
Efficient Conflict Analysis for Finding All Satisfying
Assignments of a Boolean Circuit�

HoonSang Jin, HyoJung Han, and Fabio Somenzi

University of Colorado at Boulder
{Jinh, Hhhan, Fabio}@Colorado.EDU

Abstract. Finding all satisfying assignments of a propositional formula has many
applications to the synthesis and verification of hardware and software. An ap-
proach to this problem that has recently emerged augments a clause-recording
propositional satisfiability solver with the ability to add “blocking clauses.” One
generates a blocking clause from a satisfying assignment by taking its comple-
ment. The resulting clause prevents the solver from visiting the same solution
again. Every time a blocking clause is added the search is resumed until the in-
stance becomes unsatisfiable. Various optimization techniques are applied to get
smaller blocking clauses, since enumerating each satisfying assignment would be
very inefficient.

In this paper, we present an improved algorithm for finding all satisfying
assignments for a generic Boolean circuit. Our work is based on a hybrid SAT
solver that can apply conflict analysis and implications to both CNF formulae and
general circuits. Thanks to this capability, reduction of the blocking clauses can be
efficiently performed without altering the solver’s state (e.g., its decision stack).
This reduces the overhead incurred in resuming the search. Our algorithm performs
conflict analysis on the blocking clause to derive a proper conflict clause for
the modified formula. Besides yielding a valid, nontrivial backtracking level, the
derived conflict clause is usually more effective at pruning the search space, since
it may encompass both satisfiable and unsatisfiable points. Another advantage is
that the derived conflict clause provides more flexibility in guiding the score-based
heuristics that select the decision variables. The efficiency of our new algorithm is
demonstrated by our preliminary results on SAT-based unbounded model checking
of VIS benchmark models.

1 Introduction

Many applications in computer science rely on the ability to solve large instances of the
propositional satisfiability (SAT) problem. Examples include bounded and unbounded
model checking [2, 20, 21], equivalence checking [11] and various other forms of au-
tomated reasoning [1, 17], test generation, and placement and routing of circuits [23].
While some of these applications only require a yes-no answer, an increasing number
of them relies on the solver’s ability to provide a proof of unsatisfiability [10, 29], a sat-
isfying assignment that is minimal according to some metric [5, 24], or an enumeration
of all satisfying assignments to a propositional formula [20].

� Work supported in part by SRC contract 2004-TJ-920.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 287–300, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



288 H. Jin, H. Han, and F. Somenzi

Specifically, the systematic exploration of all satisfying assignments is important
for unbounded SAT-based model checking, for decision procedures for arithmetic con-
straints, Presburger arithmetic, and various fragments of first order logic, and in the
optimization of logic circuits. The problem is computationally hard because listing all
the solutions requires exponential time in the worst case. All efforts should be made to
present (and compute) the set of satisfying assignment in a concise form. Normally, the
desired format is a disjunctive normal form (DNF) formula, which should consist of as
few terms as it is feasible without compromising the speed of the solver. Recent advances
in the design of SAT solvers like non-chronological backtracking and conflict analysis
based on unique implication points, and efficient implementations like those based on
two-watched literal schemes have inspired new approaches to the solution enumeration
problem as well [20]. In this paper, in particular, we show how to take full advantage
of sophisticated conflict analysis techniques to substantially increase both the speed of
enumeration and the conciseness of the solution.

Conventional SAT solvers are targeted to computing just one solution, but they can be
augmented to get all solutions. We call the problem of finding all satisfying assignments
AllSat. In principle, to solve AllSat, it is enough to force the SAT solver to continue the
search after getting each satisfying assignment.

In previous work [20, 16, 6], once a satisfying assignment is found then a blocking
clause is generated by taking its complement. Blocking clauses are added to the function
being examined to prevent the SAT solver from finding the same solution again. They
represent the natural way to force a SAT solver based on conflict clause recording to
continue the search. Various optimization techniques are applied to get smaller blocking
clauses, since enumerating each satisfying assignment would be very inefficient. In ap-
plications like unbounded model checking [20], one seeks to enumerate the assignments
to a propositional formula originally given in the form of a circuit. The translation of this
circuit to conjunctive normal form (CNF) introduces auxiliary variables whose values
are determined by those of the inputs of the circuit. The solutions that are enumerated
should only be in terms of these input variables, and the minimization of the blocking
clauses should take this feature into account. One way to achieve this objective is to use
a so-called auxiliary implication graph to determine a subset of the input assignments
sufficient to justify the output of the circuit.

The approach of [16] uses an external two-level minimization program to get a min-
imized form for sets of satisfying assignments instead of finding a minimized blocking
clause internally on the fly. Every time a solution is identified then it is saved in DNF in
addition to adding its negation as a blocking clause. The accumulated DNF is periodi-
cally fed to a two-level minimizer. All recent advances in propositional SAT [22, 9, 15]
based on DPLL [8, 7] can be adopted to enhance performance of these AllSat methods,
since they use exactly the same SAT algorithm except for the addition of the blocking
clauses as additional constraints.

In [19, 12], the authors point out that the size of the instance may be increased
significantly by the addition of the blocking clauses. Consequently, the speed of finding
one solution is decreased because of the time spent in implications for those blocking
clauses. They propose to save solutions in a decision tree by restricting non-chronological



Efficient Conflict Analysis for Finding All Satisfying Assignments 289

SAT

UNSAT

SAT

UNSAT

SAT

UNSAT

SAT

UNSAT

(c)

(a)

(d)

(b)

Fig. 1. Illustration of AllSat solving

backtracking. The decision heuristic also is restricted to increase the chance of saving
solutions into the decision tree.

A simple algorithm for AllSat based on adding blocking clauses is illustrated in
Fig. 1. For a given SAT instance, the search space can be divided into SAT and UNSAT
subspaces. In the figure, the filled rectangles represent the blocking clauses created from
satisfying assignments and the unfilled rectangles represent the conflict clauses generated
from conflict analysis. In conventional SAT solving, if the satisfying assignment is
identified on the SAT side, then the search is terminated. By contrast, inAllSat, the search
is continued to cover all SAT and UNSAT points. When all the search space is covered
by blocking clauses and conflict clauses then AllSat solving is finished. Minimization
techniques can enlarge the filled rectangles as in [20, 16, 6]. Since large rectangles can
prune large parts of the search space, these minimization techniques are beneficial.

Suppose that while solving AllSat, we have a blocking clause close to the UNSAT
side, as illustrated in Part (a) of the figure. By adding the blocking clause, the corre-
sponding satisfying assignments are moved to the UNSAT side as in (b). In the future,
the solver may find a conflict such that the conflict-learned clause prunes this part of
search space as in (c). Since finding blocking clauses and conflict analysis can only be
applied on the SAT and UNSAT sides, respectively, these conventional solvers cannot
apply powerful pruning techniques on both SAT and UNSAT side simultaneously as
in (d). That is, they cannot add clauses that prevent the future exploration of both SAT
and UNSAT points of the search space. In this paper we propose an efficient conflict
analysis that removes this limitation. This technique improves the effectiveness of non-
chronological backtracking, and of the heuristic that chooses the decision variables. The



290 H. Jin, H. Han, and F. Somenzi

main idea is to regard the blocking clause as a conflicting clause for the updated function,
and to generate a conflict clause from it. An important issue is that this additional conflict
analysis requires, for an efficient implementation, that the state of the SAT solver be pre-
served across the computation of the blocking clause. In our solver this is very naturally
accomplished by letting the input circuit be represented in the form of an And-Inverter
Graph (AIG), while conflict and blocking clauses are kept in CNF.

The rest of this paper is organized as follows. Background material is covered in
Section 2. Section 3 presents the new AllSat algorithm based on a hybrid representation,
which consists of AIG and CNF. The efficiency of our new algorithm is demonstrated by
our preliminary results for SAT-based unbounded model checking problems in Section 4.
Finally, we draw conclusions in Sect.5.

2 Preliminaries

Most SAT solvers read a propositional formula in CNF. Boolean circuits, which are
often encountered in design automation applications of SAT, are converted to CNF
by introducing auxiliary variables for the logic gates or subformulae. The conver-
sion to CNF has linear complexity, and is therefore efficient. Recently, however, there
have been proposals for SAT solvers that combine the strengths of different repre-
sentations, including circuits, CNF formulae, and Binary Decision Diagram
(BDD [4]) [18, 14].

In this paper we rely on both CNF and AIGs to solve the AllSat problem. An And-
Inverter Graph (AIG) is a Boolean circuit such that each internal node ν has exactly
two predecessors, and if the predecessor variables are v1 and v2, its function φ(ν) is one
of v1 ∧ v2, v1 ∧ ¬v2, ¬v1 ∧ v2, and ¬v1 ∧ ¬v2. A Conjunctive Normal Form (CNF)
is a set of clauses; each clause is a set of literals; each literal is either a variable or its
complement. The function of a clause is the disjunction of its literals, and the function
of a CNF formula is the conjunction of its clauses.

Figure 2 shows the pseudocode for the DPLL procedure. Procedure ChooseNex-
tAssignment checks the implication queue. If the queue is empty, the procedure makes
a decision: it chooses one unassigned variable and a value for it, and adds the assignment

1 DPLL() {
2 while (ChooseNextAssignment()) {
3 while (Deduce() == CONFLICT) {
4 blevel = AnalyzeConflict();
5 if (blevel ≤ 0) return UNSATISFIABLE;
6 else Backtrack(blevel);
7 }
8 }
9 return SATISFIABLE;
10 }

Fig. 2. DPLL algorithm



Efficient Conflict Analysis for Finding All Satisfying Assignments 291

1 AllSat() {
2 while (1) {
3 while (ChooseNextAssignment()) {
4 while (Deduce() == CONFLICT) {
5 blevel = AnalyzeConflict();
6 if (blevel ≤ 0) return UNSATISFIABLE;
7 else Backtrack(blevel);
8 }
9 }
10 FindAndAddBlockingClause();
11 Backtrack();
12 }
13 }

Fig. 3. AllSat algorithm

to the implication queue. If none can be found, it returns false. This causes DPLL to
return an affirmative answer, because the assignment to the variables is complete.

If a new assignment has been chosen, its implications are added by Deduce to the
queue. Efficient computation of implications for clauses is discussed in [25, 27, 22, 9];
implications in AIGs are described in [18];

If the implications yield a conflict, AnalyzeConflict() is launched. Conflict anal-
ysis relies on the (implicit) construction of an implication graph. Each literal in the
conflicting clause has been assigned at some level either by a decision, or by an implica-
tion. If there are multiple literals from the current decision level, at least one of them is
implied. Conflict analysis locates the source of that implication—it may be a clause or an
AIG node—and extends the implication graph by adding arcs from the antecedents of the
implication to the consequent. This process continues until there is exactly one assign-
ment for the current level among the leaves of the tree. The disjunction of the negation of
the leaf assignments gives then the conflict clause. The highest level of the assignments
in the conflict clause, excluding the current one, is the backtracking level. The single
assignment at the current level is known as first Unique Implication Point (UIP). Conflict
clauses based on the first UIP have been empirically found to work well [28].

Conflict analysis produces two important results. The first is a clause implied by the
given circuit and objectives. This conflict clause is added to the clauses of the circuit.
Termination relies on it, because it causes the search to continue in a different direction.
The second result of conflict analysis is the backtracking level: Each assignment to a
variable has a level that starts from 0 and increases with each new decision. When a
conflict is detected, the algorithm determines the lowest level at which a decision was
made that eventually caused the conflict. The search for a satisfying assignment resumes
from this level by deleting all assignments made at higher levels. This non-chronological
backtracking allows the decision procedure to ignore inconsequential decisions that have
provably no part in the conflict being analyzed.

Figure 3 shows the basic algorithm to get all satisfying assignments to a propositional
formula. The DPLL procedure is extended with the ability to add blocking clauses as
in [20, 6]. One generates a blocking clause from a satisfying assignment by taking the



292 H. Jin, H. Han, and F. Somenzi

complement of the conjunction of all the literals in the assignment. Procedure Find-
AndAddBlockingClause() finds a blocking clause and adds it to the database. The
resulting clause prevents the solver from visiting the same solution again. Every time a
blocking clause is added, the search is resumed at some safe backtracking level until the
instance becomes unsatisfiable.

3 Algorithm

In the technique we propose, an AIG is used to represent the Boolean circuit whose
satisfying assignments must be enumerated, while the result of a conflict analysis is
represented as one clause. In our framework, conflict analysis and implications can be
applied to both CNF formulae andAIGs. Figure 4 shows the pseudocode for the proposed
algorithm. The naive algorithm of Figure 3 can be improved by replacing lines 10 and
11 with the procedure in Figure 4.

In the algorithm description, C is a Boolean circuit in the form of an AIG, which is
given as an input together with obj; obj is the objective, which is a node of C. We want to
find the all the assignments over V that satisfy obj. F is the formula resulting from con-
joining C with the conflict clauses and the blocking clauses generated while solving the
AllSat problem. Therefore, initially F is C and when F becomes 0 AllSat is completed.

Procedure BlockingClauseAnalysis is called when a satisfying assignment is
found in F . To get a blocking clause B over the variables in V , Boolean constraint
propagation is applied on C, which is the original Boolean circuit, disregarding conflict
learned clauses and blocking clauses. This is to get a smaller assignment from this
analysis. Figure 5 shows the reason why C is used for finding minimized assignments.
Suppose we have 4 variables in our SAT instance, and a∧c is the off-set. ¬a∧b∧¬c∧d
is a satisfying assignment that was detected at an earlier stage. It is possible to get such
an assignment if we use a heuristic minimization algorithm, but with small changes,

1 BlockingClauseAnalysis(F, C, A, V, obj) {
2 B = ∅;
3 for each v ∈ V {
4 B = B ∪ v;
5 BCPonCircuit(C, v, A(v));
6 if (Value(obj) == A(obj)) break ;
7 }
8 MinimizationBasedOnAntecedent(C, B, obj);
9 AddBlockingClause(F, ¬B);
10 if (CheckUIP(F, B) == 0)
11 bLevel = ConflictAnalysis(F, ¬B);
12 else
13 bLevel = GetSafeBacktrackLevel(F, ¬B);
14 Backtrack(bLevel);
15 }

Fig. 4. Blocking clause analysis algorithm



Efficient Conflict Analysis for Finding All Satisfying Assignments 293

���
���
���
���

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

����
����
����
����
����

����
����
����
����
����

���
���
���
���

���
���
���
���
���

���
���
���
���
���

(a) (b)

a b
c d

00

01

11

10

00 01 1011 a b
c d

00

01

11

10

00 01 1011

Fig. 5. Example of minimization

the example could be adapted to the case in which exact minimization is applied. Now
suppose that satisfying assignment ¬c ∧ ¬d is found. If we try to expand ¬c ∧ ¬d with
respect to F , which is C ∧ (a ∨ ¬b ∨ c ∨ ¬d), it cannot be expanded further as in
(a). But if we apply minimization with respect to C, it can be expanded to ¬c as in
(b). Therefore heuristic minimization on C instead of F will give us a chance to get
further minimization, since the expansion on C may give us a cover made up of prime
implicants instead of a disjoint cover. In our framework, implications on either the AIG
or the CNF clauses can be disabled. Since the conflict clauses and blocking clauses are
saved as clauses, the implication on C can be done without extra effort by enabling the
implication on AIGs only.

While applying Boolean constraints propagation (BCP) based on valuations of the
variables in V , if the objective obj is satisfied then a sufficient satisfying assignment
is identified. There is still room to improve because different orders of application of
Boolean constraint propagation may result in different sufficient sets of variables. The
assignments are further minimized by checking the implication graph C. Figure 6 (a)
shows a small example that illustrates order dependency. If we check if y is implied
while applying BCP with the order of a, b, c, d then ¬a ∧ ¬b ∧ c ∧ d is identified as a
satisfying assignment. If we check if y is implied while applying BCP with the order
of c, d, a, b then c ∧ d is a sufficient assignment. To reduce this inefficiency caused by
the order of BCP, we traverse the implication graph after the implication on y has been
obtained. Even though we apply BCP with the order of a, b, c, d, c ∧ d is detected as
sufficient assignment by traversing implication graph on C even with inefficient order of
BCP. This is done in MinimizationBasedOnAntecedent. This procedure is similar
to the techniques used in [20, 13]. It should be noted that this method does not guarantee
minimality of satisfying assignment. Figure 6 (b) shows a case in which we may not get
a minimal assignment with this method. In this example a = 0 is a minimal assignment.
If the implication order is b, a, c, the sufficient assignment is found to be ¬b ∧ ¬a. Only
when a is implied first the minimal assignment is detected.

Thanks to our solver’s hybrid capability, reduction of the blocking clauses can be
efficiently performed on C without altering the solver’s state (e.g., its decision stack
for F and the two-watched literal lists). Therefore the blocking clause is added to F ,
immediately generating a conflict on F . If a blocking clause has only one variable
assignment at the maximum decision level of the implication graph of F , then it already



294 H. Jin, H. Han, and F. Somenzi

y = 1

e = 0

y = 1

f = 1

(b)(a)

f = 0

e = 0
a = 0

b = 0

c = 1

d = 1

b = 0

a = 0

c = 0

Fig. 6. Example of order dependency

has a unique implication point in it. Otherwise the conflict analysis is applied to get a
conflict-learned clause.

Since the solver’s state is not altered during the minimization procedure as opposed
to implementations based on CNF solver [20, 6], this eliminates a reason for restarting
the solver every time a blocking clause is added. One can avoid the restart by duplicating
the whole solver data base so as not to alter the solver’s state. However, it is not efficient
to find an appropriate backtracking level where the search should be resumed based on
blocking clause. Our algorithm, on the other hand, performs conflict analysis on the
blocking clause to derive a proper conflict clause for the modified formula. Besides
yielding a valid, nontrivial backtracking level, the derived conflict clause is usually
more effective at pruning the search space, since it often encompasses both satisfiable
and unsatisfiable points as shown in Figure 1. It is also unrestricted in the sense that both
input and internal variables of the Boolean circuit may appear in it.

A final advantage of our analysis is that the derived conflict clause provides more
flexibility in guiding the score-based heuristics that select the decision variables. If the
blocking clauses are used to update the variable scores, the scores of the variables in V
will unduly increase, since the variables in the blocking clauses are restricted to variables
in that set. This will cause the solver to make decisions almost only on those variables.
The result may be beneficial for the pruning of the SAT part of the search space, but
not for the UNSAT part. The conflict clauses generated by the proposed algorithm still
contain a lot of variables from V . The variables implied earlier than at the current decision
level in a conflicting clause are immediately added to the conflict learned clause. Since
a conflicting clause—in this case, the blocking clause that was added to F—consists
of those variables, the resulting conflict clause still contains a lot of variables in V . To
avoid increasing the score of those variables, we use the Deepest Variable Hiking (DVH)
decision heuristics [15]. Boosting only the score of the most recent decision variable
among the literals in the conflict-learned clause results in a more balanced approach at
letting the blocking clauses influence the search direction.

With proof identical to that of Proposition 1 in [29] one shows that the improved All-
Sat procedure that performs conflict analysis on the blocking clauses does not require
the addition of either blocking clauses or conflict clauses to F to guarantee termination.
However, as in standard SAT solvers, these additional clauses may prove useful by caus-
ing implications during BCP. Many tradeoffs are possible. In our current implementation
we keep both blocking and conflict clauses.



Efficient Conflict Analysis for Finding All Satisfying Assignments 295

We show that the conflict clauses generated by the proposed algorithm never block
other satisfying assignment as follows.

Lemma 1. For formula F , the conflict learned clause γ generated by conflict analysis
on blocking clause β is implied by F ∧ β.

Proof. Since the conflict occurred after adding blocking clause to F , F ∧ β → γ. ��

Theorem 1. For formula F , the conflict learned clause γ generated by conflict analysis
on blocking clause β never blocks satisfying assignments not in β.

Proof. Since F ∧β does not block any satisfying assignments except ¬β, γ cannot block
other satisfying assignments by Lemma 1. ��

All satisfying assignments produced by the algorithms are satisfying assignments
of C, because at all times F → C. In summary, the AllSat algorithm terminates after
having enumerated all satisfying assignments of C, and is therefore correct.

4 Experimental Results

We have implemented the proposed all satisfying assignments algorithm in VIS-2.1
[3, 26]. To show the efficiency of the proposed algorithm on various examples, we
implemented a SAT-based unbounded model checker that uses the AX operator as
described in [20].

Our algorithm should already be faster than the one described in [20] because of
the hybrid capability and minimization technique discussed in Section 3. Therefore we

Table 1. Performance comparison for reaching a given pre-image step

pre-image With CA Without
Design # latches steps CPU time # blocking CPU time # blocking

synch bakery 22 49 676.7 37651 2398.9 67280
itc-b07 45 20 628.0 492 1607.2 870

solitaireVL 22 12* 2155.2 17754 15698.5 44693
heap 24 4* 847.4 34815 3028.4 78654
eight 27 2* 487.7 99992 1939.5 144563

buf bug 27 8* 3128.9 26343 4160.6 39266
swap 27 5* 1893.7 16224 15808.3 24234
two 30 15* 3414.7 28866 10537.5 48961

luckySevenONE 30 24* 6846.2 40963 17657.0 70465
cube 32 10* 4498.9 46214 8013.5 47018
bpb 36 6* 103.3 5648 3823.8 79946
huff 37 9* 7787.1 100855 13441.5 113222
ball 86 6* 46.8 26659 176.8 52772

s1423 74 2* 2039.0 64097 7153.7 78928
Ifetchprod 147 3* 233.1 47103 716.5 57278



296 H. Jin, H. Han, and F. Somenzi

Table 2. Performance comparison until reaching timeout

With CA Without
Design # latches pre-image steps CPU time pre-image steps CPU time

vsa16a 172 2 1086 0* ≥20000
swap 27 6 3458 4* ≥20000

solitaireVL 22 46 6695 13* ≥20000
eight 27 4* ≥20000 3* ≥20000
two 30 18* ≥20000 16* ≥20000

luckySevenONE 30 27* ≥20000 25* ≥20000
cube 32 11* ≥20000 11* ≥20000
heap 32 6* ≥20000 5* ≥20000
huff 37 17* ≥20000 10* ≥20000

s1423 74 4* ≥20000 2* ≥20000
ball 86 8* ≥20000 7* ≥20000

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

5 10 15 20 25 30 35 40 45

nu
m

be
r 

of
 c

on
fl

ic
t l

ea
rn

ed
 c

la
us

es

pre-image step

with
without

Fig. 7. Number of conflict learned clauses

compare the proposed algorithm with and without conflict analysis on blocking clauses
on our hybrid solver rather than comparing with a CNF SAT based implementation.
The experimental setup is as follows. The inputs, that is, the transition relation and the
invariant property, are given as Boolean circuits. At every iteration of the AX operation,
the frontier is extracted and expressed as a circuit in terms of next state variables. A new
objective is created to satisfy the set of states in the frontier. The iteration is continued
until convergence.

The model checking examples are selected from the VIS benchmark suite [26]. The
examples that could be solved in a few seconds were removed from the set. There is not



Efficient Conflict Analysis for Finding All Satisfying Assignments 297

0

1000

2000

3000

4000

5000

6000

7000

8000

5 10 15 20 25 30 35 40 45

nu
m

be
r 

of
 b

lo
ck

in
g 

cl
au

se
s

pre-image step

with
without

Fig. 8. Number of blocking clauses

direct correlation between the size of the model and its difficulty for model checking.
In several of the large examples we considered, the cones of influence of the given
properties are small so that the pre-images based on AllSat are trivial. By contrast, most
of the selected examples are small, but notoriously difficult for SAT-based methods.

The experiments have been performed on 1.7 GHz Pentium IV with 1 GB of RAM
running Linux. We have set the time out limit to 20,000 s.

Table 1 compares the CPU time spent and the number of blocking clauses generated
until the same number of pre-image steps is reached. The number is the one that the slower
method can complete within the allotted time. The column labeled ‘With CA’ shows the
performance of the proposed algorithm that applies conflict analysis on the blocking
clauses. The column labeled ‘Without’ shows the performance of AllSat without having
conflict analysis on the blocking clauses. All other features described in Sect. 3 are still
applied for the results shown in this column. The comparison of the two sets of results
highlights consistent speed-up (up to 20 times). A ‘*’ after the number of pre-image
steps signals that the performed pre-image steps did not suffice for convergence. Even
though we have consistent speed-up, some examples benefit more than others from the
improved algorithm. We conjecture that this is mainly due to the distribution of satisfying
and unsatisfying assignments over the search space.

Table 2 compares the numbers of pre-image steps that can be completed in a given
amount of time. The proposed algorithm never finishes fewer pre-image steps. Again, a
‘*’ after the number of pre-image steps indicates that convergence was not reached. For
example, ‘vsa16a’ converges in two pre-image steps with the proposed conflict analysis,
while it times out in the first iteration without the proposed conflict analysis.

Figures 7 and 8 show the numbers of conflict learned clauses and the numbers
of blocking clauses of the ‘solitaireVL’ example. Figure 7 supports our claim that the
proposed algorithm generates conflict clauses encompassing both SAT and UNSAT



298 H. Jin, H. Han, and F. Somenzi

points, since it shows large reductions in conflict clauses. We also get smaller numbers
of blocking clauses as shown in Figure 8. This seems to confirm our conjecture that the
DVH decision heuristic tends to make better choices when the scores are updated based
on the conflict clauses generated from the blocking clauses.

5 Conclusions

We have presented a novel conflict analysis on blocking clauses to accelerate the search
of all satisfying assignments to a Boolean circuit. The conflict clauses generated by
the proposed algorithm often cover both the SAT and the UNSAT side of the search
space. This helps in preventing future conflicts. Moreover, we can prune larger parts
of the search space, which helps AllSat finish sooner with fewer conflicts. Since in the
proposed algorithm the decision heuristic is influenced by the blocking clauses as well,
the search is directed in such a way that even larger conflict clauses spanning both the
original UNSAT space and the identified SAT points are obtained through the standard
conflict analysis. Experimental results show a significant improvement in the speed of
AllSat solving and in the number of blocking clauses that make up the solution.

An improved solver for AllSat will benefit many applications that use it directly, like
the SAT-based model checker we used to validate our implementation, or that use it as
the basis of another algorithm. Examples of the latter that we plan to investigate are
decision procedures for various fragments of first order logic.

Acknowledgment

We thank Ken McMillan for clarifying to us the details of his implementation.

References

[1] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT based
approach for solving formulas over boolean and linear mathematical propositions. In Inter-
national Conference on Automated Deduction, July 2002.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In
Fifth International Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS’99), pages 193–207, Amsterdam, The Netherlands, March 1999. LNCS
1579.

[3] R. K. Brayton et al. VIS: A system for verification and synthesis. In T. Henzinger and
R. Alur, editors, Eighth Conference on Computer Aided Verification (CAV’96), pages 428–
432. Springer-Verlag, Rutgers University, 1996. LNCS 1102.

[4] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8):677–691, August 1986.

[5] D. Chai and A. Kuehlmann. A fast pseudo-Boolean constraint solver. In Proceedings of the
Design Automation Conference, pages 830–835, Anaheim, CA, June 2003.

[6] P. Chauhan, E. M. Clarke, and D. Kroening. Using SAT based image computation for
reachability analysis. In Technical Report CMU-CS-03-151, 2003.

[7] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.



Efficient Conflict Analysis for Finding All Satisfying Assignments 299

[8] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
Association for Computing Machinery, 7(3):201–215, July 1960.

[9] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Proceedings of
the Conference on Design, Automation and Test in Europe, pages 142–149, Paris, France,
March 2002.

[10] E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF formulas.
In Design, Automation and Test in Europe (DATE’03), pages 886–891, Munich, Germany,
March 2003.

[11] E. Goldberg, M. Prasad, and R. Brayton. Using SAT for combinational equivalence checking.
In Proceedings of the Conference on Design, Automation and Test in Europe, pages 114–121,
June 2001.

[12] O. Grumberg, A. Schuster, and A. Yadgar. Memory efficient all-solutions SAT solver and
its application for reachability analysis. In Proceedings of FMCAD, Austin, TX, 2004. To
appear.

[13] M. K. Iyer, G. Parthasarathy, and K.-T. Cheng. SATORI – a fast sequential SAT engine for
circuits. In Proceedings of the International Conference on Computer-Aided Design, pages
320–325, San Jose, CA, November 2003.

[14] H. Jin, M. Awedh, and F. Somenzi. CirCUs: A satisfiability solver geared towards bounded
model checking. In R. Alur and D. Peled, editors, Sixteenth Conference on Computer Aided
Verification (CAV’04). Springer-Verlag, Berlin, July 2004. To appear.

[15] H. Jin and F. Somenzi. CirCUs: A hybrid satisfiability solver. In International Conference
on Theory and Applications of Satisfiability Testing (SAT 2004), Vancouver, Canada, May
2004.

[16] H.-J. Kang and I.-C. Park. SAT-based unbounded symbolic model checking. In Proceedings
of the Design Automation Conference, pages 840–843, Anaheim, CA, June 2003.

[17] D. Kroening, J. Ouaknine, S. A. Seshia, , and O. Strichman. Abstraction-based satisfiability
solving of Presburger arithmetic. In Sixteenth Conference on Computer Aided Verification
(CAV’04), pages 308–320, July 2004.

[18] A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Boolean reasoning. In Proceed-
ings of the Design Automation Conference, pages 232–237, Las Vegas, NV, June 2001.

[19] B. Li, M. S. Hsiao, and S. Sheng. A novel SAT all-solutions for efficient preimage compu-
tation. In Proceedings of the Conference on Design, Automation and Test in Europe, pages
380–384, March 2004.

[20] K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. In
E. Brinksma and K. G. Larsen, editors, Fourteenth Conference on Computer Aided Verifi-
cation (CAV’02), pages 250–264. Springer-Verlag, Berlin, July 2002. LNCS 2404.

[21] K. L. McMillan. Interpolation and SAT-based model checking. In W. A. Hunt, Jr. and
F. Somenzi, editors, Fifteenth Conference on Computer Aided Verification (CAV’03), pages
1–13. Springer-Verlag, Berlin, July 2003. LNCS 2725.

[22] M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the Design Automation Conference, pages 530–535,
Las Vegas, NV, June 2001.

[23] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar. A comparative study of two boolean
formulations of FPGA detailed routing constaraints. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits, pages 688–696, June 2004.

[24] K. Ravi and F. Somenzi. Minimal assignments for bounded model checking. In International
Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS’04),
pages 31–45, Barcelona, Spain, March-April 2004. LNCS 2988.

[25] J. P. M. Silva and K. A. Sakallah. Grasp—a new search algorithm for satisfiability. In
Proceedings of the International Conference on Computer-Aided Design, pages 220–227,
San Jose, CA, November 1996.



300 H. Jin, H. Han, and F. Somenzi

[26] URL: http://vlsi.colorado.edu/∼vis.
[27] H. Zhang. SATO: An efficient propositional prover. In Proceedings of the International

Conference on Automated Deduction, pages 272–275, July 1997. LNAI 1249.
[28] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learning in

Boolean satisfiability solver. In Proceedings of the International Conference on Computer-
Aided Design, pages 279–285, San Jose, CA, November 2001.

[29] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In Design, Automation and Test
in Europe (DATE’03), pages 880–885, Munich, Germany, March 2003.


	Introduction
	Preliminaries
	Algorithm
	Experimental Results
	Conclusions

