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Abstract— Model identification and measurement acquisition
is always to some degree uncertain. Therefore, a framework for
Nonlinear Model Predictive Control (NMPC) is proposed that
explicitly considers the noise influence on nonlinear dynamic
systems with continuous state spaces and a finite set of control
inputs in order to significantly increase the control quality.
Integral parts of NMPC are the prediction of system states
over a finite horizon as well as the problem specific modeling
of reward functions. For achieving an efficient and also accurate
state prediction, the introduced framework uses transition
densities approximated by means of axis-aligned Gaussian
mixtures. The representation power of Gaussian mixtures is
also used to model versatile reward functions. Thus, together
with the prediction technique a closed-form calculation of the
optimization problems arising from NMPC is possible. Addi-
tionally, an efficient algorithm for calculating an approximate
value function of the corresponding optimal control problem
employing dynamic programming is presented. Thus, the value
function can be calculated off-line, which reduces the on-line
computational burden significantly and also permits the use of
long optimization horizons. The capabilities of the framework
and especially the benefits that can be gained by incorporating
the noise in the controller are illustrated by the example of a
two-wheeled differential-drive mobile robot following a given
path.

I. INTRODUCTION

For control applications from various fields Model Pre-
dictive Control (MPC), which is sometimes also referred to
as Receding or Rolling Horizon Control, becomes more and
more important as here not only the current system state, but
also a model-based prediction of future system states over a
prediction horizon is considered in the control law. In MPC,
an open-loop optimal control problem for a finite N stage
prediction horizon and a corresponding value function is
solved and the resulting optimal control input is then applied
as a closed-loop control to the system.

To gain an even higher quality of control, the well un-
derstood and widely used MPC for linear system models
[14], which uses linear or quadratic reward functions, is
not always sufficient. By incorporating nonlinear system
models and nonlinear reward functions, steadily growing
requirements on the control quality can be met. The typically
significant increase in computational demand arising from
the nonlinearities has been mitigated in the last years by the
steadily increasing available computation power for control
processes [6] and advances in the employed algorithms to
solve the connected open-loop optimization [13].
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Still, most approaches, especially for the important case
of continuous state space, do not explicitly consider the
influence of noise on the system [3]. This obviously leads to
insufficient solutions especially for highly nonlinear systems
and reward functions. In [5], an extension of the deterministic
reward function by a term considering the noise is presented.
In [12], an approach for infinite horizon optimal control
is presented, where a continuous state space is discretized
by means of a radial-basis-function network. This approach
leads to a consideration of the noise influence, but suffers as
any discretization, from the curse of dimensionality.

In many fields of application, as robotics or sensor-
actuator-networks, discrete-time controllers for systems with
continuous-valued state spaces but a finite set of control
inputs are of special importance. For example, the posture of
a robot is typically continuous-valued but its control inputs
are just discrete (e.g. turn left / right or move straight). Even
if the control inputs are continuous valued in many cases
they can be easily discretized in a meaningful fashion.

Basing on the fundamentals derived in [16], in this paper
a framework for discrete-time Nonlinear Model Predictive
Control for continuous state spaces and a finite set of control
inputs is presented that utilizes dynamic programming and an
efficient state prediction. The prediction method for nonlinear
stochastic models is founded on the approximation of the
involved system transition densities by axis-aligned Gaussian
mixture densities [8], enabling closed-form estimation result-
ing in an accurate Gaussian mixture approximation of the
predicted state density. To lower the computational demands
for approximating multi-dimensional transition densities, the
so-called modularization for complexity reduction purposes
is employed. As an additional part of this framework, an ex-
tremely flexible representation of the reward function based
on Gaussian mixtures is presented. This representation is
very expressive due to the universal approximation property
[11] of Gaussian mixtures. In order to decrease the on-
line computational burden significantly, a value function
approximation scheme employing dynamic programming is
introduced, that fits in the proposed framework seamlessly.
Combining the various techniques, an efficient integrated
closed-form approach to MPC for nonlinear noise affected
systems with novel abilities is gained.

The remainder of this paper is structured as follows: In
the next section, the considered NMPC problem is described
together with an example from the field of mobile robot
control. In Section III, the efficient closed-form prediction
approach for nonlinear systems based on transition density
approximation and complexity reduction is derived. Tech-



niques for modeling the reward function are described in
Section IV. Then, in Section V, a value function approxima-
tion scheme based on dynamic programming is introduced.
In Section VI, three different kinds of NMPC controllers
are compared based on simulations employing the example
system, which has been introduced in previous sections. The
paper closes with conclusions and perspectives on future
work.

II. PROBLEM FORMULATION

In the following, we consider a nonlinear discrete-time
system

xk+1 = a(xk, uk,wk) , (1)

where xk denotes the vector-valued random variable of the
system state at time k, uk the applied control input, and a( · )
a nonlinear, time-invariant function. wk denotes the white
stationary, but not necessarily Gaussian, noise affecting the
system additively element-wise, i.e., the elements of wk are
processed in a( · ) just additively. For details see Section III.

Example System
For illustration purpose, a special realization of (1) is consid-
ered throughout the paper. A two-wheeled differential-drive
robot that is supposed to drive along a given trajectory, e.g.
along a wall, can be modeled by the discrete-time system
equation

xk+1 = xk + v ·T · sin(αk) + wx
k ,

αk+1 = αk + uk ,
(2)

where the system state xkcomprises the robot’s distance to
the wall xk and its orientation relative to the wall αk. v is
the robots’s constant velocity, T the sampling interval, and
wx

k denotes the noise influence on the system. The input
uk is a steering action, i.e., a change of direction of the
robot. Furthermore, the robot is equipped with sensors to
measure distance yx

k and orientation yα
k with respect to the

wall according to

yx
k = xk + vx

k ,

yα
k = αk + vα

k ,
(3)

where vx
k and vα

k describe the measurement noise.

For every control step of NMPC, i.e., typically for every
time step k, an open-loop optimal control problem for a finite
N step prediction horizon is solved, where the optimality is
defined by a cumulative value function Jk(xk)

Jk(xk) = max
uk

Vk(xk, uk) =

max
uk,...,

uk+N−1

E
xk+1,...,

xk+N

{
gN (xk+N ) +

k+N−1∑
n=k

gn(xn, un)

}
, (4)

comprising the step reward gn(xn, un) depending on the
predicted system states xn and the corresponding control
inputs un, as well as a terminal reward gN (xk+N ). The
optimal control input u∗

k of the N step open-loop optimal
control problem is determined according to

u∗
k(xk) = arg max

uk

Vk(xk, uk)

with

Vk(xk, uk) =

max
uk+1,...,
uk+N−1

E
xk+1,...,

xk+N

{
gN (xk+N ) +

k+N−1∑
n=k

gn(xn, un)

}
,

(5)

which is then applied to the system at time step k. The whole
procedure is repeated in the next time step k + 1 .

The analytic evaluation of (5) is typically not possible in
case of nonlinear systems. One reason for this is the required
prediction of system states for a noise affected nonlinear
system. The other one is the necessity to calculate expected
values, which also cannot be performed in closed form.
Therefore, in the next sections an integrated approach to
overcome these two problems is presented.

III. EFFICIENT STATE PREDICTION

The proposed NMPC framework relies on efficiently cal-
culating the probability density f̃x

k+1(xk+1) of the system
state xk+1 for the next time step k + 1. This prediction is
performed by utilizing the so-called Chapman-Kolmogorov
equation [1]

f̃x
k+1(xk+1) =

∫
Rd

f̃T
uk

(xk+1|xk) f̃x
k (xk) dxk , (6)

where f̃T
uk

(xk+1|xk) is the transition density, which depends
on system (1) and the current control input. 1 Since exactly
solving (6) is generally impossible for nonlinear systems,
approximate solutions are essential. One very common ap-
proach in context of NMPC is linearizing the system and
then applying the Kalman filter [9], where the resulting single
Gaussian density is typically not sufficient for approximating
f̃x

k+1(xk+1).
For the scalar system

xk+1 = a(xk, uk) + wk , (7)

with additive stationary white noise, the approach proposed
in [8] allows to perform a closed-form and efficient pre-
diction based on a Gaussian mixture approximation of the
transition density f̃T

uk
(xk+1|xk) = fw(xk+1 − a(xk, uk))

from (6) for every discrete control input uk, where fw( · )
is the noise density. This approximate transition density
can be determined off-line, since the nonlinear system is
time-invariant and the noise is stationary. Furthermore, it
consists of L Gaussian components, which are axis-aligned,
i.e., the covariance matrices of the Gaussian components
are diagonal. This special structure allows the analytical
evaluation of (6), resulting in a very accurate Gaussian
mixture approximation

fx
k+1(xk+1) =

L∑
i=1

ωi · N (xk+1 − μ
i
; σ2

i )

1Please note that true densities are indicated with a tilde, e.g. f̃( · ), while
the corresponding approximations are denoted by f( · ).
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Fig. 1. Asymmetric reward functions, where (a) is an 1-D function with a maximum at x̌n = 2 with 4 components (gray lines) and (b) its 2-D extension
also comprising the angle (with a maximum at α̌n = 0).

of the true predicted density f̃x
k+1(xk+1). Here, L is the

number of components that is identical to the number of
Gaussians of the approximate transition density. ωi are
weighting coefficients with ωi > 0 and

∑L
i=1 ωi = 1.

N (xk+1 − μi;σ2
i ) is a Gaussian density with mean μi and

variance σ2
i .

Even though approximating transition densities can be per-
formed off-line, it is in particular computationally demanding
for multi-dimensional system states. To reduce the complex-
ity of approximating the transition density corresponding
to system (1) and to enforce an efficient state prediction,
the concept of modularization is applied [16]. Here, (1) is
decomposed into vector-valued subsystems, similar to Rao-
Blackwellised particle filters [4].

Recall that we assume that the nonlinear system (1) is
corrupted by element-wise additive noise, we can reduce
system (1) to a set of less complex subsystems

x
(i+1)
k = a(i)(x(i)

k , uk) + w
(i)
k , for i = 1, . . . ,m ,

such that
xk+1 = a(xk, uk,wk)

= a(m)(x(m)
k , uk) + w

(m)
k

x
(m)
k = a(m−1)(x(m−1)

k , uk) + w
(m−1)
k

...

x
(2)
k = a(1)(x(1)

k , uk) + w
(1)
k ,

where x
(i)
k are auxiliary system states and w

(i)
k are mutually

stochastically independent subvectors of the noise wk. The
approximation of the transition densities f̃T

uk
(x(i+1)

k |x(i)
k ) of

each subsystem can be further reduced to the scalar system
case (7) (for details see [16]). Finally, given the approxi-
mate transition density for each subsystem, calculating the
predicted density fx

k+1(xk+1) can be performed by nested
predictions starting with x

(1)
k = xk.

Example System: Modularization
The system model (2) describing the mobile robot can be
modularized into the subsystems

x
(2)
k = sin(αk) + wx

k (8)

and

xk+1 = xk + v ·T ·x(2)
k ,

αk+1 = αk + uk .
(9)

The auxiliary system state x
(2)
k is stochastically dependent on

αk. We omit this dependence in further investigations of the
example system for simplicity.

IV. REWARD FUNCTION REPRESENTATIONS

In this section, a very versatile possibility to model value
functions employing Gaussian mixture reward functions is
presented, where arbitrary reward functions can be realized
due to the Gaussian mixtures’ universal approximation prop-
erty [11]. Obviously, in this case the Gaussian mixtures
may have arbitrary parameters, e.g. negative weights ω. As
already introduced in (4), cumulative value functions Jk(xk)
are considered, where Jk(xk) is the maximum achievable
expected reward within the next N steps, which is the sum
of the step rewards gn(xn, un) and the terminal reward
gN (xn). For simplicity, step rewards that are additively
decomposable according to

gn(xn, un) = gx
n(xn) + gu

n(un)

are considered, although the proposed framework is not
limited to this case.

Exploiting the fact that the densities of the predicted
state variables are, as explained in the previous section,
described by Gaussian mixture densities, the expected value
Exn

{gx
n(xn)} from (5) can be calculated efficiently in closed

form, as it is just the multiplication of two Gaussian mixtures
with subsequent marginalization [16].

Example System: Gaussian Mixture Value Function
If the robot introduced in the previous example is intended to
move at a certain optimal distance (e.g. x̌n = 2) to the wall,
where the wall is at xWall

n = 0 and being closer to the wall
is considered less desirable than being farther away, this can
be modeled with a reward function as depicted in Fig. 1 (a).
If not only the distance to the wall, but also the orientation is
to be incorporated in the reward function, this can be done
by extending the dimensionality of the reward function, which
leads to a reward function as depicted in Fig. 1 (b). Here, the
robot is also driven to move in parallel to the wall.

The input-dependent part of the value function gu
n(un) can

either be modeled similar to the procedure described above
or with a lookup-table since there is just a finite number of
discrete un.

By using the efficient state prediction presented in Sec-
tion III together with the value function representations
presented above, (5) can be solved analytically for a finite
set of control inputs.



V. DYNAMIC PROGRAMMING AND VALUE FUNCTION
APPROXIMATION

By combining the techniques from Section III and IV,
a closed-form calculation of the open-loop optimal control
problem within NMPC is possible, where this straightforward
solution is an exhaustive tree search with depth N . In case
of very short optimization horizons and a limited number
of possible inputs this leads to an efficient and, apart from
modeling and approximation errors of the state prediction,
exact solution. In case of longer optimization horizons, the
straightforward calculation becomes unfeasible as the com-
putational demand increases exponentially with the length N
of the optimization horizon. This problem can be resolved
by employing dynamic programming (DP) for calculating the
value function (4). This is possible since the value function
only consists of additive terms that each just depends on the
system state and input for one individual time step [2]. Thus,
(4) can be also calculated in a backward fashion according
to

JN (xk+N ) = gN (xk+N ) ,

Jn(xn) = max
un

{
gn(xn, un) + E

xn+1

{
Jn+1(xn+1)|xn

}
︸ ︷︷ ︸

Vn(xn,un)

}
,

n = k + N − 1, . . . , k .

This is highly valuable, as the computational demand now
just increases linearly with N . Additionally, it is now also
possible to calculate (5) off-line, which obviously increases
the on-line performance significantly.

For calculating Jn(xn), two consecutive operations have
to be executed per step. First, Vn(xn, un) has to be calcu-
lated, where the calculation of the conditional expected value
Exn+1

{Jn+1(xn+1) |xn} is the demanding part, and then the
value function has to be maximized with respect to un.

A. Calculation of Vn(xn, un)

In case the system (1) is represented by a transition density
fT

un
(xn+1 |xn) as introduced in Section III, an approximation

of Vn(xn, un) can be calculated by

Vn(xn, un) ≈
gn(xn, un) +

∫
IRd

fT
un

(xn+1|xn) ·Jn+1(xn+1) dxn+1

=: V a
n (xn, un) . (10)

If, as it is here the case, fT
un

(xn+1|xn) and Jn+1(xn+1) are
given by Gaussian mixtures, this calculation can be executed
very easily and in closed form, as the integral can be solved
by just the multiplication of two Gaussian mixtures with a
subsequent marginalization. Thus, the resulting function is
also a Gaussian mixture.

In the more likely case that the system is described by
modularized or nested subsystem as described in Section III,
a closed-form solution can be derived similarly.

Example System: Calculation of Exn+1{Jn+1(xn+1) |xn}
With the modularized description of the example system ac-
cording to (8), (9), where v ·T = 1 and (10) it follows

E
xn+1

{Jn+1(xn+1) |xn}

≈
∫

IR2
fT

un
(xn+1, αn+1|xn, αn)

· Jn+1(xn+1, αn+1) dxn+1 dαn+1

=

∫
IR3

Jn+1(xn+1, αn+1) · δ(xn + x(2)
n − xn+1)

· δ(αn + un − αn+1) · fT
sin(x(2)

n |αn) dx(2)
n dxn+1 dαn+1

=

∫
IR

Jn+1(xn + x(2)
n , αn + un) · fT

sin(x(2)
n |αn) dx(2)

n .

Here, fT
sin(x

(2)
n |αn) is the axis-aligned Gaussian mixture tran-

sition density corresponding to (8) and δ(αn + un − αn+1)

as well as δ(xn + x
(2)
n − xn+1) are the transition densities

corresponding to (9). With

Jn+1(xn + x(2)
n , αn + un)

≈
L∑

i=1

ωi,n+1 · N
(
(xn + x(2)

n ) − μi,x,n+1; σ
2
i,x,n+1

)
· N (

(αn + un) − μi,α,n+1; σ
2
i,α,n+1

)
and

fT
sin(x(2)

n |αn)

=
M∑

j=1

ωj · N
(
x(2)

n − μj,x(2) ; σ
2
j,x(2)

)
· N (

αn − μj,α; σ2
j,α

)
,

the calculation, which is a multiplication of two axis-aligned
Gaussian mixtures with subsequent integration, can be calcu-
lated in closed form analog to the prediction step of the well
known Kalman filter. The result is again a Gaussian mixture
with L ·M axis-aligned components.

B. Maximization

The necessary maximization of V a
n (xn, un) ≈ Vn(xn, un)

with respect to un is demanding as it is the maximization
of Gaussian mixtures comprising components with different
weights, means, and covariances. As, to our knowledge, there
is no closed-form solution available we propose the following
algorithm to find an approximate solution:

1) Calculate the sum of V a
n for all possible un:

V Σ
n :=

∑
un

V a
n .

2) Reduce the number of mixture components to a fixed
number, e.g. with Salmond’s algorithm as described
in [15] extended by a feature to generate axis-aligned
Gaussian mixtures: V Σ,red

n := reduce(V Σ
n ).

3) Calculate the maximum of V a
n at the mean values of

the components of V Σ,red
n .

4) Generate a new Gaussian mixture Ja
n(xn) consisting of

Gaussians with means and covariances as V Σ,red
n . The

weights have to be chosen in a fashion, that the new
Gaussian mixture takes the true values as calculated in
3). This can be performed by simply solving the re-
sulting linear equation system. The necessary formulas
can be found in [12].
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Fig. 2. 40 step simulation. (green dotted line: stochastic NMPC, red solid line: stochastic NMPC with DP, blue dashed line: deterministic NMPC).

The first two steps lead to a discretization of the state
space in a meaningful fashion as the mixture reduction
algorithm in 2) is intended to keep sufficient support of
mixture components at places, where V Σ

n and therefore the
individual V a

n are non-zero. Thus, a discretization is achieved
that captures the properties of the individual value functions
and is therefore not restricted to a certain predefined area of
the state space or a predefined arrangement (e.g. a grid) of
mixture components, as e.g. proposed in [12]. Based on this
discretization, the required maxima can easily be calculated.
Please note, that not the reduced, but the original functions
are evaluated for this purpose. Finally, a new Gaussian
mixture is generated in 4) that has a constant maximum
number of components and is axis-aligned. This function
can then be directly used as a starting point for the next
(backward) step of the dynamic programming procedure.

The algorithm presented in this section permits the effi-
cient calculation of the value function (5) of the open-loop
optimization within NMPC. Thus, it is possible to calculate
(5) off-line, which obviously leads to an extreme speedup in
the on-line control.

VI. SIMULATIONS

Several simulations have been conducted using the above
example scenario to illustrate the modeling capabilities of
the proposed framework as well as to emphasize the benefits
that can be gained by the direct consideration of noise in
the optimal control optimization. Additionally, the dynamic
programming approach is compared to the straightforward
approach in order to verify its validity.

The considered system is given by (2) and (3), with
v ·T = 1 and uk ∈ {−0.2, 0, 0.2}, where modularization is
employed as described above. The considered noise influence
on the system wx

k is zero-mean white Gaussian noise with
standard deviation σx

w = 0.5. The measurement noise is
also zero-mean white Gaussian noise with standard deviation
σx

v = 0.5 and σα
v = 0.1 ≈ 5.7◦. All simulations are done

for a N = 4 step prediction horizon, with a value function
according to (4), where gN (xk+N ,αk+N ) is the function
depicted in Fig. 1 (b) and gn(xn,αn) = gN (xk+N ,αk+N ).

To evaluate the benefits of the proposed NMPC frame-
work, three different kind of simulations are performed:

1) Calculation of the input without any consideration of
noise (deterministic NMPC): The deterministic control is
used as a benchmark neglecting the noise influence.

2) Straightforward calculation of the optimal input con-
sidering all noise influences (stochastic NMPC): The
straightforward calculation of the optimal input with con-
sideration of the noise are carried out using the techniques
presented in Section III and Section IV. Thus, it is possible to
execute all calculations analytically without the need for any
numerical methods. Still, this approach has the drawback that
the computational demand for the optimal control problem
increases exponentially with the length of the horizon N .
Therefore, this approach is only suitable for short horizons.

3) Calculation of the optimal input with a value function
approximation scheme and dynamic programming (stochastic
NMPC with Dynamic Programming): In order to be able
to use the framework efficiently also for long prediction
horizons, it is necessary to employ Dynamic Programming.
This is done using the techniques as described in Section V.

In Fig. 2 (a), the first 40 steps of a simulation run are
shown. The distance to the wall xk is depicted by the position
of the circles, the orientation αk by the orientation of the
arrows. For each simulation run a particular noise realization
is used that is applied to the different controllers. Besides
that the system is heavily noise influenced it can be clearly
seen that the robot under deterministic control behaves very
differently from the other two. The deterministic controller
just tries to move the robot to the maximum of the reward
function at x̌k = 2 and α̌k = 0 while it totally neglects the
asymmetry of the reward function. The stochastic control
leads to a larger distance from the wall, which is caused by



TABLE I
SIMULATION RESULTS

det. control stoch. control stoch. DP control
average reward 0.2563 0.2875 0.2897
normalized av. reward 100% 112.16% 113.04%

the non-symmetric reward function together with the noise
affecting the system. The two stochastic controllers behave
very similar, which illustrates the good performance of the
techniques proposed in Section V.

In Fig. 2 (b), the evaluation of the reward function for
each step is shown. As expected, both stochastic controllers
perform much better, i.e., they generate a higher average
reward than the deterministic one. This finding has been
validated by a series of 100 Monte Carlo simulations with
different noise realizations and start values. The uniformly
distributed start values are sampled from the interval x0 ∈
[0, 6] and α0 ∈ [−π/4, π/4]. In Table I, the average step
rewards of the 100 simulations with 40 steps each are shown.
To facilitate the comparison also normalized average step
rewards are given. Here, it can be seen that the stochastic
controllers outperform the deterministic one by over 12%
and 13% respectively in terms of reward. In more than 85%
of the runs, both stochastic controllers gave overall better
results than the deterministic one. Therefore, the performance
increase by the stochastic controllers is highly significant
with a p-Value of below 10−13. It also can be seen, that
the controller using dynamic programming is even slightly
better than the straightforward one. This emphasizes the
high quality of the proposed value function approximation,
especially in comparison to the very basic value function
approximation technique used in [16].

VII. CONCLUSIONS AND FUTURE WORK

A novel framework for closed-form Nonlinear Model
Predictive Control for continuous state spaces and a finite
set of control inputs that directly incorporates the noise
influence in the corresponding optimal control problem has
been presented. By using the proposed state prediction meth-
ods, which are based on transition density approximations
by Gaussian mixture densities and complexity reduction
techniques, the otherwise not analytically solvable state pre-
diction of nonlinear noise affected systems can be performed
in an efficient closed-form manner. Another very important
aspect of NMPC is the modeling of the reward function. The
proposed methods that also use Gaussian mixtures lead to a
level of flexibility far beyond the traditional representations.
By employing the same representation for both the pre-
dicted probability density functions and the reward functions,
NMPC is solvable in closed form for nonlinear systems with
consideration of noise influences. Additionally, an efficient
algorithm for calculating the value function of the related
optimal control problem is presented that permits its off-line
calculation, which significantly reduces the required on-line
computational demand and also allows the incorporation of
long prediction horizons. The effectiveness of the presented
framework and its algorithms as well as the importance
of the consideration of noise in the controller has been

shown in simulations of a two-wheeled differential-drive
robot following a specified trajectory.

Future research is directed towards the extension to in-
homogeneous noise, i.e., noise with state and/or input de-
pendent noise levels, where the incorporation of nonlinear
filtering techniques is expected to be highly beneficial. An
additional important task will be the consideration of stability
aspects, especially in cases of approximated value functions.
This can, e.g. be tackled by the use of bounding techniques
for the approximation error [10]. Of special interest is the
extension to the related emerging field of Model Predictive
Sensor Scheduling [7], which is of especial importance, e.g.
in sensor-actuator-networks.
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