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Abstract. Existing block ciphers operate on a fixed-input-length (FIL)
block size (e.g., 64-bits for DES). Often, one needs a variable-input-
length (VIL) primitive that can operate on a different size input; it is,
however, undesirable to construct this primitive from “scratch.” This pa-
per contains two constructions that start with a fixed-input-length block
cipher and show how to securely convert it to a variable-input-length
block cipher without making any additional cryptographic assumptions.
Both constructions model the FIL block cipher as a pseudorandom per-
mutation (PRP) – that is, indistinguishable from a random permutation
against adaptive chosen plaintext attack. The first construction converts
it to a VIL PRP and is an efficiency improvement over the scheme of Bel-
lare and Rogaway [4]. The second construction converts it to a VIL super
pseudorandom permutation (SPRP) – that is, the resulting VIL block
cipher is indistinguishable from a random permutation against adaptive
chosen plaintext and ciphertext attack.

1 Introduction

A cryptographic primitive which operates on an input of fixed size is called a
fixed-input-length (FIL) primitive. For example, block ciphers typically operate
on messages of fixed size (64 bits in the case of DES [18]). But often in practice,
one is faced with the situation of applying a cryptographic primitive on data of
varying lengths. A striking example is the need for an encryption algorithm which
deals with messages of varying sizes but at the same time preserves the property
that the length of ciphertext equals the length of the plaintext. This situation
is very common in Internet applications where traffic consists of “packets” of
varying sizes. If a block cipher is being used for encryption, then the blocks that
need to be encrypted could be of varying lengths. Differential packet sizes are
also prevalent in wireless applications: this is due to the fact that the frames of
data that are sent to each user may be different from user to user because of
the difference in the so called path-loss of the users relative to the base station.
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Moreover, channel conditions are a function of time, thereby forcing a change in
the transmission rates (and hence block sizes). This calls for the development of
variable-input-length (VIL) cryptographic primitives.

In general, one wants to avoid having to construct new primitives “from
scratch” to deal with specific applications, since this approach might be prone
to error. Instead, one can attempt to utilize a FIL primitive as a building block
in order to build a VIL primitive. In this paper, we take this approach and
provide efficient constructions for the conversion of a FIL block cipher to a VIL
block cipher. We also provide proofs of security relating the security of the VIL
primitive to the security of the underlying FIL primitive.

1.1 Related Work

FIL to VIL for Block Ciphers. The first formal treatment for converting
a fixed-input-length block cipher to a variable-input-length block cipher is due
to Bellare and Rogaway [4]. They formalized the problem and gave a generic
technique for constructing a block cipher which operates on any arbitrary length
input from a block cipher that works on a fixed length input; they used the idea
of a parsimonious pseudorandom function and parsimonious encryption scheme.
In addition, their cipher possesses the customary requirement, initially due to
Luby and Rackoff [15], of being a secure “pseudorandom permutation (PRP)”
as long as the original cipher is.

A number of other papers could also be used as partial solutions towards con-
verting FIL block ciphers into VIL block ciphers. For example, the celebrated
paper of Luby and Rackoff [15] showed how to convert a n-bit to n-bit pseudoran-
dom function (PRF) into a block cipher operating on 2n-bits. The subsequent
work by Naor and Reingold [17], provided constructions for converting block
ciphers operating on n-bits to block ciphers on cn-bits for a constant c ≥ 1. Ble-
ichenbacher and Desai [7] have a construction that potentially converts a FIL
SPRP to a VIL SPRP, though they do not provide a formal security proof. More
recently, Halevi and Rogaway [12, 13] have provided constructions of tweakable
enciphering schemes that operate on mn bits where m can be any positive in-
teger and n is the size of the underlying block cipher. It was initially unclear
how to use the techniques of [15] and [17] to attain provably-secure ciphers that
operate on lengths which are not a multiple of n. One of the contributions of the
present paper is to utilize these previous results to achieve such a construction.

FIL to VIL for Other Primitives. The FIL to VIL problem has been ad-
dressed for Message Authentication Codes (MACs) and for PRFs. The elegant
FIL-MAC to VIL-MAC work of An and Bellare [1] is a Damg̊ard-like [10] nested
iteration construction. Numerous works implicitly address the issue of convert-
ing a fixed-input-length PRF into a variable-input-length one; to name a few:
Bellare, Kilian and Rogaway’s CBC-MAC analysis [3] (which assumes messages
are fixed length, but arbitrarily large), Petrank and Rackoff’s [21] extension
to variable-length messages, Bellare, Canetti, and Krawzyck’s [16] cascade con-
struction, and Bernstein’s [5] protected counter sum construction.
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1.2 Meaning of FIL to VIL

There is some ambiguity in the meaning of a FIL to VIL construction which we
would like to clarify. A VIL primitive operates on messages x ∈ {0, 1}∗ or some
large set containing strings of various lengths. The VIL construction can only use
the given FIL primitive in conjunction with other non-cryptographic operations,
but it cannot use other types of FIL cryptographic primitives. For example, if
a VIL MAC is being constructed then only the given FIL MAC primitive can
be used, but other cryptographic primitives like a PRG or PRF cannot be used.
There are two possible meanings of using the FIL cryptographic primitive:

– Oracle Model: In this model, we only have oracle access to the FIL crypto-
graphic primitive. We can query the FIL primitive with an input and get
back an output. But, we cannot look inside the primitive for a key or run
many instances of the primitive. This is a restrictive model which is useful
to model certain scenarios; e.g., a smartcard or an assistant server which can
answer our queries without giving internal access.

– Keyed Model: Unlike the Oracle model, here we are given a FIL crypto-
graphic primitive which takes a single fixed key and message as input. Next,
we can run various instances of the FIL primitive each keyed with its own
key. However, any other key material must be derived from the single given
key and using the FIL primitive itself without making any additional cryp-
tographic assumption other than what is implied by the FIL primitive. The
restriction of not having extra key material is appropriate because it would
not be an apples to apples comparison of VIL constructions which take large
keys with those that do not. Next, it is interesting and important to see
if an efficient construction can be so achieved. Practically speaking, in ex-
isting systems, layer and functionality separation may mean, for example,
that after a session key agreement, a key of fixed size may be handed to
the encryption layer to encrypt the messages. As designers of the encryption
layer we may be able to use a VIL construction, but we cannot request more
key material from the session key agreement protocol because that may be
a standardized protocol over which we have no control. So, if we need more
keys for the VIL construction we have to create them using the given key
and the FIL primitive. Bellare-Rogaway [4] used this keyed model and both
of our constructions do as well.

1.3 Our Results

In this work, our goal is to provide very efficient VIL constructions for block ci-
phers. We utilize various classes of universal hash functions together with the ex-
isting cryptographic primitives to attain very efficient constructions; using such
hash functions in conjunction with cryptographic primitives is a well-studied
idea, but the novelty of this paper is their use in constructing block ciphers in
the variable-input-length setting. Moreover, for our constructions we provide an
exact security analysis. In some cases we utilize a technique / framework due to
Naor and Reingold [17] that enables us to provide clean proofs of security in the
presence of adaptive adversaries. We obtain the following results:
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– Sections 3 and 4 give a FIL to VIL Block Cipher construction that is almost
twice as fast as the Bellare-Rogaway construction [4]. Here we model the
block cipher as a pseudorandom permutation.

– Section 5 gives a FIL to VIL Block Cipher that is super pseudorandom. We
provably achieve an open goal suggested by Bellare-Rogaway [4].

In both cases, the concrete security of our schemes are limited by birthday
bounds, so 2n/2 should be sufficiently large, where n is the starting block size.

2 Definitions

We introduce the notions of pseudorandom functions (PRFs) and pseudoran-
dom permutations (PRPs). Although these primitives are often treated asymp-
totically, we model them in the concrete security framework. This is necessary
since we deal with fixed-input-length primitives; as a result, meaningful security
results are not captured by an asymptotic treatment. The exposition borrows
freely from [3], [16].

Notation. For a bit string x, we denote its length by |x|. If a, b > 0 are integers,
and a ≤ b, then the substring of x starting at bit position a and ending at bit
position b (counting from the left) is denoted x[a, . . . , b]. Let S be a probability
space, then the process of picking an element from S according to the underlying
probability distribution is denoted x

R← S. We use In to denote {0, 1}n (the set
of bit strings of length n). The set of all functions mapping In to Im is denoted
Fn,m, and set of permutations on In is denoted Pn.

Computational Model. We follow the convention in [3] and model our ad-
versary A as a program for a Random Access Machine. This adversary will have
access to an oracle for computing a specified function f ; it can make black-box
queries to this oracle, and we assume that it will receive a correct response in
unit time. We denote by Af an adversary with access to an oracle for computing
function f . Following the convention of [3], we define the running time of the
adversary to be its execution time plus the length of its description.1 The query
complexity of A is defined as the number of queries it makes to its oracle.

Finite Function Families. A finite function family F , is a collection of func-
tions, all of which have domain Dom(F) and range Range(F). Our focus is on
function families in which each function in the family can be formally specified
by (by at least one) “key.” Typically, the key for a function family will be a
pre-defined fixed-length bit string. And for a function family F , and a key k, we
let Fk denote the function associated with the given key, and we assume that
computing Fk at any given point of Dom(F) is easy given the key k.

Examples. Perhaps the simplest example is the set of all functions with do-
main Ik and range I�, under the uniform distribution. We denote this family by

1 By defining the running time as such, we prevent anomalies that may arise from
embedding arbitrarily large lookup tables in A’s description.
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Randk→�. A function in this family can be represented by k2� bits – hence an
appropriate key space is Ik2� . Another simple example is the set of all permu-
tations on I�. We denote this family by Perm�. Any block cipher constitutes a
keyed family of permutations. For example, DES [18] has key space I56, with
domain and range I64, and the AES algorithm (Rijndael [9]) is typically instan-
tiated with a key space, a domain, and a range of I128 (though the specification
accommodates alternate lengths).

Distinguishability. The concept of distinguishability, due to Goldreich, Gold-
wasser, and Micali [11], helps capture the idea of a “computational distance”
between two function families. This notion will be useful when we discuss pseu-
dorandom functions and permutations. Suppose that F0 and F1 are two function
families that have both identical domains and identical ranges. An adversary A
will get oracle access to either a function sampled from F0, or a function sam-
pled from F1. The adversary will not, however, be told whether the oracle really
sampled from F0 or F1. The adversary’s goal is to determine which function
family was actually sampled. Informally, distinguishability corresponds directly
to the adversary’s success rate in making this determination. In particular, let
AdvA(F0, F1) � Pr[f R← F0 : Af = 1] − Pr[f R← F1 : Af = 1], where the proba-
bilities are taken over the choice of f and A’s internal coin tosses. Now, we say
that A (t, q, n, ε)-distinguishes F0 from F1 if A runs for time at most t, makes
at most q queries to its oracle each length at most n, and AdvA(F0, F1) ≥ ε.

Pseudorandom Functions and Permutations. Pseudorandomness captures
the computational distance between Randk→�, and another function family F
with domain Ik and range I�.

Definition 1. Let F be a keyed function family with domain Ik and range I�.
Let A be an adversary that is equipped with an oracle. Then, Advprf

F (A) � Pr[f R←
F : Af = 1] − Pr[f R← Randk→� : Af = 1]. For any integers q, t ≥ 0, we define
an insecurity function Advprf

F (q, t) � maxA{Advprf
F (A)}. Where the maximum is

taken over choices of adversary A that are restricted to running time at most t,
and q oracle queries.

We employ the convention due to [3] and incorporate the amount of time it
takes to sample f from F into the running time of A.

We now consider the concept of a pseudorandom permutation family, which
was originally defined by Luby and Rackoff [15]. The original notion considered
the computational indistinguishability between a given family of permutations
and the family of all functions. Following the treatment of Bellare et al. [3], we
measure the pseudorandomness of a permutation family on I� in terms of its
indistinguishability from Perm�.

Definition 2. Let F be a keyed permutation function family with domain and
range I�. Let A be an adversary that is equipped with an oracle. Then,

Advprp
F (A) � Pr[f R← F : Af = 1] − Pr[f R← Perm� : Af = 1].
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We define an insecurity function Advprp
F (q, t) � maxA{Advprp

F (A)}, for any in-
tegers q, t ≥ 0. The maximum is taken over choices of adversary A that are
restricted to running time at most t, and q oracle queries.

Luby and Rackoff [15] also considered the notion of a super pseudorandom
permutation (SPRP). In this setting, the adversary is given access to both an
oracle that computes the permutation for a given element, and an oracle that
computes the inverse of the permutation.

Definition 3. Let F be a keyed permutation function family with domain and
range I�. Let A be an adversary that is given access to two oracles. Then,

Advsprp
F (A) � Pr[f R← F : Af,f−1

= 1] − Pr[f R← Perm� : Af,f−1
= 1].

We define an insecurity function Advsprp
F (q, t) � maxA{Advprp

F (A)}, for any in-
tegers q, t ≥ 0. The maximum is taken over choices of adversary A that are
restricted to running time at most t, and q oracle queries.

The security of a Block Cipher against chosen plaintext attacks can be un-
derstood by examining it as a pseudorandom permutation, whereas the security
against chosen plaintext and ciphertext attacks can be understood by examining
it as a super pseudorandom permutation.

Universal Hash Functions. Let H be a family of functions with domain D
and range S 2 that comes with an induced distribution (e.g., uniform); functions
can be sampled from H according to this distribution. Let ε be a “small” constant
such that 1/|S| ≤ ε ≤ 1.

– We call H an ε-almost universal family of hash functions if, for all x �= y ∈ D,
Prh∈H [h(x) = h(y)] ≤ ε.

– We call H ε-almost-∆-universal family of hash functions if, for all x �= y ∈ D,
Prh∈H [h(x) − h(y) = δ] ≤ ε.

– We call H an ε-almost-strongly-universal family of hash functions if, for
all x �= y ∈ D, Prh∈H [h(x) = a, h(y) = b] ≤ ε/|S|. If H consists only of
permutations, we say that H is a strongly universal family of permutations.

The above definitions are due to [8] [22]. As an example, the linear congru-
ential hash h(x) = ax + b mod p where a is non-zero and p is a prime, meets
the above criteria. For simplicity, we often say that h is a certain type of uni-
versal hash function to mean that h was drawn from the family H according
to its equipped distribution. We will later need universal and ∆-universal hash
functions to operate on variable-length domains. Standard techniques of padding
and length appending to create variable-input-length universal hash functions
can be used (e.g., UMAC [6]) and we do not discuss them further.

2 S is a usually a finite group with ‘+’ and ‘−’ as the addition and subtraction oper-
ators respectively.
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3 FIL to VIL PRP: An Example Construction

Before presenting our general construction, we provide a concrete instantiation
which takes the DES block cipher [18] with key K and creates a variable-input-
length block cipher for block sizes larger than 64 bits. This example is primarily
pedagogical – in practice, one should apply our construction on a longer starting
block length to avoid birthday-type attacks. As depicted in Figure 1, we need
several keys. We use key K1 in DES in the second round, we use K2 in the last
round where DES is called in counter mode, and we need a key for the universal
hash function h in round 1. To generate these keys, we run DES with key K and
inputs 1, 2, . . . , i and label the outputs K1, K2, . . . , Ki. We can then use key K1
to key DES in round 2 and we can use key K2 to key DES in round 3. The rest
of the keys can be used as the hash keys. This key expansion step will take place
only once. The exact hash key size we need in order to deal with large inputs
depends upon the exact nature of the hash function. For concreteness, we will
use the ∆-universal hash function utilized in UMAC [6] which can work with a
limited size hash key and specifies methods (e.g., padding, length appending, and
a well-known Toeplitz key-scheduling trick) to deal with variable-length inputs.

Encryption

1. The message M is divided into two parts Mpref of size |M | − n bits and
Msuff of size n = 64 bits.

2. In round 1, the universal hash function h is applied on Mpref and the result
is added to Msuff to create S. Mpref is also carried forward to round 2.

3. In round 2, S is encrypted using the DES block cipher keyed with key K1
resulting in output T . Mpref is carried forward.

4. In round 3, T is carried forward. T is also used as the initial counter value
used to encrypt Mpref using DES in counter mode; i.e., DES is keyed with
K2 and called with as many inputs T, T + 1, . . . as needed to create enough
stream bits to XOR with Mpref to create Cpref . The output is (T, Cpref ).

To see that the above procedure yields a variable-input-length block cipher
it suffices to note that each round yields an invertible permutation. Round 1 is
a Feistel permutation where the universal hash function is the underlying round
function, so it is invertible. Round 2 block encrypts S and is invertible by the
nature of block ciphers. Finally, round 3 uses T as the initial value for counter
mode encryption, and so is also invertible. The details for decryption follow.

Decryption

1. The ciphertext C is divided into two parts, T of size n bits and Cpref of size
|M | − n bits.

2. T, T + 1, . . . are fed through DES block cipher keyed with K2 to create a
stream of output bits which are XORed with Cpref to recover Mpref . We
have now inverted round 3 to recover (T, Mpref ).

3. T is decrypted using DES block cipher keyed with K1 to recover S. We have
now inverted round 2 to recover (S, Mpref ).
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Fig. 1. An example of our construction for FIL to VIL conversion of DES

4. Mpref is fed to the universal hash function h and the result is XORed with S
to recover Msuff . We have now recovered the plaintext M = (Mpref , Msuff ).

As we describe next, we can instantiate the above example with any block
cipher (not just one with a 64-bit block length) and any ∆-universal hash func-
tion. Furthermore, round 3 can employ other encryption schemes besides counter
mode.

4 FIL to VIL PRP: Generalization and Security

The problem of constructing a variable-input-length encryption mode for block
ciphers was considered by Bellare and Rogaway [4]. They give a generic ap-
proach for solving this problem, and then instantiate it with a specific con-
struction. The generic approach involves utilizing a parsimonious pseudorandom
function together with a parsimonious encryption scheme. It turns out that the
CBC-MAC is a parsimonious PRF. In addition, both CBC-mode encryption and
counter-mode encryption (with a random initial counter) serve as examples of
parsimonious encryption schemes. In this section, we give an efficient construc-
tion for taking an existing fixed-input-length pseudorandom permutation, and
building a variable-input-length parsimonious PRF (this is equal to round 1 and
round 2 in figure 1). Our construction is more efficient than the CBC-MAC.
Overall the construction in [4] requires two cryptographic passes on the entire
input, whereas our construction requires one cryptographic pass and one non-
cryptographic pass using a computationally lightweight universal hash function.
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We now describe the Bellare-Rogaway framework [4] which we use to generalize
our construction and analyze its security.

Parsimonious PRF. Let F be a keyed function family with domain Ik and
range In, where k ≥ n. We call F a parsimonious family if, for any key a ∈
Keys(F), and any input x ∈ Ik, the last n bits of x are uniquely determined by:
the remaining bits of x, the key a, and Fa(x).

Parsimonious Encryption. Following Bellare-Rogaway [4] we define a parsi-
monious encryption scheme via three algorithms S = (K, E , D). The algorithm
K is a key-generation algorithm, and returns a random key κ to be used for the
encryption. The algorithm E takes this key κ and the message M , picks a ran-
dom, fixed-length IV , and then encrypts M to get a ciphertext C = (IV ; C∗),
where C∗ and M have the same length.

General Scheme for VIL Block Ciphers. Given a parsimonious PRF and
encryption scheme, we can construct a general VIL scheme F as follows. We let
G be the parsimonious PRF whose domain is the message space and whose range
is In. Let Recover denote G’s corresponding recovery algorithm that obtains the
last n bits of the message M given the key to G, the first |M | − n bits of M ,
and the output of G. Let S = (K, E , D) be a parsimonious encryption scheme.
Let Kprf and Kenc be the secret keys for the parsimonious PRF and encryption
schemes respectively. Let Mpref be the first |M | − n bits of M .

Algorithm Encrypt Kprf , Kenc (M)
T = GKprf

(M)
Cpref = EKenc

(Mpref ; T )
return C = (T ; Cpref )

Algorithm Decrypt Kprf , Kenc (C)
Let T be the first n bits of C.
Mpref = DKenc

(C)
Msuff = RecoverKprf

(Mpref , T )
return M = (Mpref ; Msuff )

Security for VIL Mode Encryption. Before giving any security analysis for
general VIL Mode block cipher encryption, we discuss security for parsimonious
encryption. The security for a parsimonious encryption scheme is defined by
the adversary’s inability to distinguish the encryption of a message from the
encryption of a randomly chosen string of equal length. This definition was given
in [4], but follows a definition given by [2]. More formally, if S = (K, E , D) is a
parsimonious encryption scheme, and A is a distinguishing adversary, then

Advpriv
A (S) � Pr[K ← K : AEK(·) = 1] − Pr[K ← K : AEK($|·|) = 1].

In the first experiment, the oracle returns a random encryption of the message
under the given key K, and in the second, a random encryption of a random
string of the same length as the message (under the key K) is returned. We
define Advpriv

S (t, q, µ) as maxA{Advpriv
S (A)}. Here the maximum is taken over all

adversaries A who are restricted to time t, and make at most q oracle queries
whose total length is no more than µ bits. Now, Bellare-Rogaway [4] proved
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the following theorem relating the security of their general VIL block cipher
construct in terms of its constituent parsimonious PRF and encryption scheme.

Theorem 1 (Bellare-Rogaway [4]). Let B denote the VIL block cipher con-
structed from the parsimonious PRF family F and the parsimonious encryption
scheme S. Moreover, suppose that the functions in F have range In. Then

Advprp
B (t, q, µ) ≤ Advprf

F (t′, q, µ) + Advpriv
S (t′, q, µ) +

q2

2n
,

where t′ = t + O(qn + µ).

VIL Parsimonious PRF. We now show how to efficiently construct a parsi-
monious PRF that can handle variable input lengths. As pointed out above,
our construction is the most efficient known parsimonious PRF. Combining our
parsimonious PRF with an existing parsimonious encryption scheme (see [4] for
examples) we get a very efficient scheme for VIL block cipher encryption. For
now, we assume that we have a PRP over In (any block cipher will work). We
show how to construct a parsimonious PRF family with domain In+b and range
In, where n ≤ b. Referring to figure 1, b = |M | − n = |Mpref |.
Construction 1. Let P be any pseudorandom permutation family on In, and
let H be an ε-almost ∆-universal family of hash functions with domain Ib and
range In. We construct a parsimonious PRF ParG with domain In+b and range
In as follows: A key of a function sampled from ParG is a pair 〈h, g〉 where h is
sampled from H and g is sampled from P. For every input x ∈ In+b, we define
the value of ParGh,g as ParGh,g(x) = g(h(x[1 . . . b]) ⊕ x[b + 1 . . . n + b]).

Remark. We observe that ParG is parsimonious: given the output T and
x[1 . . . b], it is easy to see x[b + 1 . . . n + b] = g−1(T ) ⊕ h(x[1 . . . b]).

Note that if b < n, we can simply append a fixed padding to the input x,
to achieve total length 2n; the security bounds we prove remain the same, and
almost the exact same security proof will go through. Our construction is more
efficient than [4] because, the CBC pass on the input in the first round in [4] has
been replaced by a non-cryptographic ∆-universal hash applied to the input. We
note that one can use this idea of applying a ∆-universal hash function to all
but the last block to speed-up some MAC constructions in the Wegman-Carter
paradigm [23] (e.g., UMAC [6]), especially for shorter messages.

At this point, the reader may feel that something is amiss because the task
of dealing with variable input has been passed to the ∆-universal hash function
without adequately dealing with all the issues. We deal with them individually:

– Variable Input Length: As previously mentioned, ∆-universal hash functions
can be made to handle variable-length inputs by using standard techniques
of padding and length appending; e.g., see UMAC [6].

– Large Universal Hash Keys: There are some universal hash functions whose
key size grows linearly with the input, but not all suffer from this problem.
Tree hashing makes the key size grow much slower (about logarithmic in the
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input size). There are other universal hash function constructions whose key
sizes are not dependent on the input size, but are rather dependent on the
output size [14]. Again UMAC [6] is an example of how one can limit the
key size of a universal hash function without compromising efficiency.

– Single Key: In the keyed model that we are working in, we are only given
a single key K, yet we need keys for the universal hash function, a key
for the block cipher g in ParGh,g and a key for the block cipher in the
parsimonious encryption scheme S. To generate the needed keys, we run the
FIL PRP or block cipher with key K and inputs 1, 2, . . . , i and label the
outputs K1, K2, . . . , Ki. We can then use K1 to key the block cipher g, and
use K2 to key the block cipher in the parsimonious encryption S. The rest
of the keys can be used as the hash keys. We note that this key expansion
step takes place once, so the amortized cost is minimal.

We state the security theorem, but leave the detailed proof for the full version
of this paper.

Theorem 2. Define ParG as in construction 1. Let ε1 be the parameter associ-
ated with the ∆-universal family of hash functions in the construction, and sup-
pose that the underlying pseudorandom permutation family P utilized by ParG
is (t, q, n, ε2)-secure. Then, for any adversary A restricted to t time steps, and q
oracle queries of length at most n + b:

Advprf
ParG(A) = Pr[g R← ParG : Ag = 1] − Pr[g R← Randn+b→n : Ag = 1]

≤
(

q

2

)
· ε1 + ε2.

Proof Sketch. We use the standard argument of demonstrating that the tran-
scripts resulting from interacting with an idealized ParG oracle are distributed
identically to those from interacting with a truly random function so long as
certain “bad” conditions do not occur. These bad conditions are related to the
likelihood that the g component does not see the same input from two distinct
queries. By the ∆-universal property of H, this happens with low probability.

5 FIL PRP to VIL SPRP

We now show how to convert a fixed-input-length block cipher that is secure
against chosen plaintext attacks to a variable-input-length block cipher that is
secure against both chosen plaintext and ciphertext attacks. This construction
achieves an open goal stated in [4]. The VIL SPRP construction requires about
5 cryptographic passes over the input, thus it should be considered a first step in
constructing more efficient VIL SPRPs. The idea is to first treat the original PRP
as a PRF and create two different variable-input-length PRFs of specific lengths
from it. Finally, we use these PRFs in an unbalanced Feistel network together
with universal hash functions in the right places to yield the desired result (see
figure 2). The construction we outline works when one needs to convert a block
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Fig. 2. Constructing a VIL SPRP from a PRP

cipher on In to a cipher on In+b where b ≥ n. We can extend the ideas to work
for the case when b < n, but there is a loss in security.

Construction 2. Let P be any pseudorandom permutation family on In, and
let H be a family of pairwise independent permutations on In+b, and let H ′ be a
universal family of hash functions with domain Ib and range In. Define f1 and
f2 as follows:

f1(x) � pk0(h
′
1(x)), (1)

f2(x) � (pk1(x), pk2(x), . . . , pkr
(x))[1, . . . , b] (2)

where r = 	 b
n
 and pk0 , pk1 , . . . , pkr are independently keyed permutations drawn

from P, and h′
1 is drawn from H ′. Now, we define a new permutation family P ′

which maps input x ∈ In+b to h−1
2 (S(x), T (x)), where

y � h1(x),
S(x) � y[1, . . . , n] ⊕ f1(y[n + 1, . . . , n + b]), and
T (x) � y[n + 1, . . . , n + b] ⊕ f2(S(x)),

where h1, h2 are drawn from H.

We state the security theorem. Due to space constraints, we sketch the proof.
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Theorem 3. Let P be a (t, (1 + 	 b
n
)q, n, ε1)-secure pseudorandom permutation

family on In, let H be a family of pairwise independent permutations on In+b,
let H ′ be an ε2 universal family of hash functions with domain Ib and range In,
and let P ′ be the permutation family defined above. Then P ′ is (t, q, n + b, ε′)
secure where: ε′ =

(
q
2

)
(2/2n + 1/2b + 1/2n+b−1 + ε2) + ε1.

Proof Sketch. The proof easily follows by first utilizing theorem 4.1 from
the paper of Naor and Reingold [17]. We first assume that the underlying round
functions are truly random (from which the final advantage can be bounded by
several applications of the triangle inequality in a series of hybrid arguments
in which we eventually replace the truly random functions with f1 and f2 as
above). In order to invoke theorem 4.1 of [17], we need to identify the “BAD”
conditions (as a function of h1 and h2 on the transcript of the adversary’s
interaction with the block cipher). Letting the input-output pairs be denoted
(xk, ck) for 1 ≤ k ≤ q (where the adversary makes q queries), the condition
BAD(h1, h2) occurs whenever h1(xi)[n + 1, . . . , n + b] = h1(xj)[n + 1, . . . , n + b]
or h2(ci)[1, . . . , n] = h2(cj)[1, . . . , n] for 1 ≤ i < j ≤ q. By the strongly-universal
property of the h1, the first condition occurs with probability 2−b and the second
occurs with probability 2−n. To complete the proof, one merely has to form the
hybrid argument by showing that f1 and f2 are pseudorandom functions. To do
so, one should first replace the PRP p with a PRF. Then, the proof that f1 is
pseudorandom is very similar to the proof that our parsimonious function from
the previous construction is pseudorandom. It is also clear that f2 is pseudo-
random since it is the concatenation of invocations of a pseudorandom function
on random and independently chosen keys. Now, the final hybrid step involves
showing that PRPs are statistically close to PRFs, which is well known.

A few remarks are in place:

– Single Key Model: Since we only have a single key K for a block cipher, we
need to specify how the rest of the keys are created. There are 4 rounds in our
construction and keys are needed in each round. The first and fourth rounds
need keys for the pairwise independent permutation h1 and h2. The second
round needs keys for the universal hash h′

1 and k0. The third round needs
keys k1, . . . , kr. We create the other keys from the permutation, pK() by hav-
ing arguments pK(roundnumber, index); for round 2, we set k0 = pK(2, 0)
and use index values 1 and higher to create the keys for the universal hash
h′

1. For round 3, k1 = pK(3, 1) . . . ki = pK(3, i). For rounds 1 and 4, we can-
not reuse keys created for a specific length input message as part of the keys
for another larger length input message. The keys have to be independent.
We achieve this by including a length parameter in the argument. To create
keys for h1 we would run pK(1, length, 1) . . . pK(1, length, i). Similarly for
h2 we would run pK(4, length, 1) . . . pK(4, length, i).

– Efficiency: In rounds two and three we have to basically do a cryptographic
pass over the entire input. The keys k0, . . . , kr and the keys for h′

1 are gen-
erated once and can be reused, hence their cost is not dominant when amor-
tized over multiple runs. However, the keys for h1 and h2 cannot be reused
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and they have to be created again for each separate message length. Since a
pairwise independent permutation takes a key whose size is twice the mes-
sage length, we need to do effectively two cryptographic passes for round
one and another two cryptographic passes for round 4. Thus, for the Strong
VIL construction we effectively need five cryptographic passes.

– Optimizations: Note that when a message length has been previously used,
then the keys of h1 and h2 previously calculated for that length can be
reused. Thus, a table of keys can be kept for each length. This makes sense
in applications that only involve a few specific message lengths. We also note
that the above construction can be optimized in several ways using some
standard tricks from [17, 19, 20]. First, the pairwise independent functions
can be replaced by ∆-universal hash functions; the security proof is very
similar to the ones in [17] and the full version of [19] (but we can no longer
simply use theorem 4.1 from [17]). We may further use the same key material
in the PRF in rounds 2 and 3 by strengthening the condition on the hash
function as was done in [19]. Finally, we can in some cases recycle the key
material used in the outer round hash functions by considering Feistel group
operations other than XOR as was done in [20]. If we were to replace the pair-
wise independent permutation in the first round with a Feistel-permutation
with a pseudorandom round function (as we did in the third round), and use
a Feistel-permutation with a ∆-universal round function for the last round,
we can eliminate the need for any additional key generation phase, thereby
allowing us to handle dynamic block lengths efficiently (i.e., we generate keys
once and they can be used for any block length). These types of tricks are
fairly standard, so we omit a full discussion due to space constraints.

6 Conclusion and Open Problems

The constructions in this paper have been motivated by one dominant thought:
push the application of universal hash functions in all directions to create VIL
primitives from FIL primitives. The harder part has been to know exactly which
cryptographic operations can be replaced by universal hashes, what kind of uni-
versal hashes should be used (e.g., universal vs. ∆-universal hashes), and pro-
viding security proofs. Specifically:

1. We show how to construct a VIL PRP from a FIL PRP which is almost
twice as fast as the previous construction [4].

2. We show how to construct a VIL SPRP from a FIL PRP which solves an
open problem in [4].

There are many open problems remaining in constructing VIL block ciphers
including the construction of a VIL PRP and a VIL SPRP from a FIL PRP in
the oracle model and a more efficient VIL SPRP construction in either model.
The problem of creating efficient and secure VIL PRPs and VIL SPRPs for
messages smaller than two block lengths remains open.
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