
Efficient Context-Free Grammar Constraints∗

Serdar Kadioglu and Meinolf Sellmann
Brown University, PO Box 1910, Providence, RI 02912

{serdark,sello}@cs.brown.edu

Abstract

With the introduction of constraints based on finite automata
a new line of research has opened where constraints are
based on formal languages. Recently, constraints based on
grammars higher up in the Chomsky hierarchy were intro-
duced. We devise a time-and space-efficient incremental
arc-consistency algorithm for context-free grammars. Partic-
ularly, we show how to filter a sequence of monotonically
tightening problems in cubic time and quadratic space. Ex-
periments on a scheduling problem show orders of magnitude
improvements in time and space consumption.

Introduction
A major strength of constraint programming is its ability
to provide the user with high-level constraints that cap-
ture and exploit problem structure. However, this expres-
siveness comes at the price that the user must be aware
of the constraints that are supported by a solver. One
way to overcome this problem is by providing highly ex-
pressive global constraints that can be used to model a
wide variety of problems and that are associated with effi-
cient filtering algorithms. As was found in (Pesant 2003;
Beldiceanu, Carlsson & Petit 2004), a promising avenue in
this direction is the introduction of constraints that are based
on formal languages, which enjoy a wide range of applica-
bility while allowing the user to focus on the desired prop-
erties of solutions rather than having to deal for herself with
the problem of constraint filtering.

The first constraints in this regard were based on au-
tomata (Pesant 2003; Beldiceanu, Carlsson & Petit 2004).
Especially, incremental implementations of the regular
membership constraint have been shown to perform very
successfully on various problems and even when used to re-
place custom constraints for special structures which can be
expressed as regular languages. In (Quimper & Walsh 2006;
Sellmann 2006), algorithms were devised which perform fil-
tering for context-free grammar constraints in polynomial
time. Now, we focus on practical aspects when dealing
with context-free grammars. We give an incremental algo-
rithm which combines low memory requirements with very

∗This work was supported by the National Science Foundation
through the Career: Cornflower Project (award number 0644113).
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

efficient incremental behavior. Tests on a real-world shift-
scheduling problem prove the practical importance of gram-
mar constraints and show massive speed-ups achieved by the
new algorithm. Finally, we show how context-free gram-
mar constraints can efficiently be conjoined with linear con-
straints to perform cost-based filtering.

Basic Concepts
We start by reviewing some well-known definitions from the
theory of formal languages and the existing algorithm for fil-
tering context-free grammar constraints. For a full introduc-
tion, we refer the interested reader to (Hopcroft & Ullman
1979) and (Sellmann 2006). All proofs that are omitted in
this paper can also be found there.

Definition 1 (Alphabet and Words).Given setsZ, Z1, and
Z2, with Z1Z2 we denote the set of allsequencesor strings
z = z1z2 with z1 ∈ Z1 and z2 ∈ Z2, and we callZ1Z2

the concatenationof Z1 and Z2. Then, for alln ∈ IN we
denote withZn the set of all sequencesz = z1z2 . . . zn with
zi ∈ Z for all 1 ≤ i ≤ n. We callz a word of lengthn, and
Z is called analphabetor set of letters. The empty word
has length 0 and is denoted byǫ. It is the only member of
Z0. We denote the set of all words over the alphabetZ by
Z∗ :=

⋃
n∈IN

Zn. In case that we wish to exclude the empty
word, we writeZ+ :=

⋃
n≥1

Zn.

Definition 2 (Context-Free Grammars).A grammaris a tu-
pleG = (Σ, N, P, S0) whereΣ is the alphabet,N is a finite
set ofnon-terminals,P ⊆ (N∪Σ)∗N(N∪Σ)∗×(N∪Σ)∗ is
the set ofproductions, andS0 ∈ N is the start non-terminal.
We will always assume thatN ∩ Σ = ∅. Given a grammar
G = (Σ, N, P, S0) such thatP ⊆ N × (N ∪ Σ)∗, we say
that the grammarG and the languageLG are context-free.
A context-free grammarG = (Σ, N, P, S0) is said to be in
Chomsky Normal Form (CNF)if and only if for all produc-
tions(A→ α) ∈ P we have thatα ∈ Σ1∪N2. Without loss
of generality, we will then assume that each literala ∈ Σ is
associated with exactly one unique non-literalAa ∈ N such
that (B → a) ∈ P implies thatB = Aa and(Aa → b) ∈ P
implies thata = b.

Remark 1. Throughout the paper, we will use the following
convention: Capital letters A, B, C, D, and E denote non-
terminals, lower case letters a, b, c, d, and e denote letters
in Σ, Y and Z denote symbols that can either be letters or

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

310

Algorithm 1 CFGC Filtering Algorithm
1. We run the dynamic program based on the CYK recur-

sion equation with initial setsSi1 := {A | (A → v) ∈
P, v ∈ Di}.

2. We define the directed graphQ = (V,E) with node set
V := {vijA | A ∈ Sij} and arc setE := E1 ∪ E2 with
E1 := {(vijA, vikB) | ∃ C ∈ Si+k,j−k : (A → BC) ∈
P} andE2 := {(vijA, vi+k,j−k,C) | ∃ B ∈ Sik : (A →
BC) ∈ P} (see Figure 1).

3. Now, we remove all nodes and arcs fromQ that cannot
be reached fromv1nS0

and denote the resulting graph by
Q′ := (V ′, E′).

4. We setS′
ij := {A | vijA ∈ V ′} ⊆ Sij , andD′

i :=
{v | ∃ A ∈ S′

i1 : (A→ v) ∈ P}.

non-terminals, u, v, w, x, y, and z denote strings of letters,
andα, β, andγ denote strings of letters and non-terminals.
Moreover, productions(α, β) in P can also be written as
α→ β.

Definition 3 (Derivation and Language).• Given a gram-
mar G = (Σ, N, P, S0), we writeαβ1γ ⇒

G
αβ2γ if and

only if there exists a production(β1 → β2) ∈ P . We write
α1

∗
⇒
G

αm if and only if there exists a sequence of strings

α2, . . . , αm−1 such thatαi ⇒
G

αi+1 for all 1 ≤ i < m.

Then, we say thatαm can bederivedfromα1.

• Thelanguage given byG is LG := {w ∈ Σ∗ | S0

∗
⇒
G

w}.

Context-Free Grammar Constraints
Based on the concepts above, we review the definition of
context-free grammar constraints from (Sellmann 2006).
The purpose of the constraint is to enforce that an assign-
ment to an ordered sequence of variables defines a word in
the given grammar.

Definition 4 (Grammar Constraint).For a grammarG =
(Σ, N, P, S0) and variablesX1, . . . , Xn with domainsD1,-
. . . , Dn ⊆ Σ, we say thatGrammarG(X1, . . . , Xn) is
true for an instantiationX1 ← w1, . . . , Xn ← wn

if and only if it holds thatw = w1 . . . wn ∈ LG ∩
D1 × · · · × Dn. We denote a given grammar constraint
GrammarG(X1, . . . , Xn) over a context-free grammarG
in CNF byCFGCG(X1, . . . , Xn).

The filtering algorithm forCFGCG presented in (Sell-
mann 2006) is based on the parsing algorithm from Cooke,
Younger, and Kasami (CYK). CYK works as follows:
Given a wordw ∈ Σn, let us denote the sub-sequence
of letters starting at positioni with length j (that is,
wiwi+1 . . . wi+j−1) by wij . Based on a grammarG =
(Σ, N, P, S0) in CNF, CYK determines iteratively the set
of all non-terminals from where we can derivewij , i.e.
Sij := {A ∈ N | A

∗
⇒
G

wij} for all 1 ≤ i ≤ n and

1 ≤ j ≤ n − i. It is easy to initialize the setsSi1 just
based onwi and all productions(A → wi) ∈ P . Then,
for j from 2 ton andi from 1 ton − j + 1, we have that

C A C A AC

S0 S0

B

S0

A

1 2 3 4

1

2

3

4

i

j

A C A C

S0 S0

S0

1 2 3 4

1

2

3

4

i

j

Figure 1: The upper picture shows setsSij and the lower
the setsS′

ij . We see that the constraint filtering algorithm
determines the only word inLG ∩D1 . . . D4 is “[][]”.

Sij =
⋃j−1

k=1
{A | (A → BC) ∈ P with B ∈ Sik and C ∈

Si+k,j−k}. Then,w ∈ LG if and only if S0 ∈ S1n. From
the recursion equation it is simple to derive that CYK can
be implemented to run in timeO(n3|G|) = O(n3) when we
treat the size of the grammar as a constant.

The filtering algorithm forCFGCG that we sketch in Al-
gorithm 1 works bottom-up by computing the setsSij for
increasingj after initializingSi1 with all non-terminals that
can produce in one step a terminal in the domains ofXi.
Then, the algorithm works top-down by removing all non-
terminals from each setSij which cannot be reached from
S0 ∈ S1n. In (Sellmann 2006), it was shown:

Theorem 1. Algorithm 1 achieves generalized arc-
consistency for theCFGC and requires time and space cu-
bic in the number of variables.

Example: Assume we are given the following context-
free, normal-form grammarG = ({], [}, {A,B,C, S0},-
{S0 → AC,S0 → S0S0, S0 → BC,B → AS0, A →
[, C →] }, S0) that gives the languageLG of all correctly
bracketed expressions (like, for example, “[[][]]” or “[][[]]”).
In Figure 1, we illustrate how Algorithm 1 works when the
initial domain ofX3 is D3 = {[} while all other domains
areD1 = D2 = D4 = {[,]}: First, we work bottom-up,
adding non-terminals to the setsSij if they allow to gener-
ate a word inDi × · · · ×Di+j−1. Then, in the second step,
we work top-down and remove all non-terminals that cannot
be reached fromS0 ∈ S1n.

Efficient Context-Free Grammar Filtering
Given the fact that context-free grammar filtering entails the
parsing problem, there is little hope that, for general context-
free grammar constraints, we can devise significantly faster
filtering algorithms. However, with respect to filtering per-
formance it is important to realize that a filtering algorithm
should work quickly within a constraint propagation engine.
Typically, constraint filtering needs to be conducted on a

311

sequence of problems, whereby each subsequent problem
differs only slightly from the last. When branching deci-
sions and other constraints tighten a given problem, state-
of-the-art systems like Ilog Solver provide a filtering rou-
tine with information regarding which values were removed
from which variable domains since the last call to the rou-
tine. By exploiting such condensed information, incremen-
tal filtering routines can be devised that work faster than
starting each time from scratch. To analyze such incremen-
tal algorithms, it has become the custom to provide an upper
bound on the total work performed by a filtering algorithm
over one entire branch of the search tree (see, e.g., (Katriel
et al. 2007)).

Naturally, given a sequence ofs monotonically tighten-
ing problems (that is, when in each successive problem
the variable domains are subsets of the previous problem),
context-free grammar constraint filtering for the entire se-
quence takes at mostO(sn3|G|) steps. Using existing ideas
on efficient incremental graph updates in DAGs (see for in-
stance (Fahle et al. 2002)), it is trivial to modify Algorithm 1
so that this time is reduced toO(n3|G|): When storing addi-
tional information on which productions support which arcs
in the graph (whereby each production can support at most
2n arcs for each setSij), we can propagate the effects of do-
main values being removed at the lowest level of the graph to
adjacent nodes without ever touching parts of the graph that
are not removed. The total workload for the entire problem
sequence can then be distributed over allO(|G|n) produc-
tion supports in each ofO(n2) sets, which results in a time
bound ofO(n2|G|n) = O(n3|G|). Alternatively, incremen-
tal filtering can also be achieved by decomposition as shown
in (Quimper & Walsh 2007).

The second efficiency aspect regards the memory require-
ments. In Algorithm 1, they are inΘ(n3|G|). It is again
trivial to reduce these costs toO(n2|G|) simply by recom-
puting the sets of incident arcs rather than storing them in
step 2 for step 3 of Algorithm 1. However, following this
simplistic approach we only trade time for space. The incre-
mental version of our algorithm as sketched above is based
on the fact that we do not need to recompute arcs incident
to a node which is achieved by storing them. So while it
is trivial to achieve a space-efficient version that requires
time in Θ(sn3|G|) and spaceΘ(n2|G|) or a time-efficient
incremental variant that requires time and space inΘ(n3|G|)
(like the decomposition from (Quimper & Walsh 2007)), the
challenge is to devise an algorithm thatcombineslow space
requirements with good incremental performance.

We will therefore modify our algorithm such that the to-
tal workload of a sequence ofs monotonically tightening
filtering problems is reduced toO(n3|G|), which implies
that, asymptotically, an entire sequence of more and more
restricted problems can be filtered with respect to context-
free grammars in the same time that it takes to filter just one
problem from scratch. At the same time, we will ensure that
our modified algorithm will require space inO(n2|G|).

A Memory- and Time-Efficient Filtering Algorithm
In Algorithm 1, we observe that it first works bottom-up, de-
termining from which nodes (associated with non-terminals

of the grammar) we can derive a legal word. Then, it
works top-down determining which non-terminal nodes can
be used in a derivation that begins with the start non-terminal
S0 ∈ S1n. In order to save both space and time, we will
modify these two steps in that every non-terminal in each
setSij will perform just enough work to determine whether
its respective node will remain in the shrunken graphQ′.

To this end, in the first step that works bottom-up we will
need a routine that determines whether there exists asupport
from below: That is, this routine determines whether a node
vijA has anyoutgoingarcs inE1 ∪ E2. To save space, the
routine must perform this check without ever storing setsE1

andE2 explicitly, as this would require space inΘ(n3|G|).
Analogously, in the second step that works top-down we

will rely on a procedure that checks whether there exists a
support from above: Formally, this procedure determines
whether a nodevijA has anyincomingarcs inE′

1 ∪ E′
2,

again without ever storing these sets which would require
too much memory.

The challenge is to avoid having to pay with time what we
save in space. To this end, we need a methodology which
prevents us from searching for supports (from above or be-
low) that have been checked unsuccessfully before. Very
much like the well-known arc-consistency algorithm AC-6
for binary constraint problems (Bessiere & Cordier 1993),
we achieve this goal by ordering potential supports so that,
when a support is lost, the search for a new support can start
right after the last support, in the respective ordering.

According to the definition ofE1, E2, E
′
1, E

′
2, supports

of vijA (from above or below) are directly associated with
productions in the given grammarG and a splitting indexk.
To order these supports, we cover and order the productions
in G that involve non-terminalA in two lists:

• In list OutA := [(A→ B1B2) ∈ P] we store and implic-
itly fix an ordering on all productions with non-terminal
A on the left-hand side.

• In list InA := [(B1 → B2B3) ∈ P | B2 = A ∨ B3 =
A] we store and implicitly fix an ordering on all produc-
tions where non-terminalA appears as non-terminal on
the right-hand side.

Now, for each nodevijA we store two production indices
pOut

ijA andpIn
ijA, and two splitting indiceskOut

ijA ∈ {1, . . . , j}

and kIn
ijA ∈ {j, . . . , n}. The intended meaning of these

indices is that nodevijA is currently supported from be-
low by production(A → B1B2) = OutA[pOut

ijA] such that
B1 ∈ Si,kOut

ijA
andB2 ∈ Si+kOut

ijA
,j−kOut

ijA
(analogously for

the support from above). When nodevijA has no support
from below (or above), we will havekOut

ijA = j (kIn
ijA = j).

In Algorithm 2, we show a function that (re-)computes
the support from below for a given nodevijA, whereby we
assume that variablespOut

ijA , kOut
ijA , Sij , andOutA are global

and initialized outside of these functions. We see that the
routine starts its search for a new support right after the last.
This is correct as within a sequence of monotonically tight-
ening problems we will never add edges to the graphsQ and
Q′. Therefore, replacement supports can only be found later

312

Algorithm 2 Function that incrementally (re-)computes the
support from below for a given nodevijA.

void findOutSupport(i, j, A)
pOut

ijA ← pOut
ijA + 1

while kOut
ijA < j do

while pOut
ijA ≤ |OutA| do

(A→ B1B2)← OutA[pOut
ijA]

if (B1 ∈ SikOut
ijA

) and (B2 ∈ Si+kOut
ijA

,j−kOut
ijA

) then
return

end if
pOut

ijA ← pOut
ijA + 1

end while
pOut

ijA ← 1, kOut
ijA ← kOut

ijA + 1
end while

in the respective ordering of supports. The function that re-
computes supports from above works analogously.

In Algorithm 3 we present our function filterFromUp-
date that re-establishes arc-consistency for the context-free
grammar constraint based on the information which vari-
ables were affected and which values were removed from
their domains since the last filtering call (∆). The func-
tion starts by iterating through the domain changes, whereby
each node on the lowest level adds those nodes whose cur-
rent support relies on its existence to a list of affected nodes
(nodesListOutandnodesListIn). This is a simple task when
storing information which nodes a given node supports in
lists listOfOutSupportedand listOfInSupportedwhenever a
new support is found (which we do in functionsinformOut-
Supportand informInSupportwhich we cannot show here

Algorithm 3 Filtering context-free grammars incrementally
in spaceO(n2|G|) and amortized total timeO(n3|G|) for
any sequence of monotonically tightening problems.

bool filterFromUpdate(varSet,∆1, . . . , ∆n)
for r = 1 to n do

nodeListOut[r]← ∅, nodeListIn[r]← ∅
end for
for all Xi ∈ varSet anda ∈ ∆i do

if not (Aa ∈ Si1) then continue endif
Si1 ← Si1 \ {Aa}
for all (p, q, B) ∈ listOfOutSupportedi,1,Aa do

if (lostOut
pqB) then continue endif

lostOut
pqB ← true

nodeListOut[q].add(p, q, B)
end for
for all (p, q, B) ∈ listOfInSupportedi,1,Aa do

if (lostIn
pqB) then continue endif

lostIn
pqB ← true

nodeListIn[q].add(p, q, B)
end for

end for
updateOutSupports()
if (S0 /∈ S1n) then return falseend if
S1n ← {S0}
updateInSupports()
return true

Algorithm 4 Function computing new supports from below
by proceeding bottom-up.

void updateOutSupports(void)
for r = 2 to n do

for all (i, j, A) ∈ nodeListOut[r]do
(A→ B1B2)← OutA[pOut

ijA]

listOfOutSupportedi,kOut
ijA

,B1
.remove(leftOut

ijA)

listOfOutSupportedi+kOut
ijA

,j−kOut
ijA

,B2
.remove(rightOut

ijA)

findOutSupport(i,j,A)
if (kOut

ijA < j) then
lostOut

ijA ← false
informOutSupport(i, j, A)
continue

end if
Sij ← Sij \ {A}
for all (p, q, B) ∈ listOfOutSupportedi,j,A do

if (lostOut
pqB) then continue endif

lostOut
pqB ← true

nodeListOut[q].add(p, q, B)
end for
for all (p, q, B) ∈ listOfInSupportedi,j,A do

if (lostIn
pqB) then continue endif

lostIn
pqB ← true

nodeListIn[q].add(p, q, B)
end for

end for
end for

for lack of space). Furthermore, by organizing the affected
nodes according to the level to which they belong, we make
it easy to perform the two phases (one working bottom-up,
the other top-down) later, whereby a simple flag (lost) en-
sures that no node is added twice.

In Algorithm 4, we show how the phase that recomputes
the supports from below proceeds: We iterate through the
affected nodes bottom-up. First, for each node that has lost
its support from below, because one of its supporting nodes
was lost, we inform the other supporting node that it is no
longer supporting the current node. Then, we try to replace
the lost support from below by calling findOutSupport. Re-
call that the function seeks for a new support starting at the
old, so that no two potential supports are investigated more
than just once. Now, if we were successful in providing a
new support from below (testkOut

ijA < j), we call inform-
OutSupportwhich informs the new supporting nodes that
the support of the current node relies on them. Otherwise,
the current node is removed and the nodes that it supports
are being added to the lists of affected nodes. The update of
supports from above works analogously. With the complete
method as outlined in Algorithms 2–4, we can now show:

Theorem 2. For a sequence ofs monotonically tightening
context-free grammar filtering problems, based on the gram-
mar G in CNF, filtering for the entire sequence can be per-
formed in timeO(n3|G|) and spaceO(n2|G|).

Proof. Note that nodes that are removed because they lost
their support from above do not need to inform the nodes
that they support from below. This is obviously not nec-

313

Benchmark Search-Tree Non-Incremental Incremental Speedup
ID #Act. #Workers #Fails #Prop’s #Nodes Time [sec] Mem [MB] Time [sec] Mem [MB]
1 1 1 1 2 136 19 79 12 1.75 24 45
1 2 1 3 144 577 290 293 38 5.7 80 51
1 3 1 4 409 988 584 455 50 8.12 106 56
1 4 1 5 6 749 191 443 60 9.08 124 46
1 5 1 4 6 598 137 399 50 7.15 104 55
1 6 1 5 6 748 161 487 60 9.1 132 53
1 7 1 6 5311 6282 5471 1948 72 16.13 154 120
1 8 1 2 6 299 99 193 26 3.57 40 54
1 9 1 1 2 144 35 80 16 1.71 18 47
1 10 1 7 17447 19319 1769 4813 82 25.57 176 188
2 1 2 2 10 430 65 359 44 7.34 88 49
2 5 2 4 24 412 100 355 44 7.37 88 48
2 6 2 5 30 603 171 496 58 9.89 106 50
2 7 2 6 44 850 158 713 84 15.14 178 47
2 8 2 2 24 363 114 331 44 3.57 84 92
2 9 2 1 16 252 56 220 32 4.93 52 44
2 10 2 7 346 1155 562 900 132 17.97 160 50

Table 1: Shift-scheduling: We report running times on an AMD Athlon 64 X2 Dual Core Processor 3800+ for benchmarks with
one and two activity types. For each worker, the corresponding grammar in CNF has 30 non-terminals and 36 productions.
Column #Propagations shows how often the propagation of grammar constraints is called for. Note that this value is different
from the number of choice points as constraints are usually propagated more than just once per choice point.

essary as the supported nodes must have been removed be-
fore as they could otherwise provide a valid support from
above. Thus, after having conducted one bottom-up phase
and one top-down in filterFromUpdate, all remaining nodes
must have an active support from below and above. With the
completeness proof of Algorithm 1 in (Sellmann 2006), this
implies that we filter enough.

On the other hand, we also never remove a node if there
still exist supports from above and below: we know that,
if a support is lost, a replacement can only be found later
in the chosen ordering of supports. Therefore, if functions
findOutSupport or findInSupport fail to find a replacement
support, then none exists. Consequently, our filtering algo-
rithm is also sound.

Regarding space, we note that the total memory needed
to store, for each of theO(n2|G|) nodes, the nodes that are
supported by them is not larger than the number of nodes
supporting each node (which is four) times the number of
all nodes. Therefore, while an individual node may sup-
port many other nodes, for all nodes together the space re-
quired to store this information is bounded byO(4n2|G|) =
O(n2|G|). All other global arrays (like left, right,p, k, S,
lost, and so on) also only require space inO(n2|G|).

Finally, it remains to analyze the total effort for a se-
quence ofs monotonically tightening filtering problems.
Given that, in each new iteration, at least one assignment
is lost, we know thats ≤ |G|n. For each filtering prob-
lem, we need to update the lowest level of nodes and then
iterate twice (once bottom-up and once top-down) through
all levels (even if levels should turn out to contain no af-
fected nodes), which imposes a total workload inO(|G|n +
2n|G|n) = O(n2|G|). All other work is dominated by the
total work done in all calls to functions findInSupport and

findOutSupport. Since these functions are never called for
any node for which it has been assessed before that it has no
more support from either above or below, each time that one
of these functions is called, the support pointer of some node
is increased by at least one. Again we find that the total num-
ber of potential supports for an individual node could be as
large asΘ(|G|n), while the number of potential supports for
all nodes in each setSij is asymptotically not larger. Conse-
quently, the total work performed is bounded by the number
of setsSij times the number of potential supports for all
nodes in each of them. Thus, the entire sequence of filtering
problems can be handled inO(n2|G|n) = O(n3|G|).

Note that the above theorem states time- and space com-
plexity for monotonic reductions without restorations only!
Within a backtrack search, we need to also store lost sup-
ports for each search node leading to the current choice point
so that we can backtrack quickly. Consequently, within a
full backtrack search we cannot keep the claim of quadratic
space requirements. However, as we will see in the next
section, the amount of additional restoration information
needed is fortunately limited in practice.

Experimental Results
We implemented the previously outlined incremental
context-free grammar constraint propagation algorithm and
compared it against its non-incremental counterpart on real-
world instances of the shift-scheduling problem introduced
in (Demassey, Pesant & Rousseau 2006). We chose this
problem because it is the only real-world problem grammar
constraints have been tested on before in (Quimper & Walsh
2007). 1 The problem is that of a retail store manager who

1Many thanks to L.-M. Rousseau for providing the benchmark!

314

needs to staff his employees such that the expected demands
of workers for various activities that must be performed at
all times of the day are met. The demands are given as up-
per and lower bounds of workers performing an activityai

at each 15-minute time period of the day.
Labor requirements govern the feasibility of a shift for

each worker: 1. A work-shift covers between 3 and 8 hours
of actual work activities. 2. If a work-activity is started,
it must be performed for at least one consecutive hour.
3. When switching from one work-activity to another, a
break or lunch is required in between. 4. Breaks, lunches,
and off-shifts do not follow each other directly. 5. Off-shifts
must be assigned at the beginning and at the end of each
work-shift. 6. If the actual work-time of a shift is at least 6
hours, there must be two 15-minute breaks and one one-hour
lunch break. 7. If the actual work-time of a shift is less than
6 hours, then there must be exactly one 15-minute break and
no lunch-break. We implemented these constraints by means
of one context-free grammar constraint per worker and sev-
eral global-cardinality constraints (“vertical” gcc’s over each
worker’s shift to enforce the last two constraints, and “hor-
izontal” gcc’s for each time period and activity to meet the
workforce demands) in Ilog Solver 6.4. To break symme-
tries between the indistinguishable workers, we introduced
constraints that force theith worker to work at most as much
as thei+first worker.

Table 1 summarizes the results of our experiments.
We see that the incremental propagation algorithm vastly
outperforms its non-incremental counterpart, resulting in
speed-ups of up to a factor 188 while exploringidentical
search-trees! It is quite rare to find that the efficiency of fil-
tering techniques leads to such dramatic improvements with
unchanged filtering effectiveness. These results confirm the
speed-ups reported in (Quimper & Walsh 2007). We also
tried to use the decomposition approach from (Quimper &
Walsh 2007), but, due to the method’s excessive memory
requirements, on our machine with 2 GByte main memory
we were only able to solve benchmarks with one activity
and one worker only (11 and 19). On these instances,
the decomposition approach implemented in Ilog Solver 6.4
runs about ten times slower than our approach (potentially
because of swapped memory) and uses about 1.8 GBytes
memory. Our method, on the other hand, requires only
24 MBytes. Finally, when comparing the memory require-
ments of the non-incremental and the incremental variants,
we find that the additional memory needed to store restora-
tion data is limited in practice.

Cost-Based Filtering for Context-Free
Grammar Constraints

In our final technical section, we consider problems where
context-free grammar constraints appear in conjunction with
a linear objective function that we are trying to maximize.
Assume that each potential variable assignmentXi ← wi is
associated with a profitpi

wi
, and that our objective is to find

a complete assignmentX1 ← w1 ∈ D1, . . . , Xn ← wn ∈
Dn such thatCFGCG(X1, . . . , Xn) is true for that instan-
tiation andp(w1 . . . wn) :=

∑n

i=1
pi

wi
is maximized. Once

Algorithm 5 CFGC Cost-Based Filtering Algorithm

1. For all1 ≤ i ≤ n, initialize Si1 := ∅. For all1 ≤ i ≤ n
and productions(Aa → a) ∈ P with a ∈ Di, setf i1

Aa
:=

p(a), and add all suchAa to Si1.
2. For allj > 1 in increasing order,1 ≤ i ≤ n, andA ∈

N , setf ij
A := max{f ik

B + f
i+k,j−k
C | A ⇒

G
BC,B ∈

Sik, C ∈ Si+k,j−k}, andSij := {A | f ij
A > −∞}.

3. If f1n
S0
≤ T , then the optimization constraint is not satis-

fiable, and we stop.
4. Initializeg1n

S0
:= f1n

S0
.

5. For allk < n in decreasing order,1 ≤ i ≤ n, andB ∈ N

setgik
B := max{gij

A−f
ij
A +f ik

B +f
i+k,j−k
C | (A→ BC) ∈

P,A ∈ Sij , C ∈ Si+k,j−k} ∪ {g
i−j,j+k
A − f

i−j,j+k
A +

f
i−j,j
C + f

i,k
B | (A → CB) ∈ P,A ∈ Si−j,j+k, C ∈

Si−j,j}.
6. For all1 ≤ i ≤ n anda ∈ Di with (Aa → a) ∈ P and

gi1
Aa
≤ T , removea from Di.

we have found a feasible instantiation that achieves profit
T , we are only interested in improving solutions. There-
fore, we consider the conjunction of the context-free gram-
mar constraintCFGCG with the requirement that solutions
ought to have profit greater thanT . In Algorithm 5, we give
an efficient algorithm that performs cost-based filtering for
context-free grammar constraints.

We will prove the correctness of our algorithm by using
the following lemma.

Lemma 1. In Algorithm 5:

1. It holds thatf ij
A = max{p(wij) | A

∗
⇒
G

wij ∈ Di× · · · ×

Di+j−1}, andSij = {A | ∃ wij ∈ Di × · · · ×Di+j−1 :

A
∗
⇒
G

wij}.

2. It holds thatgik
B = max{p(w) | w ∈ LG ∩ D1 × · · · ×

Dn, B
∗
⇒
G

wik, S0

∗
⇒
G

w1 . . . wi−1Bwi+k . . . wn}.

Proof.1. The lemma claims that the setsSij contains all
non-terminals that can derive a word supported by the do-
mains of variablesXi, . . . , Xi+j−1, and thatf ij

A reflects
the value of the highest profit wordwij ∈ Di × · · · ×
Di+j−1 that can be derived from non-terminalA. To
prove this claim, we induce overj. For j = 1, the claim
holds by definition ofSi1 andf i1

A in step 1. Now assume
j > 1 and that the claim is true for all1 ≤ k < j. Then
max{p(wij) | A

∗

⇒
G

wij ∈ Di × · · · × Di+j−1} =

max{p(wij) | wij ∈ Di × · · · × Di+j−1, A ⇒
G

BC, B
∗

⇒
G

wik, C
∗

⇒
G

wi+k,j−k} = max{p(wik) + p(wi+k,j−k) | wij ∈

Di × · · · ×Di+j−1, A⇒
G

BC, B
∗

⇒
G

wik, C
∗

⇒
G

wi+k,j−k} =

max(A→BC)∈P max{p(wik) | B
∗

⇒
G

wik ∈ Di × · · · ×

Di+k−1} + max{p(wi+k,j−k) | C
∗

⇒
G

wi+k,j−k ∈ Di+k ×

· · · × Di+j−1} = max{f ik
B + f i+k,j−k

C | A ⇒
G

BC, B ∈

315

Sik, C ∈ Si+k,j−k} = f ij
A . Then,f ij

A marks the maximum
over the empty set if and only if no word in accordance
with the domains ofXi, . . . , Xi+j−1 can be derived. This
proves the second claim thatSij = {A | f ij

A > −∞} con-
tains exactly all those non-terminals from where a word in
Di × · · · ×Di+j−1 can be derived.

2. The lemma claims that the valueg
ij
A reflects the maximum

value of any wordw ∈ LG ∩ D1 × · · · × Dn in whose
derivation non-terminalA can be used to producewij . We
prove this claim by induction overk, starting withk = n
and decreasing tok = 1. We only ever get past step 3
if there exists a wordw ∈ LG ∩ D1 × · · · × Dn at all.
Then, fork = n, with the previously proven part 1 of this
lemma,max{p(w) | w ∈ LG ∩ D1 × · · · × Dn, S0

∗
⇒
G

w1n} = f1n
S0

= g1n
S0

. Now letk < n and assume the claim
is proven for allk < j ≤ n. For any givenB ∈ N and
1 ≤ i ≤ n, denote withw ∈ LG ∩ D1 × · · · × Dn

the word that achieves the maximum profit such that
B

∗
⇒
G

wik andS0

∗
⇒
G

w1..wi−1Bwi+k..wn. Let us as-

sume there exist non-terminalsA,C ∈ N such thatS0

∗
⇒
G

w1..wi−1Awi+j ..wn ⇒
G

w1..wi−1BCwi+j ..wn
∗
⇒
G

w1..wi−1Bwi+k..wn (the case where non-terminalB is
introduced in the derivation by application of a pro-
duction (A → CB) ∈ P follows analogously).
Due to the fact thatw achieves maximum profit for
B ∈ Sij , we know thatgij

A = p(w1,i−1) + f
ij
A +

p(wi+j,n−i−j). Moreover, it must hold thatf ik
B =

p(wik) and f
i+k,j−k
C = p(wi+k,j−k). Then, p(w) =

(p(w1,i−1) + p(wi+j,n−i−j)) + p(wik) + p(wi+k,j−k) =

(gij
A − f

ij
A) + f ik

B + f
i+k,j−k
C = gik

B .

Theorem 3. Algorithm 5 achieves generalized arc-
consistency on the conjunction of aCFGC and a linear
objective function constraint. The algorithm requires cubic
time and quadratic space in the number of variables.

Proof. We show that valuea is removed fromDi if and only
if for all words w = w1 . . . wn ∈ LG ∩ (D1 . . . Dn) with
a = wi it holds thatp(w) ≤ T .

⇒ (Soundness) Assume that valuea is removed fromDi.
Let w ∈ LG ∩ (D1 . . . Dn) with wi = a. Due
to the assumption thatw ∈ LG there must exist a
derivation S0

∗
⇒
G

w1 . . . wi−1 Aa wi+1 . . . wn ⇒
G

w1 . . . wi−1wiwi+1 . . . wn for someAa ∈ N with (Aa →
a) ∈ P . Sincea is being removed fromDi, we know that
gi1

Aa
≤ T . According to Lemma 1,p(w) ≤ gi1

Awi
≤ T .

⇐ (Completeness) Assume that for allw = w1 . . . wn ∈
LG ∩ (D1 . . . Dn) with wi = a it holds thatp(w) ≤ T .
According to Lemma 1, this impliesgi1

Aa
≤ T . Then,a is

removed from the domain ofXi in step 6.

Regarding the time complexity, it is easy to verify that the
workload is dominated by steps 2 and 5, both of which re-
quire time inO(n3|G|). The space complexity is dominated
by the memorization of valuesf ij

A and g
ij
A , and it is thus

limited byO(n2|G|).

Conclusions
We devised an incremental space- and time-efficient arc-
consistency algorithm for context-free grammar constraints.
For an entire sequence of monotonically tightening prob-
lems, we can now perform filtering in quadratic space and
the same worst-case time as it takes to parse a context-free
grammar by the Cooke-Younger-Kasami algorithm (CYK).
We showed experimentally that the new algorithm is equally
effective but massively faster in practice than its non-
incremental counterpart. We also gave a new algorithm
that performs cost-based filtering when a context-free gram-
mar constraint occurs in combination with a linear objective
function. This algorithm has again the same cubic worst-
case complexity of CYK. Further research is needed to de-
termine whether it is possible to devise an incremental ver-
sion of this algorithm.

References
N. Beldiceanu, M. Carlsson, T. Petit. Deriving Filtering Algo-
rithms from Constraint Checkers.CP, LNCS 3258, 2004.

C. Bessiere and M.O. Cordier. Arc-Consistency and Arc-
Consistency again.AAAI, 1993.

S. Bourdais, P. Galinier, G. Pesant. HIBISCUS: A Constraint Pro-
gramming Application to Staff Scheduling in Health Care.CP,
LNCS 2833:153–167, 2003.

N. Chomsky. Three models for the description of language.IRE
Transactions on Information Theory2:113–124, 1956.

S. Demassey, G. Pesant, L.-M. Rousseau. A cost-regular based
hybrid column generation approach.Constraints, 11(4):315–333,
2006.

T. Fahle, U. Junker, S.E. Karisch, N. Kohl, M. Sellmann, and
B. Vaaben. Constraint programming based column generation for
crew assignment.Journal of Heuristics, 8(1):59–81, 2002.

F. Focacci, A. Lodi, and M. Milano. Cost-Based Domain Filter-
ing. CP, LNCS 1713:189–203, 1999.

J.E. Hopcroft and J.D. Ullman.Introduction to Automata Theory,
Languages and Computation, Addison Wesley, 1979.

I. Katriel, M. Sellmann, E. Upfal, P. Van Hentenryck. Propagating
Knapsack Constraints in Sublinear Time.AAAI, 2007.

G. Pesant. A Regular Language Membership Constraint for Se-
quences of VariablesModelling and Reformulating Constraint
Satisfaction Problems, pp. 110–119, 2003.

C.-G. Quimper and L.-M. Rousseau. Language Based Operators
for Solving Shift Scheduling Problems.Metaheuristics, 2007.

C.-G. Quimper and T. Walsh. Global Grammar Constraints.CP,
LNCS 3258:751–755, 2006.

C.-G. Quimper and T. Walsh. Decomposing Global Grammar
Constraints.CP, LNCS 4741:590–604, 2007.

M. Sellmann. The Theory of Grammar Constraints.CP, LNCS
4204:530–544, 2006.

M. Trick. A dynamic programming approach for consistency and
propagation for knapsack constraints.CPAIOR, 113–124, 2001.

316

