
The Visual Computer (2019) 35:1143–1156

https://doi.org/10.1007/s00371-019-01692-9

ORIG INAL ART ICLE

Efficient convolutional hierarchical autoencoder for humanmotion
prediction

Yanran Li1 · Zhao Wang2,3 · Xiaosong Yang1 ·Meili Wang4 · Sebastian Iulian Poiana1 · Ehtzaz Chaudhry1 ·

Jianjun Zhang1

Published online: 11 May 2019

© The Author(s) 2019

Abstract

Human motion prediction is a challenging problem due to the complicated human body constraints and high-dimensional

dynamics. Recent deep learning approaches adopt RNN, CNN or fully connected networks to learn the motion features

which do not fully exploit the hierarchical structure of human anatomy. To address this problem, we propose a convolutional

hierarchical autoencoder model for motion prediction with a novel encoder which incorporates 1D convolutional layers and

hierarchical topology. The new network is more efficient compared to the existing deep learning models with respect to

size and speed. We train the generic model on Human3.6M and CMU benchmark and conduct extensive experiments. The

qualitative and quantitative results show that our model outperforms the state-of-the-art methods in both short-term prediction

and long-term prediction.

Keywords Motion prediction · Deep learning · Autoencoder · Hierarchical networks

1 Introduction

Forecasting the future movements of human behaviours is

one of the most fundamental problems in understanding

human motion, and it has various practical applications in

computer animation [13,35], human interaction Robots [12,

25], computer vision [5,23] and computer graphics [15,22].

Especially for the human interaction robotics [21] or virtual

characters [13] in computer games, they are supposed to not

only respond to the opponents’ movements but also have a

preemptively ability to predict future movements. For exam-

ple, an intelligent agent should anticipate human athletes’

actions accurately and rapidly from historical data in adver-

Electronic supplementary material The online version of this article

(https://doi.org/10.1007/s00371-019-01692-9) contains

supplementary material, which is available to authorized users.

B Xiaosong Yang

xyang@bournemouth.ac.uk

1 Bournemouth University, Bournemouth, UK

2 Nanjing Institute of Advanced Artificial Intelligence,

Nanjing, China

3 Horizon Robotics, Nanjing, China

4 Northwest A&F University, Shaanxi, China

sarial sports like badminton and fencing, or in collaboration

scenarios like paired figure skating and Waltz dancing. For

animation production, motion prediction techniques can be

utilized to generate new motion data automatically so that the

animators can avoid a lot of manual work and time [13,14,22].

Forecasting human motion is a natural intelligence for

human beings; however, it still remains challenging for com-

puters because human motion data is high dimensional and

has complicated bio-mechanical constraints. Over the last

decades, there were a number of models [2,3,5,7,10,11,13,17,

23,24,33] introduced to address motion prediction problems.

Inspired from the striking breakthrough of deep learning

technology, they introduced neural networks to model motion

dynamics as well. Recently, researchers [7,24] typically

regard motion prediction as a sequence-to-sequence problem

[9,29] similar to machine translation. Therefore, they propose

recurrent neural networks (RNN) and variants, to address

motion prediction problems. Although these RNN models

achieve better results, they have intractable limitations such

as high computational complexity, less effective for the ape-

riodic motions and error accumulation. Essentially, the basic

assumption of RNN models ignored the major difference

between motion data and language data: motion data contains

not only spatial information which resembles the compli-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-019-01692-9&domain=pdf
https://doi.org/10.1007/s00371-019-01692-9

1144 Y. Li et al.

cated human body structure and mechanical restrictions but

also the temporal information.

Li et al. [23] propose a CNN-based autoencoder system

which tries to capture both the temporal dynamics and the

human body structure constraints. However, the 2D convolu-

tional kernel is not able to precisely capture the human body

hierarchical structure information as well. To be more spe-

cific, convolutional kernel is designed for images because a

rectangular patch of images usually represents a meaningful

signal. However, the human body has a completely different

spatial constraints which the joints are linked in an articulated

tree structure. Butepage et al. [5] demonstrate in experiments

that the convolution structure is not as effective as the fully

connected structure and hierarchical layers can improve the

performance significantly. However, their work has limita-

tions that limbs’ length may change in the predicted motion.

Meanwhile, the fully connected networks have high compu-

tational complexity and are prone to overfitting. Moreover,

their decoder results in a shaky and noisy output sequence

because the logical dependency between adjacent frames is

completely lost.

Considering the limitations above, we proposed a novel

convolutional hierarchical autoencoder (CHA) framework

to address the motion prediction problem. We designed a

new encoder network incorporated Hierarchical structure

with 1D convolution layers to capture the tree structures of

the human body and its temporal information at the same

time. Compared to RNN, FCN and CNN networks, it has a

much lower computational complexity and very small mem-

ory size but converges faster and more effective. We adopt

this convolution hierarchical module for motion prediction

tasks. Extensive experiments are conducted to demonstrate

our CHA model’s ability to improve the performance in CMU

data and Human3.6M (HM3.6) data in both short-term and

long-term motion prediction.

Our contribution consists of four fold: (1) We propose a

new convolutional hierarchical autoencoder model to address

motion prediction problem and outperform state-of-the-art

results. (2) Our model is running significantly more effi-

ciently compared to the CNN model. (3) Being mindful of

the motion data characteristics, we incorporated the 1D con-

volutional layers with hierarchical structures to exploit the

human body constrains. (4) Our model can generate high

fidelity motion sequences for both short-term prediction and

long-term prediction on CMU dataset and H3.6M dataset.

2 Related work

Motion data is a typical time series, so the traditional work

follows the statistic model of the hidden Markovian model

(HMM) [3] which is widely used in machine translation and

speech recognition, such as the Gaussian processes model

[33,34] and the conditional restricted Boltzmann machine

[28,30–32]. But all of them are hard to generalize for more

diverse and complicated actions.

Recently, there are increasing amount of researchers ded-

icated to developing a deep learning framework for motion

prediction. They significantly improved the performance

both quantitatively and qualitatively. We summarized the

recent deep learning approaches of motion prediction as fol-

lows:

Most existing network architectures adopt the RNN mod-

ule to solve the time series problems like machine trans-

lation [18,19] and stock forecasting [20,26]. The encoder–

recurrent–decoder (ERD) [7] is a typical encoder–decoder

model which incorporates representation learning and tem-

poral dynamics learning together by installing an encoder

and a decoder network before and after the recurrent layers.

The cyclic way to predict frames iterates errors and generates

unrealistic poses. They also considered a noise schedule to

tackle these problems. However, the noise schedule is very

inconvenient in the practical case. Jain et al. [17] propose

an SRNN model which combines multiple RNN structures

under the spatiotemporal graphs to improve the performance.

However, these multiple RNN models are very time con-

suming to train. ERD and SRNN are action-specific models

which are trained separately for each action type so that these

models do not explore the real strength of deep learning tech-

niques to benefit from a large dataset. Furthermore, other

researchers develop multi-action models to predict motions

for diverse types of actions together. Ghost et al. [10] intro-

duce a dropout autoencoder network (DAE) to learn the

inherent human body structures along with a 3-layer LSTM

to learn the temporal dynamics. Martinez et al. [24] achieve

higher accuracy both at short-term and long-term motion pre-

diction by applying three changes on the typical RNN model.

They introduce the sequence to sequence and Residual archi-

tecture, as well as a sampling-based loss plan for robustness

to avoid hyper-parameter tuning. Following Martinez’s work,

Gui et al. [11] added two discriminators on their system to

improve the quality of the predicted motion and alleviate the

error accumulation problem. These RNN architectures beat

down the traditional Markov methods, but they still have high

complexity and limited performance on aperiodic actions.

Moreover, they are prone to generate mean poses in long-

term prediction.

Due to RNN architectures’ lack of ability to extract spa-

tial information and their tendency to produce noisy data,

researchers propose various ideas as supplement, such as

co-training, hand-crafted spatial graphs and adversarial net-

works. By these strategies, the limitations of RNN are

alleviated but not completely solved. Therefore, some recent

approaches consider different encoder layers to replace the

recurrent layers entirely. Li et al. [23] propose a first convo-

lutional sequence-to-sequence model for motion prediction

123

Efficient convolutional hierarchical autoencoder for human motion prediction 1145

Fig. 1 The architecture of our convolutional hierarchical autoencoder

model. The orange and green solid boxes are the initial state of the

short-term encoder and decoder. They will produce the future frame

recursively. The orange and green dashed boxes are the final stage of

short-term encoder and decoder. They will stop moving after predicting

all the frames

and validate the effectiveness, on both the HM3.6M and

CMU dataset. Different from the typical encode–decode

model, they design a long-term and a short-term encoder for

the entire input frames and short-term neighbouring frames,

respectively. Besides, they add a simple two-layer fully con-

nected network as a discriminator to enhance the quality.

However, Butepage et al. [5] argue that convolutional lay-

ers are less effective than hierarchical layers since the 2D

convolutional computation does not fit with the hierarchical

human body structure. They prove that the fully connected

hierarchical layer works significantly better in the predic-

tion tasks. But the deep fully connected networks have high

computational complexity and are prone to overfitting. More-

over, their framework sacrifices qualitative performance to

improve the quantitative performance due to the decoder’s

design. The limbs’ length varies during the training and pre-

diction, and the output sequence may shake with noise for

the reason that the framework lost the logical coherent infor-

mation between frames in the decoder. Researchers [6,8,27]

also considered the human hierarchical structures with five

body parts. However, their hierarchical structure increased

the computation complexity. Therefore, we propose a new

model which contains the more reasonable convolutional

hierarchical encoder structure that has much lower complex-

ity than all the other modules and achieves the state-of-the-art

performance both quantitatively and qualitatively.

3 Methodology

An overview of our convolutional hierarchical autoencoder

(CHA) model is shown in Fig. 1. The seed motion clip

(input) will be propagated in an autoencoder system to gen-

erate the future frames. In the autoencoder, we designed two

encoders with convolutional hierarchical modules, which

consisted of three hierarchical layers and one fully connected

layer, to extract both the temporal and spatial information

in the human dynamics. One long-term encoder is used to

extract the information of the whole input sequence, while

the short-term encoder is used to extract the information of

C neighbouring frames close to the current frame. The deep

features generated by the two encoders will be concatenated

into one feature. The decoder utilized two fully connected

layers to restore the deep feature to a single human pose. In

this decoder, we also incorporated a residual link to avoid the

gradient vanishing problem. Therefore, the decoder will pro-

duce the output sequences recursively. To address the mean

pose problem and accelerate convergence, we designed a D-

loss function that assigns a series of diminished weights to

the frames.

3.1 Themathematical formulation

The human motion data in this paper refers to the MoCap

3D skeleton data with joints. A sequence of motion data

can be written as X = { f1, f2, . . . , ft , . . . , fn}. ft =

(a1, a2, . . . , aK) ∈ R3K denoted the frame at current time

t , K is the number of joints, and ai is the exponential map

representation [4] of joints. Similar to the standard procedure

[11,17,23,24], we normalized the exponential map so that ai

only contains the relative joints’ rotations without the global

rotation and translation. Therefore, the motion prediction

problem can be formulated in a mathematical way. We have

a set of motion clips A = {X i , i = 1, . . . , N }. In the training

123

1146 Y. Li et al.

Fig. 2 The convolution hierarchical layers in our framework. The first

layer contains the same number of neurons M2 as the input frame feature

dimension. Then, the neurons from adjacent joints are linked together to

one neuron in the secondary layer. Two neurons are linked together if and

only if the related ai and a j represents the data from two adjacent joints

in the human skeleton. After that, the two neurons input feature will be

concatenated as a sub-matrix and operated by 1D conv. Therefore, the

output of each neuron will be 1× M1 (M1 is the input frame number). In

the same way, the output of H1 will be sent in to H2 layer. H2 consists

of five neurons, and H3 consists of two neurons. All the nodes’ output

have explainable semantic meanings

stage, if the input motion X i = { f1, f2, . . . , ft , . . . , fn} ∈ A

has a length n, the m future ground truth frames are denoted as

X f = { fn+1, fn+2, . . . , fn+m}. This algorithm aims to gen-

erate the future frames X̂ = { f̂n+1, f̂n+2, . . . , f̂n+m}, which

makes the distance function D(X f , X̂) as small as possible.

3.2 The convolutional hierarchical module (CHM)

Different from the existing work, this network contains

neither a typical 2D CNN nor RNN components but a con-

volutional hierarchical module (CHM) which is particularly

designed for human motion data (Fig. 2). This module has

a network topology similar to the human body tree struc-

ture, and every node in the network is a 1D convolutional

layer. The network topology is better at preserving the spe-

cial human body hierarchical constrains in deep features.

The RNN structures did not exploit the spatial informa-

tion in motion data enough, and the human body has more

sparse nodes and an articulated structure compared to images.

Therefore, this CHM module is more capable to capture both

the sectional and holistic details of motion data than RNN

and CNN. We utilize 1D convolutional layers to capture the

temporal information along with the spatial constraints and

reduce the model complexity at the same time.

Our convolution hierarchical module consisted of four lay-

ers, three convolutional hierarchical layers H1, H2 and H3,

which are illustrated in Fig. 2, and a fully connected layer.

Fig. 3 The five body components. Note that the joints in the figure do

not equal to the same number of joints used in experiments

Intuitively, H1 stands for the information of each joint link in

the human body. And H2 extracts information separately for

five parts of the human body, which is illustrated in Fig. 3. H3

extracts the deep representations for two parts of the human

body, upper and lower. Therefore, the deep features of our

layers have semantic explanations as well.

The input sequence is a matrix of dimension M1 × M2,

referring to M1 frames, and each frame is represented by

a feature of M2 dimension. Each element from this feature

comes from an exponential representation of a joint. The

input matrix will be reconstructed by separating the con-

nected joints into a group. For example, joints J1 and J2

are connected by one bone; then, the related input features

M1 × j1 and M1 × j2 are combined together as a sub-matrix

M1 × (j1 + j2). A 1D convolution kernel will operate each

sub-matrix along the time axis M1. If there is L joint links in

the human body tree, then the H1 layer consists of L nodes.

The output feature of each node represents each joint link.

H2 and H3 are built in the same way. In the layer of

H2, the features of joint links are concatenated into five sub-

matrixes related to five body parts (Fig. 3). The sub-matrixes

are operated by the 1D-convolution as well. H3 only has two

nodes, which represent the upper body action and lower body

action, respectively. The setting details are shown in Table 1.

This design of structure brings two benefits. Firstly, the

hierarchical network structures blend the human body con-

strains in feature extraction. Compared to the CNN model

[23], our model captures more precise spatial structures and

generates more meaningful deep features. Since the semantic

meaning of deep feature is a very important research ques-

tion, our model will contribute to the researches by producing

more explainable deep features. Secondly, the 1D convolu-

tional layers can capture the temporal information in a much

123

Efficient convolutional hierarchical autoencoder for human motion prediction 1147

Table 1 The architecture of adversarial hierarchical autoencoder

Scope Layer NodesNumber NodeType KernelSize FilterNum Stride Pad

Encoder H1 20 (22 for CMU data) Conv1D 5 64 1 ‘Same’

LeakyRelu(0.2) – – – –

Dropout(0.8) – – – – – –

H2 5 Conv1D 5 256 1 ‘Same’

LeakyRelu(0.2) – – – –

Dropout(0.8) – – – – – –

H3 2 Conv1D 5 320 1 ‘Same’

LeakyRelu(0.2) – – – –

Dropout(0.8) – – – – – –

FullyConnect 256 – – – – –

Decoder FullyConnect 256 – – – – –

FullyConnect 54 (70 for CMU data) – – – – –

more efficient way than RNN models and CNN models. The

less complex model can prevent overfitting problems better.

It is the most efficient network for motion modelling based

on our knowledge. We will discuss the model complexity on

details in Sect. 4.4.

3.3 The autoencoder framework

A deep sparse autoencoder system [23] is widely used for

synthesis problems. In this work, we used an autoencoder

system as the generator to produce X̂ .

Two encoders are employed in this autoencoder system.

The first encoder network aims to map the whole n frames

in the input sequence X = { f1, f2, . . . , ft , . . . , fn} into a

deep feature Vl which extracts the long-term information

such as the action type, the global tendency and the motion

style. The second encoder aims to map the adjacent C frames

X t
C = { ft−C+1, ft−C+2, . . . , ft } of the current frame ft

into another deep feature V t
s which contains the short-term

information to predict the frame ft+1. Finally, Vl and V t
s

are concatenated to be one feature V t and propagated into a

decoder. The two encoders are denoted as functions El and

Es , respectively.

Vl = El(X |Wl), Wl is the parameters of El (1)

V t
s = Es(X t

C |Ws), Ws is the parameters of Es (2)

V t = [Vl , V t
s] (3)

The predicted motion sequences are generated recursively.

The Xn
C will encode the information to inference the first

future frame f̂n+1, Therefore, the window of the short-term

encoder can move to Xn+1
C , where

Xn+1
C = { fn−C+2, fn−C+3, . . . , f̂n+1}

So that the next frame f̂n+2 of f̂n+1 can be produced. By

following this methodology, all of the m future frames can

be generated by this scheme. A decoder with two fully con-

nected layers is used in the pipeline to restore the human pose

from the low-dimensional representation V t . The mapping

function of the decoder is denoted as D, so that the f̂t+1 can

be written as follows:

f̂t+1 = D(V t |WD), WD is the parameters of D (4)

In recursive cases, the residual link usually works better

than producing the next status directly. So we designed the

decoder with a residual link as well. The formula of Eq. 4 is

rewritten as:

f̂t+1 = D(V t |WD) + f̂t , WD is the parameters of D (5)

Therefore, the three networks are combined together to

encode the spatial-temporal information of long seed motions

and relate the short neighbouring motions into a deep fea-

ture representation. Then, the decoder maps the deep features

back into the human body joints, relative to the rotation expo-

nential map representations and produces the future frames

iteratively.

3.4 The objective function

Inspired by [7,17,23,24], we used the l2 loss function of two

motions, which measures their difference by summing up the

mean squares error (MSE) of the Euler angles of all frames.

The objective function of our convolutional hierarchical

autoencoder model is:

min LE (X̂ , X f) + λ‖W‖2 (6)

123

1148 Y. Li et al.

The predicted motion is written as:

X̂ = { f̂n+1, f̂n+2, . . . , f̂n+m} (7)

And the ground truth of the predicted motion represents the

following:

X f = { fn+1, fn+2, . . . , fn+t , . . . , fn+m} (8)

The original Euclidean distance loss function is defined as:

LE (X̂ , X f) = ‖X̂ − X f ‖ =

n+m∑

t=n+1

‖ f̂t − ft‖2 (9)

So the objective function can also be written in a frame level:

min

n+m∑

t=n+1

‖ f̂t − ft‖2 + λ(‖WE‖2 + ‖WD‖2) (10)

where the λ controls the balance of different loss sources.

The WE and WD are the parameters of the encoders and

decoder in the hierarchical convolutional model. The term

λ(‖WE‖2 +‖WD‖2) is a l2 regularizer to prevent overfitting.

Remarks

We designed a D-loss function to accelerate convergence.

The idea is to assign gradually diminishing weights for each

frame in the sequences. From the experiments, this D-loss

function does not affect the result but prevents to produce

the mean pose.

The iteration loss function with assigned diminishing

weights for frames is:

LA(X̂ , X f) =

(
n+m∑

t=n+1

ηt−n‖ f̂t − ft‖2

)
/

(
n+m∑

t=n+1

ηt−n

)

(11)

where η ∈ (0, 1) is a parameter very close to 1. During

the training process, the networks will put more efforts to

decrease the error of earlier generated frames since they have

more iteration steps which will amplify the initial error. The

frame level distance ‖ f̂t − ft‖2 can use l2, l1 or geodesic loss

[11] as well.

3.5 Implementation Details

The input sequence has a length of 50 frames so that the first

hierarchical layer has an input vector of 50 ×54 (50 ×70 for

CMU) and the predicted sequences have a length of 25. We

set the short-term encode to have an input length of 20. We

used a small batch size 16 and a learning rate of 5e−5. For

the parameter η, which aims to control the error generation

during the experiment, we found 0.9 is a good value during

experiment experience. We used a NVIDIA GPU 1080Ti and

trained our full model in Tensorflow [1].

4 Experiments

To validate our model, we conduct extensive experiments

of motion prediction on the existing benchmarks—H3.6M

dataset and CMU motion dataset. Generally, the previous

motion prediction task follows the same standard of exper-

iments, which tests their model for short-term prediction

and long-term prediction. We included the state-of-the-art

baselines of motion predictions as the comparison. The

experiments results demonstrated that the prediction accu-

racy of our model beats down the state-of-the-art baselines

on diverse actions of H3.6M and CMU. Meanwhile, we illus-

trate that our model also produces more plausible human-like

movements than baselines. Besides, we also discuss the effi-

ciency of our model in terms of computational complexity

and parameters in Sect. 4.4.

4.1 Dataset

Following the standard comparison [23], we provide motion

prediction experiments on the two widely used motion

benchmarks—H3.6M [16] dataset and CMU motion dataset.

H3.6M This dataset is the largest motion dataset which pro-

vides 3.6 million 3D human poses and corresponding images

in three kinds of formats. We use the 3D skeleton format,

which has 32 joints in total to represent the human body

structure. In our data process, each frame is recorded as the

relative rotation of each joint, which is mathematically con-

verted into an exponential map. There is performance of 11

professional actors in certain scenarios such as discussion,

smoking, etc. Six actors’ trails and all the 15 types of actions

are selected in our experiment. Each type of action has two

performance trials among 3000–5000 frames. Therefore, we

select 180 trials of H3.6M in total. The train set is five times

to the test set as the previous work. Four types of actions,

walking, smoking, eating and discussion, are most widely

evaluated in these motion prediction mechanisms. We pro-

vide the experiments not only on these four but also on all

the other actions as well.

CMU This dataset has a more wide range of action types

than H3.6M. It gives out a large amount of skeleton-based

MoCap data around 2605 sequences which represent six cat-

egories and 23 subcategories (actions). Contrast to H3.6M,

each action type contains different amounts of trials and their

3D-skeletons consist of 31 joints. There are various sports

and physical activities included, such as basketball, soccer

123

Efficient convolutional hierarchical autoencoder for human motion prediction 1149

and jumping. We use the same subset selected by [23] under

the prescriptions, in which the action type should be a single

type and should contain enough training trials. Finally, eight

action types are selected and each of them contains more than

five trials. Besides walking, all the other action types have

five trials for training and one trial for testing.

The two datasets are preprocessed in the same way. Due

to data normalization being an important factor affecting the

network’s performance, we normalize all the human pose

data into mean value resulting to 0, and standard deviation

resulting to 1. Therefore, the root point of all poses is set

at the same point and the global orientation of the whole

body is fixed. After that, every normalized human pose is

represented by a 54 dimension feature for H3.6M and a 70

dimension feature for CMU. All the trials are down sam-

ple to 25 Hz, so that every seed motion clip has 50 frames,

equivalent to 2 seconds of information. The seed motion clip

will be imported in the long-term encoder, and the neigh-

boured 20 frames of the currently predicted frame will be

imported in the short-term encoder. Note that, although all

the models present their evaluation results by Euler angles,

their loss functions do not calculate Euclidean differences

of Euler angles directly. For example, Martinez et al. [24]

and Gui et al. [11] use losses which calculate the exponen-

tial maps and the orientation groups’ difference between the

predicted motion and the ground truth, respectively. In this

paper, we consider the Euclidean difference of exponential

maps in the loss function as well.

4.2 Baselines

Five of the state-of-the-art deep learning models are included

in the comparative evaluation. Those are the following:

1. Encoder–recurrent–decoder model for human motion

recognition and prediction (ERD) [7]

2. Dubbed the dropout autoencoder LSTM (DAELSTM)

[10]

3. Residual Recurrent sequence-to-sequence model for

human motion modelling (RRNN) [24]

4. Convolutional sequence-to-sequence model for human

Dynamics (CNNHD) [23]

We reproduce the experiments of CNNHD and RRNN

from their public implementation on GitHub. However, the

remaining models do not public their implementation code.

Therefore, we quote their results from the existing publica-

tions [24] for error comparison. We also compare the quality

of the predicted sequences with CNNHD. For the short-term

prediction, we quote the results reported from CNNHD [23].

For the long-term prediction, we implement the CNNHD

model from their public code and train their model with the

same settings in [23]. Because all these models follow the

standard procedure of data processing and the same evalua-

tion, this comparison is impartial.

4.3 Evaluationmethods

From a practical perspective, the predicted motion should be

accurate and look plausible at the same time. Therefore, we

evaluate our model in three aspects: complexity, qualitative

and quantitative performance. We present all the short-term

results of diverse action types and also the more challenging

long-term prediction accuracy.

1. To evaluate the efficiency of our model, we conduct the

discussion in Sect. 4.4. Usually, RNN models have a

higher complexity compared to CNN models. We com-

pared the our CHM’s complexity and size with the

state-of-the-art CNN-based model. Li et al. [23] proposed

a CNN-based autoencoder system with convolutional

encoding module (CEM) which outperformed all the

RNN models.

2. To evaluate the prediction performance, we provide the

average mean square error (MSE) of the Euler angles

between the predicted motion and ground truth. We con-

duct short-term prediction for different durations: 80 ms

(2 frames), 160 ms (4 frames), 320 ms (8 frames), 400 ms

(10 frames). In addition, we also conduct the long-

term predictions for four durations: 560 ms (14 frames),

720 ms (18 frames), 840 ms (21 frames), 1000 ms (25

frames). The results and analysis are shown in Sects. 4.5

and 4.6 with Table 2, 3, 4, 5, 6 and 7.

3. To evaluate the quantitative performance of our model,

we illustrate the representative prediction sequences in

Figs. 4, 5 and 6 following the same settings in [5,11,23,

24]. The attached demo shows the predicted results in

video, which demonstrates the smoothness, fidelity and

similarity of the proposed method.

4.4 Size and speed

CNN has the lowest model complexity compared to the FCN

and RNN structures. But the design of our convolution hier-

archical network even greatly reduced the model complexity

compared to CNN. We calculate the complexity of CEM and

our CHM here.

For a normal convolutional layer with a kernel size K1 ×

K2, it takes an input M1in×M2in×Cin and generates an output

of M1out × M2out × Cout. Here, M1in and M2in represent the

width and height of the input tensor. The same for M1out

and M2out. Cin and Cout are the numbers of input and output

channels, respectively. For simplification, we consider that all

the convolutional layers have the same output size of input

and strides equal to 1. Therefore, we denote M1 × M2 both

for input and output.

123

1150 Y. Li et al.

Table 2 The short-term prediction error of four action types on H3.6M dataset

Walking Eating Smoking Discussion

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

ERD [7] 1.30 1.56 1.84 N/A 1.66 1.93 2.28 N/A 2.34 2.74 3.73 N/A 2.67 2.97 3.23 N/A

DAELSTM [10] 1.00 1.11 1.39 N/A 1.31 1.49 1.86 N/A 0.92 1.03 1.15 N/A 1.11 1.20 1.38 N/A

RRNN [24] 0.33 0.56 0.78 0.85 0.26 0.43 0.66 0.81 0.35 0.64 1.03 1.15 0.37 0.77 1.06 1.10

CNNHD [23] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01

CHA 0.27 0.45 0.65 0.74 0.20 0.34 0.53 0.66 0.26 0.48 0.89 0.93 0.28 0.62 0.85 0.91

Bold values indicate the lowest MSE of Euler Angle

Table 3 The short-term prediction error of 12 action types on H3.6M dataset

Directions Greeting Phoning Posing

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.44 0.70 0.86 0.97 0.55 0.90 1.34 1.51 0.62 1.10 1.54 1.70 0.40 0.76 1.37 1.62

CNNHD 0.39 0.60 0.80 0.91 0.51 0.82 1.21 1.38 0.59 1.13 1.51 1.65 0.29 0.60 1.12 1.37

CHA 0.40 0.62 0.79 0.88 0.53 0.87 1.28 1.44 0.60 1.12 1.51 1.64 0.27 0.56 1.16 1.41

Purchases Sitting Sittingdown Takingphoto

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.59 0.83 1.22 1.30 0.47 0.80 1.30 1.53 0.50 0.96 1.50 1.72 0.32 0.63 0.98 1.12

CNNHD 0.63 0.91 1.19 1.29 0.39 0.61 1.02 1.18 0.41 0.78 1.16 1.31 0.23 0.49 0.88 1.06

CHA 0.60 0.84 1.10 1.15 0.40 0.64 1.03 1.21 0.41 0.79 1.15 1.30 0.26 0.51 0.80 0.93

Waiting Walkingdog Walkingtogether Average

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.35 0.68 1.14 1.34 0.55 0.91 1.23 1.35 0.29 0.59 0.86 0.92 0.43 0.75 1.12 1.27

CNNHD 0.30 0.62 1.09 1.30 0.59 1.00 1.32 1.44 0.27 0.52 0.71 0.74 0.38 0.68 1.01 1.13

CHA 0.32 0.63 1.12 1.31 0.54 0.90 1.24 1.38 0.26 0.53 0.75 0.80 0.37 0.66 0.99 1.11

Bold values indicate the lowest MSE of Euler Angle

CEM consists of three 2D convolution layers and one fully

connected layer. CHM consists of three hierarchical layers

and one fully connected layer. We will calculate the com-

putational complexity A and the parameters’ number B for

each layer separately and then sum them up.

4.4.1 Comparison of computational complexity

The computational cost of a 2D convolutional layer in CEM

is calculated as:

A = M1 × M2 × Cout × ((K1 × K2 + 1) × Cin + (Cin − 1))

(12)

We denote the number of nodes in each hierarchical layer

as hi ; then, the computation cost of one Hi layer in CHM is

calculated as:

Ai = hi × M1 × Cout × ((K1 × K2 + 1) × Cin + (Cin − 1))

(13)

In the equations, (K1×K2+1) is the calculation in one patch

of convolution. Here, we consider the bias weight so that we

add one. ((K1 × K2 + 1) × Cin + (Cin − 1)) means the total

calculation to produce a point on the output. M1 × M2 ×Cout

means the number of output points.

If we set the same kernel value for two models, the ratio

of computational complexity of each convolution layer can

be deduced from the equations above:

ACEM
i : ACHM

i = M2 : hi (14)

For the last fully connected layer, we do not include the

bias for simplicity. CHM is more efficient than CEM as well:

123

Efficient convolutional hierarchical autoencoder for human motion prediction 1151

Table 4 The long-term

prediction error of 15 action

types on H3.6M dataset

Walking Eating Smoking Discussion

milliseconds 560 840 1000 560 840 1000 560 840 1000 560 840 1000

CNNHD 0.86 0.92 0.97 0.86 1.09 1.33 1.04 1.38 1.70 1.34 1.71 1.79

CHA 0.84 0.91 0.92 0.82 1.02 1.21 1.02 1.35 1.66 1.29 1.65 1.72

Directions Greeting Phoning Posing

milliseconds 560 840 1000 560 840 1000 560 840 1000 560 840 1000

CNNHD 0.96 1.33 1.40 1.69 1.82 1.84 1.59 1.82 1.86 1.89 2.30 2.50

CHA 0.97 1.34 1.40 1.72 1.82 1.83 1.58 1.91 2.03 1.72 2.15 2.40

Purchases Sitting Sittingdown Takingphoto

milliseconds 560 840 1000 560 840 1000 560 840 1000 560 840 1000

CNNHD 1.61 1.88 2.39 1.30 1.60 1.71 1.58 2.02 2.19 1.08 1.24 1.32

CHA 1.55 1.84 2.33 1.34 1.59 1.67 1.50 1.89 2.05 1.06 1.19 1.27

Waiting Walkingdog Walkingtogether Average

milliseconds 560 840 1000 560 840 1000 560 840 1000 560 840 1000

CNNHD 1.66 2.24 2.36 1.71 1.87 1.91 0.86 1.00 1.36 1.33 1.61 1.77

CHA 1.65 2.23 2.34 1.65 1.86 1.90 0.88 0.99 1.32 1.31 1.58 1.74

Bold values indicate the lowest MSE of Euler Angle

Table 5 The short-term prediction error of eight action types on the CMU dataset

Basketball Basketball Signal Directing Traffic Jumping

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.50 0.80 1.27 1.45 0.41 0.76 1.32 1.54 0.33 0.59 0.93 1.10 0.56 0.88 1.77 2.02

CNNHD 0.37 0.62 1.07 1.18 0.32 0.59 1.04 1.24 0.25 0.56 0.89 1.00 0.39 0.60 1.36 1.56

CHA(H) 0.37 0.61 0.97 1.07 0.27 0.50 0.89 1.05 0.24 0.49 0.79 0.92 0.41 0.66 1.46 1.66

Running Soccer Walking Washwindow

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.33 0.50 0.66 0.75 0.29 0.51 0.88 0.99 0.35 0.47 0.60 0.65 0.30 0.46 0.72 0.91

CNNHD 0.28 0.41 0.52 0.57 0.26 0.44 0.75 0.87 0.35 0.44 0.45 0.50 0.30 0.47 0.80 1.01

CHA(H) 0.29 0.44 0.53 0.56 0.23 0.42 0.81 0.95 0.33 0.43 0.45 0.50 0.28 0.44 0.74 0.94

Bold values indicate the lowest MSE of Euler Angle

Table 6 The long-term prediction error of eight action types on the CMU dataset

Basketball Basketball Signal Directing Traffic Jumping

milliseconds 560 720 840 1000 560 720 840 1000 560 720 840 1000 560 720 840 1000

CNNHD 1.75 2.20 2.39 2.51 1.47 1.62 1.65 1.67 1.51 1.68 1.78 1.93 1.93 1.92 2.20 2.10

CHA 1.21 1.37 1.47 1.54 1.30 1.44 1.47 1.52 1.49 1.70 1.80 1.97 1.91 1.94 2.20 2.10

Running Soccer Walking Washwindow

milliseconds 560 720 840 1000 560 720 840 1000 560 720 840 1000 560 720 840 1000

CNNHD 0.51 0.48 0.54 0.59 1.11 1.27 1.32 1.46 0.55 0.65 0.75 0.79 1.17 1.23 1.40 1.36

CHA 0.56 0.59 0.57 0.55 1.19 1.36 1.39 1.47 0.58 0.68 0.77 0.78 1.17 1.21 1.37 1.32

Bold values indicate the lowest MSE of Euler Angle

123

1152 Y. Li et al.

Table 7 The average error of all types of actions in the CMU dataset

milliseconds 80 160 320 400 560 720 840 1000

CNNHD 0.32 0.52 0.88 0.99 1.25 1.38 1.50 1.55

CHA 0.30 0.50 0.83 0.96 1.18 1.29 1.38 1.41

Bold values indicate the lowest MSE of Euler Angle

ACEM
F = M1 × M2 × Cout × F

ACHM
F = M1 × Cout × F

ACEM
F : ACHM

F = M2

(15)

Since hi is much smaller than M2, our CHM model

has much lower computational complexity under the same

settings. For experiment convenience, we use a CHM

with slightly different parameters which are written in

Table 1. We will obtain the computational cost ratio of two

networks:

Computational cost of CEM

Computational cost of CHM
≈

1, 240M

302M
≈ 4.1 (16)

The computational cost of the model affects the total

running time of the model. Usually, researchers and data

engineers need to train a deep learning model dozens or

hundreds of times to modulate it. Therefore, the time effi-

ciency of our model allows them to implement ideas and tasks

faster.

4.4.2 Comparison of the parameters

The number of parameters of a convolutional layer is calcu-

lated as:

B = K1 × K2 × Cin × Cout (17)

The parameter number of a Hi layer is calculated as:

Bi = K1 × K2 × Cin × Cout × hi (18)

Fig. 4 The illustration of the prediction result of 1000 ms on H3.6M dataset. The blue and red skeletons are ground truth frames. The green and

purple skeletons on the top are the prediction results of CHA model

Fig. 5 The illustration of the prediction result of 1000 ms on H3.6M dataset. The blue and red skeletons are ground truth frames. The green and

purple skeletons on the top are the prediction results of the CHA model

123

Efficient convolutional hierarchical autoencoder for human motion prediction 1153

Fig. 6 The illustration of the prediction result of 400 ms on CMU dataset. The blue and red skeletons are ground truth frames. The green and purple

skeletons on top represent the prediction results of the CHA model

The parameter number of the fully connected layers is:

BCEM
F = M1 × M2 × Cout × F

BCHM
F = M1 × Cout × F

BCEM
F : BCHM

F = M2

(19)

The total cost of a network is to sum up the cost of each

layer:

Total parameter =
∑L

l=1 Bl (20)

Because B and Bi are significantly smaller than BCEM
F

and BCHM
F , our CHM will have a smaller size under the same

settings as well. To be more specific, we calculate the precise

number of parameters with the setting in Table 1:

The parameters in CEM

The parameters in CHM
≈

177M

11M
≈ 15.1 (21)

It is an intractable problem in deep learning models that

more data is required when the model has more parame-

ters. Due to motion data being expensive and inconvenient

to obtain, the samples for each type of action are limited. We

observed that complex models are prone to overfitting on the

small amount of motion data. Therefore, our model allevi-

ates this problem and it is more suitable for small sample

learning.

4.5 H3.6M experiment results

There are four types of actions, walking, eating, smoking

and discussion, which are commonly used as benchmarks in

comparison. Therefore, we present our results of the short-

term prediction of these four actions in Table 2. The accuracy

of other baselines is compared in this table as well. Note

that all the results come from the model which is trained

generally for the loss of 15 actions in the long term. Our

model beats down all the results of four actions in terms of

80 ms, 160 ms, 320 ms and 400 ms, except one. For the 400 ms

walking prediction, our model actually achieved 0.735 which

is almost the same to 0.73 of the CNNHD model. For the

80 ms and 160 ms walking prediction, our model improved

0.06 significantly. Even for the aperiodic action discussion,

our model outperforms all the other baselines completely

with a maximum of 0.8 Euler angle error reduction.

For a more general comparison, we display the 12 remain-

ing actions’ results in Table 3. Compared to ERD, DAEL-

STM and RRNN, our model almost outperforms on every

action. However, compared to CNNHD, our model shows

a different preference of actions. Half of actions improved

but half decreased. Therefore, we calculate the average error

to demonstrate a fair comparison. It shows that our model

achieved the best average error in terms of all prediction

lengths. The general model CHA even beats the other action-

specific models like ERD.

The long-term prediction result is shown in Table 4.

Because the ERD, DAELSTM and RRNN models did

not provide about their long-term accuracy and CNNHD

achieved best performance of them, we only compared here

using the CNNHD model. The results regarding the long-

term prediction of CNNHD model are obtained from their

public implementation and use the same setting in their paper.

From Table 4, our model improves all the performance of

diverse actions especially in the long term. In the most chal-

lenging long-term task, motion prediction for 1000 ms, our

model outperforms significantly on almost every action.

The visualization is shown in Figs. 4 and 5. Both for

periodic motions like walking and aperiodic motions like

discussion, our model produces plausible and high fidelity

predictions which are very similar to the ground truth.

Besides, our model avoids generating mean poses in long-

term prediction like RNN models (Fig. 5).

123

1154 Y. Li et al.

4.6 CMU experiment results

In order to demonstrate our model’s generalization ability,

we trained our model for eight actions from CMU data as

well. Only one existing work, CNNHD, provides their results

on CMU dataset. We give out the prediction error of these

actions in Table 5 and Table 6. We compared the short-term

prediction ability first. It shows that almost all the action

improved their accuracy in some terms. More than 60% of

our results outperform the CNNHD. In the 80 ms and 320 ms

of running, our errors are 0.285 and 0.525 precisely, which

are very close to CNNHD. We also calculate the average

error of these eight actions, and they demonstrate our model

achieved a better performance than CNNHD.

For long-term prediction, our model outperforms more

than half of the result of the CNNHD model. Similar to the

H3.6M dataset, our model produces an unbalanced improve-

ment. Therefore, we provide the average error of the eight

actions. The results in Table 7 demonstrate that our model

outperforms the CNNHD model in terms of all length of

prediction. It improves significantly for long-term prediction

around 0.10. The experiments show that our model has ability

to alleviate the error accumulation in long term.

The visualization of our data is shown in Fig. 6. Compared

to the Human3.6M dataset, the prediction results of the CMU

are not always completely similar to the ground truth. The

purple skeleton data at bottom is the result of CNNHD model.

We can see our model predict the left arm and left foot more

accurate than the CNNHD model.

5 Conclusion

We designed a novel convolutional hierarchical module

which combines 1D convolutional layers in a tree struc-

ture. We utilized this module as an encoder and built up

an autoencoder system. Our CHA model can extract the

temporal and spatial information effectively and greatly

reduce the model computational complexity and size. We

demonstrated that our model outperform the state-of-the-art

accuracy in the Human3.6M and CMU benchmark by exten-

sive experiments. In the experiments, the CMU prediction

is not completely similar to the ground truth and our model

demonstrated an unbalanced preference of actions. In the

future, we plan to explore the data augmentation method on

CMU and introduce more expressive concatenated features

of the three H layers.

Acknowledgements We would like to thank Li Wang, Nan Xiang and

Ming Zhang for their help of this research.

Funding This study was funded by EU H2020 under the REA grant

agreement (Grant Number 691215) and the Key Laboratory of Agri-

cultural Internet of Things, Ministry of Agriculture and Rural Affairs,

Yangling, Shaanxi 712100, China (2018AIOT-09) and the Automation

Fellow in the South West Creative Technology Network.

Compliance with ethical standards

Conflict of interest Jianjun Zhang has received research grants from

EU H2020. Meili Wang has received research grants from China

(2018AIOT-09). Yanran Li has received research grants from the

Automation Fellow in the South West Creative Technology Network.

The rest authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a

system for large-scale machine learning. OSDI 16, 265–283 (2016)

2. Akhter, I., Simon, T., Khan, S., Matthews, I., Sheikh, Y.: Bilinear

spatiotemporal basis models. ACM Trans. Graph. 31(2), 17 (2012)

3. Brand, M., Hertzmann, A.: Style machines. In: Proceedings of the

27th Annual Conference on Computer Graphics and Interactive

Techniques, pp. 183–192. ACM Press/Addison-Wesley Publishing

Co. (2000)

4. Bregler, C., Malik, J.: Tracking people with twists and exponential

maps. In: 1998 Proceedings of IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 1998, pp. 8–15. IEEE

(1998)

5. Bütepage, J., Black, M.J., Kragic, D., Kjellström, H.: Deep repre-

sentation learning for human motion prediction and classification.

In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), p. 2017. IEEE (2017)

6. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural net-

work for skeleton based action recognition. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition,

pp. 1110–1118 (2015)

7. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network

models for human dynamics. In: Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pp. 4346–4354 (2015)

8. Garbade, M., Gall, J.: Handcrafting vs deep learning: an evaluation

of ntraj+ features for pose based action recognition. In: Workshop

on New Challenges in Neural Computation and Machine Learning

(NC2), pp. 85–92 (2016)

9. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.:

Convolutional sequence to sequence learning. arXiv preprint

arXiv:1705.03122 (2017)

10. Ghosh, P., Song, J., Aksan, E., Hilliges, O.: Learning human motion

models for long-term predictions. In: 2017 International Confer-

ence on 3D Vision (3DV), pp. 458–466. IEEE (2017)

11. Gui, L.Y., Wang, Y.X., Liang, X., Moura, J.M.: Adversarial

geometry-aware human motion prediction. In: ECCV, pp. 823–842

(2018)

12. Gui, L.Y., Zhang, K., Wang, Y.X., Liang, X., Moura, J.M.,

Veloso, M.: Teaching robots to predict human motion. In: 2018

IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), pp. 562–567. IEEE (2018)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1705.03122

Efficient convolutional hierarchical autoencoder for human motion prediction 1155

13. Holden, D., Komura, T., Saito, J.: Phase-functioned neural net-

works for character control. ACM Trans. Graph. 36(4), 42 (2017)

14. Holden, D., Saito, J., Komura, T.: A deep learning framework for

character motion synthesis and editing. ACM Trans. Graph. 35(4),

138 (2016)

15. Holden, D., Saito, J., Komura, T., Joyce, T.: Learning motion man-

ifolds with convolutional autoencoders. In: SIGGRAPH Asia 2015

Technical Briefs, p. 18. ACM (2015)

16. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m:

large scale datasets and predictive methods for 3d human sensing

in natural environments. IEEE Trans. Pattern Anal. Mach. Intell.

36(7), 1325–1339 (2014)

17. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-rnn:

Deep learning on spatio-temporal graphs. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition,

pp. 5308–5317 (2016)

18. Kalchbrenner, N., Blunsom, P.: Recurrent continuous translation

models. In: Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing, pp. 1700–1709 (2013)

19. Kalchbrenner, N., Espeholt, L., Simonyan, K., Oord, A.v.d.,

Graves, A., Kavukcuoglu, K.: Neural machine translation in lin-

ear time. arXiv preprint arXiv:1610.10099 (2016)

20. Kamijo, K.i., Tanigawa, T.: Stock price pattern recognition—a

recurrent neural network approach. In: 1990 IJCNN International

Joint Conference on Neural Networks, 1990, pp. 215–221. IEEE

(1990)

21. Koppula, H.S., Saxena, A.: Anticipating human activities using

object affordances for reactive robotic response. IEEE Trans. Pat-

tern Anal. Mach. Intell. 38(1), 14–29 (2016)

22. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: ACM SIG-

GRAPH 2008 classes, p. 51. ACM (2008)

23. Li, C., Zhang, Z., Lee, W.S., Lee, G.H.: Convolutional sequence

to sequence model for human dynamics. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition,

pp. 5226–5234 (2018)

24. Martinez, J., Black, M.J., Romero, J.: On human motion prediction

using recurrent neural networks. In: 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 4674–4683.

IEEE (2017)

25. Pérez-D’Arpino, C., Shah, J.A.: Fast motion prediction for collab-

orative robotics. In: IJCAI, pp. 3988–3989 (2016)

26. Rather, A.M., Agarwal, A., Sastry, V.: Recurrent neural network

and a hybrid model for prediction of stock returns. Expert Syst.

Appl. 42(6), 3234–3241 (2015)

27. Shao, Z., Li, Y., Guo, Y., Zhou, X., Wang, Z., Yang, J., Chen, S.: A

hierarchical model for human action recognition from body-parts.

IEEE Trans. Circuits Syst. Video Technol. (2018)

28. Sutskever, I., Hinton, G.E., Taylor, G.W.: The recurrent temporal

restricted Boltzmann machine. In: Advances in Neural Information

Processing Systems, pp. 1601–1608 (2009)

29. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning

with neural networks. In: Advances in Neural Information Process-

ing Systems, pp. 3104–3112 (2014)

30. Taylor, G.W., Hinton, G.E.: Factored conditional restricted Boltz-

mann machines for modeling motion style. In: Proceedings of the

26th Annual International Conference on Machine Learning, pp.

1025–1032. ACM (2009)

31. Taylor, G.W., Hinton, G.E., Roweis, S.T.: Modeling human motion

using binary latent variables. In: Advances in Neural Information

Processing Systems, pp. 1345–1352 (2007)

32. Taylor, G.W., Sigal, L., Fleet, D.J., Hinton, G.E.: Dynamical binary

latent variable models for 3d human pose tracking. In: 2010 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 631–638. IEEE (2010)

33. Urtasun, R., Fleet, D.J., Geiger, A., Popović, J., Darrell, T.J.,

Lawrence, N.D.: Topologically-constrained latent variable models.

In: Proceedings of the 25th International Conference on Machine

Learning, pp. 1080–1087. ACM (2008)

34. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynam-

ical models for human motion. IEEE Trans. Pattern Anal. Mach.

Intell. 30(2), 283–298 (2008)

35. Wang, Y., Che, W., Xu, B.: Encoder-decoder recurrent network

model for interactive character animation generation. Vis. Comput.

33(6–8), 971–980 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

Yanran Li is currently a Ph.D

Researcher in the National Cen-

tre for Computer Animation,

Bournemouth University, UK. She

received her MSc degree in Math-

ematics from the University of

Science and Technology of China

and Bachelor degree in Applied

Mathematics from Xian Jiaotong

University. Her research interests

include computer graphics, com-

puter vision, deep learning,

motions and images.

Zhao Wang is currently a

researcher in Institute of Advanced

Artificial Intelligent in Nanjing.

He received his Ph.D (2018) in

National Centre for Computer Ani-

mation in Bournemouth Univer-

sity, UK. He has worked as

Research Assistant in Walt Disney

Imagineering Research & Devel-

opment (2017) and Zhejiang Lab

(2018). His research interests

include 3D Computer Vision, Fed-

erated Learning, Model Compres-

sion and Acceleration and Com-

puter Animation.

Xiaosong Yang is currently an

Associate Professor in the National

Centre for Computer Animation,

Bournemouth University, UK. He

received his bachelor (1993) and

master degree (1996) in computer

science from Zhejiang University

(P. R. China) and Ph.D (2000)

in computing mechanics from

Dalian University of Technology

(P. R. China). He worked as Post-

Doc (2000C2002) in the Depart-

ment of Computer Science and

Technology of Tsinghua Univer-

sity for two years and as Research

Assistant (2001–2002) at Chinese University of Hong Kong. His

research interests include deep learning, computer vision, computer

animation, motion capture and synthesis, VR&AR, special effects and

game development, digital health, data mining, medical visualization.

He has published over 70 papers in journals and refereed conferences.

123

http://arxiv.org/abs/1610.10099

1156 Y. Li et al.

Meili Wang is an associate pro-

fessor at College of Information

Engineering, Northwest A&F Uni-

versity. She received her Ph.D

degree in computer animation in

2011 at the National Centre for

Computer Animation, Bourne

mouth University. Her research

interests include computer graph-

ics, geometric modelling, image

processing, visualization and vir-

tual reality.

Sebastian Iulian Poiana is cur-

rently a Masters Degree student in

the National Centre for Internet of

Things (IoT) with Cyber Security,

Bournemouth University, UK. He

received his BSc Undergraduate

degree in Software Engineering

also from Bournemouth Univer-

sity, Bournemouth, UK. His

research interests include cyber

security, Internet of things (IoT),

computer animation, programming

languages (Java, Python and C#)

and Games.

Ehtzaz Chaudhry is currently

a Postdoctoral Researcher in the

National Centre for Computer Ani-

mation, Bournemouth University,

UK. He received his MSc degree

in Computer Game Graphics &

Animation from the University of

Westminster, London, UK and

Ph.D in Computer Animation from

Bournemouth University, UK. His

research interests include computer

graphics, computer animation, 3D

modelling, VR/AR and games.

Jian Jun Zhang is Professor

of Computer Graphics at the

National Centre for Computer Ani-

mation, Bournemouth University.

He is Head of the National

Research Centre for Computer

Animation. His research interests

include computer graphics, com-

puter animation, physically based

simulation, geometric modelling,

medical simulation and visualiza-

tion.

123

	Efficient convolutional hierarchical autoencoder for human motion prediction
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 The mathematical formulation
	3.2 The convolutional hierarchical module (CHM)
	3.3 The autoencoder framework
	3.4 The objective function
	3.5 Implementation Details

	4 Experiments
	4.1 Dataset
	4.2 Baselines
	4.3 Evaluation methods
	4.4 Size and speed
	4.4.1 Comparison of computational complexity
	4.4.2 Comparison of the parameters

	4.5 H3.6M experiment results
	4.6 CMU experiment results

	5 Conclusion
	Acknowledgements
	References

