpart–BSA. The superior-

ity of the proposed method becomes even more noticeable

in the more challenging setup of transferring ImageNet to

Places365. The classes of Places365 have large intra-class

diversity, and there is a considerable domain gap between

the source and target datasets. Therefore, the task becomes

highly challenging when only use 500 images per class are

used. Table 1 (right) presents the results for transferring

ImageNet to 5 classes of Places365. As it can be seen, our

method clearly outperforms the other methods in terms of

FID and KMMD. Fig. 5 (right) again shows that the pro-

posed method is more than 5x faster than BSA in terms of

Experiment Best FID Iterations

Freezed Prior, w/o Res 96.3 3000

Freezed Prior, with Res 79.4 1100

Tunable Prior, w/o Res 81.2 4000

Shared W, Tunable Prior, w/o Res 79.8 3400

Final architecture w/o reg 82.4 2400

Final architecture w/o l1 84.7 1600

Final architecture w/o l2 81.1 2100

Final architecture, with l1 & l2 71.1 900

Table 2: Ablation study over GAN transfer from ImageNet

to Places365. Iterations: iteration number for the best FID.

convergence speed. The comparison between the results of

our method and BSA shows that knowledge transfer across

classes results in not only faster convergence but also a more

accurate distribution approximation of the target data. Fig. 6

depicts the visual results for our method and the compared

ones in ImageNet-to-Places365 setup.

5.3. Ablation Study

To show the effect of each component in our method,

we perform the following experiments on ImageNet-to-

Places365 setup: Transferring from previous classes with-

out updating the prior knowledge or residual learning, trans-

ferring from updatable prior knowledge without residual

learning, updatable prior with residuals, sharing the combi-

nation weights between the layers, and the experiments on

the regularizations. Table 2 shows the results for the abla-

tion study of our method when transferring from ImageNet

to Places. The ablation study shows that, all the proposed

components contribute meaningfully to the final model.

5.4. Fine-tuning

As mentioned in Sec. 5.1, we freeze the weights of the

generator in our experiments. This enables a parameter-

efficient extension of the cGAN to target classes. How-

ever, when parameter efficiency is not a constraint, fine-

tuning the filters could further improve the performance of

the model, as shown in [39]. Therefore, we also provide the

results of further fine-tuning of our model after learning the

target BN parameters in Table 3. To fine-tune the model, we

freeze the knowledge propagation parameters (prior knowl-

edge and similarity scores) and only fine-tune the residuals,

as well as the rest of the model. The results show the addi-

tional benefit of further fine-tuning of our model.

Dataset FID KMMD

Places365 65.48 0.156

AnimalFace 68.92 0.194

Table 3: The results of further fine-tuning of our model on

Places365 and AnimalFace.
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Experiment FID KMMD Iters Time (Mins)

BSA 91.9 0.25 4800 650

Ours 85.9 0.23 1400 235

B
SA

O
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s

Figure 7: Quantitative (top) and qualitative (bottom) results

of transferring ImageNet to 20 classes of Face Animal with-

out (BSA) and with (Ours) cross-class knowledge propa-

gation. Iters: training iteration number for the best FID.

5.5. Analysis and Visualizations

To better understand the proposed method, we further

analyze its main components while transferring ImageNet

to AnimalFace. The quantitative (FID, KMMD, and con-

vergence time) and qualitative results of class extension to

AnimalFace, with and without class knowledge propaga-

tion, are shown in Fig. 7. The results for AnimalFace are

consistent with the previous results provided in Sec. 5.2.

Knowledge sharing within target classes: An important

component of our method is knowledge sharing within the

target classes. Fig. 8. shows the pseudo-classes (interme-

diate representations) obtained by our method after training

on the target data. To visualize these representations, we

directly sample the BN parameters from the updated base

representations, instead of combining them to obtain the

new class representations (refer to Fig. 3). As it can be

seen, the initial class representations of the ImageNet are

transformed to some intermediate “pseudo-class” represen-

tations that contain the shared structure of the target faces,

but do not belong to a particular target class. Thus, our

method is able to obtain the representations of each new

class by combining these new pseudo-classes, which are

learned using all of the target classes.

Layer-specific knowledge transfer: Another key aspect

of our method, as discussed in Sec. 4 (refer to Fig. 2) and

supported by the ablation study (Table 2), is that the linear

transfer weights are different for each layer. Fig. 9 visual-

izes the effect of using different weights per layer. To obtain

these visualizations, after training the network on the target,

we use the learned similarity scores of the first layer for all

the layers. Then, we gradually introduce the learned scores

of the next layers. From the results, we see that the first lay-

ers are mostly responsible for the general object shape, and

the later layers introduce color and finer details.

Figure 8: Knowledge sharing. The intermediate shared

representations learned for AnimalFace as the target data.

Figure 9: Layer-wise knowledge transfer. Different lay-

ers introduce different information to the generated images.

The shape is mostly changed by the starting layers, while

colors and finer details are added by the later layers.

6. Conclusion and Future Work

In this paper, we studied the problem of conditional

GAN transfer by transferring the knowledge across both

source and target classes. We represented the knowledge

of individual classes by their respective batch normaliza-

tion parameters, which are used for conditioning during the

generation. To propagate the knowledge to new classes,

we introduced a method that learns to update and combine

the batch normalization parameters of the source classes.

The evaluations on three standard benchmarks demonstrate

a clear advantage of our method, both in terms of train-

ing efficiency and the image generation quality (in terms

of FID and KMMD), compared to the state-of-the-art meth-

ods. Our ablation study showed the importance of jointly

using the update and combination steps, which we referred

to as sharing and propagation, respectively.

We believe our study can be followed by several inter-

esting future works, such as further knowledge propagation

on the discriminator, its integration with differentiable aug-

mentation [15, 45], and the extension to lifelong learning.
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