
Department of Computer Science

Series of Publications A

Report A-2006-2

Efficient Content-based Routing, Mobility-aware

Topologies, and Temporal Subspace Matching

Sasu Tarkoma

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Audito-
rium XIV, University Main Building, on April 29th, 2006, at
10 o’clock.

University of Helsinki

Finland

Contact information

Postal address:
Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.Helsinki.FI (Internet)

URL: http://www.cs.Helsinki.FI/

Telephone: +358 9 1911

Telefax: +358 9 191 51120

Copyright c© 2006 Sasu Tarkoma
ISSN 1238-8645
ISBN 952-10-3054-2 (paperback)
ISBN 952-10-3055-0 (PDF)
Computing Reviews (1998) Classification: C.2.4, C.4, E.1
Helsinki 2006
Helsinki University Printing House

Efficient Content-based Routing, Mobility-aware
Topologies, and Temporal Subspace Matching

Sasu Tarkoma

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
sasu.tarkoma@cs.helsinki.fi
http://www.cs.helsinki.fi/u/starkoma

PhD Thesis, Series of Publications A, Report A-2006-2
Helsinki, April 2006, 198 pages
ISSN 1238-8645
ISBN 952-10-3054-2 (paperback)
ISBN 952-10-3055-0 (PDF)

Abstract

Event-based systems are seen as good candidates for supporting distrib-
uted applications in dynamic and ubiquitous environments because they
support decoupled and asynchronous many-to-many information dissemi-
nation. Event systems are widely used, because asynchronous messaging
provides a flexible alternative to RPC (Remote Procedure Call). They are
typically implemented using an overlay network of routers. A content-based
router forwards event messages based on filters that are installed by sub-
scribers and other routers. The filters are organized into a routing table in
order to forward incoming events to proper subscribers and neighbouring
routers.

This thesis addresses the optimization of content-based routing tables or-
ganized using the covering relation and presents novel data structures and
configurations for improving local and distributed operation. Data struc-
tures are needed for organizing filters into a routing table that supports
efficient matching and runtime operation. We present novel results on dy-
namic filter merging and the integration of filter merging with content-based
routing tables. In addition, the thesis examines the cost of client mobility
using different protocols and routing topologies.

iii

iv

We also present a new matching technique called temporal subspace match-
ing. The technique combines two new features. The first feature, temporal
operation, supports notifications, or content profiles, that persist in time.
The second feature, subspace matching, allows more expressive semantics,
because notifications may contain intervals and be defined as subspaces of
the content space. We also present an application of temporal subspace
matching pertaining to metadata-based continuous collection and object
tracking.

Computing Reviews (1998) Categories and Subject
Descriptors:
C.2.4 Distributed Systems.
C.4 Performance of Systems.
E.1 Data Structures.

General Terms:
Design, Algorithms, Experimentation

Additional Key Words and Phrases:
Publish/subscribe, event systems, content-based routing, mobility,
performance

Acknowledgements

I would like to thank my supervisor Professor Kimmo Raatikainen for guid-
ance and support. The creative environment of his research groups at HIIT
and at the University of Helsinki inspired many of the ideas presented in
this thesis. The innovative atmosphere at HIIT Advanced Research Unit,
led by Professor Martti Mäntylä, was instrumental for the thesis work.

I thank the pre-examiners of this thesis, Professors Martti Mäntylä
and Jukka Riekki. I also thank my colleagues at HIIT, especially Jaakko
Kangasharju and Adjunct Professor Patrik Floréen, for helpful discussions.
Marina Kurtén helped to improve the language in this dissertation. I also
acknowledge the valuable comments and feedback provided by anonymous
reviewers; they helped to shape and improve the scientific papers that form
the main body of this work.

This work was funded and made possible by the series of Fuego Core
projects starting from 2002, led by Professor Raatikainen. This work would
not have been possible without funding from Tekes, Nokia, TeliaSonera,
Elisa, Ericsson, Movial, and More Magic Inc. Especially I would like to
thank TeliaSonera for the research grant in 2005.

Part of this work was presented at the Berkeley-Helsinki summer schools,
organized by Professors Randy Katz and Kimmo Raatikainen, at the Uni-
versity of California at Berkeley. In addition, the MiNEMA programme
has provided opportunities to present and discuss the work.

Lastly, this work would not have been possible without the support of
my family and friends.

v

vi

Contents

I Introduction 1

1 Introduction 3

1.1 Structure of the Thesis . 7

1.2 Contributions . 7

1.3 Research History . 8

2 Content-based Event Routing 11

2.1 Overview . 11

2.2 Router Topologies . 14

2.3 Interest Propagation . 15

2.4 Definitions . 17

2.5 Routing Decision . 18

2.6 Filtering and Merging . 19

2.7 Design Patterns . 21

2.8 Multicast . 22

II Posets and Forests: Towards Efficient Routing 23

3 Posets and Forests 25

3.1 Routing Tables . 25

3.2 Siena Filters Poset . 26

3.2.1 Forwards Sets . 28

3.2.2 Poset Algorithm . 31

3.2.3 Useful Properties . 32

3.3 Poset-derived Forests . 33

3.3.1 Poset-derived Forest Data Structure 33

3.3.2 Poset-derived Forest with Multiple Interfaces 36

3.3.3 Non-redundant Forest 39

vii

viii Contents

3.4 Discussion . 40

3.5 Equivalence of Forests and Posets 41

3.6 Advertisements . 43

3.7 Poset-based Matching . 44

3.8 Rate-control Using Posets 48

4 Experimentation 51

4.1 Workload Generator and the Environment 51

4.2 Benchmarks . 52

4.3 Local Clients . 53

4.4 Distributed Operation . 55

4.5 Forwards Sets . 57

4.6 PosetBrowser . 60

4.7 Discussion . 65

4.8 Routing Configurations . 65

III Mobility-aware Routing 69

5 Mobility and Completeness 71

5.1 Overview . 71

5.2 Formal Specification . 72

5.2.1 Valid Routing Configuration 72

5.2.2 Weakly Valid Routing Configuration 74

5.2.3 Mobility-Safety . 74

5.3 Related Work . 75

5.4 Generic Mobility Support 77

5.5 Acyclic Graphs with Advertisements 80

5.5.1 Overview . 80

5.5.2 Mobile Subscribers 81

5.5.3 Mobile Publishers 86

5.6 Rendezvous Point Models 90

5.6.1 Overview . 90

5.6.2 Mobility-safety . 92

5.6.3 Incompleteness . 93

5.7 Upper and Lower Bounds 93

5.8 Experimentation . 95

5.9 Engineering Implications . 101

5.10 Summary . 106

Contents ix

IV Advanced Data Structures and Techniques 107

6 DoubleForest for Temporal Subspace Matching 109

6.1 Overview . 109

6.2 Formal Definition . 112

6.3 Determining the Result Set Efficiently 114

6.4 Optimization using Upper and Lower Bounds 115

6.5 Correctness . 121

6.6 Computational Complexity 122

6.7 Temporal Subspace Matching 123

6.8 Experimentation . 123

6.8.1 Overview . 123

6.8.2 Results . 125

6.8.3 Context Browser . 126

6.9 Related Work . 127

6.10 Summary . 130

7 Constant-time Subspace Matching with Preloading 131

7.1 Preloading . 131

7.2 Experimentation . 132

8 Filter Merging 135

8.1 Overview . 135

8.2 Merging and Routing Tables 135

8.3 Rules for Merging . 137

8.3.1 Mergeability Rules 138

8.3.2 Local Merging Rules 139

8.3.3 Remote Merging Rules 140

8.4 A Generic Aggregate Mechanism 141

8.5 Root-set Merging Algorithm 142

8.6 Experimentation with One-Shot Merging 145

8.7 Experimentation with Dynamic Root Merging 149

8.8 Summary . 150

V Applications 153

9 Collection and Object Synchronization Based on Context
Information 155

9.1 Introduction . 155

9.2 Representing Context with Filters 156

x Contents

9.3 Synchronizing Collections 157
9.3.1 Operations . 160
9.3.2 Mapping to the Publish/Subscribe Paradigm 161
9.3.3 Sequence Diagram 162

9.4 Sample Application: Context-aware Photo Library 162
9.5 Related Work . 164
9.6 Summary . 165

10 Example Scenario: Smart Office 167

VI Conclusions 171

11 Conclusions 173

References 177

A Filter Merging Mechanism 193
A.1 Filter Model . 193
A.2 Covering . 194
A.3 Overlapping . 196
A.4 Attribute Filter Merging . 196
A.5 Perfect Merging . 197
A.6 Imperfect Merging . 198
A.7 Discussion . 198

Part I

Introduction

1

Chapter 1

Introduction

Future mobile applications are anticipated to require mechanisms for infor-
mation processing, gathering, and distribution in dynamic environments.
The popularity of information services that use content delivery motivates
the development of algorithms and protocols for efficient content dissemi-
nation and publish/subscribe (pub/sub) [51] in mobile environments. Ex-
ample applications are news, stock market [10] and weather notification
services, group discussions and collaboration, and monitoring and control-
ling sensors and actuators. Publish/subscribe has also been used for distrib-
uted metadata management [72], cyber battlefield awareness [106], Internet
games [12], software agent communication [122], and automatic hyperlink
creation [41].

Mobile computing creates new possibilities for applications and ser-
vices; however, it also presents new requirements for software that need
to be taken into account in applications and in the service infrastructure.
In order to support the development and deployment of intelligent ap-
plications, a number of fundamental enabling middleware [5] services are
needed. Two important services are event monitoring and event notifi-
cation, which are vital for supporting adaptability in applications. En-
vironment monitoring and notification are usually provided by the event
or notification service, which allow software components to communicate
asynchronously [51, 112, 150]. Event systems are examples of middleware,
which is a generic and widely used term for services that aim to support
the development of software applications.

Event-based systems [19, 31, 49, 93, 100, 126, 154] are seen as good can-
didates for supporting distributed applications in dynamic and ubiquitous
environments because they support decoupled and asynchronous one-to-
many and many-to-many information dissemination [44, 110]. Event sys-
tems are widely used, because asynchronous messaging provides a flexible

3

4 1 Introduction

alternative to RPC (Remote Procedure Call) [39, 51]. In the general model
of event notification, subscribers subscribe events by specifying their in-
terests using filters. Event producers publish events (also known as no-
tifications), which are matched against active subscriptions. Event filter-
ing or matching is used to deliver information to the proper set of sub-
scribers [4, 21, 28, 30, 33, 34, 52, 57, 90, 122, 131].

Filtering is a central core functionality for realizing event-based systems
and accurate content-delivery. Filtering is performed before delivering a
notification to a client to ensure that the notification matches an active
subscription from the client. Filtering is therefore essential in maintaining
accurate event notification delivery. Filtering may also be performed by a
router before a notification is forwarded to another router. This increases
the efficiency by avoiding to forward notifications to routers that have no
active subscriptions for them. Filters and their properties are useful for
many different operations, such as matching, optimizing routing, load bal-
ancing, and access control. For example: a firewall is an example of a
filtering router and an auditing gateway is a router that records traffic that
matches the given set of filters.

Most research on event systems has focused on event dissemination
in the fixed network, where clients are stationary and have reliable, low-
latency, and high bandwidth communication links. Recently, mobility sup-
port and wireless communication have become active research topics in
many research projects [46, 66, 67, 110, 111] working with event systems,
such as Siena [31] and Rebeca [53, 91]. A mobility-aware event system
needs to be able to cope with a number of sporadic and unpredictable end
systems, to provide fast access to information irrespective of access loca-
tion, medium and time. Problems such as delayed events, events generated
for offline systems and the delay posed by the transmission of events cre-
ate synchronization and event delivery problems, need to be solved. User
mobility occurs when a user becomes disconnected or changes the terminal
device. Terminal mobility occurs when a terminal moves to a new location
and connects to a new access point. Mobility transparency is a key require-
ment for the system and the middleware system should hide the complexity
of subscription management caused by mobility. The reconfiguration of the
publish/subscribe router or broker topology [45] and the routing of events
through dynamic networks [142] are emerging research topics. In addition,
ad hoc environments require novel solutions for event dissemination. Sen-
sor networks [38] and proximity-based notification [87] are examples of ad
hoc environments.

5

Event systems are an integral part of context-aware architectures. Con-
text-awareness is considered as an important property of future mobile
applications [47]. Context typically pertains to the physical and social sit-
uation in which computational entities are embedded. Context-awareness
is an active research topic and many middleware systems address context-
aware operation [16, 84, 114, 141]. The Context Toolkit defines a distrib-
uted infrastructure for hosting context widgets. The toolkit is used to
provide applications with contextual information [117]. The GAIA sys-
tem is used to manage heterogeneous sensors and support context reason-
ing [114]. Nearly all context-aware systems employ some kind of asyn-
chronous communication abstraction, typically asynchronous events or tu-
ple spaces [18, 26, 78, 94, 95]. Events support context-triggered actions [16],
and allow run-time binding of components supporting modularity.

Communication between context providers and consumers may be fa-
cilitated using a publish/subscribe event-routing network [84]. Current
research prototypes, such as Siena, Rebeca, and Elvin [121, 127], support
mobile users and context-aware operation to various degrees. Some event
systems are not very suitable for context-sensitive operation because of
propagation delays and limitations of routing table algorithms, as discussed
later in this thesis. Ideally this separation of concerns simplifies the de-
velopment of higher level components, because mobility transparency and
scalability is handled by the lower pub/sub layer.

This thesis builds on previous research on distributed event systems and
presents mechanisms for efficient content-based routing and explores the im-
pact of mobility on event systems. One of the first content-based routing
data structures was presented in the Siena project [29]. The filters poset
(partially ordered set) structure was used by event routers to manage sub-
scriptions and advertisements from other routers. In event literature filters
that represent subscriptions and advertisements are typically manipulated
as sets and we are not aware of efficient data structures for processing fre-
quent filter set additions and removals. The Siena filters poset was found
to be limited in terms of scalability, which led to the development of the
combined broadcast and content-based (CBCB) routing scheme [32].

The main research questions in this thesis for efficient content-based
routing and matching are:

• Is it possible to develop more efficient data structures for routing?

• What routing table configurations are the most efficient?

• How to efficiently use filter merging with a routing data structure?

• How to do temporal matching instead of instantaneous matching?

6 1 Introduction

• How to match subspaces instead of points?

• How to do context-based matching?

To answer these questions, we present the poset-derived forest data
structure and variants that address the scalability problems of the filters
poset and perform considerably better under frequent filter additions and
removals than acyclic graph based structures. We present different routing
table configurations that combine forests, posets, and dedicated matcher
components for flexible and efficient routing. Furthermore, we present the
new DoubleForest data structure for temporal subspace matching.

Most event systems have informal semantics and do not give guarantees
on event delivery. Recently, formal semantics for content-based routing pro-
tocols and publish/subscribe systems have been proposed [9, 55, 90]. The
formal semantics do not take mobility into account. Mobile components
typically require that the pub/sub topology is updated and thus it is nec-
essary to prove for a mobility protocol that the safety properties are not
violated, which we call mobility-safety. Typically, a stateful mobility proto-
col is used that buffers messages for a disconnected client. The JEDI event
system was one of the first pub/sub systems to support mobile components
in a hierarchical topology of event brokers [43]. The Siena mobility support
service was formally verified to maintain safety and liveness [23]. On the
other hand, the protocol is based on basic pub/sub primitives and has a high
cost in synchronizing the source and target servers. The Rebeca system,
which is based on an acyclic graph topology with advertisement semantics,
was also extended to support mobile clients, but the mobility-safety of the
protocol was not established [54, 93]. Moreover, event literature typically
focuses only on subscriber mobility. With advertisement semantics also a
publisher mobility protocol is required, but it has not yet been analyzed. In
this thesis we examine both subscriber and publisher mobility in different
topologies and characterize mobility using mobility-safety and the notion
of completeness of the topology.

The main research questions for mobility-aware routing are:

• Are stateful handover protocols mobility-safe?

• What optimizations can be performed and how do they affect mobility-
safety?

• How do different router topologies affect the cost and mobility-safety
of the handover protocol?

• What if the mobile client moves before an issued subscription or ad-
vertisement has been fully propagated?

1.1 Structure of the Thesis 7

• What are the upper and lower bounds for cost in terms of message
exchanges for different router topologies and how does incompleteness
of the routing topology affect these costs?

1.1 Structure of the Thesis

The thesis is structured into six parts as follows: in the first introductory
part we present the publish/subscribe paradigm and examine content-based
routing.

In the second part we give an overview of content-based routing tables
and present a number of new data structures and configurations for efficient
routing. We formally define the poset-derived forest and variants, which
are useful and versatile structures for routing.

In the third part, we examine mobility in pub/sub topologies and com-
pare the cost of mobility in different routing topologies. We also discuss the
lower and upper-bound costs of mobility in terms of exchanged messages.

In the fourth part, we present the DoubleForest data structure, which
is a more advanced structure for temporal subspace matching and context-
aware matching. The structure supports several semantic operators, namely
covering and overlapping. We also consider filter preloading and present a
formal framework for filter merging.

In the fifth part, we present several applications for the results of this
thesis. First, we consider change notification and context-aware collection
and object synchronization using the DoubleForest for mobile clients. Sec-
ond, we present the smart office scenario that highlights interactions in a
modern office environment and motivates the use of content-based routing
to realize context-aware computing.

The last part presents the conclusions.

1.2 Contributions

The original and new contributions of this thesis are the following:

• The poset-derived forest data structure and variants for efficient proc-
essing of partially ordered sets of filters defined by the covering rela-
tion. The forest is simpler and more efficient than the filters poset
that was used in the Siena system. We present useful theorems for the
data structures and an implementation of a visual tool for inspecting
them called the PosetBrowser.

8 1 Introduction

• Optimization of routing tables using posets, forests, and filter merging
as the basic building blocks. We present useful designs and examine
their performance.

• We present the first formal framework for filter merging and a dy-
namic algorithm for merging. The algorithm integrates with a content-
based routing table.

• We present a new technique for routing called temporal subspace
matching, which is an advanced technique that addresses the two
main limitations of existing content-based routing systems, namely
allowing content to be defined using subspaces instead of points, and
allowing temporal routing instead of instantaneous routing.

• The DoubleForest data structure for temporal subspace routing and
context-aware computing. We present formal definition and prove the
correctness of the structure with optimizations. We also show how
preloading may be used to achieve constant matching time.

• Characterization of pub/sub mobility using completeness of the topol-
ogy and mobility-safety, and investigation of the cost of mobility in
different topologies. We present the upper and lower bound costs for
different topologies and simulation results. We also examine and an-
alyze publisher mobility, which has not, at the time of writing, been
addressed in event literature.

• As applications of the forests and temporal subspace routing, we
present context-aware collection and object synchronization for mo-
bile clients and a smart office scenario that highlights ubiquitous in-
teractions.

1.3 Research History

The thesis research was carried out in the Fuego Core research project
at the Helsinki Institute for Information Technology HIIT. The three-year
(2002-2004) research project investigated middleware for mobile, wireless
Internet. A public state-of-the-art review of middleware was prepared in
the project. This review summarizes standardization and research efforts
pertaining to distributed event systems [130]. The general challenges of
the wireless and mobile environment, especially for software agents, are
discussed in [136].

1.3 Research History 9

The main influences and starting points for the research were Anto-
nio Carzaniga’s and Gero Mühl’s Ph.D. dissertations [27, 90]. The former
defined the filters poset structure and investigated different event routing
strategies. The latter formalized event routing and introduced filter merg-
ing. The presented research pertains to optimizing event routers, provides a
formal framework for integrating filter merging into routers, and formalizes
client mobility in pub/sub systems.

We initially proposed a mobility-aware event domain with event channel-
based topology updates. This mechanism used linear hashing to map chan-
nels to servers based on their type [135]. This was motivated by the ob-
servation that the generic state-transfer protocol developed in the Siena
project relied on flooding the pub/sub network and other solutions were
required for efficient handovers. We also considered the benefits of the
event system and mobility support for reactive software agents, which are
essentially based on asynchronous events [128]. The filter covering, match-
ing, and merging mechanisms were developed as basic building blocks for
event systems. An outline of the mechanisms was presented in [129]. The
poset-derived forest data structure is presented in [131]. An overview of
chapter 5 of this thesis is presented in [134] and [133]. Chapter 8 of this
thesis is outlined in [132]. Chapter 9 of this thesis is presented in [137]. The
author also contributed to the Wireless World Research Forum’s vision on
adaptive computing [150].

The filter mechanisms presented in this thesis were used in the Fuego
event system [129]. The Fuego event system was demonstrated at the sixth
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA
2004) using a smart office scenario, which showed various interactions in
the office environment and illustrated the use of context-sensitive messaging
realized using pub/sub primitives. Chapter 10 presents a summary of the
Smart Office demonstration. Wireless communication was demonstrated
using a GPRS connection with a J2ME (Java 2 Micro Edition) MIDP
(Mobile Information Device Profile) phone.

The work presented in this thesis was done by the author with the fol-
lowing qualifications. The definitions and theorems of the poset-derived for-
est were joint work with Jaakko Kangasharju from HIIT and Theorem 3.7 is
by him. In addition, Proposition 5.5, Lemmas 5.6 and 5.7, and Theorem 5.8
were proposed by the author, but the final proofs are by Kangasharju.

10 1 Introduction

Chapter 2

Content-based Event Routing

In this chapter we present and discuss the routing of event messages in a
distributed system. We give an overview of well-known distributed router
configurations and discuss how the routing decision is made and how the
routing information is propagated in the environment. We also briefly
consider design patterns and IP multicast.

2.1 Overview

The main entities in a publish/subscribe (pub/sub) system are the pub-
lishers and subscribers of information. A publisher publishes an event and
a subscriber receives notifications of events that have occurred. There are
many names for the entities in pub/sub or event systems, so in this the-
sis the terms subscriber, consumer, and sink are synonymous. Similarly,
publisher, producer, source, and supplier are synonymous. The semantic
meaning of an event and its notification is application- and domain-specific,
and the mutual agreement on the interpretation of a given notification be-
tween the recipients is outside the scope of this work. Each event may be
published only once.

An event system may be centralized or distributed in nature and the
notification responsibility may be provided by different entities in the envi-
ronment: producers, a centralized router, or a sequence or a set of routers.
In distributed environments a published event is communicated in an event
message, also called a notification, using a message transport protocol.
This is one of the defining characteristics of event and publish/subscribe
systems — the use of asynchronous message passing. The entities may em-
ploy point-to-point messaging in communication, but communication may
also be based on various multicast and broadcast technologies.

11

12 2 Content-based Event Routing

The event router is a component that connects the publishers and sub-
scribers and mediates event messages between them. Typically, an event
router consists of two parts: a set of connections to neighbouring routers
and a set of local clients. Both sets are associated with a routing table that
contains information about which event messages should be forwarded to
which neighbouring router or local client. Neighbouring routers may also
be called interfaces or destinations and these are taken to be synonymous in
subsequent examination. In filter-based routing the routing table contains
a set of filters for each interface and local client. A router with only a single
neighbouring router is called an edge router or border router.

The distribution of event routers is necessary to achieve scalability, re-
liability, and high-availability. For example, if a producer is responsible for
directly notifying a set of subscribers, it is clear that the centralized nature
of this kind of direct notification is limited in terms of scalability and perfor-
mance. The scalability of direct notification may be improved by using in-
termediary components, but this is just a step towards a routing infrastruc-
ture. Indeed, many research projects have focused on infrastructure-based
notification and investigated different distribution mechanisms for connect-
ing publishers and subscribers efficiently.

In many cases, the subscriber is interested in a very specific event and
if the event system does not provide any mechanism for defining interests,
the subscriber will receive all event messages published by the producer
or producers in question. This is called flooding and it is the trivial way
to ensure that every subscriber will receive the correct notifications. A
message that is sent to a client that does not match the client’s interests
is called a false positive. Similarly, a message that was not delivered, but
should have been received by the client is called a false negative.

Flooding every event message everywhere is not a scalable solution,
which has led to the development of various filtering languages and filter
matching algorithms. The scalability limitation is obvious, because the
forwarding of event messages requires processing time on various entities of
the environment and message transmission uses network resources. Excess
and uncontrolled messaging may lead to congestion. Congestion in turn
may cause event messages to be dropped.

Filtering allows the subscribers to specify their interest beforehand and
thus reduce the number of uninteresting event messages that they will re-
ceive. A filter or a set of filters that describes the desired content is included
with the subscription message. Filters may also be used to advertise the
future publication of events. This advertisement information given by pub-
lishers may be used to further optimize messaging and the processing over-

2.1 Overview 13

Table 2.1: Infrastructure interface operations.

Operation Description Semantics

Sub(X,F) X subscribes filter F Sub/Adv
Pub(X,n) X publishes notification n Sub/Adv
Notify(X,n) X is notified about notification n Sub/Adv
Unsub(X,F) X unsubscribes filter F Sub/Adv
Adv(X,F) X advertises filter F Adv
Unadv(X,F) X unadvertises filter F Adv

head of routers. Many filtering languages have been developed, specified,
and proposed. We give a brief overview of filtering languages in Section 2.6.

In order to support event filtering and event delivery, an event router
needs to provide an interest-registration service and also have an interface
for publishing events. Subscribers define their interests using this interest-
registration service. Table 2.1 presents the pub/sub operations used by
most event systems. The table presents the operations for two different
semantics: subscription semantics and advertisement semantics. The ad-
vertisement semantics adds the operations for advertising and unadvertising
a filter.

Depending on the expressiveness of the filtering language, a specific
field, header, or the whole content of the event message may be filterable.
In content-based routing the whole content of the event message is filterable.
With the introduction of filtering we face the problem of how to propagate
this filtering information in the distributed environment. It is not feasible
to expect that a producer or a single router is capable of filtering event
messages for a large number of subscribers.

The two important parts of a distributed pub/sub system are the router
topology, by which we mean the exact nature of how the routers are con-
nected with each other, and how routing information is propagated by the
routers. By propagating routing information we mean how the interests,
filters, of the subscribers are conveyed towards the publishers of that infor-
mation. In essence, the routing information stored by a router must enable
it to forward event messages either to other routers or to local clients that
have previously subscribed to the event messages. The routing problem
may be described as follows from the viewpoint of a single router: given an
input event message, find the correct set of neighbouring routers and local
clients that should receive the event message.

Expressiveness and scalability are important characteristics of an event

14 2 Content-based Event Routing

system [29]. Expressiveness deals with how well the interests of the sub-
scribers are captured by the notification service, and scalability deals with
federation, resources and issues such as how many users can be supported
and how many routers are required. In addition to expressiveness and scal-
ability, an event system needs to be relatively simple to be manageable,
implementable, and to be able to support rapid deployment. Moreover,
the system needs to be extensible and interoperable. Other non-functional
requirements are: timely delivery of notifications (bounded delivery time),
support for Quality of Service (QoS), high availability and fault-tolerance.
Event order is an important non-functional requirement and many appli-
cations require support for either causal order or total order.

2.2 Router Topologies

A number of different router topologies have been proposed in event lit-
erature. Well-known router topologies include: centralized, hierarchical,
acyclic, cyclic, and rendezvous point-based topologies. Centralized routers
represent the trivial case for distributed operation, in which subscribers
and producers use a client-server protocol for sending and receiving event
messages and invoke the interest-registration service provided by the router.

In hierarchical systems each router has a master and a number of slave
routers. Notifications are always sent to the master. Notifications are also
sent to slaves that have previously expressed interest in the notifications.
The basic hierarchical design is limited in terms of scalability, because one
master router is the root of the distribution tree and will receive all the
notifications produced in the system.

For acyclic and cyclic topologies routers employ a different, peer-to-
peer, protocol to exchange interest propagation information and control
messages. In this context, the peer-to-peer protocol denotes that the topol-
ogy is not hierarchical. Acyclic topologies allow more scalable configura-
tions than hierarchical topologies, but they lack the redundancy of cyclic
topologies. On the other hand, topologies based on cyclic graphs require
techniques, such as the computation of minimum spanning trees, to prevent
loops and unnecessary messaging.

The rendezvous point model differs from acyclic and cyclic topologies,
because the routing of a specific type of event is constrained by a special
router, the Rendezvous Point (RP). The RP serves as a meeting point for
advertisements and subscriptions and avoids the flooding of advertisements
throughout the system. The rendezvous-based model is presented in more
detail in Section 5.6. Rendezvous-based systems limit the propagation of

2.3 Interest Propagation 15

messages using the RP and thus attempt to address scalability limitations
presented by the flooding of subscriptions or advertisements. Typically, an
RP is responsible for a pre-determined event type. RPs may be used to
create a type hierarchy. In this case, a message needs to be sent to the
proper RP and any super-type RPs, which may increase messaging cost
and limit scalability

The hierarchical topology was used in the JEDI system [15, 43], and
an acyclic topology with advertisements in Rebeca [54, 90, 93]. The Siena
project investigated and evaluated the topologies with different interest
propagation mechanisms [27, 31]. In general, the acyclic and cyclic topolo-
gies have been found to be superior to hierarchical topologies [15, 27, 92].
The router topology in Gryphon [68, 125] is based on clusters called cells
and redundant link bundles that connect cells. Most research has focused on
static connections between routers. Dynamic connections between routers
have been investigated in [45] and [142].

A number of overlay-based routing algorithms and router configura-
tions have been proposed. An application layer overlay network is imple-
mented on top of the network layer and typically overlays provide useful
features such as fast deployment time, resilience and fault-tolerance. An
overlay-routing algorithm leverages underlying packet-routing facilities and
provides additional services on the higher level, such as searching, storage,
and synchronization services.

Good overlay routing configuration follows the network level placement
of routers. Many overlays are based on Distributed Hash Tables (DHTs),
which are typically used to implement distributed lookup structures. Many
DHTs work by hashing data to routers/brokers and using a variant of prefix-
routing to find the proper data broker for a given data item. Hermes [109]
and Scribe [116] are examples of publish/subscribe systems implemented on
top of an overlay network and are based on the rendezvous point routing
model. The Hermes routing model is based on advertisement semantics
and an overlay topology with rendezvous points. This model was found to
compare favourably to the Siena advertisement semantics using an acyclic
topology [109].

2.3 Interest Propagation

The main functions of a router are to match notifications for local clients
and to route notifications to neighbouring routers that have previously
expressed interest in the notifications. The interest propagation mechanism
is an important part of the distributed system and heart of the routing

16 2 Content-based Event Routing

algorithm. The desirable properties for an interest propagation mechanism
are small routing table sizes and forwarding overhead [92], support for
frequent updates, and high performance.

With subscription semantics the routers propagate subscriptions to other
routers, and notifications are sent on the reverse path of subscriptions. In
simple routing each router knows all active subscriptions in the distrib-
uted system, which is realized by flooding subscriptions. In identity-based
routing a subscription message is not forwarded if an identical message
was previously forwarded. This requires an identity test for subscriptions.
Identity-based routing removes duplicate entries from routing tables and
reduces unnecessary forwarding of subscriptions. In covering-based rout-
ing a covering test is used instead of an identity test. This results in the
propagation of the most general filters that cover more specific filters. On
the other hand, unsubscription becomes more complicated because previ-
ously covered subscriptions may become uncovered due to an unsubscrip-
tion. Merging-based routing allows routers to merge exiting routing entries.
Merging-based routing may be implemented in many ways and combined
with covering-based routing [92]. Also, merging-based routing has more
complex unsubscription processing when a part of a previously merged
routing entry is removed.

With advertisement semantics the routers first propagate advertise-
ments and then, on the reverse path of advertisements, the subscriptions.
Notifications are forwarded on the reverse path of subscriptions in both
semantics. Advertisements may be used with various routing mechanisms.
Advertisements typically have their own routing table and they are man-
aged using the same algorithms as subscriptions. The removal of an ad-
vertisement causes a router to drop all overlapping subscriptions for the
neighbour that sent the unadvertisement message. Similarly, an incoming
advertisement requires that overlapping subscriptions are forwarded to the
neighbour that sent the advertisement message. The use of advertisements
considerably improves the scalability of the event system [15, 27, 92].

One of the first formulations of a wide-area pub/sub system based on
these two semantics with optimizations was presented in the Siena sys-
tem, which used covering relations between filters to prevent unnecessary
signalling. The Siena system used the notion of covering for three differ-
ent comparisons: matching a notification against a filter, covering relation
between two subscription filters, and overlapping between an advertise-
ment filter and a subscription filter. Covering and overlapping relations
have been used in many later event systems, such as Rebeca [93] and Her-
mes [108, 109]. The combined broadcast and content-based (CBCB) routing

2.4 Definitions 17

scheme extends the Siena routing protocols by combining higher-level rout-
ing using covering relations and lower-level broadcast delivery [32]. The
protocol prunes the broadcast distribution paths using higher-level infor-
mation exchanged by routers.

2.4 Definitions

We follow the basic concepts defined in the Siena system [29] and later
refined and extended in Rebeca [90]. A filter F is a stateless Boolean
function that takes a notification as an argument. Later in the thesis,
we also use lower-case letters to denote filters. Many event systems use
the operators of Boolean logic, AND, OR, and NOT, to construct filters.
A filtering language specifies how filters are constructed and defines the
various predicates that may be used. A predicate is a language-specific
constraint on the input notification. We present the notification data model
and the filtering language used in the experimentation part of this thesis
in Appendix A.

A filter is said to match a notification n if and only if F (n) = true. The
set of all notifications matched by a filter F is denoted by N(F). A filter F1

is said to cover a filter F2, denoted by F1 ⊒ F2, if and only if all notifications
that are matched by F2 are also matched by F1, i.e., N(F1) ⊇ N(F2). We
also say that F1 has equal or greater selectivity than F2. Similarly, F2 has
equal or lesser selectivity than F1. The filter F1 is equivalent to F2, written
F1 ≡ F2, if F1 ⊒ F2 and F2 ⊒ F1. The filter F1 is incomparable with F2, if
F1 6⊒ F2 and F2 6⊒ F1. The ⊒ relation is reflexive and transitive and defines
a partial order.

A set of n filters SF = {F1, . . . , Fn} covers a filter Fk if and only if
N(SF) ⊇ N(Fk) ⇔

⋃n
i N(Fi) ⊇ N(Fk). Covering of two sets follows from

this.

An advertisement A is said to overlap with the subscription S, denoted
by A ≃ S, when their filters overlap. Two filters, F1 and F2, are overlapping
if and only if N(F1) ∩ N(F2) 6= ∅. The data structures presented in this
thesis are filter-language agnostic. The covering, overlapping, and merging
mechanisms used in the experimentation part of the thesis are discussed in
Appendix A.

Example 2.1 We define three filters using the notation (filter, constraint):
(F1, x < 10), (F2, x ∈ [5, 9]), and (F3, x ∈ [8, 15]). The constraints are
defined for the variable x over integers. We have F1 ⊒ F2, since the range
[5, 9] is contained in x < 10. We have F1 6⊒ F3, because the range [8, 15]

18 2 Content-based Event Routing

is not totally contained in x < 10. It is also clear that the ranges do not
contain each other, hence F2 6⊒ F3 and F3 6⊒ F2. On the other hand, it is
clear that F1 ≃ F2. Also F1 ≃ F3 since x < 10 and [8, 15] overlap.

2.5 Routing Decision

Message routing systems may be classified into four categories: channel-
based, subject-based, header-based, and content-based [130]. Channel-
based systems make the routing decision based on channel names that
have been agreed by the communicating participants. Subject-based sys-
tems make the routing decision based on a single field. Header-based sys-
tems use a special header part of the message in order to make the routing
decision. For example, SOAP [149] supports header-based routing of XML-
messages. Finally, content-based systems use the whole content of the mes-
sage in making the decision [30]. Next, we describe the four well-known
categories of message routing systems.

Channel/topic-based. Routing decision is made based on the channel on
which the event is published. A channel is a discrete communication
line with a name. Named channels are also called topics, and they
represent an abstraction of numeric network addressing mechanisms.
Usually with channel-based messaging, new channels need to be added
to the address space, because the producers and consumers must agree
on a channel. Channel-based messaging allows the use of IP multicast
groups [103]. The channels can be allocated to multicast addresses.

Subject-based. Routing decision is made based on the subject of the
event. Subject-based routing is more expressive than channel-based
routing. On the other hand, a single field may not be enough to
properly describe the content of a message.

Header-based. Routing decision is made based on a number of fields
in the message header. In header-based routing the message has
two distinct parts: the header and the body. Only fields in the
header are used for making routing decisions. Header-based routing
is more expressive than subject-based and has performance advan-
tage to content-based routing, because only the header of a message
is inspected.

Content-based. Routing decision is made based on the whole content of
a message, for example strongly typed fields in the event message.
Content-based routing is the most expressive of the four types.

2.6 Filtering and Merging 19

Content-based event routing has been proposed as one of the require-
ments for advanced applications, in particular for mobile users [33, 44] and
context-sensitive messaging [84]. The latter mechanism formulates the cur-
rent and future context of entities as event filters and subscribes to them.
The Elvin event broker [121] is used to deliver messages to the recipients
based on the subscribed context filters. Context-sensitive messaging may
be used, for example, to control and monitor a set of mobile robots in a
particular location [84].

2.6 Filtering and Merging

Event filtering is used in most current event architectures. The CORBA No-
tification Service uses the extended Trader Constraint Language (TCL) [100].
The Java Messaging Service (JMS) supports a subset of SQL-92 for event
filtering [126]. These two specifications do not define any particular way
of doing distributed event delivery although distributed filtering may be
implemented based on them.

Research efforts such as JEDI [43], Elvin [127], Rebeca [91], Gryphon [68],
and Siena [31] have investigated distributed event filtering. Wide-area scal-
ability of event filtering was investigated in the Siena architecture and they
define filter relationships formally using covering relations. Filter covering
is used in many systems to find the non-covered set of filters, or minimal
cover set, that is propagated by event routers. Attribute counter-based
algorithms for finding the set of covering filters for a given input filter and
the set of mergeable filters were presented in [90]. On the other hand,
these algorithms work only in the context of the specific attribute filter
model and performance results for frequent additions and deletions were
not discussed.

The first matching algorithms supported only equality tests and rela-
tional operators for integers. Recently an extended attribute counter algo-
rithm was proposed that supports substring matching and uses a selectivity
table for removing unmatchable predicates [34]. In general, filter matching
is done by counting attributes using the counting algorithm [28, 34, 88, 90,
104], counting and clustering [69], using a tree-based data structure [4], or
a binary decision diagram (BDD) [20]. Fast matching algorithms combine
client-side processing, caching, and filter clustering [52]. An algorithm has
been proposed for RSS-feeds and RDF-based metadata [107]. Recently, a
unified approach to routing, covering, and merging was presented in [79].

Many matching mechanisms do not take the distribution and selectivity
of filters into account. Efficient selectivity-based filtering has been exam-

20 2 Content-based Event Routing

ined in [65]. Selectivity-based filtering evaluates the most general filters
first that have the highest selectivity. A high selectivity can be estimated
based on different information: the distribution of events, the distribution
of subscriptions, or both. In addition to exact event matching also approxi-
mate matching has been proposed based on fuzzy logic [83]. The Elvin [127]
filtering language is based on Lukasiewicz’s tri-state logic with values true,
false, and undecidable.

W3C is specifying and working on two XML query languages: XPath [143]
and XQuery [144], which may also be used in the routing of events that are
represented using XML. Efficient XPath filtering is an active research topic.
Most XPath query evaluation implementations run in exponential time to
the size of input queries [59]. XPath query covering and merging are com-
putationally demanding, which motivates simpler schemes. Tree pattern
aggregation is a recent research area and covering algorithms and a mini-
mization algorithm have been presented for conjunctive tree queries [35].

Filter merging is a technique to find the minimum number of filters
and constraints that have maximal selectivity in representing a set of sub-
scriptions by modifying constraints in the filters. Merging and covering
are needed to reduce processing power and memory requirements both on
client devices and on event routers. These techniques are typically general
and may be applied to subscriptions, advertisements, and other information
represented using filters.

A filter-merging-based routing mechanism was presented in the Rebeca
distributed event system [90]. The mechanism merges conjunctive filters us-
ing perfect merging rules that are predicate-specific. Routing with merging
was evaluated mainly using the routing table size and forwarding overhead
as the key metrics in a distributed environment. Merging was used only
for simple predicates in the context of a stock application [90, 92]. The
integration of the merging mechanism with a routing data structure was
not elaborated and we are not aware of any results on this topic.

The optimal merging of filters and queries with constraints has been
shown to be NP-complete [42]. Subscription partitioning and routing in
content-based systems have been investigated in [145, 146] using Bloom
filters [13] and R-trees for efficiently summarizing subscriptions.

Bloom filters are an efficient mechanism for probabilistic representa-
tion of sets, and support membership queries, but lack the precision of
more complex methods of representing subscriptions. To take an example,
Bloom filters and additional predicate indices were used in a mechanism
to summarize subscriptions [138, 139]. An Arithmetic Attribute Constraint
Summary (AACS) and a String Attribute Constraint Summary (SACS)

2.7 Design Patterns 21

structures were used to summarize constraints, because Bloom filters can-
not capture the meaning of other operators than equality. The subscription
summarization is similar to filter merging, but it is not transparent, because
routers need to be aware of the summarization mechanism. Filter merging,
on the other hand, does not necessarily require changes to other routers.
In addition, the set of attributes needs to be known a priori by all brokers
and new operators require new summarization indices. The benefit of the
summarization mechanism is improved efficiency, since a custom-matching
algorithm is used that is based on Bloom filters and the additional indices.

A BDD-based merging algorithm has been proposed in [79]. The exact
rules for filter merging were not elaborated in this work. The algorithm
removes all subscriptions, which are covered by a new merger. This requires
that all routers are aware of the merging technique in order to support safe
unsubscriptions.

2.7 Design Patterns

Design patterns are software engineering designs that have been observed to
work well. Patterns are found in different contexts, they provide a solution
for a well-defined problem area, and digress the various dimensions of the
problem [119]. Patterns are classified into different groups based on their
level of abstraction. Architectural patterns summarize good architectural
designs; for instance the broker pattern that is used in the CORBA archi-
tecture [99]. Design patterns capture the essence of medium level, language
independent, design strategies in object-oriented design. Moreover, idioms
represent programming-language-level aspects of good solutions [119].

The three well-known patterns for event notification are: the observer
pattern [58], the event-channel pattern, and the notifier pattern [60]. The
observer pattern allows subscribers to directly register with a producer.
This pattern couples the entities together and does not define how the
producers are located. The pattern does not scale to large numbers of sub-
scribers per object; however, it allows the use of a mediator that improves
flexibility of the system. The observer-pattern is used, for example, in the
Java and Jini event models [113]. The publish-register-notify, a pattern
similar to the observer pattern, is used in the Cambridge Event Architec-
ture [8, 63].

The event-channel and notifier patterns, on the other hand, decouple
subscribers and producers by introducing a broker that mediates events
on their behalf. The event channel and notifier also support various non-
functional requirements, such as QoS and disconnected operation. The

22 2 Content-based Event Routing

event-channel and notifier patterns are similar, but the notifier also ab-
stracts the location and distribution of event brokers, whereas with chan-
nels the client must first obtain the reference of the channel. The notifier
pattern may be realized by using the observer pattern and mediators or
proxies [151]. The event channel pattern is used in the CORBA Event
Service [99] and Notification Service [100]. A separate specification de-
fines how CORBA event channels are connected to form communication
topologies [101].

2.8 Multicast

IP multicast is a simple, scalable and efficient mechanism to realize sim-
ple group-based communication. IP multicast routes IP packets from one
sender to multiple receivers. Participants join and leave the group by send-
ing a packet using the IGMP (RFC 1112) protocol to a well-known group
multicast address. IP multicast groups are not very expressive. They par-
tition the IP datagram address-space and each datagram belongs at most
to one group. Moreover, IP multicast is a best-effort unreliable service, and
for many applications a reliable transport service is needed.

Event systems may use multicast to deliver notifications to appropri-
ate event routers or servers. Not many event systems take advantage of
network level IP multicast. An evaluation of different algorithms for map-
ping subscribers to multicast groups is presented in [103]. Multicast works
well in closed networks, however, in large public networks multicast or
broadcast may not be practical. In these environments universally adopted
standards such as TCP/IP and HTTP may be better choices for all com-
munication [68].

Part II

Posets and Forests: Towards
Efficient Routing

23

Chapter 3

Posets and Forests

This chapter presents the central building blocks of a content-based rout-
ing table: the filters poset and forest data structures. We start with an
overview of routing tables and present a number of interesting forest and
poset configurations for efficient routing. After the overview, we present the
filters poset in more detail and then formally define new data structures for
content-based routing: the poset-derived forest and variants of the forest.

3.1 Routing Tables

Most research on content-based routing has focused on distributed rout-
ing with various semantics or the efficient matching of filters. The routing
tables of content-based routers are typically represented as sets and the
mechanisms for inserting and removing filters are left unspecified. For ex-
ample, JEDI [43] and Hermes [109] keep filters in a simple table, and Rebeca
uses sets and a counting algorithm for finding covering filters and merge-
able filters [90]. Two counting-based algorithms are needed for routing.
One to determine the covered filters, and one to determine the covering
filters. A unified approach based on Binary Decision Diagrams (BDDs) has
been proposed in [79], which we present in more detail in Section 4.8.

The desirable characteristics for a content-based routing table are effi-
ciency, small size, support for frequent updates, and extensibility and in-
teroperability. The routing table data structure should be generic enough
to support a wide range of filtering languages.

The filters poset (FP) data structure was used in the Siena system to
store filters by their covering relations and manage information related to
forwarded messages. The filters poset can be thought of as the routing
table for a Siena router. The poset stores filters by their generality and

25

26 3 Posets and Forests

may also be used to match notifications against filters by traversing only
matching filters in the poset starting from the most general filters. We call
the set of most general filters that covers other filters the root set of the
data structure in question. The root set is also called the non-covered set
or the minimal cover set.

The filters poset is a generic data structure and may be used with var-
ious filter semantics, which makes it attractive for dynamic environments.
The poset may also be used for various interest propagation mechanisms,
such as subscription and advertisement semantics. On the other hand, this
generality has a performance drawback. One of the findings in Siena was
that the filters poset algorithm limits the performance of routers and more
efficient solutions are needed [32].

We have specified and developed data structures and mechanisms for
improving the scalability of content-based routers in hierarchical and peer-
to-peer routing:

Poset-derived Forest (PF): This is the basic forest data structure for
finding the non-covered set of filters. Emphasis is on very fast addi-
tions, deletions, and computation of the non-covered set. The main
usage scenario for the PF is the management of filters from local
clients and border routers.

Balanced Poset-derived Forest (BF): Similar to the PF, but for each
node maintains an index of interfaces that are reachable through the
node towards the descendants of the node. The index is useful when
performing interface-specific operation, such as pruning, because it
allows to quickly locate the required elements in the forest. The main
usage scenario for the BF is the management of filters from local
clients and border routers.

Non-redundant Poset-derived Forest (NRF): Similar to the former
structure, but guaranteed not to contain any redundant filters. This
makes the NRF equivalent to the FP in hierarchical routing. It may
also be used for peer-to-peer routing.

3.2 Siena Filters Poset

The filters poset data structure was used in the Siena distributed event sys-
tem for maintaining covering relations between filters [29]. In Siena’s peer-
to-peer configurations the poset stores additional information for each sub-
scription that is inserted into the poset. The subscribers(f) set gives the set

3.2 Siena Filters Poset 27

of subscribers for the given subscription filter f , and similarly, forwards(f)
contains the subset of peers to which f needs to be sent. Algorithm 1
presents the steps needed to process a subscription subscribe(X,f) where
X is the subscriber and f is the filter representing the subscription [29, 31].

Algorithm 1 Filter processing in the subscription subscribe(X,f).

1. If a filter f ′ is found for which f ′ ⊒ f and X ∈ subscribers(f ′) then the
procedure terminates, because f for X has already been subscribed
by a covering filter.

2. If a filter f ′ is found for which f ′ ≡ f and X 6∈ subscribers(f ′) then
X is added to subscribers(f ′). The server removes X from all sub-
scriptions covered by f . Also, subscriptions with no subscribers are
removed.

3. Otherwise, the filter f is placed in the poset between two possibly
empty sets: immediate predecessors and immediate successors of f .
The filter f is inserted and X is added to subscribers(f). The server
removes X from all subscriptions covered by f , and subscriptions with
no subscribers are also removed.

In distributed operation based on an acyclic graph router topology, the
Siena server defines the set forwards(f) as presented in the equation

forwards(f) = neighbours−NST(f)−
⋃

f ′∈Ps∧f ′⊒f

forwards(f ′). (3.1)

The neighbours set contains the event brokers connected to the current
broker (one application-level hop distance). The functor NST (Not on any
Spanning Tree) means that the propagation of f must follow the computed
spanning trees rooted at the original subscribers of f . With acyclic topolo-
gies NST contains the neighbour that sent f . Ps denotes the subscription
poset. Using the equation, f is never forwarded to the neighbour that sent
it. Due to the last term of the equation the subscription is not forwarded
to any routers that have already been sent a covering subscription.

Because X is removed from all subscriptions covered by f , an inter-
mediary server does not know which subscriptions should be forwarded
due to unsubscription. This information is essentially lost by this opti-
mization; however, the origin of the subscriptions has this information and
propagates any subscriptions due to the unsubscription in the same mes-
sage, which is applied atomically by other servers. The unsubscribe(X,f)

28 3 Posets and Forests

removes X from the subscribers set of all subscriptions that are covered
by f . Filters with empty subscriber sets are removed. Algorithm 2 gives
an outline of subscription processing. The model may be extended with
advertisements [31].

Algorithm 2 Message handlers for subscription semantics.

IncomingSub(f ,source)

1. Add (f ,source) to Ps.

2. Forward subscription message using forwards(f) to any new neighbours
in the set.

IncomingUnsub(f ,source)

1. Remove (f ,source) from Ps.

2. Let FO denote the old forwards set and FN a newly computed for-
wards set for f after the subscriber source has been removed from
the subscribers set. If the subscribers set is empty then FN = ∅. The
unsubscription is forwarded to FO\FN . The set may be empty if there
are subscriptions from other neighbours that cover f . The forwards
sets of subscriptions covered by f may change, which may require the
forwarding of new subscriptions. Any uncovered subscriptions in Ps

are forwarded with the unsubscription message. An uncovered sub-
scription is such that its forwards set gains an additional element due
to the removal of a covering filter.

3.2.1 Forwards Sets

The message-forwarding behaviour of hierarchical routing is simple. This
behaviour becomes more complex when a router has multiple neighbouring
routers. Siena uses the forwards set to compute destinations for messages
in peer-to-peer routing.

The forwards(f) set is determined using Equation 3.1. The last term
of the equation means that the removal of an entry in a forwards set may
affect the forwards sets of other subscriptions. This happens during un-
subscriptions and may require some of the uncovered subscriptions to be
forwarded.

3.2 Siena Filters Poset 29

Figure 3.1 presents a routing scenario with an event server or router S
with three neighbours I1,I2, and I3. Figure 3.2 illustrates the use of the
forwards set in subscription in this scenario. Five subscription operations
are sent to the server and the trace is shown in the figure. The first two
subscriptions are root filters and they are forwarded to other output servers
except the one that sent them. I1 sent filter a and therefore a is forwarded
to I2 and I3 but not to I1. The third and fourth subscriptions need to be
forwarded to I1 in order to avoid false negatives. Finally, the forwards set
for the last subscription is empty, so it is not forwarded.

SI1

I2

I3

Figure 3.1: Example routing scenario with three neighbours.

Trace

1. Sub (a,I1) - forwarded to I2,I3

2. Sub (b,I1) - forwarded to I2,I3

3. Sub (c,I2) - forwarded to I1

4. Sub (d, I2) - forwarded to I1

5. Sub (e,I3) - not forwarded

(a,I1)

(c,I2)

(e,I3)

(b,I1)

(d,I2)

{I2,I3}

{I1}

{I2,I3}

{I1}

1. 2.

3. 4.

5. (c,I2) and (d,I2) are

forwarded to I1,

because covering

filters have not been

forwarded to it

Figure 3.2: Example of the forwards set in subscription.

Figure 3.3 gives an example of an unsubscription operation. The first
subscription of the previous example is removed and the unsubscription
is sent to I2 and I3. The subscription (c, I2) is uncovered and since it
has only been forwarded to I1 it has to be sent also to I3 but not to I2

30 3 Posets and Forests

that originally sent it. The forwards set of the direct descendant of the
uncovered subscription also changes and the subscription needs to be sent
to I2.

Trace

1. Sub (a,I1)

2. Sub (b,I1)

3. Sub (c,I2)

4. Sub (d, I2)

5. Sub (e,I3)

6. Unsub (a,I1) –

forwarded to (I2,I3),

(e,I3) is uncovered

(c,I2)

(e,I3)

(b,I1)

(d,I2)

{I1,I3}

{I2}

{I2,I3}

{I1}

2. 3.,6.

4. 5.

(c,I2) is forwarded to

I3 and (e,I3) to I2

due to removal of a

covering subscription

Figure 3.3: Example of the forwards set in unsubscription.

The following example illustrates how forwards sets are computed using
Algorithm 2. Let the subscribers set be {I1,I2} for the filter f . The old
forwards set is FO = {I1,I2,I3}. When f is unsubscribed by I1, the new
subscribers set contains only I2, and the new forwards set is FN = {I1,I3}.
Therefore, the unsubscription is sent to FO \ FN = {I1,I2,I3} \ {I1,I3} =
{I2}. Similarly, should a issue a new subscription for f , the new forwards
set will have I2 as a new neighbour.

It is not necessary to store the forwards sets for filters and they may be
computed at run-time. A recursive function is not needed to compute the
forwards sets, because only the first two levels may have elements in their
forwards sets as discussed in Section 3.2.3.

Correctness of Forwards Sets The forwarding behaviour of FP is cor-
rect for a single neighbour. This is the case for hierarchical routing. Cor-
rectness follows from the observation that FP computes the correct non-
covered set and maintains it during additions and deletions. Any redundant
filters are removed by sub-poset pruning.

Peer-to-peer routing may be modelled by constructing the root set for
each interface. We call this the naive forwarding mechanism. The set must
be maintained at the router behind the designated interface. It is evident
that if communication delay is not taken into account, by propagating root
sets, the forwarding information of the distributed system is correct. The

3.2 Siena Filters Poset 31

correctness of set-based content-based pub/sub is discussed more formally
in Section 5.2.

The filters poset aggregates the interface-specific root sets by computing
the covering relations (direct predecessors and successors) for filters from
all interfaces. FP also uses two additional sets for subscription semantics:

• the subscribers set is used to associate filters to the interfaces that
sent them and sub-poset pruning is used to remove redundancy,

• the forwards set is used to store forwarding information.

Thus FP aggregates routing information and is more compact than the
naive approach.

Theorem 3.1 FP has the same forwarding behaviour as the naive forward-
ing mechanism.

Proof. It is clear that given the sets of the naive mechanism, we can
build an FP that has the same forwarding behaviour. We show that given
an FP, we can construct the sets required by the naive mechanism.

The construction is performed by computing the root sets for each in-
terface separately. The iteration is done over the FP root set for each
interface and ignoring any filters installed only by the current interface.
In this case, the second level of the poset may need to be inspected. The
resulting interface-specific sets are the sets used by the naive mechanism.
✷

3.2.2 Poset Algorithm

We could not locate a detailed analysis of the add and remove algorithms
or benchmark results. The following description is based on the Siena Java
implementation [140]. The implementation supports hierarchical operation.
The insert operation follows the rules presented at the beginning of this
section. The relations between filters are maintained using two lookup
structures: predecessor(f) and successor(f), where the former maintains a
list of immediate predecessors of f and similarly the latter maintains the
immediate successors of f . Elements in the predecessor(f) set cover f , and
similarly elements in the successor(f) set are covered by f .

The delete (del) operation can be made efficient using these two lookup
structures by simply removing the filter and connecting the predecessors
and successors accordingly. First f is disconnected from every successor
of f . If f is a root filter this adds those successors of f that have empty
predecessor sets to the root set. Otherwise, f is removed from the successor

32 3 Posets and Forests

sets of its predecessors and a predecessor x of f is connected with a successor
y of f only if x does not have an immediate successor x′ that covers y.

The predecessor and successor sets are determined by the add operation.
The set predecessor(f) is located by walking covering filters in the poset
from the root set in breadth-first order and adding the last covering filter in
the poset to the predecessor set for every visited branch. The successor set
starts from the predecessor(f) set or, if it is empty, the root set of the poset
and walks the poset in breadth-first order looking for the direct successors
of f .

The add operation inserts f between the two sets predecessor(f) and
successor(f). This operation simply updates relevant lookup structures to
reflect the new node. After insertion the sub-poset defined by successors
of f is pruned from empty nodes according to the rules. Duplicate filter
processing may be optimized by detecting duplicates using a hash table
and only updating the subscribers set.

3.2.3 Useful Properties

In this section we present and give proofs for useful properties of the FP.
We assume subscription semantics, but similar proofs may be constructed
also for advertisement semantics. The results in this section may be used
to simplify and optimize the data structures.

We use the (F, I) notation to denote that the filter F was received from
the interface I. In subsequent examination, by saying that a node of a
data structure covers another node, we mean that the filter contained in
the node covers a filter contained in the other node.

Property 3.2 Minimum interface property: For every node x in the poset,
if interface c is in subscribers(x), then c cannot be in the subscriber set
subscriber(y) of any descendant y of x.

Proof. It is sufficient to show that the subscribe operation presented in
Algorithm 1 cannot break this property. The three conditional cases of the
algorithm need to be considered. In the first case no modification of the
poset is made, so the property cannot be broken. In the second and third
cases the removal of c from covered filters and the removal of nodes with
no subscribers will re-establish this property if it was broken temporarily
by the addition. ✷

Property 3.2 states that no interface appears twice in any transitive
closure of the covering relation in the poset. The algorithms for FP ensure
that this property is maintained. Theorem 3.3 states that when local clients
are treated as one external interface, the poset has the maximum depth of

3.3 Poset-derived Forests 33

k, where k is the number of external interfaces. We call this the external
client assumption. With this assumption all active filters from a client are
incomparable.

From Property 3.2 it follows that covering relations exist only for filters
from different interfaces. In other words, filters from the same interface are
incomparable in the data structure. This fact may be used to optimize the
data structure.

Theorem 3.3 The poset has a maximum depth of k nodes when local
clients are represented using a single interface (external client assumption),
where k is the number of interfaces.

Proof. According to Property 3.2, any transitive closure of the covering
relation in the poset has at most one appearance of each interface, and every
node has at least one interface. The maximum depth is achieved for linear
order, and the depth is exactly k when each node has a different interface.
As an example, consider the sequence (x > 0, i1),(x > 5, i2),(x > 10, i3),
(x > 12, i4). ✷

Theorem 3.4 Only elements in the root set or the direct successors of
elements in the root set may have a non-empty forwards set.

Proof. The forwards set is computed according to Equation 3.1. It is
clear that the elements of the root set always have non-empty forwards sets.
In our case the size must be either |neighbours| for a filter subscribed by a
local client or more than one neighbour, or |neighbours|−1 if the filter has
only one neighbouring broker as a subscriber. This means that the direct
descendants of root elements can have at most one entry in their forwards
sets. The direct successor must be of different interface than the root filter
because of Property 3.2. ✷

Theorem 3.4 shows that it is necessary to compute the forwards set only
for the first two levels: the root level and the level directly under the root
level.

3.3 Poset-derived Forests

3.3.1 Poset-derived Forest Data Structure

The poset-derived forest data structure is used to store filters by their
covering property with other filters and is similar to the Siena filters poset
presented in the previous section with the exception that each node has
only one parent (Figure 3.4). The forest is a generic data structure and

34 3 Posets and Forests

may be extended with the sets subscribers(f), forwards(f), advertisers(a),
and forwards(a).

type=A ∧rng[0,100]

type=A ∧rng[0,40] type=A ∧rng[20,90]

type=A ∧rng[30,35] type=A ∧rng[35,38]

type=A ∧rng[0,100]

type=A ∧rng[0,40] type=A ∧rng[20,90]

type=A ∧rng[30,35] type=A ∧rng[35,38]

Filters Poset Poset-derived Forest

type=A ∧equ 35

∧name=B

type=A ∧equ 35

∧name=B

Figure 3.4: Filters poset and poset-derived forest for the same set of filters.

A pair (F ,≻) represents the poset-derived forest, where F is a finite
set of filters and ≻ is a subset of the covering relation. More formally:

Definition 3.5 A pair (F ,≻) is a poset-derived forest with base set F , if

1. F is a finite set of filters and ≻ is a relation between filters in F .

2. For each a ∈ F there is at most one b ∈ F for which b ≻ a, i.e.,
(F ,≻) is a forest with the relation ≻ going from parent to child.

3. If a, b ∈ F and b ≻ a, then b ⊒ a.

It is convenient for uniformity of treatment to imagine the roots of the trees
belonging to (F ,≻) to be children of a node not in F , which we will call
the imaginary root of (F ,≻).

(F ,≻) is called maximal in F if there do not exist a, b ∈ F for which
(F ,≻ ∪{(a, b)}) is a poset-derived forest. It is clear that any poset-derived
forest can be extended to a maximal one by adding pairs to the relation
≻. While there may exist several maximal forests for the same base set,
Theorem 3.7 shows that it is still meaningful to speak of a “root set”.
The forest can be used to easily compute the minimal cover for F (Corol-
lary 3.8). Theorem 3.9 is useful when using the poset-derived forest to
detect and compare the overlap of filters. The theorems of Section 3.2.3
are also applicable to forests.

3.3 Poset-derived Forests 35

In applications we typically require the maximality criterion to hold.
The maximality criterion may be generalized to apply at any level of the
forest with the following definition.

Definition 3.6 A poset-derived forest (F ,≻) is sibling-pure at node a (a
may be the imaginary root) if there do not exist b, c ∈ F for which a ≻ b,
a ≻ c, and either c ⊒ b or b ⊒ c. The forest is sibling-pure if it is sibling-
pure at every node, including the imaginary root.

Sibling-purity at a node means that the node’s children in the forest are
incomparable with each other. When this holds for every node, the forest
is sibling-pure. In other words, a sibling-pure forest ensures that nodes are
locally placed as far away from the root nodes as possible. In subsequent
examination we assume that the forest is sibling-pure.

Theorem 3.7 The set of roots of the trees in a poset-derived forest maxi-
mal in F depends only on F and not on the forest relation ≻. Furthermore,
this set is a subset of the set of roots of any poset-derived forest with base
set F .

Proof. Let (F ,≻) be a maximal poset-derived forest, and let (F ,≻′) be
another poset-derived forest having a root a that is not a root in (F ,≻).
Then there exists a b ∈ F for which b ⊒ a. These two observations mean
that adding (b, a) to ≻′ does not break any of the properties of Defini-
tion 3.5, so (F ,≻′) is not maximal in F .

For the second part, let a ∈ F be a root in a maximal poset-derived
forest. As above, since the forest is maximal, there cannot exist a b ∈ F for
which b ⊒ a. Hence a must be a root of a tree in any poset-derived forest
with base set F . ✷

A cover for a set of filters F is defined to be a set G ⊆ F such that for
each f ∈ F there exists a g ∈ G for which g ⊒ f . This cover is minimal
if it does not contain a proper subset that is also a cover of F . It is clear
that ⊒ cannot hold between two members of a minimal cover.

Corollary 3.8 For any set of filters F there exists a unique minimal cover.
This minimal cover is the set of root nodes of any maximal poset-derived
forest with base set F .

Proof. Any root set of a poset-derived forest with base set F is a cover of
F and conversely, for each cover it is possible to construct a poset-derived
forest with that cover as its root set. The claim now follows directly from
Theorem 3.7. ✷

36 3 Posets and Forests

For two sets of filters F ,G the overlap of F with G is defined to be the
subset of those elements in G which overlap with some element of F .

Theorem 3.9 For any sets of filters F ,G the overlap of F with G is the
same as the overlap of the minimal cover of F with G.

Proof. Obviously the overlap of the minimal cover is contained in the
overlap of the full set. Now let g ∈ G belong to the overlap of F with G.
Then there exists an f ∈ F for which f ≃ g, or N(f)∩N(g) 6= ∅. Now there
exists an f ′ in the minimal cover of F for which f ′ ⊒ f , or N(f) ⊆ N(f ′).
From this it follows that N(f)∩N(g) ⊆ N(f ′)∩N(g), and therefore f ′ ≃ g

and g belongs to the overlap of the minimal cover of F with G. ✷

The two central operations for the poset-derived forest are the addition
of new elements to the forest, and deleting existing items from it. The
operations are presented in Algorithm 3.

Sibling-purity is very easy to maintain for the add operation, but more
complicated for the del operation. It is expected that for some application
areas, such as hierarchical routing or the management of filters from local
clients, it is not necessary to maintain sibling-purity for the del operation.
This simplifies the del operation in Algorithm 3.

Algorithm 3 assumes that there is an efficient way to find if a filter
has already been placed into the structure. This is possible using syntactic
equivalence using hashtables. In syntactic equivalence, canonical represen-
tations of filters are compared. Syntactic equivalence is not necessarily
implied by semantic equivalence, e.g., F1 ⊒ F2 ∧ F2 ⊒ F1. Semantic equiv-
alence is computationally more complex to determine, whereas syntactic
equivalence may be achieved in constant or near-constant time and it de-
tects all semantically identical filters with simple filtering languages. We
note that this restriction to syntactic equivalence does not break the data
structure or the routing algorithms. Filters that fail the equivalence testing
will be simply placed into the structure.

3.3.2 Poset-derived Forest with Multiple Interfaces

The basic poset-derived forest does not take into account the interface-
processing present in the Siena filters poset. Each input node has one
interface, but within the data structure a node may have several interfaces
associated with it. The number of interfaces is bounded by the number
n of nodes in the forest. Let [n] denote the set of the n smallest natural
numbers, i.e. [n] = {0, ..., n− 1}.

3.3 Poset-derived Forests 37

Algorithm 3 Add and del procedures for the forest.

Let (F ,≻) be a poset-derived forest. It is assumed that there is an efficient
way to find a node in F based on its identifier. In subsequent examination,
references to “larger” and “smaller” are to be taken with respect to the
relation ⊒. We define the following algorithms with inputs F and a filter
x and output a poset-derived forest:

add(F , x): This algorithm maintains a current node during its execution.
First, set the current node to be the imaginary root of F .

1. If x is already in the forest, return without changes.

2. Else if x is incomparable with all children of the current node,
add x as a new child of the current node.

3. Else if x is larger than some child of the current node, move
all children of the current node that are smaller than x to be
children of x and make x a new child of the current node.

4. Else pick a child of the current node that is larger than x, set
the current node to this picked child and repeat this procedure
from step 2.

del(F , x): Let C be the set of children of x and r be the parent of x. Then
run add for each of the elements of C starting from step 2 and setting
r as the current node. In this an element of C carries the whole
subtree rooted at it with the addition. To preserve sibling-purity,
any siblings of a relocated node that are smaller than the node must
be relocated deeper into the tree using add.

38 3 Posets and Forests

Definition 3.10 A triple (F ,≻, G) is a poset-derived forest with multiple
interfaces, if

1. (F ,≻) is a poset-derived forest.

2. G is a function that associates a subset of [n] with every filter, and
G(x) 6= ∅ if and only if x ∈ F .

3. If x ∈ F and an interface k ∈ G(x), then k 6∈ G(y) holds for all
descendants of x in the relation ≻.

To satisfy Property 3.2 we extend the add and del operations accord-
ingly. A node is not inserted if a covering node with the same interface is
already present. If a node is inserted, nodes that are covered by the new
node and have the same interface are removed. A forest is either redun-
dant or non-redundant. A redundant forest may contain a redundant filter,
whereas a non-redundant forest may not contain such a filter. A redundant
filter is such a (F1, i) that there exists a (F2, i) for which F2 ⊒ F1.

The process of removing redundant filters is called interface pruning or
interface elimination and it involves scanning the data structure for filters
that are covered by the input filter and have been received from the same
interface.

Operations

The add operation inserts a new filter x into the forest and if the interface
c of the input filter is also new it is inserted into the set of interfaces.
More formally, the add operation creates a new forest (F ′,≻′, G′), where
F ′ = F ∪ {x}, G′(x) = G(x)∪ {c}, and G′(y) = G(y), y 6= x. Similarly, the
del operation results in a new structure without the deleted filter.

The elimination of redundant filters may be implemented in add, del,
or both. We distinguish two interesting cases. First, for filters from local
clients no elimination is necessary. Second, for hierarchical and peer-to-peer
routing the structure should be non-redundant.

Interface-based Balancing

Interface-based balancing is a technique for optimizing interface-specific op-
erations in the forest. Each node maintains a set of interfaces used by its
descendants. The index may be used to cluster filters from the same in-
terface near each other. The add operation sorts the set representing the
current level of the forest using the interface of the node to be inserted.
Nodes that have descendants of the same interface are processed first. This

3.3 Poset-derived Forests 39

allows to quickly find filters from a specific interface in the forest. A forest
that implements the interface index is called a balanced forest (BF).

We use an index presented in Definition 3.11 to optimize the perfor-
mance of the data structure. For each filter in the structure the index
keeps a record of the interfaces of its descendants. The index is updated
for every addition and deletion. The add operation uses the index in decid-
ing which subtree to traverse. An interface index entry is not necessarily
needed for leaf nodes. The index requires at most n − 1 entries where n

is the number of nodes in the forest and n bits per entry if each node has
a unique interface. The total number of bits required by the index in the
worst case is n(n − 1). The index may be implemented using a bit vector
of at most k bits for representing the interfaces, where k is the maximum
number of interfaces in the forest.

Definition 3.11 Interface-index(x): the input is node x and the output is
the set of interfaces used by x’s descendants.

The maintenance of the index has both memory and processing over-
head. During add and del operations the index is updated from the inserted
node to the root so the depth of insertion is important. The index update
is simple to implement for add and del. The index is updated for the input
node and for all predecessors.

3.3.3 Non-redundant Forest

The non-redundant poset-derived forest (NRF) extends the BF with an
eliminate-interfaces-all procedure during add. This procedure ensures that
there are no redundant filters in the data structure. The naive implementa-
tion of this procedure simply tests each filter from the interface in question
whether or not they are covered and should be eliminated.

This extension results in performance loss, but may be optimized by
using the interface index in balanced forests. In this case, the eliminate-
interfaces-all procedure checks only those parts of the forest that advertise
the interface. In a descent into the subforest selected using the given in-
terface, all the descendants of a node (and the node itself) covered by the
input filter may be interface eliminated.

We note that it is not necessary to invoke the operation if it is known
that the input filter is incomparable with existing filters from the inter-
face associated with the filter. This is the case when, e.g., inserting the
uncovered set after a del operation.

40 3 Posets and Forests

3.4 Discussion

The directed acyclic graph (dag) approach of the Siena filters poset gives
a more complete model of the partial order of the base set F based on
the covering relation than the forest. On the other hand, this complete-
ness also complicates the addition and deletion algorithms and the internal
representation of the data structure. The algorithms for add and del are
simple and efficient for the forest.

We cannot say much about the running times of the add and del al-
gorithms for the poset-derived forest without knowing about the structure
of F . The data structure does not perform well for totally unordered or
ordered sets. In this case the add algorithm runs in worst-case time linear
in the size of the input data set while del is constant-time. The retrieval
of the non-covered set may be implemented in constant time by simply
returning the data structure that holds the root nodes.

The covering set of filters for a given filter may be determined using
the poset-derived forest data structure; however, since the structure uses
only one-to-one relationships between filters, not all covering relations are
captured. For a given filter the covering set may be found by traversing
those trees that have covering nodes. The procedure is similar for covered
nodes. If filters have only one-to-one relationships with other filters the
covering set may be determined by simply traversing a single tree.

We also propose a representation for the forest data structure that seems
to give good expected running times for the add and del algorithms, namely,
to keep the children of any node in a linked list ordered by the size of the
subtree rooted at each child from smallest to largest, and in the add algo-
rithm always add the new node to the first, i.e. smallest tree encountered.
This requires that any change in the size of a subtree is propagated towards
the root node.

Since the addition and removal of filters is a frequent activity, concur-
rency control is an important factor in the performance of the data struc-
ture. Concurrent modifications may be controlled separately for different
trees and also for subtrees. Deletion only affects the current level in the
tree. Any balancing operations that are required may be performed to one
tree (or one branch) at a time. In addition, since there may be several
covering root nodes, if a heavy operation is performed on the first covering
tree the filter may be inserted into the next possible tree. This kind of
control is more difficult to implement with dags.

3.5 Equivalence of Forests and Posets 41

3.5 Equivalence of Forests and Posets

We consider the equivalence of the poset-derived forest and the filters poset.
The analysis concentrates on the forwards sets of filters, because they de-
termine the forwarding behaviour of the router.

The Siena filters poset supports the unsubscribe operation with an ar-
bitrary filter. Our implementations differ and they only allow removing a
filter that has been previously inserted. This modification does not change
the routing semantics, because typically end systems subscribe and unsub-
scribe the same filters.

Hierarchical Routing The operation of the forest is similar to the poset
for hierarchical routing environments. Here, the redundant subscriptions
stored by PF and BF, in some cases, result in false positives: redundant
subscriptions being forwarded to the master router, and false positives sent
by the master to a slave. This depends on how the forest is used. We
present two possibilities that prevent false positives:

PF and BF: The root set of a client is always installed at the master
replacing the old set. The old set may be removed efficiently by
simply walking through the forest and removing the given interface.
This is the case for periodic updates.

NRF: Redundant filters are removed during add.

Peer-to-peer Routing We employ a simplified model here, in which
we assume that the second NST term of Equation 3.1 contains only the
interface that sent the filter in question. The former assumption corre-
sponds to subscription semantics and the latter assumption corresponds to
acyclic-graph-based routing.

The forest has two limitations when compared with the filters poset.
First, it may have a number of redundant filters. This is solved by using
NRF. Second, the forwards set management is more complicated for peer-
to-peer environments, because the forest does not record the full relations
between filters. This incompleteness may result in additional entries in the
forwards sets of some filters and thus cause false negatives and positives.

Figure 3.5 gives an example of an unnecessary update. In this case,
there are two possible places for inserting a subscription and one of them is
more favourable. This may result in an additional element in the forwards
set. Example 3.2 deals with the problem of finding the set of subscriptions
that are uncovered by an unsubscription.

42 3 Posets and Forests

Trace

1. Sub (a,I1) - forwarded to I2,I3

2. Sub (b,I1) - forwarded to I2,I3

3. Sub (c,I2) - forwarded to I1

4. Sub (d, I3) – covered by c and b

(a,I1)

(c,I2)

(b,I1)

{I2,I3}

{I1}

{I2,I3} 1. 2.

3.

4.

(d,I3)
If d is placed under b

an update is sent to

I1, if under c no

update is sent

Figure 3.5: Unnecessary update using the forest.

The situation is the same when advertisements are used as discussed in
Section 3.6, because advertisement forwarding is essentially the same and
subscription forwarding uses the constrained neighbourss set. Since a root
filter has the most overlap with any advertisements (Theorem 3.9) it will
have the largest neighbourss set and hence the largest forwards set.

Example 3.2 Let us consider the following scenario for filters F1,F2,F3,and
F4 and the set of neighbours {a,b,c}. Superscript denotes the neighbour that
sent the filter. F c

1
and F c

2
are root filters. F c

1
and F c

2
cover F a

3
and F a

3
cov-

ers F b
4
. When F a

3
is unsubscribed, the forwards set of F b

4
has a missing

entry and it will be forwarded as a subscription to {c}. A forest, on the
other hand, may be constructed with the following relations: F c

1
covers F a

3

and F c
2

covers F b
4
. When F a

3
is unsubscribed there are no covered elements

and thus F b
4

is not forwarded. This means that the routing table of {c} is
missing an element.

The following three rules simplify the determination of the forwards set:

• The set is neighbours − NST for any root node if it has only one
element in the subscribers set, which is contained in the neighbours
set. The forwards set is equal to the neighbours set if the subscribers
set has more elements or the only element is a local client.

• A candidate set is neighbours − NST − forwardsroot for any direct
successor of a root node. The set contains at most one element. The

3.6 Advertisements 43

forwards set is empty if there exists a covering root node or a direct
successor to a root node that has been sent to the neighbour already.

• Otherwise the set is empty.

To address these limitations, we extend NRF by using the following
mechanisms:

• For each filter added using add as a direct successor of a root filter
the forwards set is checked for a covering node. The covering node is
a root node or a direct successor to a root node, if it exists.

• During del, the forwards set of the deleted node is computed using
the same mechanism as for add (or retrieved from memory). If the
forwards set is empty, no further action is needed. If it is not empty,
the removed node was either a root node or a direct successor to
a root node. In this case, the set of direct successors covered by
the deleted filter needs to be found. This set is needed to send any
uncovered subscriptions to the neighbour or neighbours. There are
at most |neighbours| entries in the forwards set of a root node and
at most one in the forwards set of a successor to a root node. The
set is found by iterating over the set of root nodes after del has been
performed. A root node cannot be covered, unless it was a child of the
deleted node. A node that is covered by the filter that was deleted,
and is a direct successor of a root node, is added to the uncovered
set, if the intersection of the forwards sets (the unsubscription and
the covered node) is non-empty. The intersection determines where
the uncovered filter is sent.

Computation of the forwards set is more difficult for the forest than for
the poset, because the covering test has to be performed for any non-empty
forwards set computed for a direct successor of a root node. On the other
hand, the forwards set may be maintained in the data structure and thus
the cover check needs to be performed only once. If the set is maintained
and stored it needs to be updated when a covering node is deleted or the
node is moved.

3.6 Advertisements

The basic subscription semantics may be optimized by using advertise-
ments. In this model, advertisements are propagated to every node, and
subscriptions are propagated only towards advertisers that have previously

44 3 Posets and Forests

advertised an overlapping filter. The idea is to use the additional adver-
tisement information to prevent subscription flooding. The model uses two
poset data structures, one for each type of message. Since the poset-derived
forest can be made equivalent to the filters poset, it is also a useful data
structure for advertisement semantics. Advertisements from local clients
can be stored in a redundant forest. In addition, the filter merging frame-
work presented in Chapter 8 may be used for both subscriptions and ad-
vertisements.

In advertisement semantics a second poset Pa is used for advertise-
ments [29]. The sets advertisers(a) and forwards(a) are needed for each
advertisement a ∈ TA, where TA is the set of all advertisements in the
poset. Instead of forwarding subscriptions to a global set neighbours, a set
constrained by advertisements is used as presented by the equation

neighbourss =
⋃

a∈TA:a≃s

advertisers(a) ∩ neighbours. (3.3)

In this case, Equation 3.1 uses the neighbourss set instead of the neighbours
set. An advertisement may thus result in a number of subscriptions being
forwarded to the sender of the advertisement. The process of unadver-
tisement is similar to unsubscription. Algorithms 4 and 5 give an outline
of message processing with advertisement semantics. The algorithms are
derived from [29] and [90].

3.7 Poset-based Matching

The two important use scenarios for event matching are:

• Event forwarding to neighbouring routers.

• Event forwarding to local clients.

These two scenarios differ, because generalized filter sets are used for
neighbouring routers, but local filtering requires specific filters. Remote
filter sets are envisaged to be considerably smaller than local filter sets.
Moreover, for neighbouring brokers the filters are typically stored in a poset
whereas local filtering may require optimized filtering structures. Opti-
mized matching structures may also be used for filter sets from neighbour-
ing brokers.

The counter algorithm is the basic mechanism for efficiently matching
events [28, 34, 88, 90, 104]. The counter algorithm keeps track of the num-
ber of attribute filter matches for each filter. Counting is based on the

3.7 Poset-based Matching 45

Algorithm 4 Subscription message handlers for advertisement semantics.

IncomingSub(f ,source)

1. Add (f ,source) to Ps.

2. Calculate neighbourss using Pa and Equation 3.3.

3. Send subscription message to forwards(f).

IncomingUnsub(f ,source)

1. Remove (f ,source) from Ps.

2. Forward unsubscription following the procedure in Algorithm 2. The
set may be empty if there are subscriptions from other neighbours that
cover f . The forwards sets of subscriptions covered by f may change,
which may require the forwarding of new subscriptions. An uncovered
subscription is such that its forwards set gains an additional element
due to the removal of a covering filter.

fact that filters are conjunctions of attribute filters. Typically, the count-
ing algorithm is divided into a preliminary elimination phase in which un-
matchable filters and interfaces are removed, and a counting phase. If the
counter of a filter becomes equal to the number of attribute filters in the
filter, the filter matches the input notification and the corresponding inter-
face is added to a set of output interfaces. The counter algorithm returns
either the identifiers of matching filters or a set of output interfaces. Op-
timized matchers use efficient data structures for different predicates, for
example hashtable lookup for equality tests and interval trees [40] for range
queries.

The data structure and posets in general have two interesting proper-
ties for matching that follow from the definition of the covering relation
(Property 3.12 and 3.13).

Property 3.12 If a node n1 matches a notification then all the predeces-
sors of n1 must also match the notification.

Property 3.13 If a node n1 does not match a notification then none of
the descendants of n1 matches the notification.

The node in this case may be any object that is comparable using
the covering relation, for example: filters, attribute filters, and disjuncts.

46 3 Posets and Forests

Algorithm 5 Advertisement message handlers.

IncomingAdv(a,source)

1. Add (a,source) to Pa.

2. Forward advertisement message to forwards(a).

3. Determine the set of overlapping subscriptions using Ps for which a

is the only advertisement from the source that overlaps and send
them to the source. In other words, any subscriptions that have not
yet been sent are forwarded to the advertising node (source). Those
subscriptions that overlap with an existing advertisement from the
source have already been forwarded so they are not processed. The
overlapping set is found by iterating over the first two levels of Ps

and testing the overlap of subscriptions with the advertisement.

IncomingUnadv(a, source)

1. Remove (a,source) from Pa.

2. Forward unadvertisement in a similar fashion than the unsubscription
is forwarded. The forwards(a) set may be empty if there are adver-
tisements that cover a from other neighbours. Forward any uncovered
advertisements in Pa.

3. Remove any subscriptions for source that are no longer needed. All
subscriptions are removed from neighbours other than the source that
do not have an associated overlapping advertisement from some other
neighbour.

3.7 Poset-based Matching 47

The Siena poset-based matcher uses Property 3.13 in order to optimize
matching. The pseudocode for the forest is given by Algorithm 6. The
poset-based matcher is similar, but requires the testing of nodes that have
already been visited.

The forest or poset also supports approximate matching. For example,
we may walk the forest with the notification breadth-first and define a
time bound for matching. When this time expires the algorithm simply
walks the remaining nodes and records the interfaces as matched. This is
approximate, because it may result in false positives.

Algorithm 6 Pseudocode for forest-based matching.

Match-Forest(n)

1 let S be an empty sequence
2 let FW be an initially empty set of forward interfaces
3 let Imax be the # of interfaces for the event type
4 let q = false

5
6 R = Get-Roots(n.type)
7 let Im be an imaginary root of a tree
8 Im.children = R

9 addLast(S, Im)
10 while S is non-empty and not q

11 do
12 o = removeFirst(S)
13 while o has unprocessed children and not q

14 do
15 c = nextChild(o)
16 if subscribers(c) ⊆ FW

17 then addLast(S, c)
18 elseif match(c, n)
19 then
20 addLast(S, c)
21 addToSet(FW,subscribers(c))
22 if |FW | ≥ Imax

23 then q=true

24 return FW

48 3 Posets and Forests

The interesting feature of the algorithm is that the matching mecha-
nism does not know the details of the filtering language — it only assumes
that there are covering relations between nodes. This makes the algorithm
suitable for environments where the filtering language and the operators
(predicates) are dynamic and change. In addition, adding new operators
does not require complicated changes to the matching algorithm, such as
creating new indexing structures.

We propose two improvements to the basic algorithm. First, the match-
ing test does not need to be performed for a filter whose interfaces have
already been added to the result set. We found that this modification re-
sulted in better performance. The second improvement is to use the inter-
face index to prevent the processing of those subtrees in a balanced forest,
which have been already matched. This is easily accomplished by simply
checking whether the interfaces of a particular node are already contained
in the result set; if they are the node is not processed further.

3.8 Rate-control Using Posets

The matching technique described in the previous section may be combined
with rate-control policies to improve the scalability of content-based sys-
tems. Rate-control rules define how many notifications per second or time
unit should be forwarded to the subscribing interface. Some rate-control
rules are set by system designers and policies, and some rate-control rules
are set by applications.

Rate control rules are represented using attribute filters and thus parts
of filters [93]. The rate control rules support the covering relation and are
also mergeable. The covering relation is a simple inequality, where a bigger
rate-value covers smaller rate-values. For example: (20 notifs/s) ⊒ (10
notifs/s).

Therefore, the rate-control extension may be used with the forest or
poset-based matchers with some modifications. For each filter in the data
structure we keep track of the notification rate per time interval. If the rate
limit value has been exceeded, it is not necessary to check the filters rooted
at that node, because they have also exceeded their limits. This provides
a convenient way to prevent unnecessary messaging between brokers. To
balance the forest properly during insertion, a covering subtree is selected
with the closest rate-control filter.

Rate measurement is important for load balancing decisions. The time-
window to monitor is important, and this information is typically required
at least for the root set of the poset or forest and in some cases for each

3.8 Rate-control Using Posets 49

subscription. Monitoring of the rate for the root-set requires that the cover-
ing subscriptions of the root set are updated (their counters are increased)
during matching. When the monitored time-period restarts, the counters
are reset and the old values may be stored into a history. The current rate
value may not be very interesting for a load balancer, but rather knowl-
edge of the recent behaviour of the rate is important and may be used to
extrapolate future behaviour, for example, using moving averages or other
statistical methods.

50 3 Posets and Forests

Chapter 4

Experimentation

This chapter presents the experimental results with the filter mechanisms
presented in this thesis. First, we present the workload generator that
was used for the experimentation. After this we present the benchmarks
for forests and posets and then examine data-structure performance. We
present performance results for the following data structures: filters poset
(FP), poset-derived forest (PF), and non-redundant forest (NRF).

4.1 Workload Generator and the Environment

A custom workload generator was used for the experimental results. The
generator creates sets of filters and notifications using the given parameters.
The key parameters of the workload generator are the number of filters, the
number of attribute filters in the filters, the number of schemas, the number
of unique names that are used in generating attribute filter constraints, the
range of values for number tests, the number of notifications to match, and
the number of interfaces. Interfaces are assigned to filters in a round-robin
fashion.

The filters were generated using the structure enforced by a schema.
Each attribute filter has a type and a name. Each attribute name is asso-
ciated with a single type. In the experiments, each attribute filter corre-
sponds to a range query in the interval [0, 100]. We have also experimented
with other atomic predicates, such as the set {<,>,≤ ,≥ , =, 6=, [a, b]}. We
present results for the range predicate, because range queries are used by
many applications, for example, spatial applications.

We experimented with the following filter schemas: a 2-dimensional
range, a 3-dimensional range, and a variable number (1-3) of range attribute
filters.

51

52 4 Experimentation

Table 4.1: Data structures used in the experimentation.

Name Description

Poset-derived Forest (PF) The basic forest.
Balanced Forest (BF) PF with 1-bit balancing.
Non-redundant Forest (NRF) The non-redundant BF.
Poset The filters poset.

We used the following equipment: an HP laptop with a 2 GHz Pen-
tium III processor with 512 MB of main memory, Windows XP, and Java
JDK 1.4.2. Table 4.1 presents the different data structures used in ex-
perimentation. The filters poset algorithm is based on the Siena Java
implementation [140] and extended with hashtable-based duplicate filter
detection.

4.2 Benchmarks

The two important benchmarks were the add scenario and add/remove
scenario. The former consists of the creation of the forest or poset data
structure with the given set of input filters. The latter consists of repeated
insertions and deletions to the data structure. In the add/remove scenario
a filter is removed and a new random filter with the same interface identifier
is created and added to the data structure. The state after the add scenario
is the initial state for the add/remove scenario.

We distinguish between local and distributed operation. Interface elim-
ination and computation of the forwards sets are not needed for the local
case. Distributed operation consists of the two routing models, hierarchical
and peer-to-peer. The latter requires the computation of the forwards set
whereas the former does not.

Figure 4.1 presents an overview of the add and add/remove scenarios.
The workload generator is used to generate filters and notifications. First,
filters are inserted or inserted and removed from the data structure. We
measure the time spent in the operations and the total number of covering
operations. After the first phase we match notifications using the data
structure. Correctness is checked after each phase and between add and
add/remove scenarios.

The two important cases in experimentation were a variable number
of filters with unique interfaces and a variable number of interfaces with
a static number of filters. In each experiment, we used a single schema

4.3 Local Clients 53

Filters

Workload

generator

Notifications

Poset or Forest

1. Add or Add/Remove scenario

2. Matching test

Correctness

testing

Figure 4.1: Add and add/remove scenario tests.

to generate the filters. The single schema situation is the most difficult
scenario for matching and covering, because two schemas are by definition
independent and a notification may match only one schema (event type) at
a time, but filters of the same schema have to be analyzed.

Correctness of operation was tested using assertions on root set size
invariance using Theorem 3.7, data structure size invariance, and existence
of false positives and negatives in matching. We recorded the set of match-
ing interfaces for each notification using a naive algorithm and used this
set to determine any false positives or negatives for the other algorithms.
Existence of nodes not connected with the root set, existence of cycles, and
the minimum interface property (Property 3.2) were also tested. For the
balanced forest also the proper functioning of the index was tested. We also
tested the correctness of the filters poset’s direct successor and predecessor
sets. The time spent in testing the data structures is not included in the
benchmark results.

Each experimentation run was replicated 10 times. The original input
set and the set of filters to be added after removals, and the set of notifi-
cations to test the structures were created for each replication. The figures
present results using the arithmetic mean over the replications.

4.3 Local Clients

To experiment with the impact of local clients, we created 500 filters using
the schema and performed the add and add/remove scenarios. Since we
are dealing with local clients, each filter has its own interface and interface
pruning does not take place.

Figure 4.2 presents the results for 2D range filters and Figure 4.3 the
results for 3D range filters. We measured both the number of covering

54 4 Experimentation

operations required by the add and add/remove scenarios and processing
time.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Add scenario time

Forest
Balanced forest

Filters poset

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300 350 400 450 500

F
ilt

e
rs

Filters

Add scenario data structure size

Forests
Filters poset

Root set (invariant)

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000

 50 100 150 200 250 300 350 400 450 500

T
o

ta
l
c
o

v
e

ri
n

g
 o

p
s

Filters

Add/remove scenario total ops

Forest
Balanced forest

Filters poset

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Add/remove scenario total time

Forest
Balanced forest

Filters poset

Figure 4.2: Results for a variable number of 2D range filters.

The filters poset performs considerably slower than the forest structures
in both add and add/remove scenarios. The data structures have the same
size, which is shown in the figures for the add scenario. With 3D filters
the structures require considerably more processing time. Similar results
to the 2D case were also observed with the variable number of attribute
filters case, but with reduced processing overhead.

We observe that the balanced forest and non-redundant forest do not
have overhead compared to the plain forest data structure in these bench-
marks. This is explained by how the interface-based balancing is realized.
For local clients, the balancing is very useful and allows to locate any other
filters from the same interface rapidly, or to detect if there are none.

Figure 4.4 gives the results for the variable interfaces scenario with a
static number of filters (500). The x-axis shows the number of interfaces.
Here the number of operations and times required by the forests are ap-
proximately constant. This is due to the fact that the number of filters is
static. The filters poset is considerably slower in this scenario as well, be-

4.4 Distributed Operation 55

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Add scenario time

Forest
Balanced forest

Filters poset

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300 350 400 450 500

F
ilt

e
rs

Filters

Add scenario data structure size

Forests
Filters poset

Root set (invariant)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 50 100 150 200 250 300 350 400 450 500

T
o

ta
l
c
o

v
e

ri
n

g
 o

p
s

Filters

Add/remove scenario total ops

Forest
Balanced forest

Filters poset

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Add/remove scenario total time

Forest
Balanced forest

Filters poset

Figure 4.3: Results for a variable number of 3D range filters.

cause the size of the structure grows when the number of interfaces grows.
The filters poset is able to remove all filters with covering filters that have
the same interface.

4.4 Distributed Operation

In distributed operation, a router receives new filters or requests to remove
existing filters from neighbouring routers. Typically, there are a few neigh-
bours and many local clients. These may be analyzed separately. We used
1000 filters and 3–15 neighbouring routers. Since there are many filters per
interface, interface-based filter pruning is needed to remove unnecessary
filters.

In order to achieve more realistic distributed filter updates, we prevent
the addition of a filter that is covered by an existing filter from the same
interface. This is motivated by the update semantics for distributed oper-
ation, in which a neighbour only sends a covering or incomparable filter,
or deletes an existing filter and sends the uncovered filter set. The uncov-
ered filter set sent after del is incomparable with existing filters sent by

56 4 Experimentation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Interfaces

Add scenario time

Forest
Balanced forest

Filters poset

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300 350 400 450 500

F
ilt

e
rs

Interfaces

Data structure size (add scenario)

Forests
Filters poset

Root set (invariant)

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000

 50 100 150 200 250 300 350 400 450 500

T
o

ta
l
c
o

v
e

ri
n

g
 o

p
s

Interfaces

Add/remove scenario total ops

Forest
Balanced forest

Filters poset

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Interfaces

Add/remove scenario total time

Forest
Balanced forest

Filters poset

Figure 4.4: 2D filters with a variable number of interfaces.

the neighbour. The workload generator functions as before and generates
a number of filters (1000), but we use an intermediate layer that drops
any additions that violate these semantics. As before, the data structures
process exactly the same set of filters.

Interface-based filter elimination or pruning is needed for distributed
operation to remove unnecessary filters. Pruning can be implemented in
at least two places in a non-redundant forest. If implemented in the add

operation, the forest has the same size as the filters poset, and redundant
filters are removed prior the computation of the forwards set. If the pruning
is implemented in the del operation, the add operation is very simple, but
the size of the data structure may grow larger than the filters poset. The
add case is more useful for peer-to-peer routing, whereas the del case is
expected to be more efficient for hierarchical routing. We use a simple
interface-based elimination in conjunction with the add operation. The
procedure scans those parts of the forest that have the input filter’s interface
and eliminates them if they are covered by the filter.

Figure 4.5 presents the results for a variable number of interfaces (3–
15) for a static number of 2D range filters. Figure 4.6 presents the same

4.5 Forwards Sets 57

benchmark for 3D range filters. As a summary for the results using different
schemas, the non-redundant forest has better performance than the filters
poset for both the add and add/remove scenarios. On the other hand, the
interface-based filter elimination is more difficult for the forest, because
it cannot use the information provided by the direct successor sets of the
filters poset. The overall performance, however, is better due to the simple
and efficient nature of the add and del operations. We note that filter
elimination may also be implemented in conjunction with the del operation,
which may be used to further simplify and improve the performance of the
add operation. Results for the variable number of range attribute filters
workload was similar to the 2D case, and updates were faster, because some
of the filters were simpler.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 4 6 8 10 12 14

T
im

e
 (

m
s
)

Interfaces

Add scenario time

Non-redundant forest
Filters poset

 0
 50

 100
 150
 200
 250
 300
 350
 400

 4 6 8 10 12 14

F
ilt

e
rs

Interfaces

Add scenario data structure size

Non-redundant forest
Filters poset

Root set (invariant)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 4 6 8 10 12 14

T
o
ta

l
c
o
v
e
ri
n
g
 o

p
s

Interfaces

Add/remove scenario total ops

Non-redundant forest
Filters poset

 0

 1000

 2000

 3000

 4000

 5000

 4 6 8 10 12 14

T
im

e
 (

m
s
)

Interfaces

Add/remove scenario total time

Non-redundant forest
Filters poset

Figure 4.5: Hierarchical operation with 2D range filters for a variable num-
ber of interfaces.

4.5 Forwards Sets

The computation of the forwards set for the non-redundant forest is more
complex than for the poset, because the complete successor sets are not

58 4 Experimentation

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 3 4 5 6 7 8 9 10 11

T
im

e
 (

m
s
)

Interfaces

Add scenario time

Non-redundant forest
Filters poset

 0
 100
 200
 300
 400
 500
 600
 700
 800

 3 4 5 6 7 8 9 10 11

F
ilt

e
rs

Interfaces

Add scenario data structure size

Non-redundant forest
Filters poset

Root set (invariant)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 3 4 5 6 7 8 9 10 11

T
o

ta
l
c
o

v
e

ri
n

g
 o

p
s

Interfaces

Add/remove scenario total ops

Non-redundant forest
Filters poset

 0

 5000

 10000

 15000

 20000

 25000

 30000

 3 4 5 6 7 8 9 10 11

T
im

e
 (

m
s
)

Interfaces

Add/remove scenario total time

Non-redundant forest
Filters poset

Figure 4.6: Hierarchical operation with 3D range filters for a variable num-
ber of interfaces.

maintained. Especially, the determination of the uncovered set in unsub-
scription is heavy. The performance of the forwards set determination may
be improved by simply computing the forwards set based on the relations
stored in the forest. This means that in some cases there may be false
positives, extra messages, that the poset would not send. False negatives
do not occur due to this behaviour, because updates are idempotent and
the minimum-interface property is maintained.

We have implemented the forwards set computation for the forest and
experimented with two cases. First, we have the complete forwards set
computation. Second, we have the incomplete forwards set computation
for the add operation and full uncovered set computation for del. In the
complete forest-based forwards set computation, the first two levels of the
forest are scanned for any covering nodes when a second level node is in-
serted. The uncovered set in del is located similarly when a root node or a
second-level node is removed by scanning the first two levels for any nodes
that are covered by the removed node. The scanning is optimized by using
the interface-index. In the approximative case, there may be a number

4.5 Forwards Sets 59

false positives for added filters or filters in the uncovered set. The com-
putation of the set for both FP and the non-redundant forest was tested
using a naive algorithm for computing the set. The naive algorithm builds
the successor and predecessor sets at run time.

Figure 4.7 presents the results for peer-to-peer operation with a sta-
tic number of 2D range filters and no local clients. The x-axis shows the
number of interfaces. All the interfaces are neighbouring routers in this
case. The results are shown for the filters poset and the non-redundant
forest. The forest was experimented with two different modes: exact for-
wards sets and approximative forwards sets. The former mode corresponds
to the filters poset and computes the same forwards set as the poset. The
latter computes an approximative set that may result in false positives. A
false positive in this case means a new filter or an uncovered filter that was
already sent to a neighbour.

Figure 4.8 presents the results for the forwards set computation. We
count the total number of forwarded filters in order to understand the
performance of the two modes. The figure also shows the total number of
added filters.

The forest has better performance for the add operation, whereas the
del is faster for the poset. The approximative forwards set is faster than
the exact set in both add and add/remove scenarios; however, the filters
poset is faster for del when the number of interfaces is small.

The results with one interface representing local clients are similar to
the previous figure, but fewer filters are forwarded to neighbouring routers.
This happens because filters from local clients are forwarded to all neigh-
bours, which simplifies the computation of the forwards set. We also ex-
perimented with 3D range filters and a variable number of range attribute
filters. The results were similar to the 2D scenario with 3D filters requiring
more processing time and the variable scenario less.

Figure 4.9 presents the results with 2D range filters with 4 neighbour-
ing routers and a variable number of local clients. This scenario represents
a combined benchmark of the previous local client and distributed bench-
marks. The semantics for the local clients follows the Siena model, and
clients behave in a similar fashion to routers. The forests are faster for
both add and del when the number of local clients grows. This was ex-
pected from the results with local clients.

The poset performance degrades when the number of local clients grows.
Local clients have two implications. First, the number of filters in the data
structure grows because interface-based filter pruning cannot be performed
for filters from different clients. Second, it may become more likely that

60 4 Experimentation

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 4 6 8 10 12 14

T
im

e
 (

m
s
)

Interfaces

Add scenario time

Non-redundant forest
Non-redundant forest (approx)

Filters poset

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 4 6 8 10 12 14

T
im

e
 (

m
s
)

Interfaces

Add/remove scenario total time

Non-redundant forest
Non-redundant forest (approx)

Filters poset

Figure 4.7: Peer-to-peer operation with 2D range filters for a variable num-
ber of interfaces.

the forwards sets of root filters are equal to the neighbours set. In our
experimentation, the forest gives considerably better performance when
the number of local clients grows. Figure 4.10 presents the results for the
forwards set computation. The approximative forwards set does not give
much additional performance when there are many local clients.

4.6 PosetBrowser

We have developed a graphical tool for experimenting with various content-
based routing data structures. The Java-based tool is called PosetBrowser1

1Available at http://www.hiit.fi/fuego/fc/demos

4.6 PosetBrowser 61

 0

 500

 1000

 1500

 2000

 2500

 4 6 8 10 12 14

F
ilt

e
rs

Interfaces

Add scenario total forwarded filters

Non-redundant forest
Non-redundant forest (approx)

Filters poset
Number of added filters

 0
 1000
 2000
 3000
 4000
 5000

 4 6 8 10 12 14

F
ilt

e
rs

Interfaces

Add/remove scenario forwarded filters

Non-redundant forest
Non-redundant forest (approx)

Filters poset
Number of added filters

Figure 4.8: Forwards set results for peer-to-peer with 2D range filters with
a variable number of interfaces.

and uses the JGraph toolkit [6] for graph visualization. The PosetBrowser
tool supports the following data structures: FP, PF, BF, and NRF.

Figure 4.11 shows the different data structures supported by the soft-
ware. PosetBrowser uses a simple custom layout algorithm for drawing
the nodes. The supported operations are viewing and graphically compar-
ing data structures, changing the filter set size at run-time, data-structure
root-set-merging using perfect and imperfect merging techniques, and for-
wards set computation. The forwards set computation is done using three
different mechanisms: naive, poset, and forest.

The tool contains tests for ensuring the correctness of the algorithms.
The tests include addition and deletion of filters. Figure 4.12 shows the
filter generation features of the software.

62 4 Experimentation

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 10 20 30 40 50 60 70 80

T
im

e
 (

m
s
)

Interfaces

Add scenario time

Non-redundant forest
Non-redundant forest (approx)

Filters poset

 0

 5000

 10000

 15000

 20000

 25000

 10 20 30 40 50 60 70 80

T
im

e
 (

m
s
)

Interfaces

Add/remove scenario total time

Non-redundant forest
Non-redundant forest (approx)

Filters poset

Figure 4.9: 4 neighbours and a variable number of local clients with 2D
range filters.

4.6 PosetBrowser 63

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 10 20 30 40 50 60 70 80

F
ilt

e
rs

Interfaces

Add scenario total forwarded filters

Non-redundant forest
Non-redundant forest (approx)

Filters poset
Number of added filters

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 10 20 30 40 50 60 70 80

F
ilt

e
rs

Interfaces

Add/remove scenario forwarded filters

Non-redundant forest
Non-redundant forest (approx)

Filters poset
Number of added filters

Figure 4.10: Forwards set results for 4 neighbours and a variable number
of local clients with 2D range filters.

64 4 Experimentation

Figure 4.11: PosetBrowser with four different data structures.

Figure 4.12: Filter generation in the PosetBrowser.

4.7 Discussion 65

4.7 Discussion

The poset-derived forests are more efficient than the filters poset for main-
taining local clients. The non-redundant variants are also useful in hierar-
chical routing. The situation is more complicated for peer-to-peer environ-
ments, in which the del operation has overhead for the forests.

The experimental results suggest three engineering guidelines for content-
based routing systems based on filter covering:

Hierarchical Routing: The non-redundant balanced forest data struc-
ture should be used for hierarchical routing and for finding the non-
covered set.

Peer-to-peer Routing: For peer-to-peer routing, the forest structures
should be used when there are many local clients. The forest requires
more complicated forwards set management. Alternatively, the forest
should be used to find the non-covered set of the clients and then the
filters poset should be used to manage external routing information
only.

Matching: The data structures have similar matching performance, but
they are outperformed by more optimized matchers. Matching perfor-
mance is proportional to the number of filters and also to the number
of interfaces. The best matching performance was achieved when the
number of interfaces was small. The forest should be used to find the
non-covered set that is propagated and an additional matcher data
structure should be used to quickly match notifications to the local
clients. This is a two-phase process: first notifications are matched
for the covering set by the poset or forest, and then they are matched
by the matching data structure.

4.8 Routing Configurations

The hierarchical routing proposed in the Siena system uses the FP for the
computation of the minimal cover set. In an acyclic topology, the poset
also stores the forwards set and thus computes a per-neighbour minimal
cover set.

In Siena, the subscriptions of a local client are not handled indepen-
dently of each other. Any filter from a local client that is covered by a new
filter from the same client will be removed. Similarly, when a client removes
a filter (unsubscribes), any filters that are covered by the removed filter will
be removed. This approach requires that clients are able to compute the

66 4 Experimentation

covering relations between their filters and explicitly manage their filter
sets. In addition, in this model it is not possible to transparently change
the routing algorithm semantics without making changes to the client code.

In our proposed model, a separate data structure, the poset-derived
forest, is used to manage filters from local clients. In this case, client-
side filter set management is simple and efficient. The second benefit is
increased performance, because the forest supports faster insertions and
deletions than the poset. This model also supports extending the system
to support filter merging (also called aggregation and summarization), for
example, by starting with the root set of the forest storing the local clients.

A BDD-based routing and matching mechanism was presented in [79].
They use a global predicate index and Modified Binary Decision Diagrams
(MBDs), which are abstract representations of boolean functions. A MBD
is used to represent a subscription. They assume typed tuples and the
variables are based on a predefined order.

In a MBD-based routing table, publication matching involves iterating
the name/value pairs of the event and computing the truth values for the
corresponding attribute filters. The attribute filters are located using the
predicate index. After this, the MBDs are evaluated using the computed
truth values. The cover algorithm involves iterating the MBDs for elements
that cover or are covered by the input subscription. If there are no covering
elements, the new subscription is a root element. The algorithm stops when
a covering element is found. The mechanism may be used to find the root
set in a single scanning of the routing table, but the second-level filters
are more difficult to locate, and they are not discussed. The MBD-based
approach does not leverage the covering relation in its operations, such as
matching. Support for frequent updates, deletion and modification, of the
routing table was not analyzed in this work.

Our work emphasizes generic operation and compositionality of the
routing table by presenting routing table building blocks, such as the forests
and the merging mechanism presented later in the thesis, and dividing the
table into different parts. The properties and theorems presented in this
chapter support the design and optimization of efficient routing table al-
gorithms. We note that techniques such as MBDs and attribute counters
may be used to exclude a subset of filters from inspection before a forest or
a poset is used for routing. Figure 4.13 presents three useful routing table
configurations that combine the FP, PF, and NRF. We briefly describe each
configuration in this section and then present the structures in more detail.

The main insight is to separate the routing table into two parts: the
external table and the local table. Figure 4.13a presents an example of this

4.8 Routing Configurations 67

a) Peer-to-peer c) Hierarchical b) Peer-to-peer

Filters Poset

k neighbours

+ local clients

Forest (PF)

n local clients

NB
Forest (NRF)

k neighbours

n local clients

NB

NB

NB
Forest (NRF)

1 master

k slave

routers

n local clients

Master

Slave Slave

N N

N

y

NB

NB

Figure 4.13: Routing table configurations.

by implementing the external table using the FP and the local table using
the PF. The term NB in the figure denotes a neighbour interface. The PF
is used to maintain client subscriptions (and advertisements), and the FP
is updated only when the root set of the PF changes. The Siena system
used the FP to also store local filters, which is not efficient based on the
experimentation presented in this thesis. Assuming that there exist cover-
ing relations between local filters, this separation ensures that the external
table is not burdened with frequent updates by local clients. Figure 4.13b
illustrates use of the NRF as both local and external routing tables. This
configuration is feasible when there are many local clients, but the external
forwarding is more complicated than for the FP. Figure 4.13c illustrates
how the NRF is used for hierarchical routing with the master and slave in-
terfaces identified. The NRF may also store local clients, but the separation
into two parts allows to prioritize operations.

Figure 4.14 illustrates how a more efficient matching data structure may
be introduced into the routing core. In this case, any addition (add) and
deletion (del) operations by local clients are processed by the PF and also
reflected to the efficient matcher. Only the root set is updated to the FP,
the external routing structure. When an incoming event matches the local
interface (root filters of the PF), the notification is sent to the efficient
matcher.

In addition to hierarchical and peer-to-peer routing, the new data struc-
tures may be used to enhance rendezvous-based routing models, such as

68 4 Experimentation

Filters Poset

k neighbours

+ local clients

Forest (PF)

n local

clients

Efficient

Matcher

n local

clients

NB NB

NB

Notifications.

Add/del notify

Figure 4.14: Adding support for efficient matchers.

Hermes. In the Hermes model with filters, advertisements are always prop-
agated towards the RP. Subscriptions are propagated towards the RP and
towards any overlapping advertisements. Therefore, advertisements may
be stored using a non-redundant forest and subscriptions using a non-
redundant forest or a poset. In both cases local clients are stored using
a forest. For rendezvous-based models, the subscription poset must be ex-
tended to support any subscriptions that should be forwarded towards the
RP. This is accomplished by using a virtual advertisement from the RP
that covers all subscriptions of the designated type.

The main application of the data structure is content-based routing
using filter covering. We envisage that the poset-derived forest and its
properties may be useful outside routing, because partial orders are also
found in, e.g., knowledge-based systems.

Part III

Mobility-aware Routing

69

Chapter 5

Mobility and Completeness

In this chapter, we formally examine several mobility protocols for different
pub/sub topologies. The new results are the cost functions for both sub-
scriber and publisher mobility, establishing mobility-safety of the protocols,
and investigation and formulation of completeness of subscriptions and ad-
vertisements. The results show that handovers in incomplete topologies
are more costly than in complete and the routers involved with mobility
have no way of detecting completeness based on local information alone.
We conclude this chapter with engineering guidelines for mobility-aware
content-based routing.

5.1 Overview

Most research on event systems has focused on event dissemination in the
fixed network, where clients are usually stationary and have reliable low-
latency high-bandwidth communication links. Recently, mobility and wire-
less communication have become an active topic in many research projects
working with event systems.

The main motivation for a pub/sub mobility protocol is the avoidance
of triangle routing with a designated home broker, which may be inefficient.
Indeed, experimental results show that home-broker-based approaches do
not perform well [17]. Mobility protocols are also needed for load-balancing
subscribers and advertisers between brokers, and are thus a necessary func-
tionality that needs to be provided by a scalable event framework.

Content-based routing using subscription and advertisement semantics
becomes challenging when the topology needs to be reconfigured with the
introduction of mobile components. In advertisement-based pub/sub net-
works a successful activation of a subscription may require that an adver-

71

72 5 Mobility and Completeness

tisement is first propagated through the network, and then a connecting
subscription is propagated on the reverse path. In this chapter, we focus
on advertisement semantics, because it is more complicated than subscrip-
tion semantics and it may be used to emulate subscription semantics using
trivial advertisements.

We investigate three different pub/sub mobility mechanisms and topolo-
gies: generic pub/sub mobility support, acyclic graphs, and rendezvous-
based topologies. We show that the mobility protocol for acyclic graphs
and rendezvous models with advertisements is mobility-safe when the com-
pleteness of the subscriptions and advertisements of the mobile client is
assumed. We also discuss techniques for supporting incomplete topologies,
in which the subscriptions and advertisements of the mobile client are still
being propagated. We present the lower and upper bound messaging costs
of subscriber and publisher mobility. The lower-bound cost is discussed
in the form of the covering optimization, which may be applied when sub-
scriptions are complete in the topology.

In order to understand event-routing we need to have useful metrics
to characterize the system. Besides message complexity and computing
power, the two most important metrics are the number of false positives
and negatives. False positives are events that are delivered but were not
subscribed, and similarly false negatives are events that were subscribed
but were not delivered upon publication. Clearly, the presence of false
negatives indicates a serious error in any event system. Therefore, we are
interested in proving that a candidate event system does not manifest this
erroneous behaviour.

Intuitively, given that we first establish a new flow and only after the
successful completion of this tear down the old one, there should not be
any false negatives, which would satisfy the requirement for mobility-safety.
This is our basic hypothesis for the mobility protocols. A perfect topology
update protocol may be described using flooding that delivers all events to
all brokers. This naive protocol ensures that also mobile components will
receive all events that match their filters albeit with a high cost in false
positives. A good mobility protocol is mobility-safe, minimizes the number
of false positives, and minimizes the signalling cost.

5.2 Formal Specification

5.2.1 Valid Routing Configuration

The valid routing configuration determines that the publish/subscribe sys-
tem does not manifest illegal traces. A trace is a sequence of operations,

5.2 Formal Specification 73

such as subscribe, notify, and unsubscribe. Any valid routing configuration
must satisfy the following constraints on traces presented using the opera-
tors of the Linear Temporal Logic (LTL). LTL formulas are used to define
a specification and a system is correct when it exhibits only traces allowed
by the specification. � denotes ”always”, ♦ ”eventually”, and ❡”next”.

Property 5.1 gives the liveness constraint for the basic publish/subscribe
system with subscription semantics. The liveness property defines when
a notification should be delivered and ensures that they are eventually
delivered. Property 5.2 gives the safety constraint, which ensures that
incorrect events are not processed and delivered. The properties are from
the definitions in [90] with minor changes in presentation.

Property 5.1 Liveness:

�[Sub(A,F) ⇒ [♦�(Pub(B,n) ∧n ∈ N(F)⇒ ♦Notify(A,n))]∨
[♦Unsub(A,F)]],

specifies that a subscription with filter F and the publication of an event n

that matches the subscription will lead to an eventual notification of sub-
sequent publications of that event unless the subscription is invalidated by
unsubscription.

Property 5.2 Safety:

�[Notify(A,n) ⇒ [❡�¬Notify(A,n)] ∧
[n ∈Published]∧

[∃F ∈Subs(A): n ∈ N(F)]],

specifies that a notification is delivered only once, it has been published
previously, and that the recipient has a matching subscription. Published
is the set of published events, and the set Subs gives the subscriptions for
each client.

Since it may be difficult to maintain these properties in dynamic pub/sub
systems they may be relaxed. A self-stabilizing pub/sub system ensures
correctness of the routing algorithm against the specification and conver-
gence [90]. The safety property may be modified to take self-stabilization
into account by requiring eventual safety.

74 5 Mobility and Completeness

5.2.2 Weakly Valid Routing Configuration

The weakly valid routing configuration guarantees only the delivery of no-
tifications to those subscriptions whose update process has terminated. A
routing algorithm that uses the weakly valid routing configuration and en-
sures that every update process terminates satisfies Properties 5.1 and 5.2
(Theorem 3.3 in [90]).

We call all update procedures that have ended successfully complete in
the topology, and use completeness to characterize and prove properties
of pub/sub mobility. By topology, we mean the logical network among
brokers that is used to route messages. Typically, the topology for adver-
tisements consists of the logical connections between the brokers, and for
subscriptions it is constrained by advertisements.

The completeness of subscriptions and advertisements is given by Defin-
ition 5.3. Advertisements are complete when they have been propagated to
every node that may issue an overlapping subscription in the future. Simi-
larly, subscriptions are complete when they have been introduced at every
node that has an overlapping advertisement. This formulation is flexible
enough to be useful for various routing protocols. Completeness may be
used to characterize the whole routing system. In addition, it may also be
used to characterize a part of the routing system, such as a path.

Definition 5.3 An advertisement A is complete in a pub/sub system PS

if there does not exist a broker r with an overlapping subscription that has
not processed A. Similarly, a subscription S is complete in PS if there does
not exist a broker r such that r has an advertisement that overlaps with S

and S is not active on r.

5.2.3 Mobility-Safety

In distributed pub/sub systems it is evident that after issuing a subscription
it will take some hops before the subscription is activated for all publishers.
During this time several notifications may be missed. In the mobility-
aware weakly valid routing configuration false negatives that occur during
topology reconfiguration caused by subscriptions and advertisements from
stationary components are tolerated. We also note that we do not restrict
event subscription or publication activity by client systems in any way.

False negatives that occur during client mobility are not tolerated. We
define a mobility-safe pub/sub system as follows:

5.3 Related Work 75

Definition 5.4 A pub/sub system is mobility-safe if starting from an ini-
tial configuration C0 at time T0 and ending in a configuration Ce at time
Te handovers (mobile clients) will not cause any false negatives.

We also relax Definition 5.4 by not considering server failures or assum-
ing that faults may be masked. Duplicate events may be removed by using
event identifiers so they are not considered.

5.3 Related Work

Mobility support [66, 67, 110] is a relatively new research topic in event-
based computing. Mobility is an important requirement for many appli-
cation domains, where entities change their physical or logical location.
Mobile IP is a layer-3 mobility protocol for supporting clients that roam be-
tween IP networks [70, 105]. Higher-level mobility protocols are also needed
in order to provide efficient middleware solutions, for example SIP (Session
Initiation Protocol) mobility [120] and Wireless CORBA [102]. Event-based
systems require their own mobility protocols in order to update the event-
routing topology and optimize event flow.

Siena, Rebeca, and Hermes [108] support content-based routing of events
using covering relations. To our knowledge, covering relations were first in-
troduced in the Siena project and they support the optimization of event-
based communication. Two semantics are generally used: subscription-
semantics and advertisement-semantics. In subscription semantics a sub-
scription message is forwarded only if it is not already covered by other
subscriptions. Similarly, in advertisement semantics a subscription is for-
warded only if it covers an advertisement. In essence, subscriptions are
forwarded on the reverse path of advertisements and notifications on the
reverse path of subscriptions. Subscription or filter merging was used in
the Rebeca project. Filter merging may be perfect or imperfect and uses
filter merging rules to remove redundancy from a set of filters.

Recently, mobility extensions have been presented for several well-known
distributed event systems, such as Siena and Rebeca. JEDI was one of the
early systems to incorporate support for mobile clients with the move-in
and move-out commands [46]. JEDI maintains causal ordering of events
and is based on a tree-topology, which has a potential performance bottle-
neck at the root of the tree with subscription semantics. Elvin is an event
system that supports disconnected operation using a centralized proxy, but
does not support mobility between proxies [127].

Siena is a scalable architecture based on event routing that has been
extended to support mobility [22–25]. The extension provides support for

76 5 Mobility and Completeness

terminal mobility on top of a routed event infrastructure. In addition, the
Rebeca event system supports mobility in an acyclical event topology with
advertisement semantics [152]. Context-aware subscriptions have also been
investigated in the Rebeca project.

Rebeca supports both logical and physical mobility. The basic system
is an acyclic routed event network using advertisement semantics. The mo-
bility protocol uses an intermediate node, between the source and target of
mobility, called Junction for synchronizing the servers. If the brokers keep
track of every subscription the Junction is the first node with a subscrip-
tion that matches the relocated subscription propagated from the target
broker. If covering relations or merging is used this information is lost,
and the Junction needs to use content-based flooding to locate the source
broker [93].

JECho is a mobility-aware event system that uses opportunistic event
channels in order to support mobile clients [37]. The central problem is to
support a dynamic event delivery topology, which adapts to mobile clients
and different mobility patterns. The requirements are addressed primarily
using two mechanisms: proactively locating more suitable brokers and using
a mobility protocol between brokers, and using a load-balancing system
based on a central load-balancing component that monitors brokers in a
domain. The topology update and its mobility-safety are not discussed.

Mobility support in a generic routed event infrastructure, such as Siena
and Rebeca, is challenging because of the high cost of the flooding and
issues with mobile publishers. The standard state transfer protocol consists
of four phases:

1. Subscriptions are moved from broker A to broker B.

2. B subscribes to the events.

3. A sends buffered notifications to B.

4. A unsubscribes if necessary.

The problem with this protocol is that B may not know when the sub-
scriptions have taken effect — especially if the routing topology is large
and arbitrary. This is solved by synchronizing A and B using events, which
potentially involves flooding the content-based network.

Recent findings on the cost of mobility in hierarchical routed event in-
frastructures that use unicast include that network capacity must be dou-
bled to manage with the extra load of 10% of mobile clients [17]. Recent
findings also present optimizations for client mobility: prefetching, logging,

5.4 Generic Mobility Support 77

home-broker, and subscriptions-on-device. Prefetching takes future mobil-
ity patterns into account by transferring the state while the user is mo-
bile. With logging, the brokers maintain a log of recent events and only
those events not found in the log need to be transferred from the old lo-
cation. The home-broker approach involves a designated home broker that
buffers events on behalf of the client. This approach has extra messaging
costs when retrieving buffered events. Subscriptions-on-device stores the
subscription status on the client so it is not necessary to contact the old
broker. In this study the cost of reconfiguration was dominated by the cost
of forwarding stored events (through the event routing network).

The cost of publisher mobility has also been recently addressed [96, 97].
They start with a basic model for publisher mobility that simply tears down
the old advertisement and establishes it at the new location after mobility.
Thus a specific handover protocol is not needed. They confirm the high cost
of publisher mobility and present three optimization techniques, namely
prefetching, proxy, and delayed. The first exploits information about future
mobility patterns. The second uses special proxy nodes that advertise on
behalf of the publisher and maintain the multicast trees. The third delays
the unadvertisement at the source to exploit the overlap of advertisements,
but does not synchronize the source and target brokers. The publisher
mobility support mechanisms used in the study are not necessarily mobility-
safe.

5.4 Generic Mobility Support

The Siena event system was extended with generic mobility support,
which uses existing pub/sub primitives: publish and subscribe [22, 24].
The mobility-safety of the protocol was formally verified. The benefits of a
generic protocol are that it may work on top of various pub/sub systems and
requires no changes to the system API. On the other hand, the performance
of the mobility support decreases, because mobility-specific optimizations
are difficult to realize when the underlying topology is hidden by the API.
Indeed, in this section we show that a general API-based pub/sub mobility
support may have a very high cost in terms of message exchanges.

The Siena generic mobility support service, the ping/pong protocol, is
implemented by proxy objects that reside on access routers. Figure 5.1
presents an overview of the process: 1. the client arrives to access point B

from A and sends the move-in request to the new local proxy. 2. a ping
request is sent and a response will be eventually received (3) from the old

78 5 Mobility and Completeness

proxy. The response can also be called a pong. The pong message ensures
that subscriptions are fully propagated from B to A. 4. the client sends
a download request for buffered events and 5. the buffered events are sent
to the proxy. Finally, in 6. the client receives the messages and duplicates
are removed.

move-out

proxy

move-in

proxy

A

B

Client

1. move-in

request 2. ping request

3. ping reply

4. download

5. buffered

events

6. messages, merge queues

Figure 5.1: Move-in function in mobility support service.

The mobility protocol proceeds in four distinct phases: first, the target
subscribes to the relocated events, then the target and source synchronize
by sending ping and pong events in order to ensure that the subscriptions
have taken effect, the source unsubscribes, and finally any buffered events
are relocated. In addition, there may be further costs triggered by changes
in the subscription tables of the intermediate routers. The cost structure
of the procedure is given by Table 5.1 as the number of brokers that will
be updated during each phase. N denotes the total number of brokers
and n the number of brokers on the path from source to destination. For
advertisement semantics we assume that the publication of a ping message
also includes the advertisement. The unsubscription cost also depends on
other active subscriptions on the servers and is a worst-case estimate.

For subscription semantics the basic problem with the ping/pong syn-

5.4 Generic Mobility Support 79

Table 5.1: Cost structure for generic mobility.

Phase Sub semantics Adv semantics

Source: Subscribe Ping(id) N -
Target: Subscribe Filters [0, N] [0, N]
Target: Subscribe Pong(id) N -
Target: Publish Ping(id) n + periodic N
Source: Publish Pong(id) n N
Source: Unsubscribe Ping(id) N n
Target: Unsubscribe Pong(id) N n
Target: Unadvertise Ping(id) - N
Source: Unadvertise Pong(id) - N

chronization protocol is that the signalling messages are guaranteed not to
be subscribed by other brokers on the network and hence the subscription
messages will be introduced at every broker on the network. With adver-
tisements, the protocol works in a similar fashion, but the ping and pong
messages need to be advertised, which also requires flooding the network.

If the client relocates faster than the ping message is propagated, it
has to wait until the target receives the ping subscription. This requires
that the pub/sub API allows to query the subscription status of the broker.
The Siena support service does not require specific API support, because
the ping messages are continuously resent [24], but this kind of behaviour
further burdens the network. The ping is published by the target along
with the pong subscription and they will reach the source, which replies
with the pong event. It is clear that when the pong reaches the target the
subscription is established between the source and target.

Publisher mobility for subscription semantics does not require addi-
tional handover functionality, since it is supported directly by the pub/sub
system. Publisher mobility for advertisement semantics follows the above
model and has a similar cost structure. If changes are allowed to the rout-
ing behaviour the ping/pong phase may be optimized by propagating an
update message from source to target on the reverse path of the target’s
advertisement.

80 5 Mobility and Completeness

5.5 Acyclic Graphs with Advertisements

5.5.1 Overview

An outline of the protocol we describe was presented in [54, 93, 152] with
mobility restricted to between border brokers. A mobility protocol for a
hierarchical routing topology with more assumptions was examined in [17].
Formally, the network of application-level event brokers is an undirected
acyclic graph G = (V,E), where V is the set of vertices and E is the set
of edges of the graph. We are interested in finding the theoretical cost for
the handover protocol in terms of message exchanges and establishing that
handovers are mobility-safe. Some systems allow mobility only between
border brokers, the leaves of the routing tree, which limits mobility. We
allow clients to roam between any two brokers.

In subsequent examination we assume that the servers use a reliable
communication mechanism, G is connected, and messages are delivered in
order on each link. Some handover protocols use pub/sub routing to find
the source broker; however, this approach may require the use of flooding
to find the source broker, for example, in scenarios where the relocated
subscriptions are not advertised. In this case, the protocol breaks down,
because there is no active path between the source and destination in the
pub/sub network. It is not possible to perform the handover only using
publish/subscribe routing information. Hence out-of-band communication
is needed when advertisement semantics is used.

We also assume that buffered events are delivered outside the event-
routing framework, since they have already been routed and it is not effi-
cient to reroute them. In some existing systems buffered events are deliv-
ered using the event-routing system. While this approach adheres to the
pub/sub communication, it has been shown that this cost dominates the
pub/sub signalling cost [17] in mobility scenarios. We consider the number
of exchanged messages because update processing and propagation causes
the most stress for the pub/sub system.

A handover protocol typically supports either make-before-break or break-
before-make. In the former, the source and destination brokers negotiate
the handover before the client establishes a connection with the destina-
tion broker. This has also been called prefetching [17, 97]. In the latter, the
destination is not necessarily known and the handover is negotiated after
the client establishes connection with the destination broker. In subsequent
analysis, we focus on the latter case, but discuss also the former strategy.
In principle, the two are very similar for pub/sub mobility and they face the
same challenges. The main difference is that the network-initiated make-

5.5 Acyclic Graphs with Advertisements 81

before-break has lower latency as perceived by the clients and the covering
optimization cannot be performed, because the update message is sent to
the destination in any case.

5.5.2 Mobile Subscribers

Handovers on a Complete Topology

Handover is performed between two brokers in the network: a, b ∈ V . a is
the source broker and b is the destination broker. Let α denote the path
from a to b. The path is unique, since G is acyclic. We view the path α as
consisting of the edges on the path, since that makes it more convenient to
handle split paths. An edge between a and b is called active with respect
to a subscription S, if S has been sent on that edge. A path is active if
all of its edges are active. An inactive path is one that is not active, i.e.,
contains at least one inactive edge. Now, let αa be the set of active edges
on the path, and αi the set of inactive edges on the path. The topology
update cost is the cost of updating αi.

Figure 5.2 presents an overview of the subscription handover for a com-
plete topology. P denotes a publisher and c and d are new brokers. The
handover starts when b receives a message, typically from the client, that
the subscription S should be relocated from a to b. In subsequent analysis,
we focus on a single subscription, but the analysis generalizes also to a set
of subscriptions.

Now, b may optimize the operation if S has already been subscribed to
by b. In this case, b simply starts to buffer notifications for S and retrieves
the notifications buffered at a for the client. If the optimization cannot be
applied, b issues a subscription message, which is propagated by the event
system. The subscription message must include those parts that are not
covered by existing subscriptions.

Figure 5.3 presents a similar handover scenario, but now with a pub-
lisher between a and b. In the figure the complete subscription topology
update proceeds as follows: 1. b sends the update message, 2. the update
message is propagated towards a on the reverse path of advertisements and
will meet a’s subscriptions at node M (which can also be a itself), 3. M

sends the update message towards a, 4. the session is transferred and a may
unsubscribe, if necessary. It is clear S must be covered at M .

Figure 5.4 illustrates the covering optimization, which may be per-
formed at b if S has already been subscribed and it is known that S is
complete on the path from a to b. We know that a and b are connected
since G is connected. Also the path between a and b is unique, since G is

82 5 Mobility and Completeness

P

a c d b

{(b,d),(d,c),(c,a)} ⊆ αi

α

α

Sub handoff

1. Sub 2. Sub 3. Sub

4. Transfer session

Figure 5.2: Subscription handover with a complete topology when the path
from the source to the destination is inactive

a d bM

P

α

{(b,d),(d,M)} ⊆ αi

α

4. Transfer session

1. Sub

Sub handoff

2. Sub 3. Ack

Figure 5.3: Subscription handover with a complete topology when the pub-
lisher is between the source and the destination.

5.5 Acyclic Graphs with Advertisements 83

acyclic. If the covering optimization is not applicable we know that S is
not active on all edges on the path from a to b.

α

α

a b Pc

αi = ∅

2. Transfer session

1. Ack

Sub handoff

Figure 5.4: Subscription handover with the covering optimization.

Proposition 5.5 There exists a node M on the path a ❀ b such that the
path a ❀ M consists of exactly the edges in αa (and then αi is the path
b ❀ M).

Proof. Let P be the publisher related to S. Since we are assuming a
complete topology, the path x ❀ P is active for any node x that has sent
S. Specifically, the path a ❀ P is active.

If there are no active edges on the path a ❀ b, then a is clearly the
desired M . Otherwise there is a last active edge on that path; let this edge
be (x, y). Due to the uniqueness of paths in G either the path a ❀ P passes
through y, the path y ❀ P passes through a or there is a node z on the
path a ❀ y through which both paths a ❀ P and y ❀ P pass. Clearly in
all of these cases the whole path a ❀ y is active, and by the choice of y no
edges on the path y ❀ b are active. Hence y is the desired M . ✷

It is clear that the M in the proposition is unique. We can distinguish
four separate cases depending on the relative positions of a, b, and P :

1. a is on the path P ❀ b (Figure 5.2)

2. P is on the path a ❀ b

3. b is on the path a ❀ P (Figure 5.4)

4. A node M on the path a ❀ b is on both paths a ❀ P and b ❀ P

(Figure 5.3)

Of these cases 4 is clearly equivalent to 2, since the update is complete
when S from b reaches M (we refer to this as collapsing P to M). Similarly

84 5 Mobility and Completeness

b cannot distinguish between cases 1 and 2. So we are left effectively with
1 and 3, and in the latter case the path b ❀ P is already active, so no
update is necessary. It follows that if an update is required it is sent by b

to exactly one output interface.

Handovers on an Incomplete Topology

There are two main forms of routing topology incompleteness that intro-
duce additional overhead to the protocol. First, given that subscriptions
are initially complete, simultaneous routing-configuration changes by other
clients may make the propagation of the update message more difficult.
Second, the subscriptions may not be initially complete.

Simultaneous advertisements and subscription activity are not problem-
atic; however, given that there are simultaneous unadvertisements on the
subpath from a to b, Proposition 5.5 is not necessarily valid. Consider a
scenario in which during the handover of a subscriber, the advertisement is
removed from the system. In this case, M may not exist or may disappear
during the handover. The propagation of the update message from b will
reach neither a nor M . The protocol must be able to cope with this and
signal to a that the update is complete. This incompleteness of the subpath
is detectable at both a and b when the unadvertisement is received.

The most difficult scenario happens when the advertisement is removed
and re-established between and after the removed advertisement on the
path so that the update is lost, but neither a nor b will receive the unad-
vertisement. This scenario is rare and does not occur when advertisements
are relocated using the publisher handover protocol presented later in this
chapter. The protocol may cope with this scenario by using timeouts, pe-
riodic update messages, or by propagating an update packet to the source
using a lower-layer routing protocol. Simultaneous advertisements do not
pose such a problem.

It may also be the case that the set of subscriptions is still being prop-
agated and the subscription path is not totally active at the time of the
handover. This happens when the handover occurs while the system propa-
gates and processes subscription messages or update messages. In this case
Proposition 5.5 is not necessarily valid. This kind of behaviour may occur
because the handover is triggered by out-of-band mechanisms, for example
terminal mobility. If mobility is activated by sending a message using the
pub/sub system this problem may be avoided.

Out-of-band signalling may cause a number of false negatives. This
happens when the client rapidly relocates and the covering optimization
is performed at b. False negatives may occur if the out-of-band signalling

5.5 Acyclic Graphs with Advertisements 85

transfers buffered messages before the path from a to b is complete. Es-
sentially, with the current assumptions, the covering optimization cannot
be performed at b if mobility-safety is to be ensured. This means that b

has to ping a by propagating a message through the path. Another option
would be to send an update message from a to b when the client moves out,
but this also requires that the path is tested. The destination server does
not know where the source is located and may have to use content-based
flooding to find M and a. This flooding happens on the reverse path of
covering subscriptions or overlapping advertisements.

Incompleteness of advertisements or the relocated subscriptions creates
overhead for the protocol. This may happen because the source may not
be locatable at all if the advertisements/subscriptions have not reached the
destination or the current advertisements are in the wrong direction. The
most challenging scenario is the latter one with a number of overlapping
advertisements that are not in the direction of the source. In this case, the
destination server cannot locate the source using advertisement or subscrip-
tion information. This is typically solved using periodic updates, which is
not practical. Later in this chapter, we present several possible solutions
to this problem, namely overlay routing and rendezvous points.

Fast Handovers

Fast handovers are one source of incompleteness. Fast handovers occur
when a client relocates so fast that the update messages are still propa-
gating. False negatives that occur during the propagation of the original
subscription are not counted as false negatives according to our model.
However, since the completeness of the path is ensured for each handover,
all messages that would have been received at the source are buffered for
the client. In this sense, as long as completeness of the path is ensured,
the system is mobility-safe even in the presence of fast handovers. The
challenge is to minimize the cost in ensuring this completeness and prevent
a cascade of handovers.

Mobility-Safety

Lemma 5.6 states that an initially complete pub/sub system is mobility-
safe. The result also holds when initial completeness, for example, in the
case of fast handovers, is not assumed given that it is not possible for the
update message to be lost on the path from a to b. If the message may be
lost due to reconfiguration, techniques such as periodic updates, timeouts,
overlay routing and addressing, or rendezvous points, are needed for the

86 5 Mobility and Completeness

lemma to hold. The lemma applies to both make-before-break and break-
before-make.

Lemma 5.6 A pub/sub system with only subscriber mobility, initially com-
plete subscription and advertisement configuration, and simultaneous sub-
scription and advertisement activity is mobility-safe.

Proof. Since we are using the relaxed model where advertisements are
assumed to be complete, any advertisements happening during mobility are
not relevant. The discussion in Section 5.5.2 indicates that the protocol
copes with simultaneous unadvertisements. Hence advertisement activity
does not affect mobility-safeness.

For simultaneous subscription activity it is sufficient to consider only
the cases 1 and 2 from Section 5.5.2. In case 2 the path a ❀ P will be kept
active until the update is complete by the protocol, and when the update
is complete, the path P ❀ b is active. Similarly in case 1 the path b ❀ a

will be made active, and in this case no edge can be made inactive by the
update. So in both cases the path P ❀ a cannot become inactive before
the path P ❀ b is made active, so there can be no false negatives. ✷

Border Broker Restricted Mobility

Mobility becomes simpler if we restrict mobility support only to border
brokers, which are the leaves of the routing tree. In this case the border
broker always forwards at most one update message. Also in this restricted
scenario it is not possible to detect the completeness of the topology at b.
If S is covered at b, we do not know if S sent by a has taken effect. If S is
not covered at b, M exists, and there is only one direction for the update
message.

5.5.3 Mobile Publishers

Related work has typically considered only the protocol for relocating sub-
scriptions. Since it is probable that subscriptions are relocated more often
this is reasonable. In addition, publisher mobility support is not needed
with subscription semantics. A separate publisher mobility protocol is
needed for advertisement semantics. The problem with mobile publish-
ers is that advertisements are propagated throughout the routing network.
This means that the removal of an advertisement may have a high cost.
We follow a similar approach as with mobile subscribers.

Figure 5.5 presents an overview of the process for break-before-make.
The protocol proceeds in four phases: 1. b sends an update message towards

5.5 Acyclic Graphs with Advertisements 87

a and overlapping subscriptions are sent towards b. 2. Existing advertise-
ments and subscriptions meet the advertisement sent by b and a is notified
by M (Proposition 5.5) that the topology has been updated. If complete-
ness of the advertisement is not known M simply forwards the update
message towards a. M is a in the figure. 3. a sends an update message to
b to ensure completeness. Finally, a unadvertises if necessary.

ba c d

Pub handoff

1. Adv 2. Adv

3. Ack/Sub

Adv

Ack/Sub Ack/Sub

Figure 5.5: Advertisement handover with a complete topology.

Publisher mobility differs from subscriber mobility, because state is not
transferred. Rather, the path between a and b must first be tested that
the new advertisement issued by b has reached a. Then the path must be
tested again to ensure that any subscription from a has reached b. After
this, the publisher can be certain that any published events are not missed
by the subscribers.

Publisher mobility is easy when the topology is complete. In this case,
the covering optimization may also be performed. However, in the typical
case when completeness cannot be assumed the path must be tested in both
directions. We also have problem of locating nodes in the pub/sub network
that was discussed in Section 5.5.2.

In some cases, subscribers are already connected after the first adver-
tisement update sent by b. Since b does not know if there are other sub-
scriptions that overlap with the advertisement later in the path, the whole
path from b to a needs to be checked. It is important that the protocol is
ended properly in order to ensure that published events are properly dis-
seminated to subscribers, and that the next handover may be started from
a complete configuration.

If the advertisements are not successfully terminated in G the publisher
handover protocol ensures that upon completion of the handover the sub-
graph defined by the path from a to b is complete for both advertisements
and subscriptions.

The protocol for network-initiated make-before-break is similar to the
presented break-before-make protocol, but in this case the update message

88 5 Mobility and Completeness

is forwarded before the client relocates and it is sufficient to pass it in
only one direction. The update message adds an advertisement from the
direction of b and connects any subscriptions in this direction. Therefore,
the make-before-break case is more efficient given that b can be efficiently
located in the pub/sub network.

Mobility-Safety

In this section we establish the mobility-safety of a pub/sub system with
both subscriber and publisher mobility. The discussion with Lemma 5.6
applies here also. Given that it is not possible for signalling messages to be
lost and that a given broker can be located using other means than pub/sub
routing information, initial completeness is not necessary. In addition, the
results hold for both make-before-break and break-before-make.

Lemma 5.7 A pub/sub system with only publisher mobility, initially com-
plete subscription and advertisement configuration, and simultaneous sub-
scription or advertisement activity is mobility-safe.

Proof. The discussion following Proposition 5.5 applies here too (but we
will call the nodes a, b, and W here for clarity). Similarly we may collapse
W to M , since the active path W ❀ M is not affected by the publisher
moving. Also case 3 is trivial, since the subscription then already exists at
b, and so the path b ❀ W is already active.

In case 2, the advertisement sent by b is seen by W before a, so W ’s
subscription makes it to b before a’s ping, so the path W ❀ b is made
active before W ❀ a can be inactivated.

The final case to consider is 1. Here if a couples the subscription with
its ping, the path b ❀ a is made active simultaneously as the producing
responsibility is transferred to b, so no false negatives can happen here
either.

Simultaneous advertisement and unadvertisement activity can be treated
as in Lemma 5.6. ✷

Theorem 5.8 A pub/sub system with both subscriber and publisher mobil-
ity and initially complete advertisement and subscription configuration is
mobility-safe.

Proof. We will denote by subscript O the original position of subscribers
and publishers, and by subscript F their final position. The possible cases
can be reduced to the three shown in Figure 5.6, where only relevant bro-
kers are shown and the edges between brokers are actual paths. In case I,

5.5 Acyclic Graphs with Advertisements 89

since the path M2 ❀ M1 is active and not affected by mobility, the situa-
tion is equivalent to the subscriber and publisher moving serially, which is
mobility-safe by Lemmas 5.6 and 5.7.

PO PF

M1

M2

SO SF

SO PO

M1

M2

SF PF

SF PO

M1

M2

SO PF

I II III

Figure 5.6: Three cases for simultaneous pub/sub handovers.

The investigation for the other cases now splits according to whether
the subscription sent by SF reaches the M nodes before the advertisement
sent by PF , after that but before the acknowledgement sent by PO, or
after the acknowledgement. We refer to these as before, during, and after,
respectively.

In case II we need to consider node M2. In the before scenario the
subscription makes its way to PO, making this scenario equivalent to sub-
scriber mobility followed by publisher mobility. In the during and after
scenarios, the subscription is sent towards PF , so these scenarios are equiv-
alent to publisher mobility followed by subscriber mobility. All of these are
therefore mobility-safe by Lemmas 5.6 and 5.7.

In case III the relevant M node is M1. By similar arguments as in case II
we see that the before and after scenarios are equivalent to serial mobility.
In the during scenario the advertisement has been seen by M1, but not
the unadvertisement from PO, so the path M1 ❀ PO remains active. Due
to the reliability of the network, the subscription reaches PF before the
acknowledgement, and therefore is updated before P ’s mobility procedure
is completed. Hence the protocol is mobility-safe even in this last case. ✷

90 5 Mobility and Completeness

5.6 Rendezvous Point Models

5.6.1 Overview

A rendezvous point (RP) is a special node in the routing network that is
used to coordinate signalling. Rendezvous points are used in many overlay
routing systems [115, 124, 153] to reduce communication costs and realize
non-fixed indirection points.

Hermes [108, 109] is a peer-to-peer event system based on an overlay
called Pan that supports a variant of the advertisement semantics. Hermes
leverages the features of the underlying overlay system for message rout-
ing, scalability, and improved fault-tolerance. Hermes supports the basic
pub/sub operations introduced previously. Rendezvous points are used to
coordinate advertisement and subscription propagation. The RP manages
an event type and Hermes supports chaining RPs into type hierarchies.
The RP of an event type is obtained by hashing the event type to the flat
addressing space of the overlay [109].

Figure 5.7 illustrates rendezvous-point-based operation using 6 phases:
1. A publisher advertises an event type (and a filter in type/attribute-
based routing). 2. The advertisement is forwarded to the rendezvous point.
3. A subscriber subscribes to an event of the same type (and a filter in
type/attribute-based routing). 4. The subscription message is not cov-
ered (type or filter) at any intermediate broker and is forwarded to the
rendezvous point. 5. Another subscriber subscribes. 6. The subscription
message is propagated towards the RP.

AC1

AC3

B2

RP

AC2

S

P

1. A

3. S

2. A

4. S

S

5. S 6. S

Figure 5.7: Forward path establishment in the Hermes model.

5.6 Rendezvous Point Models 91

After the last phase, the two routing models supported by Hermes differ.
In type-based routing, any events conforming to the advertisement from
the publisher are sent on the forward path of the advertisement to the RP,
which then forwards the event on the reverse path of any subscriptions. In
type/attribute-based routing, the RP sends the subscriptions on the reverse
path of advertisements. Any events conforming to the advertisement from
the publisher are sent on the reverse path of subscriptions.

The model used by the Hermes system is the familiar advertisement
semantics model with three key differences:

• All messages (type-based routing) or advertisements and subscrip-
tions (type/attribute-based routing) are sent towards the RP. Thus
routing topology is constrained by the RP.

• Advertisements are introduced only on the path from the advertiser
to the RP.

• Subscriptions are introduced on the path from the subscriber to the
RP. In addition, for type/attribute-based routing subscriptions are
sent on the reverse path of any overlapping advertisements.

These differences are interesting because advertisement becomes a local
property of a branch of the multicast tree rooted at an RP. This may be
modelled using virtual advertisements. In this case, an RP has virtual ad-
vertisements for all events of the event type managed by the RP and hence
subscriptions are sent towards it. In the following examination we assume
that the overlay topology is static; a dynamic topology would require a
more complex investigation.

Figure 5.8 illustrates a subscription handover using a rendezvous point.
The handover proceeds as follows: 1. The client ensures that the subscrip-
tion is complete to the RP before mobility. 2. An update message is sent
with a subscription towards the RP at the destination server. 3. The up-
date reaches the RP, a message is sent to a that triggers the session transfer
(4).

Figure 5.9 illustrates an advertisement handover using a rendezvous
point. First, the client ensures that the advertisement is complete to the
RP (1). Then, the client relocates and issues an advertisement/update
message at the new server (2). The advertisement is propagated towards
the RP (3). The RP sends an update message to a (4) and propagates an
acknowledgement along with any overlapping subscriptions towards b (5).
The handover terminates when b receives this update (6). This model does
not guarantee the safety of any subscriptions not complete to the RP.

92 5 Mobility and Completeness

a RP d b

{(b,d),(d,RP)} ⊆ αi

Sub handoff

2. Sub 3. Sub 1. Sub

4. Transfer session

Figure 5.8: Subscription handover with a rendezvous point.

α

a RP d b

Pub handoff

2. Adv 3. Adv 1. Adv

4. Ack 5. Ack/Sub 6. Ack/Sub

Figure 5.9: Advertisement handover with a rendezvous point.

The support for type hierarchies requires that any relevant mobility
update messages for a subtype are propagated to its supertypes. The effi-
ciency of this depends on the relative positions of the subtype brokers with
respect to the supertype brokers in the routing topology. If the brokers
that are responsible for supertypes are placed near the subtype brokers
this update may be performed efficiently.

5.6.2 Mobility-safety

The rendezvous-point-based model can be seen as a special case of the
general acyclic graph model. Mobility-safety of the RP model is established
by using virtual advertisements at rendezvous-points (Theorem 5.10).

Lemma 5.9 Any system PSS with subscription semantics may be modelled
in terms of an equivalent system PSA with advertisement semantics by
defining virtual advertisements that overlap with all subscriptions.

Proof sketch: By extending PSS with virtual advertisements that always
overlap with subscriptions we can implement subscription semantics using
advertisement semantics and thus the behaviour of PSS is not changed. ✷

5.7 Upper and Lower Bounds 93

Theorem 5.10 An initially complete rendezvous type/attribute-based rout-
ing model is mobility-safe.

Proof sketch: Follows from Theorem 5.8 and Lemma 5.9 by establishing
virtual advertisements at each RP for the corresponding event type. ✷

5.6.3 Incompleteness

The RP may be used to guarantee completeness of advertisements and
subscriptions by requiring an acknowledgement from the RP. We propose to
solve the problems posed by incomplete topologies using two mechanisms:

• RP completeness checking both at the source and destination of mo-
bility.

• Preventing content-based flooding using the overlay-address, which
allows to determine in which direction a node is located. This prop-
erty may also be used to prevent the content-based flooding at M

when forwarding the mobility update messages within the event topol-
ogy.

The problems of incompleteness with the regular sub/adv semantics
can be avoided with the RP model by ensuring that each subscription and
advertisement is complete to the RP. This incurs additional cost, but the
number of acknowledgement messages may be minimized by pushing the
acknowledgement generation away from the RP to nodes that have cover-
ing subscriptions or advertisements that are complete to the RP. The two
central problems that are solved are as follows. First, false negatives due
to incompleteness of the path and a ping between source and destination
is not needed. Second, by using the overlay address to locate the source,
content-based flooding does not need to be used.

5.7 Upper and Lower Bounds

Table 5.2 presents the complete topology update costs of the break-before-
make protocols as the number of intermediate nodes, excluding source and
destination, that need to be updated. Table 5.3 presents the same costs for
the incomplete case. Here n denotes the total number of nodes in the system
and k the number of nodes on the path from a to b. The generic ping/pong
protocol and acyclic graph protocol with the incompleteness assumption
also require periodic pinging to ensure correct operation, denoted by the
term P , P ≥ 0. If lower-layer addressing is used to find brokers, periodic

94 5 Mobility and Completeness

Table 5.2: Topology update costs for a single handover for a complete
subpath.

Protocol Upper bound Lower bound

Generic API Pub/Sub 4(n− 2) + (P + 2) · (n− 2) 2(n− 2) + 4k

Generic API Pub/Sub RP 2 ·RPmax + (P + 4) · (n− 2) 2 ·RPmax + 4k

Acyclic graph Sub n− 2 0
Acyclic graph Pub 2(n− 2) 0
Cyclic RP Sub K ·RPmax 0
Cyclic RP Pub 2K ·RPmax 0
Acyclic RP Sub min(K ·RPmax, (n− 2)) 0
Acyclic RP Pub min(2K ·RPmax, 2(n− 2)) 0

pinging is not required since it is not possible that the update message
is lost. In this case P = 0. Unsubscription cost is not included in the
table, and additional signalling is needed to transfer the buffered messages.
The value of 0 means that the topology update can be skipped due to the
covering optimization. RPmax denotes the maximum path length to an RP.
RPmax ≤ n− 2. K denotes the number of rendezvous points that need to
be updated for the client.

The cost breakdown for the ping/pong protocol is presented in [134]
in more detail. The protocol first advertises ping and pong events with a
worst-case cost of 2(n − 2) if a and b are excluded. Then it connects the
subscriptions with the cost 2k ≤ 2(n − 2). Both ping and pong message
takes k hops. In addition, the ping is sent periodically until the pong is
received. The generic ping/pong protocol may also be used in rendezvous-
based topologies. In this case, the advertisement cost is reduced to 2 ·
RPmax.

We note that for arbitrary topologies the generic API may not guaran-
tee completeness of the path from source to target. This happens when the
control messages take a different path through the network than the relo-
cated subscriptions and the corresponding events. The generic API with
RPs is an example of this kind of topology and completeness is guaranteed
if the underlying graph is acyclic.

The incomplete acyclic protocol requires periodic updates and that the
path is always tested. With rendezvous points periodic updates are not
needed, because all updates are sent towards the RP. However, for the
incomplete case the paths from a to RP and b to RP need to be tested.

The publisher cost for the generic ping/pong mechanism is the same
as the subscriber handover cost. Acyclic-graph-based publisher mobility

5.8 Experimentation 95

Table 5.3: Topology update costs for a single handover for an incomplete
subpath.

Protocol Upper bound Lower bound

Generic API Pub/Sub 4(n− 2) + (P + 2) · (n− 2) 2(n− 2) + 4k

Generic API Pub/Sub RP 2 ·RPmax + (P + 4) · (n− 2) 2 ·RPmax + 4k

Acyclic graph Sub (P + 1) · (n− 2) k

Acyclic graph Pub 2(n− 2) 2k

Cyclic RP Sub 2K ·RPmax 0
Cyclic RP Pub 3K ·RPmax 0
Acyclic RP Sub min(2K ·RPmax, 2(n− 2)) 0
Acyclic RP Pub min(3K ·RPmax, 3(n− 2)) 0

protocols require a ping from the source to the destination in any case,
which doubles the cost when compared with subscription mobility.

For the complete cyclic rendezvous point case, each RP needs to be
tested for completeness at b giving a worst-case cost of K ·RPmax for sub-
scriber mobility, and 2K · RPmax for publisher mobility. For the complete
acyclic cases, the costs are similar, but bounded by the size of the network.

For the incomplete cyclic rendezvous point case, K RPs must be tested
for completeness both at a and b. Hence, a single RP requires a maximum
of 2 ·RPmax of nodes to be updated for the subscriber case. The publisher
case requires that any subscriptions are propagated from the RPs to b,
which requires additional messaging giving a total cost of 3K ·RPmax.

The costs are similar for the acyclic case, but again they are bounded
by the size of the network. A total of (n − 2) intermediate nodes need
to be tested to find K RPs at a. This testing is also needed at b, and for
publisher mobility b has to wait for a reply from the RPs. The completeness
checking allows the use of the covering optimization at b and hence the lower
bound cost is zero. Periodic updates are not required for publisher mobility
with acyclic graphs or rendezvous points, because the advertisements will
eventually meet.

5.8 Experimentation

We developed a Java-based discrete event simulator for investigating dif-
ferent handover protocols and routing topologies1. To our knowledge, this
is the first graphical mobility simulator for pub/sub and event topologies.

1http://www.hiit.fi/fuego/fc/demos

96 5 Mobility and Completeness

The simulator allows the visual inspection of the topology and uses network
topologies generated with the BRITE topology generator [85]. We use net-
work delays from the BRITE model, and also include a constant processing
overhead at each event broker. Before simulation, the cyclic BRITE topol-
ogy is converted into an acyclic graph using breadth-first search starting
from an arbitrary node.

To simplify the comparison of different mobility protocols, we first gen-
erate a mobility script for the given network topology. The destination of
a mobile client is selected using a uniform distribution over the set of edge
brokers, and the duration of mobility and mobility interval are constant
values. If rendezvous points are used, the RP is selected using a uniform
distribution over the non-edge brokers.

After the script has been created for the desired number of handovers,
each mobility protocol is tested using the script. The simulation counts the
number of simulation events caused by the handovers (the total signalling
cost) and the average latency of the handovers in simulation time. The
latency is measured from the start of the mobility related signalling at the
destination to the successful completion of the handover.

Figure 5.10 presents the graphical user interface of the simulator applet
and shows the imported BRITE network topology. The layout is based
on the graph topology and not the physical location of the nodes. The
black dots denote fully connected streams, subscriptions connected with
overlapping advertisements, and grey dots denote advertisements. The GUI
allows to inspect the routing tables of each node and the mobility script.
The GUI also shows the simulation events as they occur and provides pause
and step-into features for inspecting the evolution of the routing topology.
The simulator has a warm-up phase during which the initial advertisements
and subscriptions are established. After this warm-up, the routing topology
is complete and the mobility script is replayed in a deterministic fashion.
This allows direct comparison of the mobility protocols. Correctness of
operation is ensured by assertions on the completeness of subpaths, routing
table integrity, and detecting missing and duplicate messages.

The simulator also calculates the theoretical upper bound cost (theor.
in the figure) for the simulation scenario based on the equations presented in
Table 5.2. The simulation output is the average cost for the scenario. The
simulator supports 8 different variants of the three base protocols presented
in this chapter, namely the ping/pong protocol, acyclic graph protocol, and
the rendezvous-point-based protocol. The two optimizations supported for
the acyclic protocol are the covering optimization if completeness of the
relocated subscription is assumed, and the overlay address-based optimiza-

5.8 Experimentation 97

Figure 5.10: Mobility simulator GUI.

tion. If completeness of the relocated subscription is assumed, the covering
optimization is used by the simulator. Similarly, if overlay-based addressing
is used, content-based flooding does not occur.

Border broker mobility Figure 5.11 presents the total signalling cost
as the number of messages sent during the simulation for a variable number
of handovers for a BRITE topology with 4 autonomous areas, 100 routers,
50 subscribers, and a single producer. The y-axis is logarithmic. The mo-
bility interval and duration were set to 1 hour and 1/2 hour, respectively.
The periodic ping for the generic API was set to 100 milliseconds. The des-
tination of mobility is selected using a uniform distribution over all nodes.
Out-of-band delay consists of the network-level delay only. Overlay-based
communication has a constant forwarding overhead added to network-level
delays. The maximum network-level delay between any two nodes was 25.7
ms, and the processing overhead of pub/sub routing was set to 2 ms at
each node.

98 5 Mobility and Completeness

 1

 10

 100

 1000

 10000

 100000

 1e+006

 50 100 150 200 250 300 350 400 450 500

M
e

s
s
a

g
e

s

Handovers

Signalling cost

PingPong
PingPong theor.

PingPong+RP
PingPong+RP theor.

In.Acyclic
In.Acyclic theor.

In.Acyclic+RP
In.Acyclic+RP theor.

Co.Acyclic
Co.Acyclic+RP

Figure 5.11: Simulation results for a variable number of handovers with
border broker mobility.

The average signalling costs of the protocols are below the estimated
theoretical upper bounds. The ping/pong protocol is the most inefficient.
The use of a rendezvous point reduces the cost significantly, but it still has
a higher cost than the acyclic protocols. The complete acyclic protocol
has a lower cost than the incomplete protocol, because of the covering
optimization.

We measured the average handover latency for the protocols. The la-
tency consists of the processing delay between the source and destination of
mobility using the given mobility protocol. Queuing delays are not included
in the delay. The latencies are presented in Table 5.4. The high latency
of the ping/pong protocol is due to the periodic ping, which is needed for
mobility-safety.

Full Mobility Figure 5.12 presents the results for a variable number of
handovers for the full mobility scenario and compares it with the border
broker scenario. In full mobility, the destination of mobility is selected using
a uniform distribution on the set of servers (excluding the current server).
The y-axis is logarithmic. We focus on the complete and incomplete acyclic
graph protocols. The results are similar to the other mobility scenarios.

5.8 Experimentation 99

Table 5.4: Average handover latency.

Protocol Latency (ms)

Ping/Pong 170 ± 26
Ping/Pong RP 168 ± 22
Incomplete acyclic 49 ± 16
Incomplete acyclic RP 48 ± 17
Complete acyclic 39 ± 17
Complete acyclic RP 39 ± 17

The main difference is that the border broker scenario has longer path
lengths between the source and destination of mobility.

A Variable Number of Subscribers and Publishers We also exper-
imented with a variable number of subscribers and publishers. The cost for
the generic ping/pong protocol is independent of these numbers. Hence,
it is not necessary to consider the protocol in these scenarios. The in-
complete and complete acyclic protocols are affected by the subscription
topology due to two phenomena. First, the cost of content-based flood-
ing grows as the number of subscribers increases. Second, the probability
that the covering optimization can be performed for the complete protocols
increases, because the number of complete paths grows.

In the variable number of subscribers scenario we used a single publisher
and a total of 100 subscriber handovers were made for each measurement.
We experimented with both border broker restricted mobility (edge mobil-
ity) and full mobility. Figure 5.13 presents the results for the subscriber
case. The cost of the incomplete acyclic case grows as the number of sub-
scribers grows. This is due to content-based flooding. The complete proto-
col has a peak at 20 subscribers and then diminishes as the probability for
the covering optimization increases. The border broker mobility and full
mobility results are similar. The path lengths in mobility are longer for the
border broker case, so it has a higher cost for the incomplete protocol. For
the complete protocols, the border broker case has mobility only between
edge brokers and thus the covering optimization is performed more often.
The full mobility case has a larger server set and thus is not as efficient.

Figure 5.14 presents the simulation results for a variable number of
publishers for both border broker and full mobility. In this scenario, 100
handovers were simulated with 50 subscribers for each measurement. The
cost of the incomplete and complete protocols grows when the number of

100 5 Mobility and Completeness

 1

 10

 100

 1000

 10000

 100000

 50 100 150 200 250 300 350 400 450 500

M
e

s
s
a

g
e

s

Handovers

Signalling cost

In.Acyclic border only
In.Acyclic+RP border only

Co.Acyclic border only
Co.Acyclic+RP border only

In.Acyclic any
In.Acyclic+RP any

Co.Acyclic any
Co.Acyclic+RP any

Figure 5.12: Simulation results for a variable number of handovers with full
mobility.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70 80 90 100

M
e
s
s
a
g
e
s

Subscribers

Signalling cost

In.Acyclic border only
In.Acyclic+RP border only

Co.Acyclic border only
Co.Acyclic+RP border only

In.Acyclic any
In.Acyclic+RP any

Co.Acyclic any
Co.Acyclic+RP any

Figure 5.13: Simulation results for a variable number of subscribers.

5.9 Engineering Implications 101

publishers increases. The new advertisements require a moderate amount of
additional messaging. The number of publishers did not have a significant
effect on the rendezvous point-based protocols. This was expected, because
the RP constrains the topology and flooding does not occur.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70 80 90 100

M
e

s
s
a

g
e

s

Publishers

Signalling cost

In.Acyclic border only
In.Acyclic+RP border only

Co.Acyclic border only
Co.Acyclic+RP border only

In.Acyclic any
In.Acyclic+RP any

Co.Acyclic any
Co.Acyclic+RP any

Figure 5.14: Simulation results for a variable number of publishers.

5.9 Engineering Implications

The presented discrete formal model for both subscriber and publisher mo-
bility allows us to gain valuable insight into the engineering of efficient and
mobility-safe publish/subscribe protocols. Typically the mobility-safety of
pub/sub protocols has not been established, and indeed we have observed
that some implementations do not guarantee this. Yet, receiving every
message is important for many signalling applications. We have presented
a formal foundation for pub/sub mobility, which may also be used with the
subscriber and publisher mobility strategies, such as the prefetching and
proxy protocols proposed in [17, 97].

From the analysis presented in this chapter we can draw the following
design principles, which are important for engineering efficient mobility-safe
pub/sub systems:

102 5 Mobility and Completeness

• The generic protocol is mobility-safe and applicable to various under-
lying pub/subs systems, but it is very inefficient and does not allow
pub/sub system or topology-specific optimizations. We note that the
mobility-safety of this mechanism requires that the ping/pong inter-
action is sufficient to establish the completeness of the path or paths.

• The general acyclic graph-routing topology is more efficient than the
generic protocol, but suffers from the problem that the source broker
needs to be located using event routing. Since covering and merg-
ing do not preserve information pertaining to the original broker
that issued a subscription or advertisement, the use of content-based
flooding may be required. This routing topology also suffers from
the incompleteness of subscriptions, and thus the covering optimiza-
tion that uses out-of-band communication cannot be performed if
mobility-safety is required. Incompleteness may also cause a broker
to flood subscriptions to several exit interfaces. Incompleteness of
the subpath from the source broker to the destination broker may
be corrected, but it has a high cost due to potential content-based
flooding.

• Rendezvous point models with cyclic overlay routing support better
coordination of mobility. With rendezvous points, advertisements are
no longer flooded throughout the network, which improves update la-
tency and performance. Moreover, rendezvous points may be used
for fast completeness checks. The covering optimization may be used
with completeness checking. Furthermore, the overlay address may
be used to prevent content-based flooding by consulting the overlay
routing tables and finding the proper next hop. On the other hand,
the upper bound cost for cyclic topologies may be higher than for gen-
eral acyclic graphs if the moving subscriber has subscribed to multiple
rendezvous points that have to be updated.

• Rendezvous point models with acyclic overlay routing have the sim-
plifying features mentioned above and the upper bound cost cannot
be greater than for the general acyclic graphs.

Therefore we propose the following three techniques for improving mo-
bility support in pub/sub systems: overlay-based routing, rendezvous points,
and completeness checking. Overlay addresses prevent the content-based
flooding problem. This abstracts the communication used by the pub/sub
system from the underlying network-level routing and allows the system
to cope with network-level routing errors and node failures. Rendezvous

5.9 Engineering Implications 103

Table 5.5: Optimizations for pub/sub handovers.

Optimization Description

None Flooding of update messages.
Overlay addresses No flooding of update messages.
Rendezvous points Completeness checking to RP.
Covering optimization If update received (make-before-break)

or complete (break-before-make).

points simplify mobility by allowing better coordination of topology up-
dates. There is only one direction where to propagate updates for a single
rendezvous point. Completeness checking ensures that subscriptions and
advertisements are fully established (complete) in the topology. This is
needed to perform the covering optimization. Table 5.5 presents a summary
of the optimizations and how they may be applied for the two handover
types: network-initiated make-before-break and break-before-make.

We give an outline of the subscriber handover algorithms both at the
source (Algorithm 7) and destination (Algorithm 8). We assume that an
overlay addressing system is used that allows each broker to deduce in which
direction (outgoing interface) a given server is located. This prevents the
flooding of control messages. The algorithms support both make-before-
break and break-before-make. The algorithms take three parameters: C

is a structure that stores information pertaining to the client, src is the
identifier of the source broker, and dst is the identifier of the destination
broker.

Algorithm 7 support different modes of operation. First, it supports the
RP-based operation and checks the completeness to the RP using the check-
RP-CO procedure. Second, if make-before-break is used, the algorithm
uses the procedure send-path-update to send a path update towards the
destination. Third, if the basic break-before-make protocol is used, the
algorithm simply disconnects the client. Fast handovers are detected using
the waiting-for-update procedure, which returns true if the given broker is
waiting for the update message.

Algorithm 8 presents move-in functionality for these three modes of
operation. The skip variable indicates whether or not the path between
source and destination needs to be updated. If make-before-break is used,
the algorithm checks if the update message has been received using the
procedure rcv-update. If the update has been received and the state has
been already transferred, the protocol may terminate. Otherwise, the al-

104 5 Mobility and Completeness

gorithm skips the topology update and uses the send-transfer-request to
send a state transfer message to the source. If the update has not yet
been received, the protocol has to wait until the message is received. The
procedure wait-for-update adds the current client into a list of unfinished
updates.

If RPs are used in Algorithm 8, the update message is sent only to the
RP in question using the procedure send-update-RP. When receiving the
update, the RP notifies the source that the path is complete. If RPs are
not used, the update is sent to the source using the procedure send-update.
For break-before-make, the procedure sub-complete is used to check if the
relocated subscription is already complete at the destination.

Algorithm 7 The move-out-sub algorithm.

move-out-sub(C, src, dst)

1 if waiting-for-update(src,dst,C)
2 then
3 Fast handover detected, prevent transfer of session
4 return
5 if dst = ∅ and RPs are used
6 then
7 Wait until check-RP-CO(src,dst,C) is true
8 elseif dst 6= ∅
9 then send-path-update(src,dst,C)

10 ✄ Wait for response for client-initiated make-before-break
11 C.dst← dst

12 C.src← src

13 Disconnect client.

The publisher mobility algorithms are similar to the subscriber mobil-
ity algorithms. The move-out-pub algorithm follows Algorithm 7 with the
exception that no state is transferred. If RPs are used, completeness to the
RP is checked before relocation. If make-before-break is used, the update
message is sent by the source broker. In this case, the path is updated by
the message and only the direction from source to the destination needs to
be tested.

The move-in-pub follows Algorithm 8. If it is known that the path
is complete, the protocol terminates. If make-before-break is used, the
reception of the update message indicates that the path is complete and

5.9 Engineering Implications 105

Algorithm 8 The move-in-sub algorithm.

move-in-sub(C, src, dst)

1 let skip = false

2 if C.dst = ∅ ✄ break-before-make
3 then
4 if sub-complete(C)
5 then skip← true

6 else
7 if rcv-update(src,dst,C)
8 then skip← true

9 if state has already been transferred
10 then return
11 else
12 wait-for-update(src,dst,C) and return
13 if (¬skip)
14 then
15 ✄ Send update or out-of-band transfer request
16 ✄ Update will result in a state transfer
17 if RPs are used
18 then send-update-RP(src,dst,C)
19 else send-update(src,dst,C)
20 else send-transfer-request(src,C)

106 5 Mobility and Completeness

the protocol terminates. If RPs are used, the protocol waits until the RP
has confirmed that the path is complete. When the message from the RP
arrives, the destination broker knows that any active subscriptions have
been connected. If RPs and make-before-break are not used, the protocol
sends an update message to the source broker. The protocol terminates
when a reply is received from the source broker.

5.10 Summary

In this chapter we presented a discrete model for publish/subscribe mobility
support. We examined the cost of pub/sub mobility using three mobility
mechanisms and topologies: generic mobility support, acyclic graphs, and
rendezvous-based topologies. We also discussed the impact of complete-
ness and incompleteness of the pub/sub topology on the cost of mobility.
We identified two important optimizations, overlay-based routing and ren-
dezvous points. The generic mechanism has a high cost for mobility. The
other two mobility mechanisms have a considerably smaller cost.

Mobility-safety cannot be guaranteed if protocols engineered with the
completeness assumption are used for incomplete topologies. Based on
both the theoretical model and the simulation results, we propose three
techniques for improving mobility-aware pub/sub systems: overlay-based
routing, rendezvous points, and completeness checking.

We presented a pub/sub mobility simulator and experimental results
with the protocols and compared the theoretical upper bound costs with
average costs from a simulation scenario. Based on the simulation exper-
iment, rendezvous points offer significant performance benefits for mobil-
ity protocols. The acyclic protocols have lower cost and latency than the
generic API ping/pong protocol. The lowest cost and latency were achieved
using the complete acyclic protocol with a rendezvous point.

Part IV

Advanced Data Structures
and Techniques

107

Chapter 6

DoubleForest for Temporal
Subspace Matching

In this chapter we show how the forest data structure may be used to
create more advanced structures for matching and comparing various pro-
files, such as interest or context profiles. Profiles are defined in a multi-
dimensional content space using filters and they support both discrete and
interval values. We present the DoubleForest and a graphical browser tool
for visualization. The main application areas of the DoubleForest struc-
ture are profile and context-based matching and temporal content-based
routing. We compare the results to a set-based algorithm.

6.1 Overview

We observed previously that most event and context processing systems
do not feature optimized data structures for routing events and support-
ing dynamic profile-based queries. However, there are many optimized
matchers for static queries. Support for rapid updates is required, because
context descriptions and interests may change rapidly when circumstances
change. In this chapter we address two central limitations of current event
systems: temporal notifications and subspace queries. Temporal notifica-
tions (or profiles) have a duration instead of being instantaneous. The
subspace-matching model follows the previously presented content-based
routing model with the difference that notifications are defined as sub-
spaces of the content space instead of as points. We use the term profile
instead of notification to highlight the difference of the proposed model
compared to the pub/sub model.

We represent both profiles and profile queries using generic filters. Our

109

110 6 DoubleForest for Temporal Subspace Matching

notion of a filter is derived from event-based systems. The motivation for
this is that by leveraging the properties of filters, namely covering and over-
lapping between them, we can optimize the data structures in a generic,
filter-language-independent fashion, and also support more expressive sub-
set selection and matching operations. Moreover, there are also techniques
for performing filter merging to remove redundancy from filter sets by mod-
ifying them.

We propose that the poset-derived forest is used to store both profiles
and queries based on the covering relation. The forest supports frequent
updates to the data structure and it has approximately the same matching
performance as the filters poset.

DoubleForest is a new data structure for managing profiles and queries
based on covering relations. The assumption is that there are covering
relations in both sets. This assumption is realistic for many scenarios,
for example, covering is useful for geographic queries and profiles. Filter
covering may be determined efficiently for simple predicate-based filters [31]
and attribute filters with disjunctions [132]. Algorithms exist for arbitrary
conjunctive filters [74], and also conjunctive tree queries [35].

We support two different matching operators for subspace matching,
namely covering and overlapping. The proposed data structure combines
these features and supports what we call temporal subspace matching. Match-
ing semantics, such as exact, subsume, intersection, and disjoint have been
previously proposed in the context of matchmaking with a Description
Logic reasoner [80]. However, we are not aware of any optimized data
structures for matching with these operators.

DoubleForest consists of two poset-derived forest data structures that
have associated mappings from the elements of one structure to the other.
We have demonstrated that the forest structure supports frequent data
element insertions and removals. We present a new optimization technique
for the DoubleForest, which involves the determination of upper and lower
bounds. The bounds are used to inspect only the boundary — a set that
contains the candidate nodes.

We define the profile-matching problem as follows given a set of profiles
and a set of queries:

• for a new profile, find the set of associated (matching) queries,

• for a new query, find the set of associated (matching) profiles,

• when removing an existing profile, find the set of associated queries,

• when removing an existing query, find the set of associated profiles.

6.1 Overview 111

Figure 6.1 illustrates how two forests, based on filter sets P and Q, are
combined in DoubleForest to support the matching of profiles and queries
with mappings between the elements of each forest. The basic idea is
to maintain mappings MPQ and MQP in different directions between the
structures. MPQ determines the set of covering queries given a profile, and
similarly, MQP determines the set of covered profiles given a query.

a

c b

d e

1

32

4

5

Profiles P = { a,b,c,d,e }

Type=location

Subtype=office

X = 10

Y = 20

Diameter = 400

Type=location

Subtype=office

X ∈ [7,14]

Y ∈ [18, 22]

Queries Q = {1,2,3,4,5}

MAPPINGS

MPQ: P → ℘ (Q)

MQP: Q → ℘ (P)

Updated on

add and del

operations for the

structures.

Query matches profile

Figure 6.1: Storing and matching of profiles and queries.

The DoubleForest data structure is a building block for more complex
routing and matching structures. The main application areas for the struc-
ture are the following:

• matching profiles and queries,

• change detection, i.e., finding the set of changed profiles and queries
efficiently,

• content-based routing,

• distributed service directories with continuous queries.

We observe that the DoubleForest structure generates a taxonomy for
both profiles and queries based on the covering relation. This automatic
taxonomy creation is envisaged to be useful for applications, such as direc-
tory services and context or metadata-based directory browsing.

Context-based service directory querying and directory merging was
investigated in [48]. This mechanism assumes that context data is repre-
sented using multi-dimensional discrete values. Each service category is

112 6 DoubleForest for Temporal Subspace Matching

represented by a graph in which the leaves are the services and other nodes
represent different context classifications. Distribution of the service direc-
tories is addressed by specifying a merging algorithm that merges the input
directories. This system is similar to our method, but lacks the generality
of covering and overlapping relations and the optimizations used by the
forest data structures. Our approach also allows subspace queries. The
proposed method generates the taxonomy automatically based on covering
relations. Hence, the merging of two service directories is trivial using the
DoubleForest.

We also note that filters may contain custom predicates, for example,
semantic predicates such as the ”IS-A” relation. In this case, the predicate
would be introduced into the filtering language with the corresponding
ontology. Thus the proposed data structure may be used with ontologies
and external taxonomies.

6.2 Formal Definition

We define two sets, P and Q, which denote profiles and queries, respectively.
P and Q are the base sets for the two forests. We define a matching function
⊙ between the two forests that can have several different semantics. Given
an element of one set, ⊙ returns a subset of the other set. We use the
matching function to formally define and determine the mappings MPQ and
MQP that were introduced earlier. In this thesis, we define two semantics,
namely covering, ”⊒”, and overlapping ”≃”. Covering is more complicated,
because it is not symmetric, whereas overlap is symmetric. Cover therefore
requires two different functions, one for covering queries ”⊒” and one for
covered profiles ”⊑”. The four required matching functions are presented
by Equations 6.1a, 6.1b, 6.1c, and 6.1d. In Equations 6.1a and 6.1c X is
a profile (X ∈ P), and in Equations 6.1b and 6.1d X is a query (X ∈ Q).

⊙⊒(X) = {y ∈ Q | y ⊒ X}, (6.1a)

⊙⊑(X) = {y ∈ P | X ⊒ y}, (6.1b)

⊙≃,Q(X) = {y ∈ Q | X ≃ y}, (6.1c)

⊙≃,P (X) = {y ∈ P | X ≃ y}. (6.1d)

We define the parentF (X) function to return X’s parent in the forest
corresponding to the input set F . If X has no parent, the virtual root node
of the forest is returned that has the root nodes of the forest as children.
The function childrenF (X) is similarly defined, and simply returns the
empty set if X has no children. Lemma 6.1 states the set containment

6.2 Formal Definition 113

relationships of the matching sets determined using ⊙ for two input filters
A and B. Corollary 6.2 states that the matching function ⊙ preserves
covering relations for the two semantics.

Lemma 6.1 Given filters A,B ∈ P we have A ⊒ B ⇒ ⊙⊒(A) ⊆ ⊙⊒(B).
Given that A,B ∈ Q we have A ⊒ B ⇒ ⊙⊑(B) ⊆ ⊙⊑(A). Assuming
A,B ∈ Q without loss of generality, we also have A ⊒ B ⇒ ⊙≃,P (B) ⊆
⊙≃,P (A).

Proof. Assume the left side. We consider the three different cases.

1. ”⊒”. It must be the case that each element in ⊙⊒(A) is contained in
⊙⊒(B), because when B has equal or lesser selectivity than A in P , ⊙⊒(B)
has equal or greater selectivity in Q. Assume to the contrary that there
exists an element, e ∈ ⊙⊒(A), for which e 6∈ ⊙⊒(B). It follows that A

cannot have greater selectivity than B in P and therefore A ⊒ B cannot
hold. This contradiction proves this case.

2. ”⊑”. ⊙⊑(A) selects all covered nodes in P and it follows from the
left side A ⊒ B that ⊙⊑(B) has equal or lesser selectivity. By assuming to
the contrary that there exists an element e ∈ ⊙⊑(B) not in ⊙⊑(A), we have
again a contradiction to the assumption. It follows that ⊙⊑(B) ⊆ ⊙⊑(A).

3. ”≃”. This case is similar to the previous cases. It must be the
case that those elements that overlap with B in P must be elements in the
overlap of A in P, because A ⊒ B. Assume to the contrary that there exists
an element e ∈ ⊙≃,P (B) but e 6∈ ⊙≃,P (A), but now it cannot be the case
that A ⊒ B, which contradicts the assumption. ✷

Corollary 6.2 Given filters A,B ∈ P we have A ⊒ B ⇒ ⊙⊒(B) ⊒
⊙⊒(A). Given that A,B ∈ Q we have A ⊒ B ⇒ ⊙⊑(A) ⊒ ⊙⊑(B). As-
suming without loss of generality that A,B ∈ Q also A ⊒ B ⇒ ⊙≃,P (A) ⊒
⊙≃,P (B).

Proof. Assume the left side. Applying Lemma 6.1 in each case we have
”⊒”: ⊙⊒(A) ⊆ ⊙⊒(B), ”⊑”: ⊙⊑(B) ⊆ ⊙⊑(A), and ”≃”: ⊙≃,P (B) ⊆
⊙≃,P (A). It follows from the definition of the covering relation that ”⊒”:
⊙⊒(B) ⊒ ⊙⊒(A), ”⊑”: ⊙⊑(A) ⊒ ⊙⊑(B), and ”≃”: ⊙≃,P (A) ⊒ ⊙≃,P (B).
✷

The data structure provides two operations for adding and removing
elements, namely the addDF and delDF operations. Algorithm 9 presents
the addDF operation in more detail and Algorithm 10 the delDF operation.
≺ denotes the semantics used by ⊙, F denotes the set P or Q, and I denotes
the interface or identifier of the object in question.

114 6 DoubleForest for Temporal Subspace Matching

In algorithm 9 the result sets MPQ(X) and MQP (X) need to be com-
puted efficiently. Initially no relations are known for X in Q and P . When
adding a profile X, a simple algorithm adds X to the set P and then tests it
against each element in Q for covering or overlapping. The idea of the DF
structure is to utilize the two forests in this computation. In subsequent
sections we discuss a number of optimizations for determining the MPQ(X)
and MQP (X) sets.

Algorithm 9 The addDF algorithm.

addDF (≺,X,F ,I)

1. add(F ,X,I) (add X to forest identified by F).

2. If F = P then

3. MPQ(X) = result set for X (computed using ⊙).

4. Update ∀y ∈MPQ(X) : MQP (y)←MQP (y) ∪ {X}.

5. Else if F = Q then

6. MQP (X) = result set for X (computed using ⊙).

7. Update ∀y ∈MQP (X) : MPQ(y)←MPQ(y) ∪ {X}.

6.3 Determining the Result Set Efficiently

Algorithm 9 requires that the result set is computed using ⊙. The com-
putation of this set needs to be optimized. One immediate optimization is
to traverse the data structure in question starting from the root nodes and
traversing to only matching nodes. This optimization was proposed in the
Siena filters poset data structure that was used for event routing. The idea
for this optimization is presented in Algorithm 6.

For the DoubleForest, we need to consider four different cases, the ad-
dition of a profile or a query for the two semantics. The case of ⊒ is
more complicated than ≃. The former case is more difficult, because the
mappings between the two forests are not symmetric.

”⊒” 1. Add profile All elements that cover the input profile in Q are in
the result set determined by ⊙. The forest defined by the set Q

is traversed starting from the root nodes towards covering filters.

6.4 Optimization using Upper and Lower Bounds 115

Algorithm 10 The delDF algorithm.

delDF (≺,X,F ,I)

1. If F = P then

2. MPQ(X) = remove result set for X (from hashtable).

3. Update ∀y ∈MPQ(X) : MQP (y)←MQP (y) \ {X}.

4. Else if F = Q then

5. MQP (X) = remove result set for X (from hashtable).

6. Update ∀y ∈MQP (X) : MPQ(y)←MPQ(y) \ {X}.

7. del(F ,X,I) (remove from poset-derived forest identified by F).

2. Add query All covered elements in P are in the result set de-
termined by ⊙. The forest defined by the set P is traversed
starting from the root nodes. If an element covered by the input
filter is detected, the traversal of that subtree is stopped, and
the current node and all the descendants of the current node are
added to the result set.

”≃” 3. Add profile All elements that overlap with the input profile in
Q are in the result set determined by ⊙. The forest defined
by the set Q is traversed starting from the root nodes towards
overlapping filters.

4. Add query All overlapping elements in P are in the result set
determined by ⊙. The forest defined by the set P is traversed
starting from the root nodes towards overlapping filters.

Another immediate optimization is to partition filters into disjoint sets,
for example, by their type. Type-based partitioning is easily implemented
by using a hashtable. In this case, each type has an associated set that
contains the root filters of that type. A hashtable is then used to quickly
lookup the set corresponding to the given type.

6.4 Optimization using Upper and Lower Bounds

The basic optimizations presented in the previous section can be extended
to further reduce the computation cost of the result set. These optimiza-

116 6 DoubleForest for Temporal Subspace Matching

tions pertain to restricting the set of tested filters by finding a candidate
set. The upper and lower bound sets in the other forest are used to find the
parts in the data structure where potential matching nodes are located. In
essence, this allows to exclude parts of the forest from examination.

Figure 6.2 illustrates the case when profiles are added to P and the
covering queries need to be located in Q. The node x has been added as a
direct successor to p. Node x has a parent and two children. The mapping
from x’s parent provides the lower bound — those filters that must be in
the result set. The lower bound contains all covering root queries if such
exist. The mappings from x’s children provide the candidate set — those
nodes that may be in the result set and must be tested.

b

d

p

b

d s

1

3 2

4

5

Profiles P = { p,b,x,d,s } Queries Q = {1,2,3,4,5}

x

Upper bound mapping (candidates)

Lower bound mapping

Actual mapping (grey circles)

6

Goal: Find all q ∈ Q such that q covers x

p

Figure 6.2: Using upper and lower bound optimizations when profiles are
added.

Figure 6.3 illustrates the case when a query is added to Q and the
covered profiles need to be located in P . In this case, the mapping from x’s
parent provides the upper bound set — the candidate set of nodes that must
be tested for inclusion into the result set. The mappings from x’s children
provide the lower bound mapping — the set that must be contained in the
result set. Nodes that are not in the former set are not tested for inclusion.

The following list presents the upper and lower bound optimizations for
adding either a profile or query with the two semantics.

”⊒” 1. Add profile All elements that cover the input profile in Q are in
the result set determined by ⊙.
Upper-bound optimization: Since elements in ⊙⊒(X) are covered
by elements in ⊙⊒(childrenP (X)) by Corollary 6.2, elements in
this set are tested for inclusion in the result set. Only elements
in this set are evaluated.

6.4 Optimization using Upper and Lower Bounds 117

b

d

1

2

4

5

Queries Q = { p,b,x,d,s } Profiles P = {1,2,3,4,5,6}

x

Upper bound mapping

Lower bound mapping

Actual mapping (grey circles)

6 s

Goal: Find all p’ ∈ P such that x covers p’

3

p

Figure 6.3: Using upper and lower bound optimizations when queries are
added.

Lower-bound optimization: Elements in ⊙⊒(parentP (X)) are
contained in the results set. These elements are added to the
results set without testing them.

2. Add query All covered elements in P are in the result set deter-
mined by ⊙.
Upper-bound optimization: Since elements in ⊙⊑(parentQ(X))
cover elements in ⊙⊑(X) by Corollary 6.2, they are tested for
inclusion in the result set.
Lower-bound optimization: Descent into the forest defined by Q

is stopped when an element in ⊙⊑(childrenQ(X)) is detected.
Descendants of elements in this set are covered by the input filter
(Corollary 6.2).

”≃” 3. Add profile All elements that overlap with the input profile in
Q are in the result set determined by ⊙.
Upper-bound optimization: ⊙≃,Q(parentP (X)) covers ⊙≃,Q(X)
by Corollary 6.2. Elements in this set are tested for inclusion in
the result set.
Lower-bound optimization: Elements in⊙≃,Q(childrenP (X)) are
contained in the results set. These elements are added to the re-
sults set without testing them.

4. Add query All overlapping elements in P are in the result set
determined by ⊙.
Upper-bound optimization: ⊙≃,P (parentQ(X)) covers ⊙≃,P (X)
by Corollary 6.2. Elements in this set are tested for inclusion in
the result set.

118 6 DoubleForest for Temporal Subspace Matching

Table 6.1: Optimizations for the two semantics.

Description Optimizations

Upper bounds ”⊒”. X ∈ P ⊙⊒(X) ⊆ ⊙⊒(childrenP (X))
”⊑”. X ∈ Q ⊙⊑(X) ⊆ ⊙⊑(parentQ(X))
”≃”. X ∈ P ⊙≃,Q(X) ⊆ ⊙≃,Q(parentP (X))
”≃”. X ∈ Q ⊙≃,P (X) ⊆ ⊙≃,P (parentQ(X))

Lower bounds ”⊒”. X ∈ P ⊙⊒(parentP (X)) ⊆ ⊙⊒(X)
”⊑”. X ∈ Q ⊙⊑(childrenQ(X)) ⊆ ⊙⊑(X)
”≃”. X ∈ P ⊙≃,Q(childrenP (X)) ⊆ ⊙≃,Q(X)
”≃”. X ∈ Q ⊙≃,P (childrenQ(X)) ⊆ ⊙≃,P (X)

Lower-bound optimization: Elements in⊙≃,P (childrenQ(X)) are
contained in the results set. These elements are added to the re-
sults set without testing them.

Table 6.1 summarizes the upper and lower bound formulas that are
used in optimizing matching in the DoubleForest. We have to consider two
special cases. First, if X has no parent, the virtual root node is returned
by parentF , which maps to the full node set. Second, if X has no children,
the bounds that require this information cannot be determined.

Algorithm 11 presents the optimized matching algorithm for the cov-
ering semantics. The algorithm finds queries matching the given profile X

when Op =′⊒′ is given. When Op =′⊑′ is given, the algorithm finds profiles
matching the given query X.

Algorithm 12 presents the matching algorithm for the overlapping se-
mantics. The algorithm finds all elements in the current base set that over-
lap with the given X. The upper and lower bounds are used to optimize
this procedure.

Let U denote the upper bound and L the lower bound. Then ∆ = U \L.
If U exists and is empty, the matching terminates, otherwise the corre-
sponding algorithm is used. We note when adding a profile it is sufficient
to iterate only the ∆ set if it exists. If it cannot be computed then Algo-
rithms 11 or 12 must be used. This optimization is used in our implemen-
tation of the data structure.

6.4 Optimization using Upper and Lower Bounds 119

Algorithm 11 Pseudocode for matching with the DoubleForest with ⊒
semantics.

Match-DoubleForest(X, Op, upper, lower)

1 let S be an empty sequence and RS an initially empty set
2
3 R = Get-Roots(X.type)
4 let Im be an imaginary root of a tree
5 Im.children = R

6 addLast(S, Im)
7
8 while S is non-empty
9 do

10 o = removeFirst(S)
11 while o has unprocessed children
12 do
13 let fi, fm be Boolean flags (initially false)
14 c = nextChild(o)
15 if lower 6= null and c ∈ lower

16 then fm = true

17 elseif upper 6= null and c 6∈ upper

18 then
19 ✄ continue descent if query to profile
20 if Op = ′ ⊑′

21 then fi = true

22 elseif Op = ′ ⊑′

23 then
24 ✄ query to profile
25 if X ⊒ c

26 then fm = true

27 else fi = true

28 elseif Op = ′ ⊒′ and c ⊒ X

29 then
30 ✄ profile to query
31 fm = true

32 doDescent(Op,RS, S, c, o, fm, fi)
33 return RS

120 6 DoubleForest for Temporal Subspace Matching

Algorithm 12 Pseudocode for matching with the DoubleForest with ≃
semantics.

Match-DoubleForest-Overlap(X, upper, lower)

1 let S be an empty sequence and RS an initially empty set
2
3 R = Get-Roots(X.type)
4 let Im be an imaginary root of a tree
5 Im.children = R

6 addLast(S, Im)
7
8 while S is non-empty
9 do

10 o = removeFirst(S)
11 while o has unprocessed children
12 do
13 let fi and fm be Boolean flags (initially false)
14 c = nextChild(o)
15 if upper 6= null and c 6∈ upper

16 then Do Nothing
17 elseif lower 6= null and c ∈ lower

18 then fm = true

19 elseif X ≃ c

20 then fm = true

21 doDescent(≃, RS, S, c, o, fm, fi)
22 return RS

6.5 Correctness 121

Algorithm 13 Pseudocode for the auxiliary doDescent function.

doDescent(Op,RS, S, c, o, fm, fi)

1 if fm

2 then
3 if Op = ′ ⊑′

4 then
5 ✄ query to profile
6 addToSet(RS, c)
7 addDescendantsToSet(RS, c)
8 return ✄ stop descent
9 else

10 addToSet(RS, c)
11 if fm or fi

12 then addLast(S, c)

6.5 Correctness

Correctness of the DoubleForest data structure follows from the correctness
of the result set functions. For del, it is sufficient that the add operation is
correct and the mappings have been updated properly. The correctness of
the upper and lower bound optimization requires further examination.

Theorem 6.3 Assuming childrenP (X) 6= ∅, the upper bounds are correct:
1. X ∈ P and ⊙⊒(X) ⊆ ⊙⊒(childrenP (X)).
2. X ∈ Q and ⊙⊑(X) ⊆ ⊙⊑(parentQ(X)).
3. X ∈ P and ⊙≃,Q(X) ⊆ ⊙≃,Q(parentP (X)).
4. X ∈ Q and ⊙≃,P (X) ⊆ ⊙≃,P (parentQ(X)).

Proof. We consider the four cases and show that there cannot exist an
element in the set returned by ⊙ for X that is not in the right-side upper
bound set. We observe that cases 3. and 4. are symmetrical. As previously
discussed parentF (X) is never empty.

1. It holds that for any child A of X we have X ⊒ A. From Lemma 6.1
it follows that ⊙⊒(X) ⊆ ⊙⊒(A). By taking union over all X’s children we
have ⊙⊒(X) ⊆ ⊙⊒(childrenP (X)).

2. It holds that for a parent A of X we have A ⊒ X. By Lemma 6.1
we have ⊙⊑(X) ⊆ ⊙⊑(A).

122 6 DoubleForest for Temporal Subspace Matching

3. This case is similar to the previous cases. Again, it holds that for
any parent A of X we have A ⊒ X. By Lemma 6.1 we have ⊙≃,P (X) ⊆
⊙≃,P (A). ✷

Theorem 6.4 Assuming childrenP (X) 6= ∅, the lower bounds are correct:
1. X ∈ P and ⊙⊒(parentP (X)) ⊆ ⊙⊒(X).
2. X ∈ Q and ⊙⊑(childrenQ(X)) ⊆ ⊙⊑(X).
3. X ∈ P and ⊙≃,Q(childrenP (X)) ⊆ ⊙≃,Q(X).
4. X ∈ Q and ⊙≃,P (childrenQ(X)) ⊆ ⊙≃,P (X).

Proof. We consider the four cases and show that there cannot exist an
element in the left-side lower bound set that is not in the set returned by
⊙ for X. We observe that cases 3. and 4. are symmetrical. As previously
discussed parentF (X) is never empty.

1. It holds that for a parent A of X, A ⊒ X. Hence from Lemma 6.1
⊙⊒(A) ⊆ ⊙⊒(X).

2. It holds that for any child A of X, X ⊒ A. Hence from Lemma 6.1
⊙⊑(A) ⊆ ⊙⊑(X).

3. This case is similar to the two other cases. It holds that for any child
A of X, X ⊒ A. From Lemma 6.1 we have ⊙≃,P (A) ⊆ ⊙≃,P (X). ✷

Theorem 6.5 The DoubleForest structure with upper and lower bound op-
timizations is correct.

Proof sketch: We establish that the optimizations narrow down the
candidate set for ⊙ and cannot exclude elements from the results set. The
upper bound sets are candidate sets and cannot exclude elements (Theo-
rem 6.3). The lower bound sets are contained in the result set and cannot
exclude elements (Theorem 6.4). It follows that the structure with opti-
mizations is correct. ✷

6.6 Computational Complexity

In DoubleForest, each node in P maps to at most |Q| nodes, and similarly,
each node in Q maps to at most |P | nodes. This gives a space complexity
of O(|P | · |Q|) data entries in the structure in the worst case.

The average time complexity for the structure depends on the under-
lying data set. The worst-case happens for linear orders. If we consider
the matching of a query to profiles, we have O(|Q|) insertion cost of the
query, O(|P |) cost of finding the matching profiles. This results in linear
complexity O(|Q|+ |P |).

6.7 Temporal Subspace Matching 123

6.7 Temporal Subspace Matching

The DoubleForest is used to perform temporal subspace matching. The
query forest supports continuous queries. Similarly, the profile forest sup-
ports profiles that persist in time. The system supports subspace matching
using the two specified operators, namely covering and overlapping.

Figure 6.4 presents an example of temporal subspace matching. In the
figure, we have five range queries and five range profiles. The mappings are
presented below the forests.

Queries

Q1 = [0,10]

Q2 = [12,20]

Q3 = [2,10]

Q4 = [15,22]

Q5 = [12,14]

Profiles

P1 = [1,5]

P2 = [5,10]

P3 = [5,25]

P4 = [17,20]

P5 = [7,9]

Q1 Q2

Q3 Q5

Q4

P3 P1

 P4 P2

P3

 P5

Query forest (Q)

Mappings

MPQ: P → ℘(Q)

MQP: Q → ℘(P)

Updated on add and del

MQP(Q1) → {P1, P2, P5}, MQP(Q2) → {P4}, MQP(Q3) → {P2,P5}, MQP(Q4) → {P4}, MQP(Q5) → {Ø}

MPQ(P1) → {Q1}, MPQ(P2) → {Q1,Q3}, MPQ(P3) → {Ø}, MPQ(P4) → {Q2, Q4}, MPQ(P5) → {Q1,Q3}

Profile forest (P)

Figure 6.4: DoubleForest with range queries and profiles.

6.8 Experimentation

6.8.1 Overview

We experimented with the add scenario presented in Chapter 4. We used
the same workload generator and parameters, namely 2-dimensional range
filters. Only a single type is used, because this is the worst-case scenario
for performance, because the type cannot be used for optimization. The
scenario differs from the previous benchmark scenario, because interfaces
are not taken into account.

We use the redundant non-balanced poset-derived forest implementa-
tion. This means that each added filter is retained in the structure and
interface elimination has no effect. Figure 6.5 presents an overview of the
benchmark. The workload generator is used to create two sets of filters, the

124 6 DoubleForest for Temporal Subspace Matching

queries and profiles, which are then inserted into the data structure. Each
measurement is replicated 5 times and the standard deviation is shown in
the diagrams.

Query Filters

Workload

generator

DoubleForest

Correctness

testing

Profile Filters Profile Forest

Query Forest

Figure 6.5: DoubleForest benchmark overview.

We developed the following two benchmarks for both ⊒ and ≃ scenarios:

• A variable number of profiles and a constant number of queries.

• A variable number of queries and a constant number of profiles.

• A variable number of both queries and profiles. Queries and profiles
are added in random order.

The purpose of these benchmarks is to measure the cost in both compu-
tation time and the number of covering operations of the addition of a new
profile or a query, to understand the impact of the two different semantics
for performance, and to understand the impact of the optimizations pre-
sented in Section 6.4. Three different cases are measured for each scenario:

• unoptimized DoubleForest,

• optimized DoubleForest (upper and lower bound optimizations), and

• set-based operation.

The last case represents the trivial implementation method and serves as a
general performance benchmark. The set-based case is also used to ensure
that the DoubleForest operates correctly. It should be noted that the set-
based operation finds the correct mappings, but does not determine other
covering relations between the input filters. This means that the set-based
mechanism cannot be used for content-based routing without modifying
the algorithm to find the root set and the relations between the filters.

6.8 Experimentation 125

We focus on adding filters using the addDF operation to the DoubleFor-
est structure, because the delDF operation only involves the add operation
for the poset-derived forest in question, which was shown to have good
performance in Chapter 4. In this sense, the add used in delDF has only
local implications, whereas the addDF has global implications, because the
mappings may change. Therefore, it is not necessary to consider the delDF

operation in order to understand the performance of the two poset-derived
forests combined into a DoubleForest structure. Furthermore, the delDF

operation is not necessary for those filters that are frequent in the workload
as the results with preloading in Chapter 7 indicate.

6.8.2 Results

⊒ Semantics. Figure 6.6 shows the results for a variable number of pro-
files and queries for the range queries with two attribute filters. In each
experiment either the number of profiles or queries is constant (1000 filters)
while the other is variable. The top diagrams show the number of covering
operations and the bottom diagrams show the computation time. The op-
timized DoubleForest has the best performance both in terms of operations
and time.

≃ Semantics. Figure 6.7 shows the results for a variable number of pro-
files and queries for the range queries with two attribute filters. In each
experiment either the number of profiles or queries is constant (1000 filters)
while the other is variable. The optimized DoubleForest is more efficient
than the set-based benchmark algorithm, but the difference is still small.
The results indicate that overlap is more difficult to optimize using the
forest-based mechanism that derives its structure from the covering rela-
tion.

Adding both Profiles and Queries. Figure 6.8 presents the results for
both variable profiles and queries. In this case, both sets are combined into
a larger set and then elements are randomly inserted to the data structure.
We used 1000 queries and profiles for a total structure size of 2000 filters.
The results indicate that the DoubleForest has considerably better perfor-
mance in this scenario for cover (”⊒”), but the performance for overlap
(”≃”) is better than the set-based benchmark case, but not very good.

126 6 DoubleForest for Temporal Subspace Matching

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

m
s
)

Filters

Variable profiles with cover

DoubleForest
Optimized DoubleForest

Set-based

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

m
s
)

Filters

Variable queries with cover

DoubleForest
Optimized DoubleForest

Set-based

 0

 200000

 400000

 600000

 800000

 1e+006

 100 200 300 400 500 600 700 800 900 1000

O
p

e
ra

ti
o

n
s

Filters

Variable profiles with cover

DoubleForest
Optimized DoubleForest

Set-based

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 100 200 300 400 500 600 700 800 900 1000

O
p

e
ra

ti
o

n
s

Filters

Variable queries with cover

DoubleForest
Optimized DoubleForest

Set-based

Figure 6.6: DoubleForest cover for 2D range filters.

6.8.3 Context Browser

In order to experiment with the DoubleForest data structure, we developed
a graphical browser tool, called ContextBrowser1, which allows users to
inspect the data structure. Context-matching is one of the application
areas of the data structure, which has motivated the name of the tool.
Figure 6.9 presents the user interface of the program. The two forests are
displayed and the mappings between the forests are shown in tables. The
tool also tests that the mappings are correct using the set-based algorithm.
The filter set may be changed and the number of filters in the structure
can also be adjusted.

ContextBrowser demonstrates the use of the structure in real-time col-
lection synchronization by defining the queries and profiles and then up-
dating a query-defined collection as profiles are added. We investigate
collection synchronization in more detail in Chapter 9.

1Available at www.hiit.fi/fuego/fc/demos

6.9 Related Work 127

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

m
s
)

Filters

Variable profiles with overlap

DoubleForest
Optimized DoubleForest

Set-based

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

m
s
)

Filters

Variable queries with overlap

DoubleForest
Optimized DoubleForest

Set-based

 0

 200000

 400000

 600000

 800000

 1e+006

 100 200 300 400 500 600 700 800 900 1000

O
p
e
ra

ti
o
n
s

Filters

Variable profiles with overlap

DoubleForest
Optimized DoubleForest

Set-based

 0

 200000

 400000

 600000

 800000

 1e+006

 100 200 300 400 500 600 700 800 900 1000

O
p
e
ra

ti
o
n
s

Filters

Variable queries with overlap

DoubleForest
Optimized DoubleForest

Set-based

Figure 6.7: DoubleForest overlap results for 2D range filters.

6.9 Related Work

Many different indexing algorithms have been developed for matching [14].
The presented work differs from the majority of the current matching algo-
rithms, because it relies only on the covering relation. R-tree [61] and its
variants, such as R* and R+-tree, are efficient structures for determining
containment, intersection, and overlapping of multi-dimensional data, such
as geographical data. They require that minimum bounding rectangles can
be computed for the nodes in the trees.

Navigating nets [76] are leveled directed acyclic graphs, in which mul-
tiple paths may exist from the root to a lower-level node. The main ap-
plication is nearest neighbour search for points and range queries. Each
consequent level covers the data placed on the lower level and the levels are
connected using pointers to allow navigation between scales. This is similar
in principle to the filters poset algorithm, but the navigating net algorithm
assumes metric spaces and is only applicable for points and ranges.

A cover tree [11] is a leveled tree, in which each level covers the level
under it. The main application of cover trees is nearest neighbour search

128 6 DoubleForest for Temporal Subspace Matching

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

m
s
)

Filters

Variable profiles and queries with cover

DoubleForest
Optimized DoubleForest

Set-based

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

m
s
)

Filters

Variable profiles and queries with overlap

DoubleForest
Optimized DoubleForest

Set-based

 0

 200000

 400000

 600000

 800000

 1e+006

 200 400 600 800 1000 1200 1400 1600 1800 2000

O
p
e
ra

ti
o
n
s

Filters

Variable profiles and queries with cover

DoubleForest
Optimized DoubleForest

Set-based

 0

 200000

 400000

 600000

 800000

 1e+006

 200 400 600 800 1000 1200 1400 1600 1800 2000

O
p
e
ra

ti
o
n
s

Filters

Variable profiles and queries with overlap

DoubleForest
Optimized DoubleForest

Set-based

Figure 6.8: DoubleForest results for variable profiles and queries for 2D
range filters.

for points. The poset-derived forest is similar in idea to the cover tree, but
the underlying assumptions and expressiveness are fundamentally different.
The cover tree assumes metric spaces.

Transitive closure [40, 147, 148] is a vital operation for database systems,
query systems [36], information management systems and ontologies [2],
and most recently context-aware systems [3]. There are many algorithms
for transitive closure with different assumptions and performance. Typ-
ically, transitive closure algorithms are static and designed for database
operations. In this case, efficient disk I/O is important, which has lead to a
number of directed acyclic graph (DAG) based optimization techniques [98],
for example, range compression [2] and hybrid algorithms [3]. In addition to
static algorithms, several dynamic transitive closure algorithms have been
proposed in recent years [75].

The DoubleForest differs from previous transitive closure algorithms,
because we focus on a fully dynamic algorithm for binary relations, DAGs,
and the edge set introduced by a new node is not known. Moreover, our
matching problem is based on two separate sets: the queries and the pro-

6.9 Related Work 129

Figure 6.9: The user interface of the ContextBrowser.

files.

The main differences of the poset-derived forest to prior work is that in-
dexing algorithms, such as R-trees, assume metric spaces and that bounding
rectangles may be determined. The proposed mechanism only assumes the
covering relations, which makes it suitable for mixed queries that combine,
for example, strings and integers. We are not aware of any data structures
for the efficient cover-based matching, what we call subspace matching, of
arbitrary filters. A graph-structure approach for matching simple content
was proposed in [77]. In this approach, the content is represented by prede-
fined hierarchical categories. The system was optimized by computing the
transitive closure for each element in the graph, which allows constant time
queries for the predefined types. The algorithm for computing the closure
was not elaborated.

130 6 DoubleForest for Temporal Subspace Matching

6.10 Summary

In this chapter, we have presented a new data structure for filter-based
matching with emphasis on temporal operation and content defined using
subspaces. We use the properties of filters, namely covering, to optimize
the data structure. This strategy requires that covering may be efficiently
determined for the input filter set. We gave a formal definition of the Dou-
bleForest structure and proofs for its correctness. Experimental results with
range queries, which represent input workload with a moderate amount of
covering relations, indicate that the proposed optimizations are useful, es-
pecially for cover-based matching. However, overlap-based matching was
observed to have more overhead than cover-based matching.

The envisaged application areas of the structure are context-aware sys-
tems, information routing, information exchange in peer-to-peer systems,
change-set computation, and matching profiles and queries. We noted that
the data structure automatically computes a taxonomy for both profiles
and queries, which is envisaged to be useful for directory services.

Chapter 7

Constant-time Subspace Matching
with Preloading

In this chapter, we present a constant-time technique for temporal sub-
space matching by extending the DoubleForest with full preloading. This
technique supports constant-time insertions and deletions for those queries
and profiles that have been preloaded. This technique requires a priori
knowledge of the filters.

7.1 Preloading

The performance of the DoubleForest data structure may be enhanced by
preloading queries and profiles in advance. A special dummy identifier is
associated with the preloaded objects to indicate that they are placeholders.

The insertion and deletion of an object to the data structure that has
been loaded previously is a constant-time operation. Theorem 7.1 estab-
lishes that the mappings are determined in constant-time.

Theorem 7.1 The cost of computing the mappings for a preloaded object
is O(1).

Proof. The mappings have been computed beforehand for a preloaded
query or profile. Hence, for an insert or delete operation, the mappings are
retrieved in O(1) time using a hashtable. ✷

If all or part of the profiles and queries are known beforehand, pre-
loading may be used to significantly improve temporal subspace matching
performance. The optimizations for DoubleForest indicate that preloading
may be performed efficiently. Since the DoubleForest functions irrespec-

131

132 7 Constant-time Subspace Matching with Preloading

tive of preloading, the system degrades well for those objects that were not
preloaded.

7.2 Experimentation

We have experimented with two benchmark scenarios with preloading. The
benchmark workload is identical to the 2-dimensional range workload dis-
cussed in Section 6.8, and both profiles and queries are inserted into the
structure. The evaluated data structures are: DoubleForest, optimized
DoubleForest, and the set-based algorithm. The set-based algorithm is not
preloaded. Each measurement was replicated 5 times.

In the first preload benchmark, we preload a variable percentage of
profiles and queries. Figure 7.1 presents this scenario and illustrates the
preload set creation. The preloaded set is a randomly selected subset of
the input set. The size of this preload set is determined by the preload
percentage.

Workload

generator

DoubleForest

Correctness

testing

Profile Forest

Query Forest

Profile Filters

Preload

Query Filters

1.

1.

2.

2.

3.
Query Filters

Preload

Profile Filters

Figure 7.1: The full preload benchmark.

It may also be the case that preloading does not succeed and the pre-
loaded objects represent additional overhead. We have also experimented
with this scenario, in which the preloaded sets are randomly generated and
not subsets of the input sets. This happens when the preloading fails.

Preloading. In each experiment the size of the query and profile sets is
constant (1000 filters) and the preload level is variable. The results indi-
cate that preloading is very effective and with 100% preloading, constant

7.2 Experimentation 133

matching time was achieved. In this optimum case, the number of covering
operations required was zero. Figure 7.2 presents the results when both
queries and profiles are preloaded. After preloading they are inserted into
the structure in random order. Preloading is effective in this scenario for
both cover and overlap.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
s
)

Preload %

Variable profiles and queries with cover

DoubleForest
Optimized DoubleForest

Set-based

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
s
)

Preload %

Variable profiles and queries with overlap

DoubleForest
Optimized DoubleForest

Set-based

 0

 200000

 400000

 600000

 800000

 1e+006

 10 20 30 40 50 60 70 80 90 100

O
p
e
ra

ti
o
n
s

Preload %

Variable profiles and queries with cover

DoubleForest
Optimized DoubleForest

Set-based

 0

 200000

 400000

 600000

 800000

 1e+006

 10 20 30 40 50 60 70 80 90 100

O
p
e
ra

ti
o
n
s

Preload %

Variable profiles and queries with overlap

DoubleForest
Optimized DoubleForest

Set-based

Figure 7.2: Inserting both queries and profiles with a variable preload level.

Preloading Random Filters. The random preload scenario is similar
to the previous benchmark scenario, but in this case the preloaded sets
are independent of the queries and profiles and are randomly generated for
each replication. Figure 7.3 presents the results when random preload is
performed for both queries and profiles. After preloading they are inserted
into the structure in random order. Random preloading does not introduce
significant overhead for covering when compared with the set-based algo-
rithm that does not use preloading. However, the results indicate significant
overhead for overlap-based matching.

134 7 Constant-time Subspace Matching with Preloading

 0

 10000

 20000

 30000

 40000

 50000

 60000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
s
)

Preload %

Variable profiles and queries with cover

DoubleForest
Optimized DoubleForest

Set-based

 0

 50000

 100000

 150000

 200000

 250000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
s
)

Preload %

Variable profiles and queries with overlap

DoubleForest
Optimized DoubleForest

Set-based

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 1.8e+006

 10 20 30 40 50 60 70 80 90 100

O
p
e
ra

ti
o
n
s

Preload %

Variable profiles and queries with cover

DoubleForest
Optimized DoubleForest

Set-based

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 10 20 30 40 50 60 70 80 90 100

O
p
e
ra

ti
o
n
s

Preload %

Variable profiles and queries with overlap

DoubleForest
Optimized DoubleForest

Set-based

Figure 7.3: Inserting both queries and profiles with a variable random
preload level.

Chapter 8

Filter Merging

In this chapter we present techniques for incorporating filter merging into
content-based routers in a transparent fashion. The techniques are inde-
pendent of the filtering language and routing data structure used, and do
not depend on the mechanism that is used to merge two input filters. We
present two distinct ways to merge filters: local merging and remote merg-
ing. In the former, merged filters are placed into the data structure. In
the latter, merged filters are stored separately from the data structure and
only for exiting (outgoing) routing table entries.

8.1 Overview

Filter merging is potentially useful for event routers, because it allows to
remove redundancy from filter sets. Figure 8.1 illustrates the benefits of
filter merging. First, we have a set of four filters. There are no covering
relations in this set, so they need to be propagated by the current router.
The filters may be merged by applying an existence test (top filters) and
combining two ranges (lower filters), resulting in two merged filters. There
are covering relations between the merged filters, and only the top filter is
propagated. In this example, the size of the propagated set was reduced
from four filters to one filter.

8.2 Merging and Routing Tables

We propose a merging extension to the generic content-based routing table.
The desired characteristics for this merging mechanism are simplicity in
implementation, efficiency, and minimal requirements for the underlying
routing table. We assume that a merge(F1,F2) procedure exists that merges

135

136 8 Filter Merging

Stock: abc
Val: X > 10

Stock: abc
Val: X < 12

Stock: abc
Val: existence

Stock: abc
Data: X

Val: X in [2,14]

Stock: abc
Data: X

Val: X in [9,30]

Stock: abc
Data: X

Val: X in [2,30]

=

=

+

+

I. There are no covering

relations in this set of four

filters.

II. There are covering relations in

the merged set. The more general

filter is sent.

Figure 8.1: Example of filter merging.

input filters F1 and F2 and returns a single merged filter FM for which
FM ⊒ F1 and FM ⊒ F2. A merge of two or more filters is called a merger.
Filter merging is useful, because it allows to further remove redundancy
and keep the number of elements minimal.

A merger is either perfect or imperfect. A perfect merger does not result
in false positives or negatives, whereas an imperfect merger may result in
false positives. In addition to accuracy, we have additional requirements
with filter merging:

• Merging must be transparent for applications and routers.

• Merging must maintain the set of inserted nodes. An insert of x may
result in a new merged node merge(x,y), but after the deletion of x

the resulting node must cover y.

Filter merging may be applied in different places in the event router.
We distinguish between three different merging scenarios and techniques:
local merging, root-merging, and aggregate merging. In the first scenario,
filter merging is performed within a data structure. In the second scenario,
filter merging is performed on the root sets of local filters, edge/border
routers, and hierarchical routers. In the third scenario, filter merging is
performed on the two first levels of a peer-to-peer data structure, such as
the filters poset. The latter two scenarios are exampled of remote merging.

Figure 8.2 presents two router configurations with filter merging and
highlights the modular structure of content-based routers. Figure 8.2a il-
lustrates filter merging in peer-to-peer routing. The filters poset is an

8.3 Rules for Merging 137

example data structure for peer-to-peer routing. Local clients are stored
by the redundant forest data structure, which is the preferred structure for
storing filters from local clients.

Filters Poset

k neighbours +

local clients

Poset-derived

Forest

n local clients

a) Peer-to-peer

Root Merger

Aggregate Merger

Non-redundant

Forest

1 master router

k slave routers

Poset-derived

Forest

n local clients

b) Hierarchical

Root Merger

Root Merger

Slave Slave

master

Figure 8.2: Merging extension for routing tables.

Two different merging techniques are used in the figure: root-merging
for local clients and aggregate merging for remote operation. The merging
of the local filters is easy and efficient, because it is performed only on the
root-set and re-merging is needed only when this set changes.

Figure 8.2b shows the use of filter merging in the hierarchical envi-
ronment using the forest data structure. The figure illustrates the use of
root-merging for both local clients and the master router. Filter merging is
easy for both local clients and the master router. Only the root sets of the
local routing table and external routing table, a non-redundant forest, are
merged. The forest is superior to the filters poset in hierarchical operation,
because the computation of the forwards sets is not needed.

8.3 Rules for Merging

Two rule sets are needed in order to ensure that data structures that have
been extended with merging are equivalent to the same data structures
without merging. First, a set of mergeability rules are defined that specify

138 8 Filter Merging

when two filters may be merged. Then, we define a set of merging rules
for preserving equivalence for insertions and deletions between routing data
structures and their counterparts that have been extended with filter merg-
ing. If deletions are allowed, filter merging requires that the merging system
keeps track of both the mergers and their components.

8.3.1 Mergeability Rules

Given that it is possible to merge two input filters, for example using tech-
niques presented in Appendix A, the merging system must decide whether
or not merging is possible based on information in the routing table.

Filters may be merged in two ways: local merging that is performed
within the data structure and remote merging that is performed for exiting
(outgoing) routing table entries only. The former is given by the local
mergeability rule presented in Definition 8.1. This rule says that only those
filters that are mergeable and share an element in the subscribers set may
be merged. This requires that the subscribers sets of the input filters are
updated accordingly. Local merging means that mergeable filters from the
same interface are merged. This allows merged filters to be stored within
the data structure. This approach puts more complexity into the data
structure, but also benefits the local router.

Definition 8.1 Local mergeability rule: The operation merge(F1, F2) may
be performed if F1 and F2 are mergeable and the intersection of their sub-
scribers sets has at least one element, subscribers(F1) ∩ subscribers(F2)
6= ∅. The subscribers set of the resulting merger must contain only a single
element.

The latter option is given by Definition 8.2. Remote merging merges
any filters that have the same or overlapping forwards sets. This may be
applied only to exiting entries and the mergers should not be placed into
the data structure. Remote merging allows the aggregation of multicast
traffic, since the forwards sets of root nodes are essentially sent to most
neighbours. Only the first two levels of nodes need to be considered and
in most cases it is enough to inspect only root nodes. On the other hand,
this approach does not benefit the local router in matching operations, but
the benefit is gained in distributed operation if all neighbours employ this
approach as well.

8.3 Rules for Merging 139

Definition 8.2 Remote mergeability rule: Given that the forwards sets of
the filters are non-empty, the filters are mergeable only when forwards(F1)
∩ forwards(F2) 6= ∅. The forwards set of the resulting merger is the inter-
section of the two forwards sets.

The rule of Definition 8.1 corresponds to interface-specific merging of
filters. The rule of Definition 8.2 takes into account the forwards sets and
may be used to aggregate multicast traffic. These rules may be applied
simultaneously.

8.3.2 Local Merging Rules

Let M denote the set of merged nodes/filters. Each element x ∈ M is
a result of a sequence of merge operations and has a corresponding set,
denoted by CO(x), which contains the components of the merger x. Fur-
ther, let CV (x) denote nodes that were removed due to covering by x if the
merger is placed in the data structure. The sets CO and CV are needed
in order to maintain transparent operation.

We present six rules for maintaining equivalence. These rules do not
specify the semantics or performance of the merging mechanism. They
specify the requirements for equivalence. A merging algorithm needs to
follow these rules. For example, rule number five does not imply that re-
merging of the removed merger should not be done. We assume that the
routing data structure provides two operations: add and del. The add

inserts a filter to the structure, and del removes a filter. Note that the del

in rule four is applied to a merger, and the del in rule five is applied to
a component of a merger. The del operation for a merger is only invoked
internally; the client of the system that sent the components of the merger
has no knowledge of its existence. When a del is performed to a node that
is part of a merger’s CV set, the deleted node is also removed from that
set.

We also define two auxiliary operations addComponent and addCom-
ponents. The addComponent(S, F) operation takes a set S and a filter F

as arguments and adds F to S if there does not exist a filter in S that
covers F . Similarly, any filters in S covered by F are removed from S.
The addComponents(S, P) operation is similar to addComponent, but the
second argument, P , is a set.

The following rules assume that subscribers(F1) ⊇ subscribers(F2) and
that identical filters, F1 ≡ F2, are detected and processed before any merg-
ing rules are applied. The rules pertain to two arbitrary input filters F1

and F2. The rules are presented as tautologies, they have to be always

140 8 Filter Merging

true, and we assume that each operation on the right side returns true. We
assume that elements in a conjunction are evaluated from left to right.

1. F1 ⊒ F2 ∧ F1 6∈ M ∧ F2 6∈ M ⇒ del(F2). This rule says that when a
non-merged node covers another non-merged node, the covered node
is removed using the del operation. The del operation performs nec-
essary data structure changes pertaining to possible interface elimi-
nation.

2. F1 ⊒ F2 ∧ F1 6∈ M ∧ F2 ∈ M ⇒ del(F2). This rule states that when
a merger is covered by a non-merger, the merger is removed and all
of its components are also removed (Rule 6).

3. F1 ⊒ F2 ∧ F1 ∈ M ∧ F2 6∈ M ⇒ del(F2) ∧ addComponent(CV (F1),
F2). This rule states that when a merger covers a non-merger, the
covered node is removed and added to the merger’s set of covered
nodes.

4. F1 ⊒ F2 ∧ F1 ∈ M ∧ F2 ∈ M ⇒ addComponents(CV (F1), CO(F2))
∧ addComponents(CV (F1), CV (F2)) ∧ del(F2). Specifies that when
a merger covers another merger, the covered merger is removed (Rule
6) and all components of the merger and nodes covered by the merger
are added to the respective sets of the covering merger.

5. del(F1) ∧ (∃x ∈ M : F1 ∈ CO(x))(∀x ∈ CO(F1) \ {F1} : add(x)) ∧
(∀x ∈ CV (F1) : add(x)). This rule says that when a component of
a merger is removed, all the components and covered nodes should
be returned to the data structure. After this, the merger should be
removed.

6. del(F1) ∧ F1 ∈ M ⇒ (M′ = M\ {F1}) ∧ (∀x ∈ CO(F1) : del(x)) ∧
(∀x ∈ CV (F1) : del(x)). This rule states that when a merger is
removed, all its components must also be removed.

8.3.3 Remote Merging Rules

Remote filter merging rules are similar to the local merging rules with the
exception that they do not need to address covered nodes within the data
structure, because merged filters are not inserted into the data structure.
On the other hand, it is useful to keep track of the nodes covered by a
merger, the direct successor set. This may be done by placing covered
nodes in CO or by using the CV set. In the former case, the third rule is
not needed, and for the latter case the del in the third rule is not performed.

8.4 A Generic Aggregate Mechanism 141

For remote merging, instead of the subscribers set condition, we have the
forwards set condition presented in Definition 8.2. Implementations need
to update the forwards sets of any mergers covered by other mergers.

8.4 A Generic Aggregate Mechanism

We present a simple generic remote merging mechanism based on the re-
mote merging rules. The data structure must provide two information sets:
the root set, and the forwards sets of root nodes. Both are easy to compute
and the computation of the forwards set may be performed based on the
root set alone. We propose that all mergeable root filters with the same
forwards sets are merged. The root set is the natural candidate set for
merging, because it covers other filters. By merging filters with the same
forwards sets we simplify the finding of the mergeable set. Also, there is
no need to keep track of separate forwards set entries.

The proposed technique may be applied to both hierarchical routing
and peer-to-peer routing. For hierarchical routing, the forwards set of
root nodes contains only a single entry, the master router. In peer-to-
peer routing, merged sets are always multicast to at least |neighbours|−1
external interfaces. This merging technique may be called weakly merging
for peer-to-peer routing, because it does not merge all mergeable candidates
and unicast updates are not considered. It is more efficient to operate on
aggregates than on separate entries.

The proposed aggregate merging mechanism is:

Generic It makes minimal assumptions on the underlying data structure.
It may be used with both peer-to-peer and hierarchical routing, and
also for local clients. Merging a filter in the hierarchical scenario is
equivalent to merging filters from local clients, because in both cases
there is only one direction where the messages are forwarded.

Efficient It is activated only when the root set changes, and it uses the
forwards sets to aggregate merger updates. This kind of approach
may be used to leverage any multicast mechanisms.

Relatively simple Tracks changes in the root set and merges filters with
the same forwards sets. This requires management of the merged
sets.

The merging mechanism requires that an additional data structure is
used to keep track of merged nodes. The sets M, CO, and optionally CV

are needed for aggregate merging.

142 8 Filter Merging

Inserting Filters The insertion of a new filter f is only interesting when
it is placed in the root set. If f is not mergeable, the add operation is per-
formed. If f is covered by an existing filter or a merger, the corresponding
forwards set is empty. For the add operation each new element f in the
root set must be checked for covering by mergers. The new forwards set
for f is

forwards’(f) = forwards(f)−
⋃

f ′∈M∧f ′⊒f

forwards(f ’). (8.1)

If f has a non-empty forwards set and is mergeable with an existing
filter or filters, aggregate merging needs to be performed. Merging can be
performed only for those filters that have the same forwards sets. Any
mergers covered by a new root filter f are discarded if they have the same
forwards sets. This approach may result in unnecessary updates if a merger
covers another merger and they have differing forwards sets. On the other
hand, this simplified approach does not require the complex tracking of the
forwards sets.

Deleting Filters Deletion of an existing filter f is only interesting if f

is part of a merger or in the root set. When a filter that is part of a merger
is removed, the merger is either re-evaluated if the size is greater than one,
or removed if there is only one remaining filter in the merger. In either
case the merger is unsubscribed. The corresponding uncovered set must
be computed using the root set and forwarded with the unsubscription.
The forwards sets of any direct successors to a removed merger must be
re-evaluated. The forwards set is empty for any element in the successor
set that is covered by other mergers.

8.5 Root-set Merging Algorithm

In this section we present the basic root-set merging algorithm that is the
building block for the various merging mechanisms: local, hierarchical, and
aggregate.

Algorithm 14 presents the basic merging algorithm that tests the merge-
ability of the given node n against the given set S. R denotes the root set
of the routing data structure. If a merge is possible, the mergeability rules
are applied and the root set is scanned for covered nodes. The algorithm
maintains the CV set that contains the direct successors of a merged node.
This set is convenient when deleting mergers. Algorithm 14 is linear to the

8.5 Root-set Merging Algorithm 143

Algorithm 14 The merge-set algorithm.

merge-set(S, R, n)

1 ✄ Scan set for mergeable nodes
2 ForAll x ∈ S

3 do
4 if mergeable(x, n)
5 then
6 m← merge(x, n)
7 addComponents(CO(m), CO(x) ∪ {n, x})
8 addComponents(CV (m), CV (x))
9 CO(x)← ∅

10 CV (x)← ∅
11 S ← S \ {x}
12 ✄ Scan merged set for cover
13 ForAll x ∈M
14 do
15 if m ⊒ x

16 then
17 addComponents(CV (m), CO(x))
18 addComponents(CV (m), CV (x))
19 M←M\ {x}
20 ✄ Scan root set for cover
21 ForAll y ∈ R

22 do
23 if y 6∈ CV (m) ∧ y 6∈ CO(m) and m ⊒ y

24 then
25 addComponent(CV (m), y)
26 M←M∪ {m}
27 return true

28 return false

144 8 Filter Merging

size of the input set S, the number of root nodes, and the size of the merger
set M. Since S is either R orM, and |M| ≤ |R|, we have O(|R|).

Algorithm 15 gives the algorithm for the addition of a new node N .
When many nodes are added to the root set after a del, this may be invoked
sequentially. The algorithm first scans the merger setM for covering nodes.
If one or more are found, it is enough to update the CV sets of the covering
mergers by adding the new node to them. If there are no covering mergers,
the algorithm invokes merge-set first with the set of mergers M and if
that is not successful, the set of non-covered and non-merged root nodes.
We note that the algorithm may not find the best possible mergers, but
this approximative approach is more favourable when support for frequent
updates is required.

Algorithm 15 The root-set-add algorithm.

root-set-add(n)

1 Let F be a Boolean flag
2 F ← false

3 ✄ Check if the node is covered by a merger
4 Forall x ∈M
5 do
6 if x ⊒ n

7 then
8 addComponent(CV (x), n)
9 F ← true

10 elseif ¬F ∧ n ⊒ x

11 then remove merger x

12 if F

13 then return
14
15 ✄ Try to merge with merged set
16 F ← merge-set(M,R,n)
17 if F

18 then return
19
20 ✄ Try to merge with non-covered and non-merged nodes
21 T ← R \ (

⋃
x∈M CV (x) ∪ CO(x))

22 F ← merge-set(T ,R,n)

8.6 Experimentation with One-Shot Merging 145

Algorithm 16 presents the del operation. When a root node is removed,
the root-set-del is invoked first, and after that the actual del operation
is performed for n. The root-set-del simply removes any mergers whose
components are removed. A node is also removed from any CV sets. Pos-
sible re-merging is performed when elements of the uncovered set, when
non-empty, are added to the structure. Finally, the root set is scanned
for nodes that are not covered by mergers and that have not yet been for-
warded. Actual implementations need also to take into account any changes
due to interface elimination and nodes being removed from the root set.

Algorithm 16 The root-set-del algorithm.

root-set-del(n)

1 if ∃x ∈M : n ∈ CO(x)
2 then
3 CO(x)← ∅
4 CV (x)← ∅
5 M←M\ {x}
6 Forall x ∈M: n ∈ CV (x)
7 do
8 CV (x)← CV (x) \ {n}

8.6 Experimentation with One-Shot Merging

Figure 8.3 presents an overview of experimentation with filter merging.
We experimented with both perfect and imperfect merging using the add
scenario. The main goal of the merging benchmark is to compare the
performance of the data structures when using merged filter sets.

The workload generator is used to generate filters and notifications.
Each interface-specific filter set is merged using the merging algorithm and
the merging time is recorded. The merging time includes only the time
spent in the merging of the root set for all interfaces and thus it represents
the overhead of all neighbouring routers and not the overhead of a single
router. The average processing time for a single router can be obtained
by dividing the time by the number of interfaces. The filters are also
merged as a one-shot operation in the benchmark and the removal of a
merged filter is not considered. The benchmark scenario corresponds to a
situation, in which the router receives already merged filter sets. We can

146 8 Filter Merging

compare the performance of the data structures in this situation with the
basic benchmark in which merging is not used.

I1

I2

IN

Filters

Filters

Filters

Workload

generator

Notifications

Poset or Forest

Merged

Merged

Merged

Merging time

1. Add scenario

2. Match test

Correctness

testing

Figure 8.3: Add scenario with merging.

Appendix A presents the perfect filter merging mechanism that we use
in experimentation, but the techniques we have presented in this chapter
are not restricted to this mechanism. The filters were generated using the
structure enforced by a schema. Each attribute filter has a single integer
predicate randomly selected from the set {<,>,≤ ,≥ ,=, 6=, [a, b]}. The
range for integer values was 100. Notifications are generated as follows:
each notification has the structure of the schema, integer tuples have a ran-
dom value from the range [0, 100] and strings are drawn from the constraint
name pool. We used the following equipment: an HP laptop with a 2 GHz
Pentium III and 512MB of main memory, Windows XP, and Java JDK
1.4.2.

The two important cases in experimentation were a variable number
of filters with unique interfaces and a variable number of interfaces with
a static number of filters. We used a variable number of attribute filters
(2-4) and 1 schema for the results. The motivation for using a variable
number of attribute filters is that it seems to be more realistic for multi-
router environments than a static number of attribute filters, because user
interests vary. Hence, we are using one attribute filter for the type and
then 1-3 attribute filters for additional constraints. The single schema
situation is the most difficult scenario for matching and merging, because
two schemas are by definition independent and a notification may match
only one schema (event type) at a time, but filters of the same schema have
to be analyzed.

8.6 Experimentation with One-Shot Merging 147

We measured matching time using a matching algorithm that walks only
those sub-posets or sub-trees of the structure that match the notification.
We compare this algorithm with a naive matcher that tests the notification
against each filter.

Perfect Merging Figure 8.4 presents the impact of interface-specific
merging for forest and poset performance with a static number of interfaces
(3) and a variable number of filters. The merging benchmark compares the
insertion and matching performance of interface-specific minimal cover sets
with merged sets. 60 replications were used for these results. The merging
time represents the worst case, because the input sets were merged using a
one-shot procedure and normally this would be performed incrementally.

 0

 10

 20

 30

 40

 50

 60

 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Add scenario time

Balanced forest
Merged balanced forest

Filters poset
Merged filters poset

Merging time

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 50 100 150 200 250 300 350 400 450 500

F
ilt

e
rs

Filters

Root size

Balanced Forest root-size
Merged balanced forest root-size

Poset root-size
Merged poset root-size

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Matching time

Balanced forest
Merged balanced forest

Poset
Merged Poset

Naive

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300 350 400 450 500

F
ilt

e
rs

Filters

Merge set size

Input set
Merged set

Minimal cover set

Figure 8.4: Impact of merging on the forest and poset performance. Results
for 3 interfaces.

As the number of filters grows the merging algorithm is able to remove
redundancy. The root size of the merged forest and the poset are the
same and root set sizes in merging scenarios are considerably smaller than
in normal operation. The root set sizes are shown for the merged and
non-merged sets, respectively. The size of the non-merged set grows with
the number of filters, whereas the size of the merged set is constant in

148 8 Filter Merging

the figure. Based on these results the merging time is reasonable and the
merged forest or poset is created quickly. The matching time for the merged
set is considerably shorter than for the non-merged set.

Figure 8.5 presents merging results for a variable number of interfaces
and a static number of filters (500). The insertion and matching times for
the merged sets are also significantly lower in this scenario. The processing
performance decreases as the number of interfaces grows, because there are
fewer filters per interface. The root sizes are very small for the merged sets
whereas the non-merged sets are large. This is due to saturation, where
the merged roots become very general when there are many filters.

 0
 20
 40
 60
 80

 100
 120
 140
 160

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

Interfaces

Add scenario time

Balanced forest
Merged balanced forest

Filters poset
Merged filters poset

Merging time

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 1 2 3 4 5 6 7 8 9 10

F
ilt

e
rs

Interfaces

Root size

Balanced forest root-size
Merged balanced forest root-size

Poset root-size
Merged poset root-size

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

Interfaces

Matching time

Balanced forest
Merged balanced forest

Poset
Merged Poset

Naive

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8 9 10

F
ilt

e
rs

Interfaces

Merge set size

Input set
Merged set

Minimal cover set

Figure 8.5: Impact of merging on the forest and poset performance. Results
for 500 filters.

Imperfect Merging We also experimented with imperfect merging with
the same parameters as the perfect merging scenario. Imperfect merging
had similar performance to perfect merging. When the number of non-
covered filters with the same structure grows, imperfect merging performs
considerably better than perfect merging. On the other hand, the mech-
anism may result in a number of false positives. The false positive rate
depends on the parameters.

8.7 Experimentation with Dynamic Root Merging 149

8.7 Experimentation with Dynamic Root Merg-

ing

Experimentation with the dynamic root merging algorithm presented pre-
viously is similar to the add and add/remove scenarios presented in Chap-
ter 4. Figure 8.6 illustrates the benchmark. First, a number of filters (up to
500) are generated using the workload generator. Each filter has a unique
interface, which corresponds to the local or hierarchical scenario. The fil-
ters are added to a forest extended with the root merging algorithm. The
merging algorithm maintains a merged root set when filters are added and
removed to the structure.

Filters

Workload

generator

Notifications

Forest

1. Add or Add/Remove scenario

2. Matching test

Correctness

testing

Root

Merger

Figure 8.6: Add and add/remove scenario with the root merger algorithm.

Correctness of operation is ensured by testing that the merged set does
not result in false negatives and positives, and ensuring that the internal
data structures used by the merging algorithm are correct.

Each measurement was replicated 20 times and the predicates were ran-
domly selected form the set of predicates {<,>,≤ ,≥ ,=, 6=, [a, b]} using a
uniform distribution. The two benchmarked filter schemas were: a variable
number of attribute filters (1-3), and a static number of attribute filters (2
and 3). The number of filters to be added and removed in the add/remove
microbenchmark was 100.

Figure 8.7 presents the results for the variable number of attribute filters
case. In this scenario, filter merging may be performed without significant
overhead, because the root set is small due to covering and root filters
have only a few attribute filters. Merging is very useful in this case and a
constant or near constant root set size is achieved, whereas the non-merged
root set size is linear to the number of input filters.

Figure 8.8 presents the results for two static attribute filters. Filter
merging is also beneficial in this case, but has more overhead than for
the previous microbenchmark. The merged filter set size has also a near
constant size in this case. The root set size is larger in this case compared

150 8 Filter Merging

 0
 50

 100
 150
 200
 250
 300
 350
 400

 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Add scenario time

Forest
Merged forest

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 100 150 200 250 300 350 400 450 500

F
ilt

e
rs

Filters

Add scenario root set size

Forest
Merged forest

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 100 150 200 250 300 350 400 450 500

T
o

ta
l
c
o

v
e

ri
n

g
 o

p
s

Filters

Add/remove scenario total ops

Forest
Merged forest

 0

 20

 40

 60

 80

 100

 120

 140

 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Add/remove scenario total time (ms)

Forest
Merged forest

Figure 8.7: Add and add/remove scenario for a variable number of attribute
filters.

to the previous case and filter merging cannot be performed as often due
to the static number of attribute filters.

Figure 8.9 shows the results for three static attribute filters. In this case,
the merging overhead is substantial and the root set size is not reduced.
This demonstrates the effects of a non-mergeable workload.

8.8 Summary

The results show that covering and merging are very useful and give sig-
nificant reduction of the filter set, especially with a variable number of
attribute filters, because those filters with fewer attribute filters may cover
other filters with more attribute filters. We also experimented with a static
scenario, where the number of attribute filters per filter is fixed. The static
scenario also gives good results for covering, but perfect merging does not
perform well when the number of attribute filters grows.

When the number of filters per schema grows the whole subscription
space becomes covered, which we call subscription saturation. This moti-
vates high precision filters for a small amount of filters, and more general
filters when the subscription space becomes saturated.

8.8 Summary 151

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Add scenario time

Forest
Merged forest

 0
 20
 40
 60
 80

 100
 120
 140
 160

 100 150 200 250 300 350 400 450 500

F
ilt

e
rs

Filters

Add scenario root set size

Forest
Merged forest

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 100 150 200 250 300 350 400 450 500

T
o

ta
l
c
o

v
e

ri
n

g
 o

p
s

Filters

Add/remove scenario total ops

Forest
Merged forest

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Add/remove scenario total time

Forest
Merged forest

Figure 8.8: Add and add/remove scenario for a static number of attribute
filters (2).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Add scenario time

Forest
Merged forest

 0

 50

 100

 150

 200

 250

 300

 100 150 200 250 300 350 400 450 500

F
ilt

e
rs

Filters

Add scenario root set size

Forest
Merged forest

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

 100 150 200 250 300 350 400 450 500

T
o

ta
l
c
o

v
e

ri
n

g
 o

p
s

Filters

Add/remove scenario total ops

Forest
Merged forest

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s
)

Filters

Add/remove scenario total time

Forest
Merged forest

Figure 8.9: Add and add/remove scenario for a static number of attribute
filters (3).

152 8 Filter Merging

The results indicate that filter merging is feasible and beneficial when
used in conjunction with a data structure that returns the minimal cov-
ering set, and the filter set contains elements with a few attribute filters
that cover more complex filters. The cost of unsubscription, or removing
filters from the system, can be minimized by merging only elements in the
minimal cover or root set. When a part of a merger is removed, the merger
needs to be re-evaluated. Any delete or add operation outside the minimal
cover does not require merging. For complex filter merging algorithms it
is also possible to use a lazy strategy for deletions. In lazy operation, the
system delays re-merging and counts the number of false positives. When
a threshold is reached the minimal cover set or parts of it are merged and
sent to relevant neighbours.

Part V

Applications

153

Chapter 9

Collection and Object
Synchronization Based on Context
Information

We present a novel mechanism for collection and object synchronization
based on context information. The mechanism is based on a distributed
event system and uses event filters to represent context and realize context
queries. The central operations of the system are storing and retrieving
objects by their context. The new feature of the system is context-based
synchronization, which allows synchronizing collections of objects continu-
ously based on the given context. The system may also be used for context-
based service provisioning. We present mechanisms for both collection and
object synchronization. The former uses the publish/subscribe paradigm
and the latter builds on an XML-aware file synchronizer. We focus on
the first mechanism and present a context-aware photo library as a sample
application.

9.1 Introduction

A number of core technologies are needed in order to realize the intelligent
and adaptive services of tomorrow. Efficient and intelligent data synchro-
nization is a basic property of current and future applications, especially in
mobile and ubiquitous environments. Mobile phones, laptops, and PDAs
have become commonplace. We are faced with the question of how to lo-
cate important data items and keep them synchronized on different devices.
Furthermore, the rules for synchronization are dependent not only on the
device, but also on the past, current, and future operating context. In
this chapter, we present a middleware system and an API for creating and

155

156
9 Collection and Object Synchronization Based on Context

Information

tracking object collections based on context queries, and then synchronizing
the objects using a file synchronizer.

Context-awareness is considered to be an important property of future
mobile applications [1]. In this chapter, context is represented by a set of
dimensions that take either discrete or interval values. We focus on how
context information may be used to synchronize objects and do not consider
how the actual context information is acquired.

The proposed mechanism is based on three basic middleware services
included in the Fuego middleware service set: the messaging service based
on synchronous and asynchronous SOAP [71], the event service [129] that
facilitates distributed publish/subscribe (pub/sub), and the XML-aware file
synchronizer [82]. The messaging service is responsible for transporting in-
formation between known entities using, for example, explicit addresses or
queue-names. The event service is responsible for decoupled, anonymous
many-to-many information dissemination [51]. The XML-aware file syn-
chronizer provides facilities for the synchronization of files and directories
using XML directory trees and a tree reconciliation mechanism.

The contributions of this chapter are: 1. Using techniques from pub-
lish/subscribe systems to match and compare context information. This
allows both point and subspace matching in the context/content space. 2.
An API for tracking and synchronizing collections using context queries. 3.
Using the distributed pub/sub to synchronize collections, and 4. using an
XML-aware synchronizer to synchronize files. The system may also be used
for context-based service provisioning and context-based personalization of
applications.

This chapter is structured as follows: in Section 9.2 we discuss how con-
text information may be represented using event filters. Section 9.3 presents
the proposed synchronization system and gives examples of context-based
synchronization. In Section 9.4 we examine the sample application and
Section 9.5 discusses related work. Finally, Section 9.6 presents the sum-
mary.

9.2 Representing Context with Filters

Content-based event routing has been proposed as one of the requirements
for advanced applications, in particular for mobile users [33, 44]. Context-
sensitive messaging using content-based routing is implemented by sub-
scribing the context the client is interested in, after which all events match-
ing the context will be delivered to the subscriber. The context is repre-
sented using a filter. The expressiveness of the subscription language is

9.3 Synchronizing Collections 157

one of the main factors that define the power and scalability of the event
service.

A generic data structure, such as the poset-derived forest, supports the
use of arbitrary filter objects as long as the covering relations are defined
for the input set. On the other hand, being generic, they cannot provide the
same performance as filter object and language specific matchers. It is more
efficient to use a separate data structure for matching. In general, filter
matching is done by counting attributes using the counting algorithm [34,
90] or using a tree-based data structure [4]. These more efficient matching
mechanisms assume that the filters and notifications have a distinct and
often simple structure. Moreover, typically the most efficient matchers do
not support frequent changes in the set of queries, which poses challenges
for context queries.

We propose that the DoubleForest is used to store both context profiles
and context queries. Using this structure, it is easy to produce change no-
tifications to relevant entities when an element is added or removed from
either structure. This approach is general and supports various filtering
languages; however, it does not work well if there are only a few covering
relations between the elements. We have developed an online example of
this mechanism called the ContextBrowser1. The ContextBrowser shows
context queries and profiles graphically and demonstrates real-time collec-
tion tracking.

9.3 Synchronizing Collections

We follow the ideas in [84] and propose to support basic communication
between context providers and consumers using a pub/sub event-routing
network. In addition, we propose to leverage the covering and overlapping
relations between filters to realize context-based object synchronization.
The separation of concerns offered by pub/sub systems simplifies the de-
velopment of higher level components, because mobility transparency and
scalability is handled by the lower pub/sub layer.

Figure 9.1 presents an overview of the synchronization process. The
environment consists of a number of client systems (terminals) and a num-
ber of synchronization service instances. Consider a scenario, in which the
client is interested in documents modified in specific project meetings. Rel-
evant metadata and contextual information is added to documents after
meetings so that this information is available. The client can formulate a
context query that includes those specific meetings and track documents

1Available at www.hiit.fi/fuego/fc/demos

158
9 Collection and Object Synchronization Based on Context

Information

that match this query using the service. The pub/sub system delivers
change notifications and the collection is updated in real-time. In collec-
tion synchronization the client receives notifications that denote changes
to the collection, namely addition and removal of entries. At some point
when tracking the collection, the client may be interested in retrieving the
documents to his current machine. This is accomplished using the file syn-
chronizer, which updates the local directory structure and downloads the
requested files. This motivates the different phases of the synchronization
process.

Profile

Store

Object and

directory

sync

When to

sync?

Collection

Contents

based on

context

Client Terminal

6. Context

sync rules
3.Context

Object

tracking

rules

Augment

objects with

context

 Synchronization Server

Policies

ACRs

5. Updates

7. Sync object / directory

(peer-to-peer)

2. Make object available /

unavailable

4. Sub/Unsub

Add new object with

context profile to the

directory

DoubleForest

Keep track of context

subscriptions and notify

when a matching object is

added or removed

Profile &

Query

Store

1. Context

Figure 9.1: Context-based collection and object synchronization.

Today security is also an important requirement and in many cases
profiles can be matched to queries only when access control rules (ACR)
allow it. ACRs can also be represented using filters. A valid context query
is covered by at least one access control rule that is applicable for the client
that made the query.

Context-based synchronization proceeds in the following 7 phases as
depicted in Figure 9.1. We assume that there is an existing mechanism for
acquiring the context of the client system (1). The context is associated
with objects, files, and directories that clients make available using the sys-
tem (2). The synchronization service is responsible for maintaining objects
and their associated context profiles, which are updated by clients. The
client system stores two different kinds of filters: first, the context queries
needed for tracking objects based on their context (3), and then a set of
rules that are used to synchronize subsets of these tracked documents. The

9.3 Synchronizing Collections 159

synchronization rules are motivated by the observation that the client may
not always wish to synchronize the whole collection, but only a subset of
it.

The service is also responsible for accepting collection-tracking subscrip-
tions and unsubscriptions from clients (4). The service keeps the client
notified about the current contents of the tracked collection (5). The ser-
vice uses the DoubleForest data structure to maintain context profiles and
context queries.

The client uses a set of synchronization rules for synchronizing subsets of
the tracked documents (6). A subset of the collection is synchronized using
the file synchronizer (7). The synchronized objects can reside anywhere in
the distributed system, for example on other terminals.

We divide the synchronization of objects and collections by their context
into the following three parts:

• Description: How to describe context and how to describe objects.
We separate the description of an object from the object itself. This
allows the system to keep metadata separate from the actual location
of the object. Typically the object description, denoted by OD, con-
tains a pointer (URI) to the object. The description also includes the
context profile.

• Continuous collection synchronization: How to synchronize a collec-
tion defined by a context query. A query exactly defines the contents
of a collection to be those profiles that match the query. The query
may also contain metadata relevant for matching. If the change noti-
fications are ordered using causal or total order the client can apply
them in the correct sequence. The communication is performed using
asynchronous publish/subscribe.

• Document and directory synchronization: How to synchronize the
data associated with the items. We use the file synchronizer to per-
form one-shot synchronization after periods of disconnection.

Collection synchronization differs from the basic pub/sub semantics,
because context profiles have temporal duration, but events typically are
instantaneous and published only once. This means that both profiles and
queries must be maintained by the service and the mappings introduced
earlier are needed between these sets.

The synchronization service is logically centralized and based on the
client-server interaction model. We use the service to solve the context-
matching problem. The service exports a pub/sub API for adding and

160
9 Collection and Object Synchronization Based on Context

Information

Table 9.1: Basic API operations.

Operation Description

add(OD,FD) Adds the context profile FD to object desc. OD.
del(OD,FD) Removes the context profile FD from object desc. OD.

get(F) Get descriptions (one-shot) for the given context query F .
add(C,F) Adds the context query F to the collection C.
del(C,F) Removes the query F from the collection C.
sync(C) Sync C using the synchronizer.

removing object descriptions and context queries. Clients make requests
and receive change notifications using the pub/sub system, which abstracts
issues such as disconnections and mobility. The service is implemented
using a context-matcher component that stores both context profiles and
object descriptions. The component uses the underlying event system for
communication and matching filters and notifications. The implementation
of the component is simple, because existing data structures and commu-
nication primitives are used.

In addition to the client-server model, it is also possible to implement
the system using the peer-to-peer model. The peer-to-peer model does not
have this centralization of service instances and allows entities to produce
and consume context information directly using pub/sub interfaces. This
means that clients need to keep track of their objects and the associated
context filters, and be able to match them against incoming queries. This
approach requires more from clients, but does not require a centralized
component. On the other hand, features such as authentication [56] and
logging become more difficult to realize.

9.3.1 Operations

The central operations of the system are storing and retrieving objects by
their context. Let FD denote a context profile that represents the current
or past context of an object. Figure 6.1 gives an example of a profile and
a query. The API consists of two parts: addition and removal of context
profiles, and the management of collections. The collection C is determined
by a set of context queries. The API allows the client to add and remove
these queries (Table 9.1).

A client may modify or remove only objects that belong to it. The
synchronization service must keep track of object descriptions sent to clients

9.3 Synchronizing Collections 161

and only new descriptions are sent. Similarly, clients are notified when a
change or deletion of a description changes their collection. The operations
may be extended with access control rules, for example, rules for deciding
which entities may access the object or receive a notification about it.

The context profile associated with an object (the object’s context)
may be a point or a subspace of the content space. Context queries associ-
ated with collections are assumed to be subspaces. We distinguish between
matching points and subspaces, because there are efficient and sublinear
algorithms for matching points [34, 90]. Algorithms for covering and over-
lapping are computationally more expensive. Covering and overlapping can
be computed efficiently for the commonly used filtering model, in which
each tuple in a filter contains exactly one predicate (constraint).

The sync operation creates local replicas for new objects, updates con-
current changes to distributed copies, and removes files that disappear from
the collection. The URI may also map to a directory, in which case the
whole directory is synchronized based on the given context. It may also
happen that the client wishes to synchronize only a subset of the collection.

9.3.2 Mapping to the Publish/Subscribe Paradigm

The collection synchronization service builds on the Fuego event system
and maintains two data sets: the set of object descriptions and the set of
context queries. The service subscribes to receive new object descriptions
and context queries. The client on the other hand subscribes its event mes-
sage queue name. This provides a transparent way to send messages to the
client irrespective of physical location using the queue name. The service
multicasts updates using the recipient queue names. This means that only
a single update message is sent by the service for each modification. The
default Fuego filtering language supports the basic relational and string
comparison operations. The default language may be extended or replaced
to support more expressive languages.

One useful feature for collection synchronization is the replace-identifier
feature of our event system, which allows one notification to replace other
notifications in a message queue that have the same source-specified iden-
tifier. The replace-identifier in conjunction with time-to-live are useful in
removing stale and obsolete messages from queues before they are delivered
to clients, thus reducing wasted bandwidth and client-side processing. For
example, they may be used to ensure that only one notification is sent for
a changed object.

The add, del, and get client collection API operations are implemented
using the publish operation of the event system. They synchronization

162
9 Collection and Object Synchronization Based on Context

Information

service must subscribe to these operations before they may be used.

Scalability may be improved by separating orthogonal context types (or
schemas) into different distributed service modules. It is assumed that a
single service instance is responsible for a subspace of the context space and
can thus uniquely number collection change notifications for that subspace.
If this design is used, the clients must treat change notifications for the
same object from different service instances as independent. This means
that a remove notification from one service instance does not remove the
object from the client’s collection if the client has previously received an
addition for the same object from a different service instance.

9.3.3 Sequence Diagram

Figure 9.2 presents a sequence diagram of synchronization with pub/sub
operations omitted. In 1. the client B stores the object O using any
available storage mechanism and either receives or formulates a URI for the
object (2). After this the client creates the description OD of the object
that contains the URI and the context profile F1. For example, the filter
could contain information about a workshop: the duration, the location,
presenters, participants, and the topics of the workshop. In 3. B adds the
description with the associated filter to the synchronization service.

Client A creates a collection (4) with the context filter F2. The filter
could, for example, specify all objects created in technical workshops where
Amy, John, and Bob were present. In 5. the filters match, and A is notified
about a new member in the collection (6), which is updated (7). After this
the collection synchronization is started (8) and the collection or a subset
of the collection is selected for synchronization. Finally, in the last step (9)
the files are retrieved and updated.

9.4 Sample Application: Context-aware Photo Li-

brary

To demonstrate the proposed context and metadata-based synchroniza-
tion, we extended an existing synchronizing photo-library application [81]
to support context-aware operation. This required three modifications:
first, the application attaches metadata to each photo. The metadata is
acquired from various sources, location information may be obtained using
a GPS device or GSM cell-identifier, for example. The second modification
updates this information to the synchronization service that is reachable
through the pub/sub network and allows the client to receive change no-

9.4 Sample Application: Context-aware Photo Library 163

Client A Service Client B

3. Add(O,F1)

Storage

1. Store(O)

2. return URI

4. Create(C,F2)

6. Notify about O
5. F1 and F2 match

7. Update collection

8. Start object sync

9. Synchronize objects in collection

Figure 9.2: Sequence diagram of synchronization without pub/sub opera-
tions.

tifications using either push or pull mode. The pull mode is unintrusive
and does not incur any communication cost that the user is not aware of.
The push mode, on the other hand, allows proactive tracking of shared
photos. The third modification uses the collection API for tracking and
synchronizing images.

The context-aware photo application uses the proposed mechanism as
follows: 1. Context information is attached to new photos. The context
information may be input from the user, gathered from various sensors,
or a combination of them. In our example, we use pre-defined context
descriptions. 2. The photos are published to the synchronization service
using the add API method. This is implemented in the client application,
which makes all photos in the assigned directories available to others using
this API call. 3. The user instructs the application on what contexts
to follow and synchronize by formulating context queries. An example
of a context query could be: { type = ”photo” ∧ location = ”Helsinki” ∧
description contains (”concert” ∨ ”rock”) }. 4. The application will receive
updates on any objects whose profile matches the active queries. 5. This
collection is shown to the user, and depending on the mode of operation,
either all or selected elements of this collection are synchronized. The photo
library synchronizes all images.

This example illustrates how the proposed mechanism is used in context-

164
9 Collection and Object Synchronization Based on Context

Information

aware applications. This same approach could be used, for example, to
follow documents in a collaborative environment.

The DoubleForest data structure is used to store the profiles and queries
at the server and to perform temporal subspace matching. When a query or
a profile is added or removed, the DoubleForest computes the new mappings
between them. This functionality can be directly used to determine where
collection update notifications should be sent.

9.5 Related Work

Novel context-aware applications have been proposed, Mobile Media Meta-
data [118] for example, but typically many applications rely on centralized
servers and do not have specific middleware support for tracking and man-
aging objects by their context. The main goal of our proposed system is to
provide this middleware support for context-aware applications.

Context-awareness is an active research topic and many systems provide
applications with support for context-aware operation. Systems such as
the Context Toolkit [117], Gaia [114], and the Context Cube [62] support
context-aware applications. A context-based storage system in presented
in [73] with an emphasis on group access. Almost all context-aware systems
employ some kind of asynchronous communication abstraction, typically
asynchronous events. Events support context-triggered actions, and allow
run-time binding of components supporting modularity. In addition to
push communication semantics many systems, such as Gaia, also support
a query interface for receiving (pulling) context information.

Most systems do not have middleware support for synchronizing objects
and directories based on context. Gaia has a context file system, which
supports the naming and location of files based on the file path identifier.
Gaia’s context file system allows the attachment of context attributes to
files or directories [64]. The proposed system is based on a similar idea,
but the systems have several differences. First, the proposed mechanism is
based on filters and uses the covering relations for matching. This allows
automatic categorization of objects based on their context and the context
descriptions may contain predicates. Second, the context file system is
more concerned with personal data and making it available in different
active spaces than distributed data synchronization and change notification.
Tuple spaces, namely Lime [94], support synchronization of the tuple space,
but do not offer any specific API support for continuously tracking context
changes and then synchronizing a select subset of objects based on the
current context.

9.6 Summary 165

9.6 Summary

In this chapter we presented a mechanism for context and metadata-based
collection and object synchronization. We examined three important parts:
the description of context and separation of the actual object data from the
metadata, continuous collection synchronization, and object and directory
synchronization. We focused on the first two parts and showed how the
pub/sub paradigm may be used to implement collection synchronization
and how filters may be used to represent both profiles and queries.

The pub/sub paradigm decouples entities from each other and abstracts
issues such as disconnections, message buffering, and mobility management.
Existing algorithms for matching, covering, and overlapping allow straight-
forward implementation of the components of the synchronization service.
We use the DoubleForest data structure to store the profiles and queries
at the server and to perform temporal subspace matching. Distribution of
service functionality may be realized by distributing different context types
or schemas to different servers.

166
9 Collection and Object Synchronization Based on Context

Information

Chapter 10

Example Scenario: Smart Office

We have developed a smart office scenario that highlights the features of
the Fuego Core middleware service set discussed in Chapter 9, and the
different ways that information is processed and used in a modern office
environment, where people have meetings, do their work, and also change
their location. Information sharing is vital in this environment and this
sharing is context-sensitive — people require different information depend-
ing on time, location, and other contextual parameters. The scenario was
demonstrated at the sixth IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA 2004).

The scenario highlights various events and interactions in the environ-
ment using a Graphical User Interface (GUI) and physical devices, such
as mobile phones. The server and the mobile devices run the Fuego mid-
dleware system. Figure 10.1 presents the animated GUI that shows daily
events happening and we may observe the activities of one person in the
office environment through several physical mobile devices: a J2ME smart-
phone and a laptop.

Key activities in the scenario are:

1. Reading important news and information while en-route to work. Re-
ceiving interesting information proactively (push) to a mobile device.

2. Presence status at work and elsewhere and presence change distrib-
ution. Arriving to work changes presence status automatically and
interested co-workers are notified.

3. Arriving to office and automatically starting the desktop with current
configuration. Changing the end-point of events from one device to
another (session mobility), for example transfer Instant Messaging
(IM) discussions and news feeds between devices at run-time.

167

168 10 Example Scenario: Smart Office

Figure 10.1: Office demonstration GUI.

4. Context-sensitive messaging at the workplace: all who are present at
the office and assigned to a project will receive a notification of a
meeting starting in 10 minutes.

5. Going to the meeting, the event session is transferred back to the
smart-phone. Changing presence characteristics for the meeting.

6. Synchronization in meetings — using the Fuego XML-aware file sys-
tem to synchronize important documents and calendars. The secre-
tary of the meeting sends the synchronization trigger as a context-
sensitive message to the project group. The trigger prompts the desk-
top to synchronize the document using 3-way XML merging.

7. End of meeting, going to lunch. Sending context-sensitive messages
to co-workers: ”Anyone interested in going to a nearby pizzeria?”

8. Leaving office, changing presence values automatically.

In this scenario we support decoupled communication between context
providers and consumers using the Fuego event service. The event service
uses the poset-derived forest for content-based routing and matching. The
system is based on a modular content-based router, which supports different

169

routing configurations and handover protocols by separating local clients
and distributed operation. Events are buffered for disconnected clients.
The default configuration is based on event channels.

Context-sensitive messaging using content-based routing is implemented
by subscribing to the current context. This means that a filter is created
and subscribed that represents the current context. All events that match
the context are delivered to the proper recipients. Using the event service
for context-aware messaging offers separation of concerns that simplifies the
development of higher level components, because mobility transparency and
scalability are handled by the lower pub/sub layer. The communication in-
frastructure is naturally divided into two parts: the messaging service, and
the event service.

The file synchronizer addresses the information-sharing requirements of
the environment and synchronization may take place, for example, after
receiving an asynchronous event indicating the ending of a meeting and
pointing to modified documents. In order to keep track of documents based
on their context, we used the DoubleForest data structure to implement a
context-based collection and object tracking service on top of the event
service.

170 10 Example Scenario: Smart Office

Part VI

Conclusions

171

Chapter 11

Conclusions

In this thesis we have presented and investigated efficient content-based
routing for static and mobile environments and considered temporal sub-
space matching and context-aware operation. In the first part we presented
the introduction and an overview of content-based pub/sub. In the second
part of the thesis we presented a set of new data structures for efficient
content-based routing tables. Useful designs for content-based routing ta-
bles based on forests and posets were also presented and examined. In
the third part, we examined and analyzed client mobility in different pub-
lish/subscribe topologies. In the fourth part we presented advanced struc-
tures and techniques, namely the DoubleForest structure for matching pro-
files and queries, and filter merging for efficient information dissemination.
In the fifth part, we presented example applications and scenarios.

The main contribution of the second part is a formal definition of the
poset-derived forest data structure and its variants. This work addresses the
requirement for frequent updates to routing tables, and really efficient data
structures have not been proposed in literature. Typically, event systems
define routing tables using sets, with the exception of the filters poset used
in Siena.

Experimental results indicate that the proposed data structures are
efficient and perform considerably better than the directed acyclic graph-
based filters poset when there are many local clients. The forests may be
combined with the poset to create efficient routing tables. The runtime
cost of the structures depend on the underlying data set and the covering
relations between the entities of the data set. The investigated mechanisms
are generic and do not require knowledge about the filtering language other
than the covering relations between filters.

The main engineering guidelines and observations of the second part
are:

173

174 11 Conclusions

Local clients and routing Local clients should be stored using a forest.
The forest that stores filters from clients may be connected to other
structures, for example: a non-redundant forest in hierarchical rout-
ing, or a poset in peer-to-peer routing. If there are no local clients,
the poset is more suitable for peer-to-peer operation.

Matching The matching performance of the data structures is not on the
same level as with more optimized matchers. An additional matcher
data structure should be used to quickly match notifications to the lo-
cal clients. This is a two-phase process: first notifications are matched
for the covering set by the poset or forest, and then they are matched
by the matching data structure.

The main contributions of the third part is the characterization of
pub/sub mobility using completeness and mobility-safety and deriving the
upper and lower bound costs in terms of message exchanges for the han-
dover. The lower bound cost is analyzed in terms of the covering op-
timization, which prevents unnecessary topology updates when relocated
subscriptions are already established at the destination.

We examined the cost of pub/sub mobility using three mobility mecha-
nisms and topologies: generic mobility support, acyclic graphs, and rendez-
vous-based topologies. The generic mechanism has a high cost for mobility.
The other two mobility mechanisms have considerably smaller cost. Ren-
dezvous points were observed to be good for mobility.

If an acyclic graph-based routing topology is incomplete, content-based
flooding should be used to complete the handover successfully. This means
that the optimizations discussed for complete topologies are not applicable
for incomplete topologies. Since it is not possible to detect completeness
and many systems are inherently incomplete, the optimizations that avoid
content-based flooding may not be applied in practise. Mobility-safety can-
not be guaranteed if protocols engineered with the completeness assumption
are used for incomplete topologies.

The rendezvous-based model used in the Hermes overlay pub/sub sys-
tem was observed to be a good candidate topology for pub/sub mobility
support, because it may be extended to guarantee the completeness of sub-
scriptions and advertisements. The model does not require the flooding of
the whole network with advertisement messages. We proposed a mobility-
friendly topology by limiting the rendezvous-based model to acyclic overlay
graphs. This limitation guarantees that the rendezvous-based mobility pro-
tocol cannot have greater cost than the general acyclic graph protocol.

We proposed the following techniques for improving mobility-aware
pub/sub systems:

175

Overlay-based routing. Overlay addresses prevent the content-based flo-
oding problem and allow better error recovery than using lower level
protocols.

Rendezvous points. Rendezvous points simplify mobility by allowing bet-
ter coordination of topology updates.

Completeness checking. Completeness checking ensures that the sub-
scriptions and advertisements are fully established in the topology.
This is needed to perform the covering optimization.

The main contributions of the fourth part are the DoubleForest struc-
ture with optimizations and the filter merging technique. We summarize
the main contributions and guidelines as follows:

Temporal subspace matching The DoubleForest with optimizations per-
formed considerably better than the set-based benchmark algorithm
for the cover-based matching. The performance of overlap-based
matching did not improve substantially. The storage cost of tran-
sitive closure due to cover may be reduced by storing only the imme-
diate successors in the structure. To our knowledge, this is the first
published data structure for generic temporal subspace matching.

Preloading Filter preloading was observed to be beneficial for subspace
matching (both cover and overlap). Constant or near constant match-
ing time is achieved by preloading filters into the data structure.
Random preloading was used to experiment with effects of failure
to anticipate queries and profiles. Random preloading did not intro-
duce significant overhead for covering, but the cost for overlap-based
matching increased linearly with the number of preloaded objects.

Merging Hierarchical routing systems are easy to extend with filter merg-
ing. The merging of local filters is easy for both hierarchical and
peer-to-peer routing. On the other hand, merging of outgoing fil-
ters for peer-to-peer routing tables is more difficult especially for the
del operation. We observed significant performance benefits from the
merging of interface-specific filter sets. We also presented a dynamic
algorithm for filter merging and showed that, given a mergeable work-
load, dynamic filter merging is feasible.

The main contributions of the fifth part are the context-aware object
and collection synchronization, and the Smart Office scenario. The Dou-
bleForest data structure was used to store the profiles and queries at the

176 11 Conclusions

server and to perform temporal subspace matching. The structure can be
directly used to determine where collection update notifications should be
sent. The applications and scenarios suggest that the results of this thesis
are generic and might be applied in different areas of computing — also
outside basic content-based routing.

Figure 11.1 summarizes the data structures and techniques presented in
this thesis. The basic data structures, such as the poset-derived forest, for
routing and matching, are shown on the left. The middle column presents
advanced data structures, such as the DoubleForest. The right column
presents techniques for improving system behaviour, such as preloading,
mobility support, and filter merging.

Poset-

derived

forest

Non-

redundant

forest,

balancing

Poset

Double-

Forest

Forest,

poset

configura-

tions

Filter

merging

Mobility

support

(handover

protocol)

Advanced data structures

for temporal and subspace

routing and matching

Basic data structures for

routing and matching

Techniques for improving

performance and system

load

Preloading

b

d

p

Figure 11.1: Summary of data structures and techniques.

References

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles. Towards a better understanding of context and context-
awareness. In HUC ’99: Proceedings of the 1st international sympo-
sium on Handheld and Ubiquitous Computing, pages 304–307, Lon-
don, UK, 1999. Springer-Verlag.

[2] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management
of transitive relationships in large data and knowledge bases. In
SIGMOD ’89: Proceedings of the 1989 ACM SIGMOD International
Conference on Management of Data, pages 253–262, New York, NY,
USA, 1989. ACM Press.

[3] R. Agrawal and H. V. Jagadish. Hybrid transitive closure algorithms.
In Proceedings of the sixteenth international conference on Very large
databases, pages 326–334, San Francisco, CA, USA, 1990. Morgan
Kaufmann Publishers Inc.

[4] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D.
Chandra. Matching events in a content-based subscription system.
In PODC ’99: Proceedings of the eighteenth annual ACM symposium
on Principles of Distributed Computing, pages 53–61, New York, NY,
USA, 1999. ACM Press.

[5] B. Aiken, J. Strassner, B. E. Carpenter, I. Foster, C. Lynch, J. Mam-
bretti, R. Moore, and B. Teitelbaum. RFC 2768: Network Policy and
Services: A Report of a Workshop on Middleware. IETF, Feb. 2000.

[6] G. Alder. Design and Implementation of the JGraph
Swing Component, 1.0.6 edition, Feb. 2003. Available at:
http://jgraph.sourceforge.net/doc/paper/.

[7] J. Antollini, M. Antollini, P. Guerrero, and M. Cilia. Extending Re-
beca to support concept-based addressing. In First Argentine Sym-
posium on Information Systems (ASIS 2004), Sept. 2004.

177

178 References

[8] J. Bacon et al. Generic support for distributed applications. IEEE
Computer, 33(3):68–76, Mar. 2000.

[9] R. Baldoni, M. Contenti, S. T. Piergiovanni, and A. Virgillito. Mod-
elling publish/subscribe communication systems: towards a formal
approach. In Proceedings of the Eighth International Workshop
on Object-Oriented Real-Time Dependable Systems (WORDS 2003),
pages 304–311. IEEE, 2003.

[10] K. Betz. A scalable stock web service. In Proceedings of the 2000 In-
ternational Conference on Parallel Processing, Workshop on Scalable
Web Services, pages 145–150, Toronto, Canada, 2000. IEEE Com-
puter Society.

[11] A. Beygelzimer, S. Kakade, and J. Langford. Cover
trees for nearest neighbor, 2004. Preprint. Available at:
http://www.cs.rochester.edu/u/beygel/publications.html.

[12] A. R. Bharambe, S. Rao, and S. Seshan. Mercury: A scalable publish-
subscribe system for Internet games. In Proceedings of the 1st Work-
shop on Network and System Support for Games, pages 3–9, Braun-
schweig, Germany, 2002. ACM Press.

[13] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, 1970.

[14] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-
dimensional spaces: Index structures for improving the performance
of multimedia databases. ACM Comput. Surv., 33(3):322–373, 2001.

[15] G. Bricconi, E. Tracanella, E. D. Nitto, and A. Fuggetta. Analyzing
the behavior of event dispatching systems through simulation. In
M. Valero, V. K. Prasanna, and S. Vajapeyam, editors, HiPC, volume
1970 of Lecture Notes in Computer Science, pages 131–140. Springer,
2000.

[16] P. J. Brown. Triggering information by context. Personal Technolo-
gies, 2(1):1–9, September 1998.

[17] I. Burcea, H.-A. Jacobsen, E. de Lara, V. Muthusamy, and M. Petro-
vic. Disconnected operation in publish/subscribe middleware. In
Mobile Data Management. IEEE Computer Society, 2004.

References 179

[18] N. Busi and G. Zavattaro. Publish/subscribe vs. shared dataspace
coordination infrastructures. In Proc. of IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative En-
terprises (WETICE’01), pages 328–333. IEEE Press, 2001.

[19] L. F. Cabrera, M. B. Jones, and M. Theimer. Herald: Achieving a
global event notification service. In Proc. of the 8th Workshop on Hot
Topics in Operating Systems (HotOS-VIII), 2001.

[20] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient
filtering in publish-subscribe systems using binary decision diagrams.
In ICSE ’01: Proceedings of the 23rd International Conference on
Software Engineering, pages 443–452, Washington, DC, USA, 2001.
IEEE Computer Society.

[21] F. Cao and J. P. Singh. Efficient event routing in content-based
publish-subscribe service networks. In Proceedings of IEEE INFO-
COM 2004, Hong Kong, China, Mar. 2004. IEEE.

[22] M. Caporuscio, A. Carzaniga, and A. Wolf. An experience in eval-
uating publish/subscribe services in a wireless network. In WOSP
’02: Proceedings of the 3rd International Workshop on Software and
Performance, pages 128–133, New York, NY, USA, 2002. ACM Press.

[23] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and evaluation
of a support service for mobile, wireless publish/subscribe applica-
tions. Technical Report CU-CS-944-03, Department of Computer
Science, University of Colorado, Jan. 2003.

[24] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and evalua-
tion of a support service for mobile, wireless publish/subscribe appli-
cations. IEEE Transactions on Software Engineering, 29(12):1059–
1071, Dec. 2003.

[25] M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal analysis of
clients mobility in the Siena publish/subscribe middleware. Technical
report, Department of Computer Science, University of Colorado,
Oct. 2002.

[26] N. Carriero and D. Gelernter. Linda in context. Commun. ACM,
32(4):444–458, 1989.

[27] A. Carzaniga. Architectures for an Event Notification Service Scalable
to Wide-area Networks. PhD thesis, Politecnico di Milano, Milano,
Italy, Dec. 1998.

180 References

[28] A. Carzaniga, J. Deng, and A. L. Wolf. Fast forwarding for content-
based networking. Technical Report CU-CS-922-01, Department of
Computer Science, University of Colorado, Nov. 2001.

[29] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Interfaces and al-
gorithms for a wide-area event notification service. Technical Report
CU-CS-888-99, Department of Computer Science, University of Col-
orado, Oct. 1999. Revised May 2000.

[30] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Content-based ad-
dressing and routing: A general model and its application. Technical
Report CU-CS-902-00, Department of Computer Science, University
of Colorado, Jan. 2000.

[31] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evalua-
tion of a wide-area event notification service. ACM Transactions on
Computer Systems, 19(3):332–383, Aug. 2001.

[32] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing scheme
for content-based networking. In Proceedings of IEEE INFOCOM
2004, Hong Kong, China, Mar. 2004. IEEE.

[33] A. Carzaniga and A. L. Wolf. Content-based networking: A new
communication infrastructure. In B. König-Ries, K. Makki, S. A. M.
Makki, N. Pissinou, and P. Scheuermann, editors, Infrastructure for
Mobile and Wireless Systems, volume 2538 of Lecture Notes in Com-
puter Science, pages 59–68. Springer, 2001.

[34] A. Carzaniga and A. L. Wolf. Forwarding in a content-based network.
In Proceedings of ACM SIGCOMM 2003, pages 163–174, Karlsruhe,
Germany, Aug. 2003.

[35] C. Y. Chan, W. Fan, P. Felber, M. N. Garofalakis, and R. Rastogi.
Tree pattern aggregation for scalable XML data dissemination. In
VLDB, pages 826–837, 2002.

[36] L. Chen, A. Gupta, and M. E. Kurul. Efficient algorithms for pattern
matching on directed acyclic graphs. In ICDE ’05: Proceedings of the
21st International Conference on Data Engineering (ICDE’05), pages
384–385, Washington, DC, USA, 2005. IEEE Computer Society.

[37] Y. Chen, K. Schwan, and D. Zhou. Opportunistic channels: Mobility-
aware event delivery. In Endler and Schmidt [50], pages 182–201.

References 181

[38] S. Chugh, S. Dharia, and D. P. Agrawal. An energy efficient collab-
orative framework for event notification in wireless sensor networks.
In 28th Annual IEEE International Conference on Local Computer
Networks, pages 430–439, 2003.

[39] G. Colouris, J. Dollimore, and T. Kindberg. Distributed Systems:
Concepts and Design. Addison-Wesley, Boston, Massachusetts, 2nd
edition, 1994.

[40] T. H. Cormen, C. E. Leiserson, and T. L. Rivest. Introduction to
Algorithms. The MIT Press, 2001.

[41] S. Courtenage and S. Williams. Automatic hyperlink creation us-
ing P2P and publish/subscribe. In Workshop on Peer-to-Peer and
Agent Infrastructures for Knowledge Management (PAIKM), Kaiser-
slautern, Germany, Apr. 2005.

[42] A. Crespo, O. Buyukkokten, and H. Garcia-Molina. Query merging:
Improving query subscription processing in a multicast environment.
IEEE Trans. Knowl. Data Eng., 15(1):174–191, 2003.

[43] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based
infrastructure to develop complex distributed systems. In Proceedings
of the 20th international conference on Software engineering, pages
261–270. IEEE Computer Society, 1998.

[44] G. Cugola, E. Di Nitto, and G. P. Picco. Content-based dispatch-
ing in a mobile environment. In Workshop su Sistemi Distribuiti:
Algorithmi, Architectture e Linguaggi, Sept. 2000.

[45] G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco. Minimizing the
reconfiguration overhead in content-based publish-subscribe. In SAC
’04: Proceedings of the 2004 ACM Symposium on Applied Computing,
pages 1134–1140. ACM Press, 2004.

[46] G. Cugola and H.-A. Jacobsen. Using publish/subscribe middleware
for mobile systems. ACM SIGMOBILE Mobile Computing and Com-
munications Review, 6(4), Oct. 2002.

[47] A. K. Dey. Understanding and using context. Personal and Ubiqui-
tous Computing, 5(1):4–7, Feb. 2001.

[48] C. Doulkeridis and M. Vazirgiannis. Querying and updating a
context-aware service directory in mobile environments. In Web In-
telligence, pages 562–565. IEEE Computer Society, 2004.

182 References

[49] S. Duarte, J. L. Martins, H. J. Domingos, and N. Preguia. DEEDS
- a Distributed and Extensible Event Dissemination Service. In Pro-
ceedings of the 4th European Research Seminar on Advances in Dis-
tributed Systems (ERSADS), Forli, Italy, 2001.

[50] M. Endler and D. C. Schmidt, editors. Middleware 2003,
ACM/IFIP/USENIX International Middleware Conference, Rio de
Janeiro, Brazil, June 16-20, 2003, Proceedings, volume 2672 of Lec-
ture Notes in Computer Science. Springer, 2003.

[51] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131,
2003.

[52] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and
D. Shasha. Filtering algorithms and implementation for very fast
publish/subscribe. In T. Sellis and S. Mehrotra, editors, Proceed-
ings of the 20th Intl. Conference on Management of Data (SIGMOD
2001), pages 115–126, Santa Barbara, CA, USA, 2001.

[53] L. Fiege, F. C. Gärtner, S. B. Handurukande, and A. Zeidler. Dealing
with uncertainty in mobile publish/subscribe middleware. In 1st In-
ternational Workshop on Middleware for Pervasive and Ad-Hoc Com-
puting (MPAC 03), Rio de Janeiro, Brazil, 2003.

[54] L. Fiege, F. C. Gärtner, O. Kasten, and A. Zeidler. Supporting mo-
bility in content-based publish/subscribe middleware. In Endler and
Schmidt [50], pages 103–122.

[55] L. Fiege, G. Mühl, and F. C. Gärtner. A modular approach to build
structured event-based systems. In Proceedings of the 2002 ACM
Symposium on Applied Computing (SAC’02), pages 385–392, Madrid,
Spain, 2002. ACM Press.

[56] L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, and G. Mühl. Se-
curity aspects in publish/subscribe systems. In Third Intl. Workshop
on Distributed Event-based Systems (DEBS’04), Edinburgh, Scot-
land, UK, May 2004.

[57] G. Fox and S. Pallickara. The Narada Event Brokering System:
Overview and Extensions. In H. Arabnia, editor, Proceedings of the
2002 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’02), pages 353–359. CSREA
Press, 2002.

References 183

[58] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[59] G. Gottlob, C. Koch, and R. Pichler. The complexity of XPath query
evaluation. In Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of Database Systems,
pages 179–190. ACM Press, 2003.

[60] S. Gupta, J. Hartkopf, and S. Ramaswamy. Event notifier, a pattern
for event notification. Java Report, 3(7):19–36, July 1998.

[61] A. Guttman. R-trees: A dynamic index structure for spatial search-
ing. In B. Yormark, editor, SIGMOD’84, Proceedings of Annual Meet-
ing, Boston, Massachusetts, June 18-21, 1984, pages 47–57. ACM
Press, 1984.

[62] L. D. Harvel, L. Liu, G. D. Abowd, Y.-X. Lim, C. Scheibe, and
C. Chatham. Context cube: Flexible and effective manipulation of
sensed context data. In A. Ferscha and F. Mattern, editors, Pervasive,
volume 3001 of Lecture Notes in Computer Science, pages 51–68.
Springer, 2004.

[63] R. Hayton, J. Bacon, J. Bates, and K. Moody. Using events to build
large scale distributed applications. In Proceedings of the 7th ACM
SIGOPS European Workshop on Systems support for worldwide ap-
plications, Sept. 1996.

[64] C. K. Hess and R. H. Campbell. A context-aware data management
system for ubiquitous computing applications. In ICDCS ’03: Pro-
ceedings of the 23rd International Conference on Distributed Comput-
ing Systems, Washington, DC, USA, 2003. IEEE Computer Society.

[65] A. Hinze and S. Bittner. Efficient distribution-based event filtering.
In J. Bacon, L. Fiege, R. Guerraoui, A. Jacobsen, and G. Mühl, edi-
tors, In Proceedings of the 1st International Workshop on Distributed
Event-Based Systems (DEBS’02), 2002.

[66] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile envi-
roment. In Proceedings of the 2nd ACM International Workshop on
Data Engineering for Wireless and Mobile Access, pages 27–34. ACM
Press, 2001.

184 References

[67] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile en-
vironment. Wirel. Netw., 10(6):643–652, 2004.

[68] IBM. Gryphon: Publish/subscribe over public networks, Dec.
2002. (White paper) http://researchweb.watson.ibm.com/

distributedmessaging/gryphon.html.

[69] H. A. Jacobsen, G. Ashayer, and H. Leung. Predicate matching
and subscription matching in publish/subscribe systems. In J. Ba-
con, L. Fiege, R. Guerraoui, A. Jacobsen, and G. Mühl, editors, In
Proceedings of the 1st International Workshop on Distributed Event-
Based Systems (DEBS’02), 2002.

[70] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6.
IETF, June 2004. [Standards Track RFC 3775].

[71] J. Kangasharju, T. Lindholm, and S. Tarkoma. Requirements and
design for XML messaging in the mobile environment. In N. Anerousis
and G. Kormentzas, editors, Second International Workshop on Next
Generation Networking Middleware, pages 29–36, May 2005.

[72] M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann. A publish &
subscribe architecture for distributed metadata management. In Pro-
ceedings of the 18th International Conference on Data Engineering
(ICDE’02), 2002.

[73] S. Khungar and J. Riekki. A context based storage system for mo-
bile computing applications. Mobile Computing and Communications
Review, 9(1):64–68, 2005.

[74] A. Kiani and N. Shiri. Containment of conjunctive queries with arith-
metic expressions. In Meersman et al. [86], pages 439–452.

[75] V. King and G. Sagert. A fully dynamic algorithm for maintaining
the transitive closure. J. Comput. Syst. Sci., 65(1):150–167, 2002.

[76] R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms
for proximity search. In SODA ’04: Proceedings of the fifteenth
annual ACM-SIAM Symposium on Discrete Algorithms, pages 798–
807, Philadelphia, PA, USA, 2004. Society for Industrial and Applied
Mathematics.

References 185

[77] G. J. Lee, T. Naganuma, and S. Kurakake. Efficient matching in a
context-aware event notification system for mobile users. In Proceed-
ings of the 4th International Workshop on Distributed Event-Based
Systems (DEBS’05), 2005.

[78] T. J. Lehman, A. Cozzi, Y. Xiong, J. Gottschalk, V. Vasudevan,
S. Landis, P. Davis, B. Khavar, and P. Bowman. Hitting the dis-
tributed computing sweet spot with TSpaces. Comput. Networks,
35(4):457–472, 2001.

[79] G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to routing,
covering and merging in publish/subscribe systems based on modified
binary decision diagrams. In ICDCS, pages 447–457. IEEE Computer
Society, 2005.

[80] L. Li and I. Horrocks. A software framework for matchmaking based
on semantic web technology. In WWW ’03: Proceedings of the 12th
international conference on World Wide Web, pages 331–339, New
York, NY, USA, 2003. ACM Press.

[81] T. Lindholm. XML three-way merge as a reconciliation engine for mo-
bile data. In Proceedings of the 3rd ACM international workshop on
Data engineering for wireless and mobile access, pages 93–97. ACM
Press, 2003.

[82] T. Lindholm, J. Kangasharju, and S. Tarkoma. A hybrid approach to
optimistic file system directory tree synchronization. In V. Kumar,
A. B. Zaslavsky, U. Çetintemel, and A. Labrinidis, editors, MobiDE,
pages 49–56. ACM, 2005.

[83] H. Liu and H.-A. Jacobsen. A-TOPSS – a publish/subscribe system
supporting approximate matching. In Procedings of the 28th VLDB
Conference, Hong Kong, China, 2002.

[84] S. W. Loke, A. Padovitz, and A. B. Zaslavsky. Context-based ad-
dressing: The concept and an implementation for large-scale mobile
agent systems. In Stefani et al. [123], pages 274–284.

[85] A. Medina, A. Lakhina, I. Matta, and J. W. Byers. Brite: An ap-
proach to universal topology generation. In MASCOTS. IEEE Com-
puter Society, 2001.

[86] R. Meersman, Z. Tari, M.-S. Hacid, J. Mylopoulos, B. Pernici,
Ö. Babaoglu, H.-A. Jacobsen, J. P. Loyall, M. Kifer, and S. Spac-
capietra, editors. On the Move to Meaningful Internet Systems 2005:

186 References

CoopIS, DOA, and ODBASE, OTM Confederated International Con-
ferences CoopIS, DOA, and ODBASE 2005, Agia Napa, Cyprus, Oc-
tober 31 - November 4, 2005, Proceedings, Part I, volume 3760 of
Lecture Notes in Computer Science. Springer, 2005.

[87] R. Meier and V. Cahill. Exploiting proximity in event-based mid-
dleware for collaborative mobile applications. In Stefani et al. [123],
pages 285–296.

[88] C. Mitidieri and J. Kaiser. Attribute-based filtering: Improving the
expressiveness while keeping the predictability in P/S systems. In
Proceedings of the 2nd International Workshop on Distributed Event-
Based Systems (DEBS’03), June 2003.

[89] G. Mühl. Generic constraints for content-based publish/subscribe
systems. In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella,
editors, Proceedings of the 6th International Conference on Coopera-
tive Information Systems (CoopIS’01), volume 2172 of LNCS, pages
211–225, Trento, Italy, September 2001. Springer-Verlag.

[90] G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD
thesis, Darmstadt University of Technology, September 2002.

[91] G. Mühl and L. Fiege. Supporting covering and merging in content-
based publish/subscribe systems: Beyond name/value pairs. IEEE
Distributed Systems Online (DSOnline), 2(7), 2001.

[92] G. Mühl, L. Fiege, F. C. Gärtner, and A. P. Buchmann. Evaluat-
ing advanced routing algorithms for content-based publish/subscribe
systems. In A. Boukerche, S. K. Das, and S. Majumdar, editors, The
Tenth IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MAS-
COTS 2002), pages 167–176, Fort Worth, TX, USA, October 2002.
IEEE Press.

[93] G. Mühl, A. Ulbrich, K. Herrmann, and T. Weis. Disseminating
information to mobile clients using publish/subscribe. IEEE Internet
Computing, pages 46–53, May 2004.

[94] A. Murphy, G. Picco, and G.-C. Roman. Lime: A middleware for
physical and logical mobility. In Proceedings of the The 21st Interna-
tional Conference on Distributed Computing Systems, pages 524–536.
IEEE Computer Society, 2001.

References 187

[95] A. L. Murphy and G. P. Picco. Using coordination middleware for
location-aware computing: A lime case study. In R. D. Nicola, G. L.
Ferrari, and G. Meredith, editors, COORDINATION, volume 2949 of
Lecture Notes in Computer Science, pages 263–278. Springer, 2004.

[96] V. Muthusamy, M. Petrovic, D. Gao, and H.-A. Jacobsen. Publisher
mobility in distributed publish/subscribe systems. In J. Dingel and
R. Strom, editors, 4th Intl. Workshop on Distributed Event-Based
Systems (DEBS’05), pages 421–427, Columbus, Ohio, USA, June
2005. IEEE Press.

[97] V. Muthusamy, M. Petrovic, and H.-A. Jacobsen. Effects of routing
computations in content-based routing networks with mobile data
sources. In MobiCom ’05: Proceedings of the 11th annual interna-
tional conference on Mobile computing and networking, pages 103–
116, New York, NY, USA, 2005. ACM Press.

[98] E. Nuutila. An efficient transitive closure algorithm for cyclic di-
graphs. Inf. Process. Lett., 52(4):207–213, 1994.

[99] Object Management Group. CORBA Event Service Specification
v.1.1, Mar. 2001.

[100] Object Management Group. CORBA Notification Service Specifica-
tion v.1.0, Mar. 2001.

[101] Object Management Group. Management of Event Domains Spec-
ification, June 2001. http://www.omg.org/cgi-bin/doc?formal/

2001-06-03.

[102] Object Management Group. Wireless Access and Terminal Mobility
in CORBA v.1.1, Apr. 2004.

[103] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and
D. Sturman. Exploiting IP multicast in content-based publish-
subscribe systems. In Middleware ’00: IFIP/ACM International
Conference on Distributed systems platforms, pages 185–207, Secau-
cus, NJ, USA, 2000. Springer-Verlag New York, Inc.

[104] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for
web-based publish/subscribe systems. In O. Etzion and P. Scheuer-
mann, editors, Cooperative Information Systems, 7th International
Conference, CoopIS 2000, Eilat, Israel, September 6-8, 2000, Pro-
ceedings, volume 1901 of Lecture Notes in Computer Science, pages
162–173. Springer, 2000.

188 References

[105] C. Perkins. IP Mobility Support for IPv4. IETF, Aug. 2002. [Stan-
dards Track RFC 3344].

[106] L. Perrochon, E. Jang, S. Kasriel, and D. C. Luckham. Enlisting event
patterns for cyber battlefield awareness. In DARPA Information Sur-
vivability Conference and Exposition (DISCEX’00). IEEE Computer
Society Press, Jan. 2000.

[107] M. Petrovic, H. Liu, and H.-A. Jacobsen. G-ToPSS: fast filtering
of graph-based metadata. In WWW ’05: Proceedings of the 14th
international conference on World Wide Web, pages 539–547, New
York, NY, USA, 2005. ACM Press.

[108] P. Pietzuch and J. Bacon. Hermes: A distributed event-based middle-
ware architecture. In Proceedings of the 1st International Workshop
on Distributed Event-Based Systems (DEBS’02), 2002.

[109] P. R. Pietzuch. Hermes: A Scalable Event-Based Middleware. PhD
thesis, Computer Laboratory, Queens’ College, University of Cam-
bridge, February 2004.

[110] I. Podnar, M. Hauswirth, and M. Jazayeri. Mobile push: Delivering
content to mobile users. In Proceedings of the 22nd International
Conference on Distributed Computing Systems, pages 563–570. IEEE
Computer Society, 2002.

[111] I. Podnar and I. Lovrek. Supporting mobility with persistent notifi-
cations in publish/subscribe systems. In 3rd International Workshop
on Distributed Event-Based Systems (DEBS’04), Edinburgh, Scot-
land, UK, May 2004.

[112] K. Raatikainen, H. B. Christensen, and T. Nakajima. Applica-
tion requirements for middleware for mobile and pervasive systems.
ACM SIGMOBILE Mobile Computing and Communications Review,
6(4):16–24, oct 2002.

[113] S. Roberts and J. Byous. Distributed events in Jini technology, 2001.
http://java.sun.com/developer/technicalArticles/jini/JiniEvents/.

[114] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
and K. Nahrstedt. A middleware infrastructure for active spaces.
IEEE Pervasive Computing, 1(4):74–83, 2002.

References 189

[115] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
Middleware 2001: Proceedings of the IFIP/ACM International Con-
ference on Distributed Systems Platforms Heidelberg, pages 329–350,
London, UK, 2001. Springer-Verlag.

[116] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
Scribe: The design of a large-scale event notification infrastructure.
In J. Crowcroft and M. Hofmann, editors, Networked Group Commu-
nication, volume 2233 of Lecture Notes in Computer Science, pages
30–43. Springer, 2001.

[117] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit: aiding
the development of context-enabled applications. In CHI ’99: Pro-
ceedings of the SIGCHI Conference on Human factors in Computing
Systems, pages 434–441, New York, NY, USA, 1999. ACM Press.

[118] R. Sarvas, E. Herrarte, A. Wilhelm, and M. Davis. Metadata creation
system for mobile images. In MobiSys. USENIX, 2004.

[119] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-
Oriented Software Architecture, volume 2: Patterns for Concurrent
and Networked Objects. John-Wiley & Sons, 2000.

[120] H. Schulzrinne and E. Wedlund. Application-layer mobility using
SIP. SIGMOBILE Mob. Comput. Commun. Rev., 4(3):47–57, 2000.

[121] W. Segall and D. Arnold. Elvin has left the building: A pub-
lish/subscribe notification service with quenching. In Proceedings of
the 1997 Australian UNIX Users Group, Brisbane, Australia, 1997.
http://elvin.dstc.edu.au/doc/papers/auug97/AUUG97.html.

[122] N. Skarmeas and K. Clark. Content-based routing as the basis for
intra-agent communication. In J. Müller, M. P. Singh, and A. S. Rao,
editors, Proceedings of the 5th International Workshop on Intelligent
Agents V : Agent Theories, Architectures, and Languages (ATAL-
98), volume 1555 of LNAI, pages 345–362, Berlin, July 04–07 1999.
Springer.

[123] J.-B. Stefani, I. M. Demeure, and D. Hagimont, editors. Distrib-
uted Applications and Interoperable Systems, 4th IFIP WG6.1 In-
ternational Conference, DAIS 2003, Paris, France, November 17-21,
2003, Proceedings, volume 2893 of Lecture Notes in Computer Sci-
ence. Springer, 2003.

190 References

[124] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applica-
tions. Computer Communication Review, 31(4):149–160, Oct. 2001.

[125] R. E. Strom, G. Banavar, T. D. Chandra, M. Kaplan, K. Miller,
B. Mukherjee, D. C. Sturman, and M. Ward. Gryphon: An
information flow based approach to message brokering. CoRR,
cs.DC/9810019, 1998.

[126] Sun Microsystems. Java Message Service Specification, June 2001.

[127] P. Sutton, R. Arkins, and B. Segall. Supporting disconnectedness-
transparent information delivery for mobile and invisible computing.
In CCGRID ’01: Proceedings of the 1st International Symposium on
Cluster Computing and the Grid, page 277, Washington, DC, USA,
2001. IEEE Computer Society.

[128] S. Tarkoma. Distributed event dissemination for ubiquitous agents.
In Tenth ISPE International Conference on Concurrent Engineering,
pages 105–110, July 2003.

[129] S. Tarkoma. Event dissemination service for pervasive computing. In
Pervasive 2004 Doctoral Colloquium, pages 155–160, Apr. 2004.

[130] S. Tarkoma, R. Balu, J. Kangasharju, M. Komu, M. Kousa, T. Lind-
holm, M. Mäkelä, M. Saaresto, K. Slavov, and K. Raatikainen. State
of the art in enablers for applications in future mobile wireless in-
ternet. HIIT Publication 2004-2, Helsinki Institute for Information
Technology, Helsinki, Finland, Sept. 2004.

[131] S. Tarkoma and J. Kangasharju. A data structure for content-based
routing. In M. H. Hamza, editor, Ninth IASTED International Con-
ference on Internet and Multimedia Systems and Applications, pages
95–100. ACTA Press, Feb. 2005.

[132] S. Tarkoma and J. Kangasharju. Filter merging for efficient informa-
tion dissemination. In Meersman et al. [86], pages 274–291.

[133] S. Tarkoma and J. Kangasharju. Handover cost and mobility-safety of
content streams. In Eighth ACM/IEEE International Symposium on
Modeling, Analysis and Simulation of Wireless and Mobile Systems,
Oct. 2005.

References 191

[134] S. Tarkoma and J. Kangasharju. Mobility and completeness in pub-
lish/subscribe topologies. In M. H. Hamza, P. Prapinmonkolkarn, and
T. Angkaew, editors, IASTED International Conference on Networks
and Communication Systems. ACTA Press, Apr. 2005.

[135] S. Tarkoma, J. Kangasharju, and K. Raatikainen. Client mobility
in rendezvous-notify. In Intl. Workshop on Distributed Event-Based
Systems (DEBS’03), 2003.

[136] S. Tarkoma, M. Laukkanen, and K. Raatikainen. Software agents for
ubiquitous computing. In R. Khosla, N. Ichalkaranje, and L. Jain, edi-
tors, Design of Intelligent Multi-Agent Systems: Human-Centredness,
Architectures, Learning and Adaptation, volume 162 of Studies in
Fuzziness and Soft Computing, chapter 2, pages 31–62. Springer-
Verlag, 2005.

[137] S. Tarkoma, T. Lindholm, and J. Kangasharju. Collection and ob-
ject synchronization based on context information. In T. Magedanz,
A. Karmouch, S. Pierre, and I. S. Venieris, editors, MATA, volume
3744 of Lecture Notes in Computer Science, pages 240–251. Springer,
2005.

[138] P. Triantafillou and A. Economides. Subscription summaries for
scalability and efficiency in publish/subscribe systems. In J. Ba-
con, L. Fiege, R. Guerraoui, A. Jacobsen, and G. Mühl, editors, In
Proceedings of the 1st International Workshop on Distributed Event-
Based Systems (DEBS’02), 2002.

[139] P. Triantafillou and A. Economides. Subscription summarization: A
new paradigm for efficient publish/subscribe systems. In ICDCS,
pages 562–571. IEEE Computer Society, 2004.

[140] University of Colorado. Siena Java language API and server code,
2005.

[141] T. Urnes, A. S. Hatlen, P. S. Malm, and Ø. Myhre. Building distrib-
uted context-aware applications. Personal and Ubiquitous Comput-
ing, 5(1):38–41, 2001.

[142] A. Virgillito, R. Beraldi, and R. Baldoni. On event routing in content-
based publish/subscribe through dynamic networks. In Proceedings
of the Ninth IEEE Workshop on Future Trends of Distributed Com-
puting Systems (FTDCS 2003), pages 322–328. IEEE, 2003.

192 References

[143] W3C. XML Path Language (XPath) 1.0, Nov. 1999. [Recommenda-
tion] http://www.w3.org/TR/xpath.

[144] W3C. XQuery 1.0: AN XML Query Language, 2005. [W3C Working
Draft 04 April 2005] http://www.w3.org/TR/xquery/.

[145] Y.-M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J.
Wang. Subscription partitioning and routing in content-based pub-
lish/subscribe networks. In D.Malkhi, editor, Distributed algorithms,
volume 2508/2002 of Lecture Notes in Computer Science, Oct 2002.

[146] Y.-M. Wang, L. Qiu, C. Verbowski, D. Achlioptas, G. Das, and
P. Larson. Summary-based routing for content-based event distri-
bution networks. SIGCOMM Comput. Commun. Rev., 34(5):59–74,
2004.

[147] H. Warren. A modification of warshall’s algorithm for the transitive
closure of binary relations. Journal of the ACM, 18(4):218–220, 1975.

[148] S. Warshall. A theorem on boolean matrices. Journal of the ACM,
9(1):11–12, 1962.

[149] World Wide Web Consortium. SOAP Version 1.2, June 2003. [W3C
Recommendation].

[150] Technologies for the Wireless Future: Wireless World Research Fo-
rum. John-Wiley & Sons, Oct. 2004.

[151] H. Yu, D. Estrin, and R. Govindan. A hierarchical proxy architecture
for internet-scale event services. In Proceedings of 8th International
Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE ’99), pages 78–83, Palo Alto, CA, USA, 1999.

[152] A. Zeidler and L. Fiege. Mobility support with REBECA. In ICDCS
Workshops. IEEE Computer Society, 2003.

[153] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: a fault-
tolerant wide-area application infrastructure. SIGCOMM Comput.
Commun. Rev., 32(1):81–81, 2002.

[154] D. Zhou, Y. Chen, G. Eisenhauer, and K. Schwan. Active brokers
and their runtime deployment in the ECho/JECho distributed event
systems. In Active Middleware Services, pages 67–72. IEEE Computer
Society, 2001.

Chapter A

Filter Merging Mechanism

This appendix presents the filter model and merging mechanism used in
the experimentation. The merging mechanism source code is part of the
publicly available Fuego Core middleware service set1.

A.1 Filter Model

A filter is represented with a set of attribute filters, which are 3-tuples
defined by <name, type, filter clause>. Name is an identifier and type is
an element of the set of types. To simplify structural comparison of filters
only conjunction may be used in defining the set of attribute filters. While
disjunctions would give more power over the structure of the notification,
they complicate the algorithms and, in any case, a disjunctive attribute
filter set may be represented using a set of conjunctive attribute filter sets.
The filter clause defines the constraints imposed by the attribute filter to
a corresponding tuple in a notification identified by the name and type.

The attribute filter consists of atomic predicates and it may have various
semantics. The simplest attribute filter contains only a single predicate.
This kind of format is being used in many event systems, such as Siena
and Rebeca. A more complex format supports conjuncts and disjuncts,
but they complicate filter operations such as covering, overlapping, and
merging.

We define the filter clause to support atomic predicates and disjunctions.
In general, covering and overlapping of arbitrary filters in the disjunctive
normal form may be determined using expression satisfiability. Expressions
written in the disjunctive normal form are satisfiable if and only if at least

1Available at http://hoslab.cs.helsinki.fi/homepages/fuego-core/

193

194 A Filter Merging Mechanism

Table A.1: Predicate list for the filter clause.

Predicate Description String Number

Equ Exact matching of any type X X
Neq Not equal to given value X X
In Substring within string value X
Nin Subtring not within string value X
Stw Starts with the given string X
End Ends with the given string X
Exists Tuple exists in notification X X
Gr/Gre Value >/≥ to given value X
Lt/Lte Value </≤ to given value X
Rng Range test [a, b] X
$name Placeholder for the value of the tuple name X X

one of those disjunctive terms is satisfiable. A term is satisfiable if there
are no contradictions [7].

Table A.1 presents the predicates for integer and string types. All pred-
icates are unary except the range predicate, which is binary. The predicates
consist of basic string, and number matching, and value selection for sup-
porting placeholders.

A.2 Covering

Covering relations exist between four different components: predicates, dis-
juncts, attribute filters, and filters. Filter covering is an important part of
the framework and it is used by the poset-derived forest data structure for
determining the relationship between filters and the merging algorithm to
remove redundancy from attribute filters.

Filter covering can be applied to also to filter sets. Given two filter sets,
S1 and S2, S1 covers S2 when each filter in S2 is covered by a filter in S1.

The covering test for filters is implemented by counting the number of
covered attribute filters. In the following, the precondition for covering for
filters and attribute filters is that the names and types of the objects are
identical. A filter B is covered by the filter A if and only if for all attribute
filters Ai in A exists an attribute filter Bj in B that is covered by Ai [90]:

∀i∃jAi ⊒ Bj ⇔ A ⊒ B. (A.1)

A.2 Covering 195

Figure A.1 presents the covering relations for integer predicates. Each
cell gives the condition for F1 ⊒ F2. If a placeholder ($value) is used, it
must be equal in both predicates, because the value cannot be determined
at the time of performing the covering check. The following notation is used:
F1 and F2 denote the values of unary input predicates. If a predicate is
binary, the values are given by F1.x and F1.y and similarly for F2. The
binary range predicate is also written using rng(x, y). The sentence ”F1
is in rng(x, y)” denotes that the single value of the unary predicate F1 is
contained in the range [x, y] of the binary predicate.

≠ ⌐ ⌐

 F2

F1

Equ Neq Gr Lt Gre Lte Rng Exists

Equ F1=F2

Neq F1≠F2 F2=F1 F1≤F2 F1≥F2 F1<F2 F1>F2 F1 not in

rng(x,y)

Gr F1 < F2 F1≤F2 F1<F2 F1 < F2.x

Lt F1 > F2 F1≥F2 F1>F2 F1 > F2.y

Gre F1≤F2 F1≤F2 F1≤F2 F1 ≤ F2.x

Lte F1≥F2 F1≥F2 F1≥F2 F1 ≥ F2.y

Rng F2 in

rng(x,y)

 F2.x ≥ F1.x and

F2.y ≤ F1.y

Exists True True True True True True True True

The highlighted column indicates the covering predicate. Note: If placeholder ($value) is used,

Figure A.1: Covering relations for integer predicates.

The covering test for an attribute filter is similar to the covering test for
filters and conjunctive formulas presented in [90]. Theorem A.1 presents
covering for disjunctive attribute filters. A pre-requirement is that filter A

has the same name and type as B. The other direction requires a more
complicated mechanism and proof. It is envisaged that this implication
is still useful for simple and efficient operation. By using Theorem A.1 it
is possible that not all relations are captured, but if used in a consistent
manner it does not alter routing semantics and provides an efficient way to
compute covering relations.

Theorem A.1 Let A =
∨m

j=1
Aj and B =

∨n
i=1

Bi, where the Aj’s and
Bi’s are predicates. If ∀i∃jAj ⊒ Bi then A ⊒ B.

Proof. Assume ∀i∃jAj ⊒ Bi. Then, when B is true, some Bi is true.
But by assumption there then exists some true Aj , which means that A is
true. By definition of the covering relation we then have A ⊒ B. ✷

196 A Filter Merging Mechanism

A.3 Overlapping

In order to determine whether two filters overlap, we need to determine the
overlap between the parts of the two input filters: predicates, disjuncts, and
attribute filters. The overlapping relation, ≃, is reflexive, symmetric, and
non-transitive. As in the case of covering relations, the overlap is defined
in atomic predicates, which are the building block of more complex filters.

Techniques for determining overlap between single predicate attribute
filters are given in [27, 90] and overlap detection for filters in the disjunctive
normal form is discussed in [7].

A.4 Attribute Filter Merging

Attribute filter merging is based on two mechanisms: covering relations
between disjuncts and perfect merging rules for atomic predicates. Covering
relations are used to remove any covered disjuncts. Perfect merging rules
are divided into two categories: existence tests and predicate modification.
The former combines two input predicates into an existence test when the
merging condition is satisfied. The latter combines two predicates into a
single predicate when the condition is satisfied. A merged disjunct may
cover other disjuncts, which requires that the other disjuncts are checked
for covering after a merge.

The merge(D1,D2) operation for two disjuncts is defined as follows:
first, if D1 ⊒ D2 or D2 ⊒ D1 the covered disjunct is removed, if D1 ≡ D2

either one of them is selected, or if they are incomparable the applicability
of a merging rule is tested. If a merging rule is applied the merger is the
result.

We assume that the length of a disjunct is not important — if a cost
function is associated with the selection of the disjuncts to be merged and
covered, the computational complexity of merging may not necessarily be
polynomial.

The merging rules for the number existence test are presented in Ta-
ble A.2. The existence test conditions are given for two input filters, F1

and F2. The condition must be satisfied in order for the two input filters
to merge to an existence test. Each filter has a predicate and an associated
constant denoted by a1 and a2, respectively. Ranges are denoted by two
constants a and b. For example, given x < a1 and x 6= a2 where a1 = 10
and a2 = 7 the condition a1 > a2 is satisfied and results in an existence
test. If a2 is greater or equal to a1 the condition is no longer satisfied.

A.5 Perfect Merging 197

Table A.2: The rules for number existence test.

F1 F2 Condition F1 F2 Condition

x = a1 x 6= a2 a1 = a2 x 6= a1 x = a2 a1 = a2

x < a1 x > a2 a1 > a2 x < a1 x ≥ a2 a1 ≥ a2

x ≤ a1 x > a2 a1 ≥ a2 x ≤ a1 x ≥ a2 a1 ≥ a2

x > a1 x < a2 a1 < a2 x > a1 x ≤ a2 a1 ≤ a2

x ≥ a1 x < a2 a1 ≤ a2 x ≥ a1 x ≤ a2 a1 ≤ a2

x 6= a1 x 6= a2 a1 6= a2 x 6= a1 x > a2 a1 > a2

x 6= a1 x ≥ a2 a1 ≥ a2 x 6= a1 x ≤ a2 a1 ≤ a2

x 6= a1 x < a2 a1 < a2 x > a1 x 6= a2 a1 < a2

x ≥ a1 x 6= a2 a1 ≤ a2 x < a1 x 6= a2 a1 > a2

x ≤ a1 x 6= a2 a1 ≥ a2 x 6= a1 x ∈ [a, b] a1 ∈ [a, b]
x ∈ [a, b] x 6= a1 a1 ∈ [a, b]

A.5 Perfect Merging

The perfect merging algorithm merges two filters that have identical at-
tribute filters except for one pair of distinctive attribute filters. These
distinctive attribute filters are then merged. Perfect merging is based on
Definition A.2. For disjunctive attribute filters the distinctive attribute
filters are always mergeable. Conjunctive attribute filters are not neces-
sarily mergeable. For any two mergeable filters F1 and F2 the operation
merge(F1, F2) either merges the distinctive attribute filters or the filters
are identical.

Definition A.2 Perfect merging may be performed if and only if at least
n − 1 conjuncts are identical. Perfect merging is based on the tautology:
(C1∧ ..∧Cn∧B)∨ (C1∧ ..∧Cn∧D)⇔ C1∧ ..∧Cn∧ (B∨D), where all Ci,
B, and D are conjuncts. If B and D are mergeable: C1∧..∧Cn∧(B∨D)⇔
C1 ∧ .. ∧ Cn ∧merge(B,D).

This type of merging is called perfect, because covering and perfect
merging rules do not lose or add information. More formally, a merger
M of filters {F1, . . . , Fn} is perfect if and only if N(M) = {

⋃
i N(Fi)}.

Otherwise, the merger is called imperfect [7, 90].

The selection of the best merging candidate is an important part of
the merging algorithm. First, the best filter must be located for merging.
Second, the best attribute filter or filters within that filter must be se-
lected for merging. Our current implementation selects the first mergeable

candidate; however, a more optimal merging algorithm would select the
candidate that has the most general merging result, because in some cases
merging may add complexity to a filter in the form of a disjunct. This
latter behaviour reduces a filter’s probability to merge with other filters in
the future. Therefore a good candidate filter for merging is one that either
has less predicates or disjuncts after the merge operation or the predicates
and disjuncts are more general. In the best case, the merged filter will
cover many previously uncovered filters.

A.6 Imperfect Merging

There are many ways to realize imperfect merging. We propose a simple
imperfect merging mechanism that has a less strict mergeability condition
than perfect merging: all filters that are structurally equivalent may be
merged. Attribute filters are merged using the technique discussed in this
section. This kind of approach does not require any selection process.
Imperfect merging results in a number of false positives.

A.7 Discussion

The single predicate and set-based perfect merging approach presented
in [89, 90] requires that all attribute filters are identical except for one pair
of distinctive attribute filters. It is not always possible to merge simple con-
straints: for example the perfect merging of two ranges [0, 20] and [30, 40]
is not possible using conjunctive or single predicate attribute filters. The
presented approach is more expressive, because it supports disjunctions.

