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Abstract. We study a new model for data authentication over peer-to-
peer (p2p) storage networks, where data items are stored, queried and
authenticated in a totally decentralized fashion. The model captures the
security requirements of emerging distributed computing applications.
We present an efficient construction of a distributed Merkle tree (DMT),
which realizes an authentication tree over a p2p network, thus extending
a fundamental cryptographic technique to distributed environments. We
show how our DMT can be used to design an authenticated distributed

hash table that is secure against replay attacks and consistent with the
update history. Our scheme is built on top of a broad class of existing
p2p overlay networks and achieves generality by using only the basic
functionality of object location. We use this scheme to design the first
efficient distributed authenticated dictionary.

1 Introduction

Peer-to-peer (p2p) networks provide the basis for the design of fully decentral-
ized systems, where data and computing resources are shared among partici-
pating peers. Properties of p2p networks include scalability, self-stabilization,
data availability, load balancing, and efficient searching. As p2p networks be-
come more mature and established and new applications emerge for them, the
need increases for their security.

In this paper, we study data authentication in p2p networks, where a data
set originated at a trusted source is shared and dispersed over the nodes of a p2p
network and is queried and retrieved by users through the API exported by the
network. We focus our study on the basic put-get functionality that is realized
by any distributed data structure built over overlay p2p networks, including the
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important class of distributed hash tables (DHTs) (e.g., [31, 36]). In particular,
we are interested in guarding users against malfunctioning or malicious network
nodes that incorrectly execute get and put operations.

Current authentication techniques for data stored in p2p networks are static
and centralized. Also, several authentication methods based on signatures on a
per-object basis are vulnerable to replay attacks, where an old, out-of-date or
invalid, data object is returned as the answer to a get operation.

In this paper, we introduce a new model for distributed data authentication
in p2p networks and present an efficient realization of this model for securely
performing dictionary operations on a p2p network. Our authentication struc-
ture and protocol are resilient against replay attacks and extend the function-
ality of p2p networks by supporting authenticated versions of operations put,
get and remove, thus providing a transparent security layer to higher-level p2p
applications.

By using only the basic operation of object location, our technique achieves
generality and can be applied to a broad class of p2p architectures (e.g., existing
DHT implementations). Our authentication scheme is based on the design of an
efficient distributed Merkle tree (DMT)—the first distributed version of Merkle’s
authentication tree [23]. Thus, our construction can serve as a general-purpose
authentication structure for decentralized computing architectures with minimal
trust assumptions.

1.1 Motivation

Data storage and retrieval are essential tasks in p2p systems, where large data
collections (e.g., documents, media files, database records) are shared over a net-
work among participating peers. An important security problem in p2p system
is data authentication in the presence of faulty or malicious network nodes. For
instance, adversarial network nodes may wish to degrade the performance of a
p2p storage system by providing false responses to queries.

We wish to ensure the integrity of shared data and to provide cryptograph-
ically sound techniques that allow a user to verify that retrieved data from the
system is authentic and unaltered. Moreover, in a dynamic setting, where data
evolve over time through updates, we want to also ensure that data items re-
trieved by queries have the most up-to-date versions. We consider the standard
query model in p2p storage systems, where data items are stored as key-value
pairs of the type (k, x) (keys are unique identifiers and values are associated with
keys) and managed through operation put(k, x) (which inserts a new pair in the
system) and query get(k) (which returns the value associated with key k). This
is the core functionality exported by distributed data structures.

Assuming an established PKI, a straightforward approach to authentication
is to individually sign each data item stored in the p2p system: when the data
source wishes to add (k, x), it computes the signature σ of pair (k, x) using its
private key and inserts (k, (σ, x)) into the data structure. A query for key k now
returns the pair (σ, x), where σ allows the user to verify whether x is the valid
answer. However, this “sign-all” approach is vulnerable to replay attacks for old



Efficient Content Authentication in Peer-to-Peer Networks 3

values because it does not provide any mechanism for invalidating signatures
on currently invalid pairs, such as pairs that have expired, were removed from
the p2p system, or whose values have been modified. Therefore, in response to
operation get(k), a malicious network node can return an invalid (old or out-of-
date) value that is still verifiable. Note that most p2p systems do not support
explicit item deletion; e.g., DHTs only keep a soft state, where data items expire
after a time interval and are removed from the system (thus, to maintain these
items, the source has to reinsert them). Nevertheless, even when some form
of item deletion is supported, replay attacks are still possible: invalid signed
pairs can simply be cached and never deleted. In general, we need a mechanism
ensuring that only recent signatures are used to validate answers to queries and
that deletions are correctly handled by the system.

Replay attacks can be prevented by introducing time-stamps in the signed
values and a validity period for the signature, called time quantum [26]. However,
this extension of the “sign-all” approach incurs a significant computational over-
head: after each time quantum, each of all the valid pairs that currently reside
in the system need to be retrieved, resigned by data source and then reinserted
in the system. Thus, it is preferable to maintain at all times a global authen-
tication state of the system that includes only the currently valid data items
and essentially authenticates that data is properly updated. This is achieved
by signature amortization, the state-of-the-art technique for dynamic data au-
thentication, where a data source signs only one digest (short cryptographic
description) of the entire collection of (valid) stored data items owned by this
source. The canonical method for amortizing one signature over a large data set
is Merkle’s authentication tree [23]; however, there is currently no distributed
implementation of this scheme. Existing p2p storage systems and DHT imple-
mentations that support an authentication service for the stored data are all
using “sign-all” techniques. Thus, a replay attack is feasible for malicious net-
work nodes; and if, instead, signature refreshing is used to solve the problem,
this leads to inefficient and impractical authentication schemes.

1.2 Related Work

Merkle tree. The Merkle tree [23] is a simple and widely-used cryptographic
construction for efficiently certifying set membership. The idea is to use a bal-
anced tree and a cryptographic collision-resistant hash function (e.g., SHA-1) to
produce a short cryptographic description of a large data set. Elements of the set
are stored at the tree leaves and internal nodes store the result of applying the
hash function to the concatenation of the values stored at the children nodes.
The root value is signed and, when verified, the collision-resistant property prop-
agates authentication from the root to the leaves. Certifying that an element is
in the set is performed by using a verification path to recompute the authentic
root value. This path consists (of the hash values) of the siblings of the nodes in
the path from the leaf associated with the element to the root. Updates in the
Merkle tree are handled with complexity proportional to the height of the tree
(e.g., [26]). An extension to the symmetric-key setting is given in [12], where it is
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shown that verification along a path can be performed in parallel. No distributed
implementation for Merkle trees currently exists.

Authenticated data structures. Authenticated data structures (ADSs) (see,
e.g., [37, 11, 21, 26]) use a three-party model where data created by a trusted
data source is replicated at several untrusted responders that answer query from
users on behalf of the source. Signature amortization is used, similarly to the
Merkle tree, but specially designed according to the supported query type. A
significant amount of work has been done on developing efficient authenticated
data structures for various type of queries (e.g., [6, 11, 21, 5, 1, 38]). The related
model of outsourced database (ODB) systems studies the special case where
SQL queries (essentially, range queries over indexes) are issued over databases
published at remote sites (e.g., [18, 25, 24, 28]). Both models involve servers that
keep a copy of the entire data set. Thus, they do not capture the architecture of
p2p networks, where data is shared and distributed on a per-item basis.

Distributed hash tables. Distributed hash tables (DHTs) are a popular class
of p2p storage networks that support the dictionary functionality (e.g., [36, 16,
33, 34, 20, 40, 29, 31]). Using distributed routing techniques over an overlay
network, a DHT can locate the value associated with a query key with O(log n)
expected communication steps, where n is the number of participating nodes,
each maintaining O(log n) routing information. Based on DHTs, several practical
distributed storage systems over p2p networks have been developed that support
efficient retrieval (e.g., [7, 31, 4, 14, 32]). Other distributed data structures with
similar efficiency provide more elaborate functionalities over p2p networks; for
instance, skip-graphs [2] and their extensions (e.g., [13, 10]) support searching
over ordered keys.

Trees over p2p overlay networks. The development of DHTs was followed
by the design of various search and aggregation trees built over DHTs or other
type of distributed trees (e.g., [15, 19, 30]). However, these trees can neither
be used to implement a distributed Merkle tree nor meet the requirements for
efficient data authentication over p2p networks, since these constructions are
static or correspond to special-purpose search trees inappropriate to efficiently
realize an authentication tree—which is sensitive to node losses or structural
changes because of the use of the cryptographic hash function.

Security in p2p systems. Security issues related to p2p systems are dis-
cussed in [35, 39], where the authentication problem is treated simply using per-
object signatures. Although with respect to routing and searching, numerous
DHTs have been shown to tolerate significant network-node failures—random
(e.g., [36, 16, 33, 31]) or malicious (e.g., [3, 8, 27])—data authentication has
not been systematically studied in p2p networks. Existing p2p storage systems
(e.g., [4, 7, 29, 31, 32]) support an elementary authentication service for retrieved
data which is of the “sign-all” type, where stored contents are individually signed
by their source. Often, authentication involves the so-called self-certified data [9],
where large data items (e.g., a file system) get partitioned into blocks, which are
stored as separate objects in the system and are bound together using collision-
resistant hashing in some tree-like hierarchy, and where the root-block is signed.
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Although this technique resembles a Merkle tree, it only implements signature
amortization among a large item and not among all data items owned by a
source, which are still separately signed. Additionally, this authentication struc-
ture is static (no updates are supported) and, generally, unbalanced (e.g., parts
of file systems can be flat and other can be extremely skewed). Overall, currently
used authentication solutions are vulnerable to replay attacks (even if item re-
moval is supported, as, e.g., in [32]) and lack efficiency for supporting signature
refreshing and updates. Finally, privacy and anonymity issues or other security
issues (e.g., the Sybil attack) related to p2p systems have been studied.

1.3 Paper Outline and Our Contributions

In Section 2, we introduce a new model for distributed data authentication over
p2p networks, where management and retrieval of shared data resources are
totally decentralized, yet cryptographically verifiable by the interested parties. In
this model, data objects that are originated at a trusted source become available
to users through an untrusted p2p storage network and authentication protocols
guarantee the correct functionality of the underlying storage system. We present
an efficient realization of this model for the basic dictionary operations performed
on a dynamic set of data objects and describe data authentication protocols that
allow users to verify the integrity of the data objects retrieved by the network
and allow the source to verify the integrity of updates executed by the network.

The main idea behind our security solution is conceptually simple: we use an
authentication tree to produce a cryptographic commitment of the stored data
set, against which any update or query operation is checked for correctness.
Implementing this idea in a dynamic distributed environment entails certain
challenges. First, we design a balanced tree-like authentication structure that
can be dispersed among network nodes and, at the same time, provide efficient
retrieval of verification paths and allow efficient structural adjustments after
updates. Additionally, we ensure that the commitment is updated correctly after
any changes on the data set, even in the presence of malicious network nodes.

In Section 3, we present our main result, the first efficient scheme for imple-
menting a fully dynamic distributed Merkle tree (DMT), using only the object-
location functionality exported by any p2p system or DHT. Our scheme has
certain properties that allow its efficient distribution over a p2p network and
is designed to support locality for answer verification and facilitate the use of
caching, thus achieving efficiency and resilience against malicious nodes. More-
over, balance is maintained at low cost over the course of updates on the tree.
We analyze its performance and compare it with naive implementations. Our
scheme, designed for both bottom-up and top-down access, constitutes a new,
general-purpose, dynamic distributed tree.

In Section 4 and based on our DMT construction, we realize an efficient
authenticated distributed hash table (ADHT), which extends DHTs in various
ways. In particular, we show how our DMT can be extended to an authentica-
tion structure that provides authenticated and efficient versions of operations
get, put, and also operation remove, supporting authenticated deletions, the first
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of this type. We compare ADHT with the “sign-all” solution. Our ADHT pro-
vides efficient distributed storage, secure against replay attacks and consistent
with the update history. Our ADHT can in turn support a more general data
authentication scheme for dictionary operations. In particular, we present the
first efficient distributed authenticated dictionary. In a totally distributed setting
over a p2p network with n nodes and using only the basic object-location opera-
tion, we show how to authenticate membership queries in a fully dynamic set of
m data elements in O(log n log m) time using O(m log m) storage, with similar
complexities for supporting updates.

In Table 1, we summarize the comparison of our work with existing methods
for distributed data authentication. Our scheme is the first to provide secure
and efficient data authentication in totally decentralized environments over p2p
networks. We conclude and discuss future work in Section 5.

Table 1. Qualitative comparison of our method with existing authentication models.

decentralized replay-safe efficient

“Sign-all” method in p2p networks • •
“Sign-all” method in p2p networks & timestamps • •
ADS & ODB data authentication models • •

Our results • • •

This extended abstract omits many details of this work, which will appear
in the full version of the paper.

2 Authentication Model

We introduce a new model for distributed data authentication, where data items
are stored, queried and authenticated in a totally decentralized fashion. This
model captures fundamental security requirements that arise in p2p distributed
storage systems. The model consists of:

– a trusted data source S, originator of a dynamic data set D;
– an untrusted distributed p2p network N that exports a specific functionality

for storing, accessing and retrieving shared data resources; the nodes of N
distributively store set D and answer queries about D on behalf of source
S; D evolves over time through updates submitted by S to network N ; and

– users who issue queries about D by accessing any node of network N .

In our model, network nodes are untrusted and can exhibit adversarial be-
havior in updates submitted by the source or queries posed by a user. A network
node responsible for an update of D may maliciously fail to perform the update
and cause the p2p system to become inconsistent with the sequence of updates
issued by S (e.g., N attempts an “universe-split” attack, where two different
states of set D are represented in the system). Also, a network node responsible
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for a query on D may maliciously falsify the returned answer (e.g., N attempts
to compromise data integrity or launch a replay attack).

To guard the source and the users against attacks, our goal is to design
an authentication scheme, a set of authentication structures and corresponding
protocols that augment the functionality of network N with verification features.
In particular, the scheme allows the source to check that an update has been
correctly performed by N , according to the history of previously performed
updates. The scheme also allows a user to verify that the answer to a query is
authentic, as if it was coming directly from S.

An authentication scheme should be secure, informally meaning that the
verification protocols reliably characterize the behavior of the network. Secu-
rity, implies that when the p2p system is not under attack, then any update
or query operation always passes the verification test (completeness); and, for
any polynomial-time (on some security parameter) adversary that controls N
and observes a chosen history of polynomial size of updates on D, succeeding in
falsifying the verification test for an update or query is an event of negligible (on
the security parameter) probability (soundness). Note that the above notion of
security includes safety against replay attacks.

An authentication scheme should also be decentralized. Protocols and data-
management procedures that are associated with data authentication should be
distributed, designed as much as possible in accordance with the underlying
p2p architecture. Or else, a security solution in a decentralized setting would be
centralized, which would automatically diminish the advantages of the system.

An authentication scheme should finally be efficient, imposing low compu-
tational, communication and storage overhead to the parties participating in
the protocols and network N . Cost parameters that should be minimized are:
the storage cost, the amount of authentication information stored at S and N
or needed by a user to verify an answer; the update and query costs, the com-
putational and communication costs incurred due to authentication at N after
updates and queries on data set D; and the verification cost, the computational
cost incurred by S or a user to verify the correctness of an update or query.

(a) (b)

Fig. 1. (a) ADS model: each responder Ri stores set D on behalf of source S and
answers users’ queries. (b) Distributed authentication: D is dispersed as D1, D2, . . .
over p2p network N ; updates and queries are performed by contacting any node of N .

Our model drastically differs from those of authenticated data structures
(ADS) (see Figure 1) and outsourced database systems (ODB) in that it is
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inherently decentralized. Data and authentication information are distributed
over a p2p storage network at the data-item level and they are accessed by the
source and the users through the interface of the network by contacting any of
its nodes. In contrast, ADS model involves data replication at remote responder-
servers, thus data distribution occurs only at the data-set level, and ODB model
involves data outsourcing to a designated server, thus adopting centralized data
management. Thus, we extend the client-server model of data authentication to
a distributed authentication model that operates over any p2p network.

In developing an authentication scheme, it is desirable that as few as possible
assumptions are made about network N . Ideally, the underlying network should
be any structured p2p network, for instance any DHT. By designing an authen-
tication scheme using popular and well-studied distributed data structures, we
leverage a broad class of existing p2p architectures, thus providing p2p systems
with a transparent security layer at the application level. In this paper, we fol-
low this principle and achieve generality by building our authentication scheme
over the primitive search operation locate, which returns the network node cor-
responding to a given abstract object identifier. Since our constructions do not
depend on the details of the p2p system implementation, we gain simplicity,
extensibility and usability.

In what follows, we denote with N a DHT over which we wish to build an
authentication scheme. Note that the scheme inherits the following properties
shared by most DHT implementations: (1) a DHT with n network nodes uses
O(log n) storage per node and performs a locate operation (also, put and get) in
O(log n) network hops (node-to-node communication steps) with high probabil-
ity; (2) node additions, deletions, and failures are handled dynamically through
a distributed algorithm that incrementally updates the routing information; (3)
some form of redundancy is used, which replicates data objects to a constant
number of neighboring nodes so that node failures are tolerated also with respect
to data recovery; and (4) caching techniques are used to improve data retrieval.

Finally, we consider all other types of misbehavior by network nodes (e.g.,
against routing or the DHT functionality) to be denial-of-service attacks, a dis-
tinct or orthogonal problem to data authentication. Of course, these attacks can
also limit the functionality of the authentication scheme; but they will not com-
promise its security. Actually, since our authentication scheme is agnostic of the
implementation of the underlying DHT, we can strengthen the resilience against
malicious nodes in our model by using a specific DHT that tolerates certain DoS
attacks (e.g, a DHT that authenticates routing information).

Our authentication scheme implements the signature amortization technique.
In particular, we assume that the users of the system know and trust the public
key of the source S. Using Merkle’s authentication tree, S maintains at all times
a digest of the data set. Queries are authenticated in the standard way: along
with the answer, N returns the digest signed by S and a proof linking the answer
to the digest. Updates are authenticated by using the digest to check that the
current state of the data set is consistent with the update history.
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3 An Efficient Distributed Merkle Tree

In this section, we present a distributed Merkle tree (DMT), an efficient imple-
mentation of an authentication tree built over a p2p network realizing a DHT.
This is the core construction in our authentication scheme and a result of in-
dependent interest: since numerous security protocols and cryptographic con-
structions are based on Merkle’s tree, a DMT yields distributed versions of such
protocols and constructions. We first discuss our design goals.

Built on a data set D, the distributed authentication tree should be dynamic,
allowing for efficient hash updates after changes in D. It should also be balanced,
providing verification paths (membership proofs) of size that is logarithmic in
|D|, and its height balance should be efficiently maintainable after updates. In
order to optimize its verification properties and further improve its usability, we
are particularly interested in facilitating the construction (location) of the veri-
fication paths of the DMT; that is, the verification path of any data item should
be retrieved by the network as fast as possible. All the above should be imple-
mented in a distributed way, using only the locate operation, which is provided
by the network and takes O(log n) time for a network of n nodes. Accordingly,
cost parameters we wish to minimize are: the path location cost, the cost for con-
structing a verification path (proof), the update cost, the cost for maintaining
the authentication structure after updates on D, and the storage cost. Both the
location and update costs each consists of (1) processing cost, i.e., computational
cost for the participating nodes in the system, and (2) communication cost, i.e.,
cost of locate operations or direct communications between nodes.

To gain some intuition behind our construction, assume that set {x1, . . . , xn}
is distributed over the network (each element stored at a unique network node)
and consider a Merkle tree computed over this set. All hash values in the tree
need be distributed in the network. The first problem to consider is how the hash
values are indexed, i.e., with which keys they are stored in the system. The hash
value is a value that is unknown to network nodes, thus the value itself cannot be
used as a key. Additionally, for immediate location of verification paths, network
node storing element xi should also store information about the verification
path that corresponds to xi. We briefly describe two less efficient approaches for
realizing a DMT. One solution is to replicate the tree structure to all involved
network nodes and use unique identifiers for storing hash values in the DHT. The
cost to construct a verification path is O(log n) locate operations, however, the
cost to maintain the tree after structural updates is high, O(n log n), and also the
O(n2) total storage is prohibitive. Alternatively, a network node can store the
entire verification path (hashes) of the element it stores. The path location cost
is O(1), however any update on the data set now incurs O(n log n) cost; the total
storage cost is O(n log n). Our approach is to distribute information about routes
in the network that construct verification paths, essentially combining the above
ideas: using unique identifiers, hash values are stored in the network and the
network node storing an element also stores the identifiers of the corresponding
verification path. For efficiency in the dynamic case, we use a weight-balanced
(BB[α]) hash tree. Details about the construction and its analysis follow.
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3.1 Our Construction

We consider the more general case, where an authentication structure over m

data items {x1, x2, . . . , xm}, owned by the same source, is stored in a p2p network
of size n ≥ m that realizes a distributed hash table. We design our distributed
Merkle tree using the primitive locate operation over the network. Without loss
of generality, we assume that objects are stored at distinct network nodes. Our
results generalize to the cases where more than one data items are stored at
nodes and also where more than one sources produce these items.

Our scheme is described as follows (see Figure 2). For convenience, tree nodes
are denoted by lower-case letters and network nodes by capital letters.

Let T be a balanced binary tree built over the elements of (dynamic) data set
{x1, x2, . . . , xm}, with one-to-one correspondence between leaves and elements,
and let h be a cryptographic hash function. Each tree node u in T has a unique
identified idu (drawn efficiently from some space). Conventionally, the identifier
of a leaf is set to be the corresponding element. Tree T is used as a hashing
structure in the standard way: each non-leaf tree node u with children nodes
v1 and v2 in T is associated with (or stores, conceptually) hash value L(u),
which equals to h(L(v1)‖L(v2)), i.e., the hash of the hash values that v1, v2

are associated with, and each leaf wi stores the hash value L(wi) = h(xi) of
the corresponding element xi. We augment the hashing structure as follows: we
require that each internal tree node also stores the hash values of its children.

(a) (b)

Fig. 2. (a) Hash tree T over elements x1, . . . , xm: node u, with identifier idu storing
hash Lu, is mapped to network node U and leaf w, storing x3 with verification path
p, to network node W . (b) Distribution of T over the network: U stores information Iu

related to u; W stores {x3, idp} and structural/balancing information of p.

Next, we use the tree identifiers for distributing tree T into the nodes of the
underlying p2p network. Each non-leaf tree node u is mapped to a network node
U through a function f and according to idu, i.e., U = f(idu). Node U stores
some information Iu related to u: the (three) hash values associated with node
u, the tree identifiers of the parent tree node and the children of u and local
structural information about node u. Moreover, a leaf node wi, corresponding to
element xi, is also mapped to a network node Wi = f(xi) through function f .3

3 We impose no restrictions on f(·); in general, it is a known function used by the
underlying p2p network for mapping objects to network nodes (many DHTs use the
SHA-1 function), implemented by the locate operation supported by the network.
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Along with xi, node Wi stores some information Ixi
related to the (verification)

path p in T from wi to the root r of T ; in particular, this information includes:

– the ids of the tree nodes of path p, denoted as idp;
– structural and balancing information of tree nodes in p; for each node u in p

with children v1 and v2, Wi stores: (1) whether v1 or v2 belongs in p; (2) the
balancing information of node u, which is a pair (b1, b2), expressing balancing
information related to the subtrees defined by v1 and v2 respectively.

The above scheme distributes tree nodes and verification paths over a p2p
network and correctly implements a DMT. Our construction is designed mainly
for bottom-up tree traversal, which is appropriate for most security-related and
cryptographic applications, although it can be easily extended to support also
top-down traversal, similar to search tree (see Section 4). Accordingly, our tree is
accessed very efficiently: given a data element xi, the corresponding verification
path is distributively retrieved using O(log m) locate operations for mapping
identifiers in idp to network nodes. Using route distribution, that is, maintaining
the invariance that each network node knows the route for its verification path,
we can actually achieve extra efficiency, as we discuss at the end of the section.

Finally, we choose our tree T to be a weight-balanced tree and, in particular,
a BB[α] tree [22] (weight-balanced trees with important balancing properties).
This choice is related to efficiency in maintaining the structure of the hash tree
after updates in the data set (element insertions or deletions). We consider two
types of updates along a verification path: hash updates (due to rehashing) and
structural updates (due to re-balancing changes, i.e., rotations). Route distri-
bution supports efficient hash updates, since O(log m) locate operations suffice
in updating the hash values of a path idp. Similarly, structural updates can be
executed by successively contacting the network nodes corresponding to idp and
performing any necessary local update at node U using information Iu, however,
they incur an additional cost. Any rotation at level k of T triggers an extra
update cost for publishing the new routes to the O(2k) in total involved network
nodes. Using a BB[α] tree, where α is a balancing parameter bounding the ratio
of the weights (i.e., size of corresponding subtree) of neighboring tree nodes, we
achieve that on average O(1) rotations occur after an update and they occur
more often at nodes closer to leaves than at nodes higher in T . This gives on
average a very good performance in an amortized sense, since expensive recon-
structions happen rarely. The following lemma formalizes the above argument.

Lemma 1. For any series of m update operations on an initially empty set, the

DMT based on a BB[α] hash tree T , with α ∈ ( 1
4
, 1 −

√
2

2
), has O(log n log m)

amortized structural update cost. Moreover, during these operations, structural
updates at level k of T with cost O(2k) occur with frequency O( 1

2k ).

Proof. (Sketch.) The proof is based on the update technique in our scheme and
the properties of BB[α] trees (e.g., see analysis in [22]). Consider any update in
the data set that results in a structural update in the tree T , in particular, along
the verification path pi of element xi, and assume that the corresponding network
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node Wi storing xi has been located. Node Wi can initiate a structural update
along pi by examining pi in bottom-up fashion and contacting the appropriate
network nodes. If pi is structurally updated to p′i and a rotation occurs at node u

in T , let Tu be the subtree in T defined by u. Each network node corresponding
to leaf node xi in Tu or a neighboring node v of u in Tu must respectively update
its local information Ixi

and Iv. In total, O(|Tu|) network nodes must be notified
about the updates in T . This is possible by accessing Tu in a top-down fashion
(starting at u), contacting the corresponding network nodes and communicating
the necessary updates, a process completed after O(|Tu|) locate operations using
O(|Tu| × log n) communication. Overall, the structural update cost is O(|Tu|)
locate operations. By the properties of BB[α] trees with parameter α in the
appropriate range, we have that the total cost for updating all verification paths
in the DHT, for a sequence of t update operations (insertions or deletions) on an
initially empty set, is O(t log t). Thus, for the same series of update operations,
the total structural update cost is O(log n × t × log t) (time and communica-
tion). For t = O(m), we get that the amortized overall structural update cost
is O(log n log m) over a sequence of operations of size linear on m. Using the
additional property shown in [22], namely that costly rotations at levels close to
the root occur rarely with frequency inversely proportional to the corresponding
subtree size, the proof is completed. ⊓⊔

The following theorem summarizes the efficiency of our DMT and our main
result. A p2p network with n nodes is called efficient if location operations take
time O(log n).

Theorem 1. There exists a scheme for implementing a distributed Merkle tree
T on a data set of size m over a peer-to-peer network N with n nodes (m ≤ n)
with the following properties:

1. Tree T uses space O(m log m), distributed over O(m) network nodes, and
incurs O(log m) storage overhead per network node.

2. A verification path of T has size O(log m) and can be accessed with O(log m)
locate operations on N ; thus, if N is efficient, the expected computational
and communication cost for accessing a verification path is O(log n log m).

3. A hash update on tree T involves O(log m) location operations; thus, for an
efficient network N , the expected computational and communication cost of
a hash update is O(log n log m).

4. A structural update on tree T involves O(m log m) location operations, amor-
tized over a series of O(m) structural updates on an initially empty tree;
thus, for an efficient network N , the expected amortized computational and
communication cost of a structural update is O(log n log m).

Proof. (Sketch.) Tree T is balanced, thus verification paths have O(log m) size.
The storage complexity is O(m log m), since internal tree nodes require O(1)
storage and leaves O(log m) storage. Through route distribution, constructing
any verification path requires only O(log m) locate operations, performed by the
initiating node according to pi. Similarly, hash updates are performed by bottom-
up traversal of nodes in pi. Structural updates are performed as in Lemma 1. ⊓⊔
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Note that above, storage is optimal for route distribution and in accordance
with storage requirements for an efficient network, where each network node
stores O(log n) routing information; thus, our DMT does not asymptotically
increase the storage requirements of the underlying network.

Improvement through caching. We discuss a simple extension that under a
reasonable assumption, can improve the costs for path location and update. As-
suming that network-node failures occur less often than queries and updates on
the DMT, we can improve the efficiency of our scheme as follows. The goal is to
transform the multiplicative O(log n) factor (introduced due to locate operations
for retrieving or updating hash values) into an additive term in the complexity
of our scheme. This is achieved by caching network node identifiers: the idea is
to have each network node corresponding to a leaf of T to cache in its memory
the identifiers of the O(log m) network nodes that store the hash values of its
corresponding verification path. That is, once such a network node is first con-
tacted, its identifier is remembered. Since network nodes can fail or go down, it
is possible that cached nodes are no longer nodes of the network. In this case, we
have a cache miss which will trigger a location operation. Although we can still
use some techniques to avoid this overhead (e.g., by caching neighboring nodes
storing the same information due to redundancy), we observe that when the
rate of network node failures is sufficiently small then we can actually amortize
the O(log n) factor due to occasional location operations (cache misses) in the
cost for operating on the tree. In particular, if network nodes fail independently
with probability O( 1

log m
) during the time interval of a tree traversal, then the

expected number of network node failures that occur during a path location or
update is O(1). Thus, using caching the expected complexity for path location
and updates on the tree is O(log n + log m).

Table 2 summarizes the comparison between the various schemes for imple-
menting a DMT. We see that our scheme provides an very efficient solution that,
using caching and under reasonable assumptions, can be asymptotically optimal
in an amortized sense. Finally, we note that, when m > n, we can appropriate
extend our scheme by having each network node maintaining an additional data
structure (for locating the stored elements). Our scheme supports authentica-
tion of data collections of one data source; we can support multiple data sources
simply by using multiple instantiations of our DMT.

Table 2. Efficiency comparison of various schemes for realizing a DMT for a data set
of size m over a p2p network of size n. Expected complexity is denoted with ∗ and
amortized expected complexity is denoted with ∗∗.

storage path location hash update structural update

tree replication O(m2) O(log n log m)∗ O(log n log m)∗ O(m log n)∗

path replication O(m log m) O(1) O(m log n)∗ O(m log n)∗

route distribution O(m log m) O(log n log m)∗ O(log n log m)∗ O(log n log m)∗∗

w/ caching O(m log m) O(log n)∗ O(log n)∗ O(log n) ∗∗
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4 An Efficient Authenticated Distributed Hash Table

In this section, we design an authentication scheme for membership operations on
dynamic sets in our authentication model. First, we use our DMT construction
to realize authentication protocols for verifying the basic operations of any DHT
and we design an efficient authenticated distributed hash table (ADHT ).

Consider a source S that produces m data objects as key-value pairs, which
are stored in a DHT that supports the basic put-get operations. We design proto-
cols for augmenting this functionality to a new p2p storage system that provides
better information assurance, supporting the following authenticated operations:

– auth put: a key-value pair is inserted in the system by source S in an au-
thenticated way, so that S verifies the correctness of the insertion;

– auth get: the value of an existing in the system key is retrieved by a user in
an authenticated way, so that the user verifies the authenticity of the value;

– auth remove: an existing key-value pair is removed from the system by source
S in an authenticated way, so that S verifies the correctness of the removal.

Implementation. To realize the above functionality of an ADHT, we use the
technique of signature amortization over the data set that exists in the system.
The main idea is use the DMT of the previous section as a distributed authen-
tication structure for implementing the following invariant: at all times, source
S maintains (by storing locally) a cryptographic digest of the currently correct
(up-to-date) data set. Query verification is achieved by having S signing the
digest along with a fresh timestamp and storing this information in the sys-
tem. Update verification is achieved by having the source computing the new
digest that correctly corresponds to the new data set after the update, using
authentication information that is first verified against the current digest.

The digest is defined as the root hash value of the tree T that is built over
the data set and that corresponds to the DMT maintained in the p2p system.
We augment the construction of T as follows. First, we add an additional level
of hashing in T : the leaf node corresponding to pair (k, x) now stores hash value
h(h(k)‖h(x)). Moreover, each non-leaf tree node u with children nodes v1 and
v2 in T stores a hash value L(u) that also encodes the structural and balanc-
ing information of u, that is, L(u) = h(L(v1)‖L(v2)‖h(su)), where su encodes
whether u is a left or right child and its balancing information.4 Additionally, we
augment T to also serve as a search tree5: key-value pairs are sorted according to
their keys (we assume they are drawn from a totally order set) and are stored at
the leaves matching their left-to-right ordering; also, each non-leaf node u stores
a corresponding search key, e.g., the maximum key stored at the leaves of Tu. We
assume that, using bootstrapping techniques, both S and the users have access
(through direct connection) to an active node of the p2p network and that there
exists a publicly known function for creating identifiers for the new nodes in T .

We next describe the exact protocols for the authenticated operations.

4 For BB[α] trees, this is the ratio |Tv1
|/|Tu|, assuming that v1 is the left child of u.

5 Not needed, if the DHT supports searches for both exact and near matches [2, 13, 10].
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Queries. Queries are performed by any user by first contacting a network node
and issuing a get request on a key. For queries, the verification path of a leaf is
simply the corresponding leaf-to-root path. A path retrieval query is executed
by the system over the DMT and what is returned to the user is: (1) the corre-
sponding value, (2) the verification path (collection of hash values and relative
information for computing the root hash) and (3) the signed digest. The user
accepts the answer if and only if (i) hashing over the value and the verifica-
tion path results in a hash value that equals the root hash (digest) and (ii) the
signature on the digest is valid and contains a fresh timestamp.
Updates. Updates are performed by the source S by first contacting a network
node and issuing an update request. For updates, the verification path of a leaf
is augmented to also include the sibling nodes of the nodes in leaf-to-root path.
The system then reports to S the verification path pℓ of the leaf ℓ of the DMT T

that is related to the update, i.e., the sibling leaf of the new leaf (put operation)
or the leaf to be deleted (remove operation). For put operations, ℓ can be located
through top-down traversal of T ; we assume that S stores, and updates when
needed, the identifier of the root. Path pℓ contains all the necessary information
for computing the digest, given the information stored at ℓ (note that, in the
case of a put operation, it contains the information stored at the sibling of ℓ).
In particular, pℓ contains all the structural and balancing information that is
needed for any hash or structural update on it. This information serves as a con-
sistency proof for the source S and is used to compute the new digest in three
steps. First, the verification path is checked to be authentic by hashing along the
path and recomputing the current digest; this also verifies that the structural
and balancing information is also authentic, consistent with the current digest
stored by S. In the check fails, the protocol rejects: the system failed to correctly
execute the previous update. Otherwise, S locally executes the tree update by
operating on path pℓ; this is feasible because both hash updates and structural
tree adjustments only happen along this path in a bottom-up fashion. Finally,
S hashes over the new tree path and computes and stores the new digest. Once
the new digest is computed, S timestamps and signs it and returns the signed
copy for storage in the system. Then a regular hash-tree update is performed by
the system to execute the put or remove operation. By this interaction, S needs
only to keep O(1) authentication information, the current signed digest. Asymp-
totically, no additional computational or communication cost is introduced by
this extra interaction between the system and the source.
Security. The security of our protocols can be proved with standard reductions
to the security of the cryptographic primitives that are used in our authentication
scheme, under standard hardness assumptions. By using a family of collision-
resistant hash functions and a signature scheme secure against adaptive chosen-
message attacks, we have that the authentication scheme in ADHT is secure: any
successful attack by the network against the security of our scheme corresponds
to either a forged signature or a hash collision.

Before stating the main result of this section, we recall that a p2p network
with n nodes is called efficient if location operations take time O(log n).
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Theorem 2. There exists an authenticated distributed hash table over an effi-
cient peer-to-peer network with n nodes that supports authenticated operations
auth put, auth get and auth remove on a data set of size m ≤ n and has the
following properties:

1. The distributed authentication scheme is secure.
2. The storage at the source is O(1); the storage at the network is O(m log m).
3. The query cost is O(log m), that is, O(log m) locate operations; or, equiva-

lently, the expected time and communication complexity to answer a query
is O(log n log m).

4. The amortized update cost is O(log m), that is, O(log m) locate operations;
or, equivalently, the amortized expected time and communication complexity
of an update is O(log n log m).

Table 3 summarizes the comparison of our ADHT and its extension ADHT-c
using caching with the existing data authentication schemes for dynamic con-
tent in p2p storage networks. Existing authentication methods support data
integrity by separately signing all data items stored by the same source, but
they are either vulnerable to replay attacks (“Sign-all”), since old items can still
be incorrectly verified, or induce a significant update cost when timestamping
is used to eliminate replay attacks (“Sign-all”-t), since all data items should be
resigned after any update or refreshed at regular time intervals. Using a loga-
rithmic space overhead per network node, ADHT provides a secure, efficient and
distributed new authentication scheme for verifying basic operations over p2p
storage systems and offers a transparent security layer that is independent of
the exact implementation of the system.

Table 3. Comparison of ADHT with “sign-all” schemes for authenticating queries on
data set of size m over a network of size n, m ≤ n. Expected complexity is denoted
with ∗ and amortized expected complexity is denoted with ∗∗.

storage signing cost query cost update cost replay-safe

“Sign-all” O(m) O(m) O(log n)∗ O(log n)∗ no

“Sign-all”-t O(m) O(m) O(log n)∗ O(m log n)∗ yes

ADHT O(m log m) O(1) O(log n log m)∗ O(log n log m)∗∗ yes

ADHT-c O(m log m) O(1) O(log n + log m)∗ O(log n + log m)∗∗ yes

Distributed Authenticated Dictionary. An immediate application of our
ADHT is a distributed authenticated dictionary, where membership queries on
a dynamic data set of key-value pairs are authenticated. Suppose that keys are
drawn from a totally ordered universe. Our DMT is built on top of the data
elements sorted according to their keys. To support authentication of negative
answers, we use the technique of [17]: pairs of keys that are consecutive in the
ordering used in the Merkle tree are inserted in the system for proving non-
membership in the set. E.g., if (k, v), (k′, v′) are members of the set and k′ is
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the immediate successor key of k, then value v contains also key k′. The DMT
is again used also as a search tree. This scheme has asymptotically the same
performance as the ADHT described above, given by Theorem 2.
Load-balance issues. Although our authentication structure achieves load bal-
ance with respect to data distribution over the p2p network (given the properties
of the underlying DHT), as described, it does not achieve load balance with re-
spect to network access. For instance, network nodes that store the tree root
are accessed much more often than other network nodes. This turns out to be
an important issue that appears to hold in general: all existing techniques for
achieving authentication over DHTs that use signature amortization, including
our technique or techniques based on self-certified data, introduce congestion at
certain network nodes. The problem is challenging, since load-balancing and ef-
ficient content authentication in p2p systems correspond to contradictory design
goals: signature amortization introduces heavily accessed points in the system,
whereas for load-balancing we wish network nodes to be accessed with uniform,
rather than skewed, distribution. However, we propose the following simple solu-
tion for load-balance in an amortized sense: after any structural update at node
u in the tree, we choose new tree identifiers for all nodes in the corresponding
subtree Tu. Asymptotically no extra cost is incurred, since the structural up-
date already propagates over Tu, thus the system can afford redistributing Tu to
new network nodes. Identifiers are chosen according to a random, well-defined
and unpredictable way, such that no significant communication overhead is in-
troduced in the structure. Effectively, over time, we expect to achieve smoother
(closer to uniform) access patterns for network nodes.

5 Conclusions and Future Work

We consider the problem of data authentication in p2p storage networks. We
introduce a new model for authenticating data in decentralized computing en-
vironments that extends the model of authenticated data structures and better
captures the security needs of existing distributed systems. We design the first
efficient implementation of a distributed Merkle tree (DMT) and show how it
can be applied to the design of an authenticated distributed hash table that sup-
ports efficient verification of membership and update operations over dynamic
data sets and eliminates the threat of replay attacks.

As future work, we plan to implement the DMT construction and experi-
mentally test its efficiency and study load-balance, concurrency and other per-
formance issues. We leave as open problems the design of authenticated schemes
for more general queries, beyond set-membership, and the study of additional
security issues in this new model, such as DoS attacks and Byzantine behavior.
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