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Efficient Cooperative Backup with Decentralized Trust Management

NGUYEN TRAN, FRANK CHIANG, and JINYANG LI, New York University

Existing backup systems are unsatisfactory: commercial backup services are reliable but expensive while
peer-to-peer systems are cheap but offer limited assurance of data reliability. This article introduces Friend-
store, a system that provides inexpensive and reliable backup by giving users the choice to store backup
data only on nodes they trust (typically those owned by friends and colleagues). Because it is built on trusted
nodes, Friendstore is not burdened by the complexity required to cope with potentially malicious participants.
Friendstore only needs to detect and repair accidental data loss and to ensure balanced storage exchange.
The disadvantage of using only trusted nodes is that Friendstore cannot achieve perfect storage utilization.

Friendstore is designed for a heterogeneous environment where nodes have very different access link
speeds and available disk spaces. To ensure long-term data reliability, a node with limited upload bandwidth
refrains from storing more data than its calculated maintainable capacity. A high bandwidth node might be
limited by its available disk space. We introduce a simple coding scheme, called XOR(1,2), which doubles
a node’s ability to store backup information in the same amount of disk space at the cost of doubling the
amount of data transferred during restore. Analysis and simulations using long-term node activity traces
show that a node can reliably back up tens of gigabytes of data even with low upload bandwidth.
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1. INTRODUCTION

Users are keeping an increasing amount of valuable data in digital format. Today, it
is common for users to own more than tens of gigabytes of digital pictures, videos,
experimental traces, and so on. Backing up this data properly is a burden for many
users. Even expert users often fail to back up data due to the inconvenience and expense
of current solutions. In our research group, for example, many members keep important
data on their desktops and not all of them currently back up such data.

An ideal backup solution would ensure that valuable data survive threats such as
disk failures, operator mistakes, theft, and natural disaster. The backup data should
be available online so that users can gain access from anywhere there is Internet. It
should also be easy to operate; systems that present a continuing operational headache
are likely to be neglected and fail. Finally, the system should be cheap (ideally, it would
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be free). Convincing users to pay for an eventuality (disk failure) that they view as
distant and unlikely is a significant nontechnical challenge that can be avoided by
providing backup services at little or no cost.

Network backup systems have the potential to meet these requirements. By storing
data off-site, they provide a strong defense against a wide variety of threats. They
can also be made to operate fully automatically (no need to rotate backup media,
for instance). However, not all users find paid network backup services like dotMac or
Amazon S3 affordable. For example, a graduate student is unlikely to pay Amazon $180
a year to back up her 100GB experimental trace files even though they are important.
Peer-to-peer storage systems, in which users make use of each other’s idle disk space
to store backed up data, are a promising alternative to inexpensive online backups.
However, existing peer-to-peer systems offer limited assurance for data reliability as a
user’s data is stored on potentially malicious or unavailable peer nodes [Cox and Noble
2003; Aiyer et al. 2005; Lillibridge et al. 2003; Rowstron and Druschel 2001b; Ngan
et al. 2003].

This article presents Friendstore, a cooperative back up system that allows users to
back up valuable data on other peer nodes that they trust. In Friendstore, each node
acts as its own trust authority to admit a subset of nodes for storing its backup data.
In practice, a user admits nodes belonging to her friends or colleagues and trusts them
to be available and provide timely restore service when needed.

Friendstore’s decentralized trust management allows it to solve two long-standing
problems that have plagued other peer-to-peer backup systems [Cox et al. 2002; Cox
and Noble 2003; Lillibridge et al. 2003; Batten et al. 2002]. First, peer nodes have little
incentive to remain available. Maintaining data durability despite the resulting high
membership churn requires more data to be transferred than low bandwidth links can
support [Blake and Rodrigues 2003]. Given the large amounts of data to be stored by a
backup system, this problem is particularly severe. Second, without trust, there is no
assurance that nodes storing others’ backup data will provide restore service in times of
need. A malicious node can deny service, but even a selfish node has no real incentive to
assist others to restore as the node requesting restore has nothing of immediate value
to offer the node providing the restore service. Since Friendstore stores data on trusted
nodes only, it offers a nontechnical solution to both the availability and denial-of-service
problems; users enter storage contracts with their friends via real world negotiations.
Such contracts are reliable because social relationships are at stake. These benefits
come at a cost; by storing backup data only on a subset of nodes, Friendstore cannot
utilize all storage resource as efficiently as a homogeneous peer-to-peer system [Dabek
et al. 2004; Rowstron and Druschel 2001a; Rhea et al. 2005].

Although Friendstore’s architecture is conceptually simple, a number of technical
challenges remain in order to provide reliable storage with the highest possible capacity.
The capacity of Friendstore is limited by two types of resources: wide area bandwidth
and the available disk space contributed by participating nodes. Bandwidth is a limiting
resource because nodes must recopy backup data lost due to failed disks. To prevent a
node from storing more data than it can reliably maintain, we propose letting each node
calculate its maintainable capacity based on its upload bandwidth and limit the amount
of backup data it stores in the system accordingly. The system’s capacity may also be
limited by the available disk space. We propose trading off bandwidth for disk space
by storing coded data in situations when disk space, instead of bandwidth, is the more
limiting resource. Our scheme, XOR(1,2), doubles the amount of backup information
stored at a node, at the cost of transferring twice the amount of data during restore in
order to decode the original data.

The technical challenges addressed in this article, namely calculating maintainable
capacity and trading off bandwidth for storage, are not unique to Friendstore but are
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present in all replicated storage systems. However, the targeted deployment environ-
ment of Friendstore makes addressing these challenges a pressing need. Friendstore
runs on nodes with a wide range of bandwidth and disk space. Some nodes are limited
by the upload bandwidth, hence they must refrain from storing more data than the
maintainable capacity. Other nodes are limited by the available disk space, so it is
attractive to store more information in the limited disk space using coding.

We evaluate the long term behavior of Friendstore in simulations with a real world
machine availability trace. Our results show that each Friendstore node can back up
48GB of data reliably even with a small upload bandwidth of 150kbps. Our preliminary
deployment of Friendstore shows that nodes often have much higher upload bandwidth,
suggesting the backup capacity of Friendstore will be high in practice.

The article is organized as follows. Section 2 discusses the underlying trust model
that has inspired Friendstore’s architecture. We next present Friendstore’s overall
design (Section 3), how a node calculates maintainable capacity (Section 4) and how it
trades off bandwidth for storage (Section 5). In Section 7, we evaluate the long-term
reliability of Friendstore using trace-driven simulations and share lessons from our
early software deployment. Section 8 discusses related work and Section 10 concludes.

2. TRUST MODEL

The viability of all cooperative backup systems depends on the majority of participants
cooperating, hence the name. Unfortunately, no technical solution can ensure that
nodes always cooperate. For example, a node storing others’ data can faithfully adhere
to a system’s protocol for a long time but decide to maliciously deny service when
it is asked to help others restore. Therefore, the best a system can do is to ensure
that our assumptions about how well behaved nodes act are highly likely to hold in
practice. Systems do so by pruning the set of trustworthy nodes to eliminate misfits and
creating disincentives to violating assumptions in the first place. For example, a node
can frequently check that others are faithfully storing its data and remove any node that
fails periodic checks [Cox and Noble 2003; Lillibridge et al. 2003; Aiyer et al. 2005] from
the system. A disincentive to misbehavior could be punishments in the form of deletion
of the offending node’s backup data [Cox and Noble 2003] or expulsion from the system
by a central authority [Aiyer et al. 2005]. Both of these approaches have drawbacks
pruning mechanisms based on system-level health probes can be imprecise (e.g. it is
difficult to distinguish a node who has just suffered from a hard disk crash from one that
purposefully deleted others’ data). Inflexible disincentives (e.g. deletion of an expelled
node’s data) could cause the system to be unnecessarily fragile. It is easy to imagine an
incident such as unexpected software crashes or temporary network congestion leading
to an escalating spiral of punishments. Some peer-to-peer file sharing applications rely
on a reputation system to help a node choose cooperative peers [Kamvar et al. 2003].
Calculating a node’s reputation requires observations of its past misbehavior. In a
cooperative backup system, a node misbehaves by denying others’ restore requests in
times of need. Therefore, such misbehavior not only takes a long time to observe but
also is likely to involve data loss for users. As a result, reputation systems are not
applicable for cooperative backup.

Friendstore leverages information in the social relationships among users to select
trustworthy nodes and provide strong disincentives against noncooperative behavior.
Each user chooses a set of trusted nodes that she believes will participate in the
system over the long term and have some minimal availability according to her social
relationships. A Friendstore node only stores backup data on those trusted nodes. By
exploiting real-world decentralized trust relationships in this way, Friendstore is able to
use simple and lightweight technical mechanisms to provide a reasonable expectation
that nodes will behave as expected. Friendstore checks for the presence of remote
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Fig. 1. The sequence of steps an owner takes for preparing a collection of files for backup on remote helpers.

backup data infrequently and uses a long timeout to mask transient node failures
knowing that the unresponsiveness of a trusted neighbor is more likely due to its
user’s vacation than an act of malice. The use of social relationships may also help
ensure some minimal level of node availability in times of need because a user can
always contact her friends to turn on their computers to help with the restore. Also,
disincentives in this system carry more weight since they stem from possible disruption
of the social relationships; violation of trust results in the resentments of one’s friend
which we believe most users want to avoid. Friendstore defers punishments for a
misbehaving node such as deleting of its backup data, to individual users who are free
to use their own retribution policies based on more complete and accurate information.
Although a Friendstore user trusts her friends for being available and not performing
denial-of-service when she needs the data, she does not trust the friends on data’s
privacy and integrity. Her friends may want to look at her data. Their storage may be
faulty.

3. BASIC DESIGN

3.1. Overview

Friendstore consists of a collection of nodes administered by different users. Each node
runs an identical copy of the software and communicates with a subset of other nodes
over the wide area network. The software running on a node has two roles: backing
up a node’s local data and helping others store their backups. We refer to a node as
an owner when it is performing activities involving its own data and a helper when it
is acting to help others. Each node is named and authenticated by its public key, and
a user chooses a subset of helpers for storing data by configuring her node with the
public keys of her friends’ nodes.

An online backup system undertakes a number of activities: to store local data on
remote helpers (backup), to periodically check that remote copies of its backup data
are still intact and create new ones if not (verify and repair), and to retrieve remote
backups following a disk crash (restore). We describe how Friendstore performs each
task in turn.

3.2. Backup

An owner prepares a collection of files for backup in a sequence of steps as shown
in Figure 1. The owner processes the files by splitting large files into smaller pieces,
compressing, and encrypting individual pieces using symmetric encryption. Finally, it
uploads r copies of its encrypted chunks on distinct helpers. We use the term replica
to refer to these encrypted chunks stored at helpers. In our prototype implementa-
tion, r is set to two. We prefer replication over erasure coding for two reasons. First, a
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space-efficient erasure code needs to store fragments on many distinct helpers, hin-
dering incremental deployment. For example, a node needs at least five helpers in
order to back up its data using Reed-Solomon(4,5). In contrast, a node can start backup
with only one helper using replication. Second, nodes tend to create redundant replicas
when they mistake offline neighbors for crashed nodes. It is easier to incorporate a
redundant copy to achieve a bigger effective replication factor using replication, than
a fixed rate erasure code [Chun et al. 2006].

Owners do not modify replicas at helpers, once created, but can explicitly delete
them. To garbage-collect data, helpers expire replicas after a default period of three
months. As a heuristic, an owner chooses a helper with the most available donated
space for storing its backup data. Intuitively, this heuristic helps balance the storage
load of the overall system by preferentially putting data on less loaded helpers.

3.3. Verify and Repair

Although an owner trusts its helpers to preserve its replicas with best effort, it must
still be diligent in detecting accidental replica losses in order to repair damage over
time.

A simple verification strategy is for an owner to periodically ask the helper to com-
pute and return the hash of a randomly chosen replica. By comparing a helper’s hash
value with that computed from its local file system data, an owner can detect replica
corruption and repair quickly. To prevent a helper from reusing precomputed hash val-
ues, which defeats the purpose of verification, an owner requests the hash of a replica
starting from a random offset with wraparound so it is equally costly for a helper to
precompute all hash values for a replica than to just compute the requested hash upon
request.

An owner sends a batch of verification requests to a helper infrequently, for example,
every 200 hours. Each verification request has a lenient deadline of 200 hours, so
helpers can also batch requests from different owners and delay computation until
a nonbusy time. A verification request also serves as a renewal notice to extend the
expiration time of the verified replica at the helper. Both verification requests and
replies are piggybacked on the ping messages exchanged between a pair of neighbors
every hour.

Whenever an owner receives incorrect hash values from a helper, it immediately
resends lost replicas and initiates an additional synchronous round of verification in
the hope of quickly detecting other losses on that helper. When an owner repeatedly
fails to contact a helper for verification, it must decide how long to keep retrying before
assuming the helper has permanently failed and regenerating the replicas at some
other helper. We use a large timeout threshold of 200 hours to mask most transient
failures without significantly compromising long-term data durability. Although we
expect very few offline instances to exceed this threshold, a node will inevitably create
unnecessary replicas due to long offline periods during the course of its operation over
many years. An owner always reintegrates a helper’s replicas when it comes back online
so it is less likely to create additional ones again in the future [Chun et al. 2006].

3.4. Restore

Restoring data after an owner’s disk crash is quite straightforward. However, since the
owner might lose all its persistent data after a disk crash, it must store its private key
used to encrypt the replicas, offline. The owner also needs to remember the identities
of its helpers. For convenience, a node can keep its helpers’ identities on a well-known
centralized server. During the restore, the owner first downloads metadata for the
backup, which was replicated at all helpers. The owner chooses the latest version
among all the metadata sent back by the helpers, and starts to request the helpers for
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Fig. 2. An example illustrating the bilateral credit system used in Friendstore. Node A credits C for storing
one unit of its data. This credit represents A’s promise to store one unit of C ’s data upon request in the
future. As node A has a 1:0 target balance with B, node B does not need to credit A for storage.

its lost replicas. Data is restored in the order of the priorities specified by users. As we
discussed earlier, a helper has no real incentives to help an owner restore. The reason
we believe it is likely to do so in practice comes from the real world social relationship
between the users.

3.5. Fairness

Friendstore discourages one particular form of free-riding, namely, a neighboring node
does not contribute enough disk space. Friendstore allows a user to specify a target
balance with each neighbor. We support two types of target balances: equal exchange
(1:1) and altruistic storage (1:0). In an equal exchange, a node agrees to store 1 unit
of data in return for putting 1 unit of data on its neighbor. While equal exchange is a
good rule when dealing with strangers [Cox and Noble 2003; Ngan et al. 2003], a user
may have many reasons to behave altruistically towards neighbors belonging to herself
or friends with strong social ties. For example, a user can specify 1:0 target balance
between her desktop and laptop machines so Friendstore would back up the laptop’s
data on the desktop node but not the other way around.

Each pair of neighbors in an equal exchange relationship keeps a bilateral credit
summary to ensure each keeps its promise to reciprocate the other’s storage contribu-
tion. Figure 2 shows an example. Node A is in an equal exchange relationship with C.
After A stores a unit of data on C, it remembers to credit C, that is, it will store at least
one unit of data should C ask it to do so in the future. On the other hand, because A
behaves altruistically towards B, node B does not need to give any credits to A after
storing data on A. An owner prefers storing data at a helper with whom it has the most
credits when deciding among multiple eligible choices. When a node is denied storage
by a neighbor with whom it has positive credits, it reports such incidence to its user for
punishment or further investigation.

Friendstore’s bilateral credits are strictly between a pair of neighbors and not ver-
ifiable by others. Credits are also not transferable. More sophisticated schemes that
use cryptographically verifiable, transferable claims [Cox and Noble 2003; Aiyer et al.
2005; Fu et al. 2003] result in more efficient global storage utilization. Unlike Friend-
store, previous claims-based systems have homogeneous setups, where all nodes can
use the donated storage on all other nodes. We choose to use the simpler bilateral
credit scheme because Friendstore’s global storage utilization is more limited by the
underlying trust-graph structure than the inefficiencies of bilateral credits.
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4. CALCULATING THE MAINTAINABLE CAPACITY

In this section, we analyze the maintainable storage capacity as limited by the network
bandwidth. Each owner (or helper) uses the calculated maintainable capacity to restrict
its storage consumption (or contribution).

If backup data is to be stored reliably, it must be recopied by owners as disks fail. The
rate at which an owner can upload data determines the amount of data it can reliably
store on remote helpers. This amount could be much less than the disk space available
at helpers. To ensure the reliability of backup, we do not not want to store more data
than can be maintained over the long term. Therefore, we propose letting each owner
calculate its maintainable storage capacity (smax) based on its upload bandwidth, and
use this estimate to limit how much data it attempts to store on helpers. Similarly,
we calculate the maintainable capacity for each helper (dmax) and use the estimate to
limit the amount of data it contributes to other owners. For simplicity, we assume that
a node’s download bandwidth is larger than its upload bandwidth. Similar arguments
apply when a node’s download bandwidth is the more limiting resource.

Intuitively, the reliability of replicated data is affected by the amount of bandwidth
required to recover from permanent disk failures relative to the amount of available
bandwidth at each node [Chun et al. 2006]. When an owner stores s units of backup
data with replication level r on remote helpers, it must consume λ f · r · s units of
bandwidth to recopy r replicas per unit of data when disks fail at rate λ f . Likewise,
when a helper stores d units of replicas for others, it needs to upload one out of every
r copies to help owners restore, consuming λ f · d

r units of bandwidth. Since a node acts
both as an owner and a helper, the total bandwidth required to recover from permanent
failures is: λ f · r · s + λ f · d

r . The required recovery bandwidth cannot exceed a node’s
available upload bandwidth (B), that is, θ = B

λ f ·(r·s+ d
r )

≥ 1. Intuitively, θ represents the
ratio of the data creation rate over the permanent failure rate. θ must be greater than
one just for the system to remain feasible.

In practice, permanent failures do not come at deterministic intervals. Therefore, in
order to ensure low data loss, a node must limit the amount of data it stores remotely
(smax) and the amount of data it keeps for others (dmax) so that θ � 1. Our simulation
results show that when the required recovery bandwidth is less than one tenth of the
actual available bandwidth, there is little data loss (< 0.15%) over a five-year period
(Section 7). Therefore, we use θthres = 10. Additionally, we need to account for nodes
with less than perfect availability (A), which lowers their effective upload bandwidth.
Putting everything together, smax and dmax must satisfy the following equation.

λ f ·
(

r · smax + dmax

r

)
= 1

θthres
· B · A. (1)

In order to calculate smax and dmax from Equation (1), we approximate the average disk
lifetime as 3 years, that is, λ f = 1

9.5∗107 failures/sec. Empirical studies suggest that hard
disks have mean time to replacement of at least 5 years [Schroeder and Gibson 2007;
Pinheiro et al. 2007]. We use three years as an approximation to take into account other
factors contributing to permanent data loss such as operator error, accidental data loss
during node reinstalls, and so on. More pessimistic users can use a lower estimate for
λ f . To simplify our analysis, we assume a node is in equal exchange relationships with
all its neighbors so that a helper stores twice the amount of backup data (dmax = 2smax)
with a default replication level of 2. Substituting λ f , r = 2, θthres = 10, dmax = 2smax into
Equation (1), we obtain dmax = 2smax and smax = 3.1 × 106 · B · A.

To calculate smax, each Friendstore node estimates its availability and upload capacity
via either measurements or explicit user inputs. For example, if a node is configured
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with a capped 150kbps upload bandwidth for Friendstore and has 50% availability, it
should limit the amount of backup to smax = 3.1∗106 · 150∗103

8 ·0.5 = 29GB. Additionally,
this node should contribute no more than dmax = 2smax = 58GB disk space to others.
On the other hand, if a node is on a high-speed campus network with 1Mbps upload
bandwidth and 99% availability, it can back up and contribute 13 times more data and
disk space (smax = 377GB, dmax = 754GB).

Once a node has calculated its smax and dmax, its owner refrains from storing more
than smax units of backup data on remote helpers and its helper does not store more
than dmax units of data for other owners. Such restriction is important: if a node stores
more backup data than smax, it gives its user a false sense of security that her data are
reliably backed up even though the node does not have enough capacity to ensure the
longevity of those data. Similarly, if a node contributes more than dmax, it only hurts
its neighbors’ data reliability with no benefits to itself.

The calculation of smax and dmax ensures low data loss rate in Friendstore if users
operate in this safety zone. In addition to that, some users may have an extra require-
ment on service level agreement, for example, short restore time. In this case, each
user can further constrain smax and dmax based on her download capacity, number of
friends, and their upload capacity. We have not implemented this feature in Friend-
store, but it is not difficult to compute smax and dmax given the owner’s designed restore
time, download capacity, and helpers’ upload capacity. In practice, because neighboring
users have real-world relationships, some form of manual intervention could dramati-
cally increase the upload capacity of the neighbors. For example, following a disk crash,
a user could request her friends to operate their nodes with a higher than usual avail-
ability and capacity to speed up the restore process. Her friends can also send data
by mailing her portable storage devices such as DVD discs. Shipping portable storage
using First-Class Mail service takes 2-3 days within the US. Therefore, using postal
service is a more desirable option for users who replicate large amount of data. For
example, it takes more than 3 days for a user with a typical DSL download capacity of
1MBps to restore 260GB of data. This calculation assumes the user has enough friends
to utilize its download capacity fully. In this case, shipping portable storage is faster.

In Friendstore, each user explicitly configures an upload limit (B) for her node. We
expect the configured upload limit to be much smaller than the actual uplink capacity.
The software will monitor the current upload capacity to ensure that it is larger than
B. If not, Friendstore will readjust its calculation of maintainable backup volume and
delete some data stored at the machine as a helper. The verify and repair process at its
neighbors will detect the data being deleted and replicate it at other nodes. The user
who reconfigures B can also notify her friends to trigger the replication early, to avoid
moving data around unnecessarily due to temporary network degradation, Friendstore
triggers the change of its maintainable backup volume only if its measured upload
capacity is less than B for five consecutive days.

5. STORE MORE INFORMATION WITH CODING

Disk space, rather than upload bandwidth, can also be the limiting resource in many
circumstances. Since each Friendstore owner only has a few trusted helpers to store
data, it is important to utilize helpers’ available disk space efficiently. In this section, we
explore coding schemes to back up more information in the same amount of disk space.
We start by understanding the fundamental tradeoffs of various schemes in terms of
their space saving, bandwidth overhead, and failure tolerance. Next, we show how
to incorporate coding schemes in the basic design of backup, restore and verification
procedures.
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Fig. 3. An example of how a helper uses XOR(1,2) and XOR(2,3) to store check blocks from multiple owners.

5.1. Coding Tradeoffs

When upload bandwidth is plentiful, disk space could be the limiting resource. For
example, when operating on a college campus network with 1Mbps links, a helper can
reliably store up to dmax = 754GB data for other owners. But in reality, its idle disk
space can be far less than dmax. In such scenarios, coding is attractive, as it trades off
bandwidth for the ability to store more information in the same amount of disk space.

The intuition behind our coding schemes is to make use of the original data stored at
an owner to help others recover their replicas. In particular, instead of storing multiple
replicas belonging to different owners, a helper can code them into fewer blocks. We
use the term check block to refer to coded replicas. For example, in Figure 3, instead of
storing B1 and C1, helper A can store B1⊕C1, consuming one unit space as opposed to
2. To restore B1, helper A needs to fetch the original replica (C1) from owner C before
combining it with its local check block to decode B1, that is, B1 = (B1⊕C1)⊕C1. As the
example illustrates, coding comes at the cost of both increased restore bandwidth and
possible restore failures; replica B1 could be lost if node C fails during restore. What
are the fundamental tradeoffs between space-saving, restore bandwidth overhead, and
failure tolerance, and what are the corresponding coding schemes to achieve them?

We have found two general classes of coding schemes, XOR(1,n) and XOR(n-1,n). Both
schemes achieve certain optimal tradeoff points with regard to space saving, restore
bandwidth overhead and failure tolerance (see Appendix 10). In XOR(1,n), a helper
codes n distinct owners’ replicas together into a single check block, resulting in a space
saving factor of n−1

n and n−1 extra amounts of data transfer during restore. XOR(n-1,n)
works as follows. Let r1, r2, . . . , rn be n replicas from distinct owners. A helper stores
n− 1 check blocks in the form of r1 ⊕ r2, r1 ⊕ r3, . . . , r1 ⊕ rn. Figure 3 gives an example of
XOR(2,3). XOR(n-1,n) can tolerate the failure of any n− 1 of the n original data blocks.
Suppose the only survived owner is i, with an original block ri, the helper can retrieve
ri to XOR with its local check block r1 ⊕ri to obtain r1. After restoring r1, the helper can
proceed to restore the rest of the original blocks. Compared with XOR(1,n), XOR(n-1,n)
achieves a smaller space saving of 1

n at the cost of only one extra unit of data transfer.
We note that XOR(n-1,n) differs from traditional coding schemes such as Reed-

Solomon in that it is not designed to tolerate the failure of any combination of n − 1
original and check blocks. This is because in Friendstore, all the check blocks on a set
of original blocks reside on the same machine (see Figure 3). Therefore, all check blocks
fail together and it is not meaningful to tolerate a subset of check block failures.

Coding increases the risk that a crashed owner will fail to restore its data because
some other owner whose original data block is needed to decode the check block also
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Table I. Tradeoffs in Terms of Increased Data Transfers During
Restore, Space-Savings, and Probability of Restore Failure for

XOR(1,n) and XOR(n-1,n)
The term p denotes the probability of a node failure during MTTR.

Coding Extra data transfer Space Failure during
scheme during restore saving restore
XOR(1,2) 1× 1

2 2 · p

XOR(1,n) (n − 1)× n−1
n n · p

XOR(2,3) 1× 1
3 p

XOR(n-1,n) 1× 1
n p

fails. Let p be the probability that a node suffers a disk crash during the MTTR
period. Without coding, the probability of restore failure is p (the helper fails). Suppose
optimistically, that coding does not significantly increase MTTR, then the probability
of restore failure using XOR(n-1,n) is p + (1 − p) · pn−1. The first term represents the
probability that the helper fails and loses all its stored checkpoints. The second term
calculates the probability of decoding failure when the helper does not fail but the other
owners involved in the check blocks fail. Since XOR(n-1,n) can tolerate the failure of
n− 1 original data blocks if all check blocks are safe, decoding failure occurs only when
all n original blocks fail, that is, pn−1. Ignoring second order terms when n > 2, we can
approximate the overall restore failure probability as p. Since all XOR(n-1,n) schemes
for n > 2 have the same failure probability, we will only consider XOR(2,3), which has
the best space-saving. Similarly, using XOR(1,n), the failure of at least one of the n− 1
other owners will cause decoding failure. Therefore, the overall probability of restore
failure is p + (1 − p) · (1 − (1 − p)n−1) ≈ n · p.

Table I summarizes the tradeoffs of various coding schemes. We point out that the
probability of restore failure does not directly translate into permanent data loss rates
because each Friendstore owner maintains r = 2 replicas. Therefore, we conjecture that
a small increase in restore failure probability, for example, 2p, is reasonable. We leave
a more thorough evaluation of XOR(1,2) and XOR(2,3) to Section 7, using simulations.
For the rest of the Section, we restrict our discussion to XOR(1,2), the default coding
scheme used in Friendstore.

Since coding trades off bandwidth for storage, we must be careful not to apply
XOR(1,2) in situations when bandwidth is the limiting resource. As Figure 3 shows,
with coding, owner C must upload its replica again in response to owner B’s failure as
well as helper A’s failure. Therefore, we update Equation (1) to reflect the additional
data transfer by an owner when coding is used: λ f · ((r + 1) · s′

max + d′
max
r ) = 1

θthres
· B · A.

Each owner uses the new estimate (s′
max) to constrain the amount of data it attempts

to store on remote helpers while allowing XOR(1,2). Similarly, a helper uses d′
max to

limit the amount of information it stores as coded replicas for other owners. For a node
with 1Mbps upload bandwidth, d′

max = 282GB with coding and dmax = 377GB without
coding. If the actual spare disk space is much smaller than 282GB, coding is attractive,
as the node can store more information with the same amount of limited disk space.

One might wonder if the spacing-saving of XOR(1,2) can also be achieved by letting
owners use erasure codes instead of replication (r = 2) in the first place. Unfortunately,
efficient erasure codes require many fragments to be stored on distinct neighbors, a
tough requirement for Friendstore, where many nodes have a small number of helpers.
Even for a node with 5 helpers, using replication (r = 2) with XOR(1,2) results in
less storage overhead than the most efficient erasure code (Reed-Solomon(4,5)) and
achieves better reliability as well.
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5.2. Backup with Coding

Since coding makes a node’s restore procedure depend on another node that is not
its immediate trusted neighbor, Friendstore allows each owner to explicitly specify
whether or not it would allow a particular replica to be coded at a helper. The owner’s
incentive for coding is to back up more data in the limited spare disk space of its
helpers. The helper’s incentive for coding is to obtain more storage credits by storing
more information for its neighbors.

The owners’ decision to allow coding comes with additional responsibilities. In partic-
ular, it needs to upload its encrypted replicas to the helper again to help others restore.
Therefore, an owner should allow coding only for replicas that correspond to immutable
files that will not be deleted or modified, such as photos, mp3s, and videos. We rely on
the normal verification process to detect replica loss due to unexpected changes in
original files. It is in an owner’s interest to help other owners restore because doing so
also repairs its own replica that is lost due to others’ failures.

When a helper is running short of donated space, it starts to compute check blocks
using replicas for which coding is permitted by their owners. It uses a greedy algorithm
that recursively chooses replicas from two owners with the most replicas left for coding.
This way, we reduce the chances of not having space when the remaining replicas to be
coded belong to fewer than two owners.

5.3. Verifying Check Blocks

Storing check blocks complicates the normal verification process. Since a helper does
not have the original replica in its local storage, it cannot directly calculate the re-
quested hash value of the replica. Nevertheless, we would like the helper to be able
to compute the requested hash value with the help of other neighbors that store the
original data for the check blocks. To achieve this, we make use of a homomorphic
collision-resistant hash function with the property that hG(x + y) = hG(x)hG(y), where
G(p, q, g) specifies the hash function parameters [Krohn et al. 2004]. To apply a ho-
momorphic hash function on check blocks, we change the XOR operator in XOR(1,2)
to be the addition operation over Zq, where q is a large prime. We illustrate the new
verification protocol with the example in Figure 3. Suppose owner B asks helper A to
compute the hash for replica B1. Helper A first requests the hash hG(C̄1) from owner
C, where C̄1 is the complement of C1 in Zq. Helper A then computes the requested
hash as hG(B1) = hG(B1 + C1)hG(C̄1).

To ensure that helpers only code data blocks when allowed, an owner requests nonho-
momorphic hashes for data blocks that are not supposed to be coded and homomorphic
hashes for others. Unfortunately, an owner cannot tell if a helper codes using XOR(1,2)
as opposed to the less reliable XOR(1,n) with a large n. It is possible to detect such
misbehavior, for example, the owner could monitor the rate of verification traffic from
a helper asking for hashes of its original data blocks. If the rate far exceeds what is
needed to verify check blocks for XOR(1,2), the owner has grounds for suspicion. We
did not implement this check, as we believe such misbehavior is unlikely to arise in
practice with trusted neighbors.

6. IMPLEMENTATION

This section describes the implementation of Friendstore in terms of its basic configu-
ration, backup, and maintenance procedures. Friendstore is written in Java with 9664
lines of code and runs on Linux, Windows, and Mac OS X.
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/d/foo.mp3   <E45F, 135434>  <9ADF, 235>            ...

filename      <CID, chunk size (bytes) >              file attr                       

/d/bar.mp3   <4D6A, 255136>                                  ...   

E45F       1           yes            1                            B, C

CID     seqno      XOR       expiration              replica
                            ok?        group id                 set

9ADF       2          yes            1                            D, E

4D6A       3          yes             2                           C, E

Metadata table: file-to-chunk mapping

Metadata table: chunk-to-replica set mapping

remote id

Fig. 4. The metadata tables maintained at each owner for its collection of backed up files. Chunks, instead
of files, are the units for backup operations.

6.1. Software Setup

The Friendstore software bootstraps a user’s trusted neighborhood using existing so-
cial networks on Google and Facebook. A user configures Friendstore with a subset of
Google or Facebook contacts with whom to perform cooperative backup. Other impor-
tant configuration information includes a randomly generated DES key used to encrypt
data, a list of directories to be backed up (the default is a user’s home directory), the
amount of donated disk space, and a desired throttle rate for upload bandwidth. Friend-
store calculates smax and dmax according to a user’s configuration of the throttled upload
bandwidth and a default availability of 0.5. The user can specify priorities for the di-
rectories. Directories with higher priorities will be replicated and restored earlier than
others.

6.2. Backup

Friendstore runs as a background user-level process. It scans the backup directory daily
to obtain a list of changed files according to the file modification time. The software
splits large files into smaller chunks according to the chunking mechanism developed
in LBFS [Muthitacharoen et al. 2001]. This chunking mechanism avoids transferring
all chunks again if the user modifies, inserts, or deletes a few bytes of a file because
only a few chunks get affected. Chunk identifier (CID) is the SHA-1 hash of its content.
Therefore, we avoid redundant data transfers for files that have the same content but
are stored with different names. Friendstore keeps a metadata table that maps each
file to the sequence of chunks it contains (shown as the top table in Figure 4) so it can
reconstruct files from chunks during restore. The maximum chunk size is chosen to be
10MB on average. Bigger chunk sizes incur smaller overhead for the metadata table
but might cause more data transfer when big files change. The software follows the
pipeline of steps to prepare changed files for transfer to remote neighbors as shown in
Figure 1. Our implementation does not yet include compression.

To ensure maximal data privacy, an owner does not reveal SHA-1 hashes of the
original data to remote helpers. Instead, it generates a remote identifier for each CID.
The remote identifier is a concatenation of a monotonically increasing sequence num-
ber, an expiration group ID and an extra bit to indicate whether coding is desired for
this chunk. The software groups smaller files into one expiration group to save the
renewal overhead of small chunks; renewing the expiration time for any chunk during
verification will automatically renew all chunks within the same group. In a second
metadata table, Friendstore keeps the CID to remote identifier mapping as well as the
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set of helpers that currently store a replica for the chunk (Figure 4). Because a helper
only knows chunks’ remote identifiers and not their CIDs, it cannot coalesce duplicate
chunks from different owners as is done in Pastiche [Cox et al. 2002]. As studies have
shown that duplicate data among a small set of users is small [Bolosky et al. 2000], we
think the potential benefit of coalescing duplicate chunks is outweighed by its privacy
implication. Both metadata tables in Figure 4 are encrypted and replicated on at least
three helpers if possible.

The helper stores replicas belonging to different owners as ordinary files rooted at
an owner-specific directory. For each owner, the helper keeps track of how much data
that owner has stored, in order to calculate how many credits it has on that neighbor.
The helper periodically computes check blocks only when its donated space is almost
full.

6.3. Verify and Repair

The implementation of verification and repair follows in a straightforward manner from
the design. The software includes additional features to reduce the need to regenerate
replicas due to offline helpers. Users can gracefully shut down the Friendstore process
which leaves a special IM status message to indicate that the node is temporarily
unavailable as opposed to failed. Users can also tell Friendstore not to timeout certain
neighbors if they are confident that those nodes’ owners will inform any permanent
failures promptly. For example, the no-timeout option is suitable for an intermittently
connected laptop machine belonging to the same user.

7. EVALUATION

This section examines how well Friendstore performs as a backup service. The evalu-
ations based on trace-driven simulations support the following conclusions.

—Although Friendstore sacrifices perfect global storage utilization to incorporate de-
centralized trust relationships, the actual utilization of donated disk space is high
(>75%). Disk utilization further improves when nodes have more trusted neighbors.

—When bandwidth is plentiful, coding significantly reduces the amount of disk space
each node must contribute in order to back up large amounts of data with replication.

—Friendstore can back up a significant amount of data reliably over a long period
of time. The maximum backup capacity is limited by a node’s upload bandwidth,
but even with 150 kbps bandwidth and 81% availability, a node can back up 48GB
with less than 0.15% loss rate over a five-year period. To ensure low loss rates, it is
important for a node to limit the amount of data stored in the system according to
smax.

—Friendstore can use a lenient threshold of 200 hours to delay regenerating repli-
cas on an unresponsive neighbor. This threshold effectively masks most transient
node offline events while maintaining a low data loss rate. The number of replicas
generated due to false timeouts is low.

We also evaluate the prototype implementation using microbenchmarks to show our
software has good backup and restore throughput. Last, we present statistics from our
small-scale deployment of 21 nodes over a period of two months and share our lessons
learned from running Friendstore in practice.

7.1. Experimental Setup

Our trace-driven simulations use the following datasets.
Trust graph. We construct a trust graph by sanitizing a crawled Orkut social net-

work [Li and Dabek 2006; Ford et al. 2006]. Social networks usually contain nodes
with very high degree, and the degree follows the power-law distribution [Mislove
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Fig. 5. Storage utilization as a function of minimum node degree in the Orkut graph. The various lines
correspond to experiments where different nodes donate varying amounts of disk space. The donated space
for each node is sampled from a uniform distribution with different maximum and minimum donation ratios.

et al. 2007]. Due to the open nature of social networks, not all friends in such networks
are trusted friends. Friendstore only requires users to have a small number of trusted
friends to participate in the system. Therefore, we sanitize the crawled Orkut graph by
pruning edges so that the maximum node degree is 35. The resulting graph consists of
2363 nodes with median node degree 5 and average 4.7. The trust graph of a real large-
scale Friendstore deployment could be different from the Orkut graph. Nevertheless,
the Orkut graph has many interesting characteristics typical of all social graphs, such
as the clustering effects. We also use a synthetic graph to check that our conclusions
are not very sensitive to the specific social graph in use.

Node availability. We use the FARSITE trace [Bolosky et al. 2000] of the availability
of corporate desktop machines to simulate transient node failures. This trace monitors
51, 663 desktops for a period of 840 hours. Our experiments on data durability span a
five-year period, much longer than 840 hours. In the experiments, we randomly sample
one complete node up-down event sequence from the FARSITE trace every 840 hours.
The median simulated node availability based on the trace is 81%. This median avail-
ability is similar to that observed in our two-month deployment of Friendstore (75.3%).

Permanent failures. We generate a synthetic trace for permanent node failures. Using
the model of disk failure rates in Schroeder and Gibson [2007], we use a Weibull
distribution for interfailure arrival times with shape parameter 0.71. The average
failure interarrival time is 11.1 hours for the population of 2363 nodes, with an average
per-node lifetime of three years.

7.2. Storage Utilization

One concern with Friendstore is that its storage utilization might be low: a node
might find out that all of its helpers are full even though available disk space exists
elsewhere in the system. We show that Friendstore achieves good utilization when
operating under typical social relationships.

Figure 5 shows the space utilization of Friendstore for the 2363-node Orkut graph.
Since each helper contributes the same amount of disk space as its corresponding
owner tries to consume, a homogeneous storage system (e.g. DHash [Dabek et al. 2004],
Pastry [Rowstron and Druschel 2001b], OpenDHT [Rhea et al. 2005]) would be able to
achieve perfect utilization. In comparison, Friendstore’s utilization is less (87%). Most
wasted storage space resides on nodes with very low degrees. As our crawled topology
is only a subgraph of the Orkut network, nodes in this subgraph have lower degrees

ACM Transactions on Storage, Vol. 8, No. 3, Article 8, Publication date: September 2012.



Efficient Cooperative Backup with Decentralized Trust Management 8:15

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10

U
t
i
l
i
z
a
t
i
o
n
 
o
f
 
d
o
n
a
t
e
d
 
d
i
s
k
 
s
p
a
c
e

Minimum node degree

c = 0.117
c = 0.276
c = 0.535

Fig. 6. Storage utilization as a function of minimum node degree for three synthetic graphs with different
clustering coefficients (c). The ratio of maximum to minimum donation is 10.

than they do in the full graph. In particular, more than 23% of nodes have less than
three neighbors in the subgraph while more than 95% of those nodes have degrees ≥ 5
in the full Orkut graph. We vary the minimum node degree by adding new links to the
subgraph according to Toivonen et al. [2006], while preserving the original dataset’s
clustering coefficient of 0.23. Figure 5 shows that the space utilization increases quickly
to reach more than 95% with ≥ 5 minimum node degree. Figure 5 also shows that the
space utilization remains high even when there is a large variance in the amount of
donated space by different nodes.

Figure 6 shows Friendstore’s storage utilization using a synthetic trust network
generated by the social network model in Toivonen et al. [2006]. We vary the clustering
coefficient of the generated graph, c, from 0.117 to 0.535 (the Orkut graph has c = 0.23)
and do not cap the maximum node degree. Bigger clustering coefficients correspond to
graphs where a node’s neighbors are more likely to have links among themselves.
Graphs with smaller clustering coefficients tend to have higher space utilization. More
importantly, Figure 6 shows that the overall space utilization is not very sensitive to
the specific social graph in use.

7.3. Coding Benefits

Coding could significantly reduce the amount of donated space required to back up a
certain amount of data. Figure 7 shows the amount of donated space required at each
node in order for it to store a certain amount of backup data on others. All numbers on
the x and y-axes are normalized by a node’s backup demand which varies from 36 to
360 units. Without coding, each node must contribute more than twice the amount of
backup space it consumes, in order to store 99% of data with a replication factor of two.
The reason that a node does not back up 100% of its data when contributing twice as
much space, is due to Friendstore’s imperfect storage utilization. Using XOR(1,2), the
amount of required contribution is reduced to 1.1 times the back up demand to backup
the same amount of data with two replicas.

7.4. Long-Term Data Durability

We use the availability trace and the permanent failure model described in Section 7.1
in an event-driven simulator to examine the reliability of Friendstore over a five-year
period. We ignore the limitation of donated disk space by letting each node contribute
more space than needed and focus on how a node’s limited upload bandwidth restricts
its maintainable capacity. Unless otherwise mentioned, we simulate an asymmetric

ACM Transactions on Storage, Vol. 8, No. 3, Article 8, Publication date: September 2012.



8:16 N. Tran et al.

 0

 0.5

 1

 1.5

 2

 0.9  0.92  0.94  0.96  0.98  1

D
o
n
a
t
e
d
 
s
p
a
c
e
 
/
 
b
a
c
k
u
p
 
d
e
m
a
n
d

Fraction of data backed up with 2 replicas

Basic
Xor(2,3)
Xor(1,2)

Fig. 7. The amount of donated space required in order to back up one unit of data in Friendstore with two
replicas. Coding reduces the required space contribution.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 10  20  60  100  200 300 500

f
r
a
c
t
i
o
n
 
o
f
 
d
a
t
a
 
l
o
s
t
 
a
f
t
e
r
 
5
 
y
r
s

Data backed up per owner (GB)

Xor(1,2), 150kbps
Xor(2,3), 150kbps

Basic, 150kbps
Xor(1,2), 750kbps
Xor(2,3), 750kbps

Basic, 750kbps
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DSL access link of 150 kbps upload bandwidth and 750 kbps download bandwidth.
Whenever a node suffers a permanent failure according to the model, we delete all its
data. The failed node rejoins the system five to six days later and becomes available
according to a new availability sequence sampled from the availability trace. The newly
joined owner will attempt to restore from its helpers immediately. All experiments use
the default 200-hour timeout threshold unless otherwise mentioned. When measuring
loss events, we only consider data stored in the system in the beginning of the experi-
ments; newly inserted data have better reliability because they have been exposed to
fewer permanent failures in their lifetimes.

Figure 8 shows the fraction of data lost at the end of five-years as a function of the
amount of data each owner stores in Friendstore in the beginning of the experiments.
If nodes do not backup at all, 81.2% of the data will be lost after five-years. We begin all
experiments with one existing remote replica per data item so a perfect backup service
would have zero data loss. In Friendstore, the loss rate increases as each node stores
more backup data because it cannot promptly recopy replicas lost due to disk failures
with limited upload bandwidth. According to Equation (1), smax = 3.1∗106 ·B· A = 48GB
for owners with 150kbps upload bandwidth and 81% availability, and s′

max = 36GB if
coding is used. As we can see from Figure 8, when each owner stores no more than smax
GB of data, the probability of data loss after five years is very low (< 0.15%). When an
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owner’s upload bandwidth increases to 750kbps, smax increases to 240 GB. Coding is
able to achieve similar low loss-rate with a slight reduction in maintainable capacity.
However, as Figure 9 reveals, coding results in increased restore time. The increase in
restore time is due to node unavailability, as helpers must wait for owners to come back
online before decoding check blocks. In our experiments, the XOR(1,2) and XOR(2,3)
schemes increase the restore time by approximately 60% and 18% respectively.

To ensure data reliability, a node must limit the amount of backup data it stores in
the system. We simulate a scenario where nodes do not attempt to limit the amount of
backup data stored on remote helpers. These nodes simply transfer additional backup
data whenever their upload links become idle. Figure 10 shows that without any limit,
a node manages to store an increasing amount of backup data over time. The rate
of increase flattens out after the first 70 weeks, as a node has fewer opportunities
for uploading fresh data due to the increased burden of helping others restore, and
maintain its remote replicas. After six-years of simulated time, 7.98% of data backed up
five years ago are lost. In contrast, if nodes refrain from storing more than smax = 48GB
of backup data, the lost rate is less than 0.15%.
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Fig. 12. Microbenchmark setup. In (a), owner Astores backup data on helper Bwithout coding. In (b), helper
B codes owner A and C ’s data together and store only check blocks. In (c), owner A stores backup data on
three helpers B1, B2, B3 that code A’s data with owners C1, C2, C3.

We proceed to explore the impact of different timeout values used to mask transient
node offline events. Figure 11 shows the average number of replicas created per data
item as a function of time. A system with perfect knowledge about transient failures
never creates redundant replicas. In contrast, without perfect knowledge, nodes end
up creating more replicas than needed over time. Fortunately, with the creation of each
redundant replica, a node is less likely to regenerate replicas in response to a future
timeout event [Chun et al. 2006]. Thus, the average number of replicas eventually
stabilizes. Using a timeout of 200 hours, the system stabilizes at 2.4 replicas.

7.5. Microbenchmarks

We evaluate our prototype’s performance using microbenchmarks. The machines used
in the experiments have Pentium 3.4GHz CPU and 1GB memory and are connected
to each other on a 100Mbps LAN. The experimental setup without and with coding is
shown in Figure 12(a) and (b). Figure 13 shows our software’s backup and restore time
without coding and with coding. If the upload bandwidth at each node is not throttled
(100Mbps), the prototype can achieve backup throughput of 300MB/28.3s = 10.6 MB/s
without coding. The restore throughput is similar. With coding, the restore time takes
longer, causing throughput to drop to 300M/92.6s = 3.2 MB/s because decoding check
blocks becomes the bottleneck. When the available upload bandwidth is less than
< 25Mbps, there is no difference in backup and restore performance with or without
coding.

For an asymmetric access link whose download bandwidth is larger than upload
bandwidth, Friendstore achieves better restore time if an owner can restore from more
than one helper simultaneously. Figure 14 shows the backup and restore times. The
experimental setup is shown in Figure 12(c). Owner A restores data from 1, 2, or
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Fig. 13. Backup and restore times with different upload throttled bandwidths. The download bandwidth is
100Mbps.

Fig. 14. Backup and restore time with 1, 2, or 3 helpers with 5Mbps throttled upload rate and 100Mbps
download rate.

3 helpers involving up to seven nodes with coding. Each node throttles its upload
bandwidth at 5Mbps. Backup time remains unchanged when the number of helpers
increases because it is limited by A’s own upload speed at 5Mbps. On the other hand,
restore completes three times faster when using three helpers to take advantage of
node A’s larger download bandwidth (100Mbps).

7.6. Deployment Statistics

We have been running Friendstore in a small scale deployment involving 17 users and
21 nodes since August 1, 2007. The 21 nodes are a mixture of university desktops,
home desktops, and laptop nodes running Windows, Mac, and Linux. Unfortunately,
the deployed version of Friendstore did not automatically configure it to start across
reboots. Many users manually changed Windows registry or edited startup scripts
while some did not. We manually filtered out six offline events longer than a week that
we suspected might be due to Friendstore’s failure to launch after a reboot. Table II
summarizes various statistics from the deployment. There is a wide range of upload
bandwidths. We are encouraged to find that the median upload bandwidth usable by
Friendstore is quite high (624Kbps) and that nodes are fairly available (median avail-
ability is 75%). A recent study of MSN Video clients also shows that many users have
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Table II. Two Months Deployment Statistics of Friendstore from
08/01/2007 to 10/01/2007

Apart from the number of users, nodes, and maximum nodes
per user, all statistics are calculated on a per-node basis and the
resulting distribution is shown by the median number followed by
20- and 80-percentiles in parentheses.

Number of users 17
Number of nodes 21

Maximum nodes per user 3
Fraction of time online 75.3% (28.6%, 98.6%)

Max consecutive hours online 175 hours (53, 692)
Max consecutive hours offline 53 hours (13, 120)

Upload link bandwidth 624 kbps (211, 3744)
Number of neighbors per node 3 (1, 7)

Total amount of data backed up 578MB (275, 3077)

high access link speeds [Huang et al. 2007], suggesting that Friendstore’s maintainable
capacity is likely to be high in practice.

The pilot deployment has revealed a number of practical issues for which our proto-
type lacked good solutions.

—The deployed software displays a warning sign for users whenever a helper could not
be reached during the past five days. We intended for a user to contact her friend to
fix the problem when noticing these warnings. Instead, our users often just ignored
warnings altogether. The software could be more useful if it could automatically
identify the source of the problem and email the responsible user to suggest a fix.

—Our deployed software used existing social relationships collected by Google Talk
and Facebook to help users configure trusted nodes. We are surprised to find out
that many users do not have accounts with either of these popular services. This
suggests that we will have to provide our own trust relationship registration service
for a wider deployment.

—A few users expressed interest in using Friendstore to back up data for a large pool
of machines that they administer. Since the deployed software lacks the notion of a
group, these users cannot write a single backup policy to configure a large collection
of machines easily.

—Many users prefer storing some files without encryption on trusted nodes so their
friends can browse and view these files. This suggests that there is potential syn-
ergy between backup and file-sharing since both could use Friendstore as a generic
replicated storage infrastructure.

The Friendstore software is currently undergoing its second major revision to address
pitfalls observed in the deployment.

8. RELATED WORK

There are many proposals for distributed cooperative backup systems [Batten et al.
2002; Cox et al. 2002; Lillibridge et al. 2003; Aiyer et al. 2005; Cox and Noble 2003]. The
need to deter nodes from behaving selfishly or maliciously is widely recognized in these
systems [Cox and Noble 2003; Aiyer et al. 2005; Lillibridge et al. 2003; Rowstron and
Druschel 2001b; Ngan et al. 2003]. A typical solution [Cox and Noble 2003; Lillibridge
et al. 2003] is to follow the principle of tit-for-tat, which has worked well for peer-to-peer
file sharing applications [Cohen 2002]. However, backup systems are different from file-
sharing and a node that requests restore service following a disk crash does not have
anything valuable to guarantee that others will grant her request. BAR-B [Aiyer et al.
2005; Li et al. 2006] relies on a central authority to enforce external disincentives for
denying restore service, for example, expelling the offending node from the system. In
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contrast, Friendstore uses the decentralized trust relationships among users to admit
trustworthy nodes and enforce external disincentives.

Many systems have exploited the use of social relationships. For example,
LOCKSS [Maniatis et al. 2005], a peer-to-peer digital preservation system, uses a
friend list to bias weights for different peers’ votes. Maze [Yang et al. 2004] and
Turtle [Popescu et al. 2004] use social networks to provide better searches for peer-to-
peer file sharing. Re [Garriss et al. 2006] lets users expand their whitelist for spam
filtering to include the friends of friends. Peerspective [Mislove et al. 2006] provides bet-
ter quality and more context-aware Web search results by aggregating friends’ browsing
histories. Many online reputation systems also use social networks to improve their
accuracy [Hogg and Adamic 2004; Sabater and Sierra 2002; Marti et al. 2004]. In
contrast to these systems, Friendstore uses social relationships for choosing a set of
trusted nodes for reliable storage. Friendstore’s idea of having a node explicitly pick out
other trustworthy nodes resembles that in SPKI/SDSI [Ellison et al. 1986] and PGP
certification chain. However, our notion of trust is different from that in certification
systems. In Friendstore, trust reflects the expectation that a node belonging to a dif-
ferent administrative domain will maintain minimal availability and provide restore
service as needed. CrashPlan [Crashplan] is recently released commercial software
that allows users to back up data on friends’ machines. Friendstore shares a similar
structure but focuses on addressing two technical challenges: calculating maintainable
capacity so that nodes with low bandwidth links do not back up more data than what
can be maintained reliably, and storing more information in the limited disk-space us-
ing coding. These designs are not present in our earlier workshop paper [Li and Dabek
2006].

Using coding to improve space efficiency has been explored in RAID [Patterson et al.
1988; Gibson and Patterson 1993]. In particular, XOR(1,2) is similar to a level-5 RAID.
Myriad [Chang et al. 2002] is an online disaster-recovery system resembling a cross-
site distributed version of RAID. Plank et al. [2005] show some optimal coding schemes
designed for a small number of original data blocks. This setting is similar to Friend-
store’s setting because the number of friends a node has is small. The difference is that
all the checked blocks in Friendstore are at the same helper that leads to a different
failure analysis compared with traditional erasure codes in which each block is at a
different site. POTSHARDS [Storer et al. 2007] is a system that provides secure long-
term archival storage. It uses the secret splitting technique, which is similar to erasure
coding, to avoid reliance on encryption for long-lived data. In order for this technique to
work, the number of colluding adversaries must be smaller than the number of shards
required to reconstruct the data. POTSHARDS targets data that is read-only after be-
ing created, while Friendstore can support mutable data. HAIL [Bowers et al. 2009a]
and PoR [Bowers et al. 2009b] are cryptographic frameworks that allow a set of servers
to prove to a client a stored file is intact and retrievable. In the context of Friendstore,
this problem is simpler because an owner in Friendstore keeps the original file. It is
easy for the owner to check the integrity of any segment of the file. The communication
in HAIL and PoR is different from that of Friendstore. In HAIL and PoR, the client
can send a request to all the servers. In Friendstore, in order to check the integrity of
a chunk, the owner only communicates with one helper, which stores the chunk. This
helper may need to contact another owner when she cannot contact the first owner in
order to produce the correct response if it coded the chunk.

There is a vast body of previous work on ensuring data reliability in replicated stor-
age systems, especially for high churn and low bandwidth environments [Haeberlen
et al. 2005; Bhagwan et al. 2004; Kotla et al. 2007; Chun et al. 2006; Rhea et al. 2003].
All systems go through similar tradeoff analyses to decide between replication and era-
sure coding and to choose a suitable replication level or coding rate. SafeStore [Kotla
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et al. 2007] clients store data on autonomous storage service providers and periodically
audit the providers to detect damage [Baker et al. 2006]. In contrast, Friendstore is
a cooperative system where a node stores data on others as well as storing others’
data [Cox et al. 2002]. Limited wide-area upload bandwidth is often a major concern
for such cooperative storage systems [Blake and Rodrigues 2003]. Our analysis in Sec-
tion 4 is directly inspired by Chun et al. [2006] and similar in spirit to Patterson et al.
[1988]; Ramabhadran and Pasquale [2006]; Tati and Voelker [2006]. Using timeouts to
delay responding to possibly transient failures is similar to lazy replication in TotalRe-
call [Bhagwan et al. 2004]. The timeout in Friendstore is to reduce wasted bandwidth
in repairing a temporary offline node and hence has a different tradeoff than timeout in
failure detectors [So and Sirer 2007]. Unlike massive replication in Glacier [Haeberlen
et al. 2005], we find a small replication factor (e.g. r = 2) is sufficient to achieve low
data loss in Friendstore.

A summary of this work has been published as a workshop paper [Tran et al. 2008].
That paper gives a more detailed description of Friendstore and presents the analysis
and evaluation of the proposed techniques.

9. DISCUSSION AND FUTURE WORK

One concern about using a cooperative backup system is the possible loss of data privacy
when a user stores her data on other nodes, even in encrypted form. As CPUs get faster
and algorithms to break existing encryption schemes become better, it is only a matter
of time before old data can be decrypted by an adversary. We believe that giving users
the choice of where to store its backup data mitigates the risk of this potential privacy
loss.

We are planning to deploy Friendstore on our departmental desktops many of which
store large trace files in currently unbacked-up local scratch directories. The source
code will be publicly available.

10. CONCLUSION

This article presents Friendstore, a cooperative backup system that gives users the
choice to store backup data only on nodes they trust. Using trust based on social rela-
tionships allows Friendstore to provide a high assurance for reliable backup. Friend-
store limits how much data a node stores according to its maintainable capacity and
uses coding to store more information when disk space is the more limiting resource.
Our initial deployment suggests that Friendstore is a viable solution for online backups.
Friendstore is available online.1

APPENDIX

Choose Optimal Coding Schemes

In this section, we elaborate upon the discussions in Section 5 to show the optimality
of coding schemes XOR(1,n) and XOR(n-1,n) and to argue that XOR(1,2) and XOR(2,3)
achieve particularly desirable trade-offs.

Suppose a helper computes and stores k check blocks out of n original data blocks
from n distinct owners. In order to restore data upon the failure of any one of the n
owners, the helper needs to transfer at least n− k original data blocks from the rest of
the owners. The optimal coding scheme, OPT(k,n), transfers exactly n−k blocks during
restore. Note that OPT(k,n) is achievable using algebraic codes (e.g. Reed-Solomon) for
arbitrary n and k. However, in order to apply homomorphic hash function to verify
check blocks, we can only use linear codes whose check blocks are computed using the

1http://www.news.cs.nyu.edu/friendstore.
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addition operation. In particular, XOR(1,n) and XOR(n-1,n) are optimal linear codes for
k = 1 and k = n − 1.

Although XOR(1,2) and XOR(2,3) represent only two specific trade-off points, we
argue that their trade-offs are particularly desirable among those achievable by all
optimal codes. First, only codes OPT(k,n), where k ≤ 2 are attractive for Friendstore.
The alternative scheme, OPT(2+x,n+x), where x ≥ 0, transfers the same amount of
original data blocks (n− k) during restore, and has a similar restore failure probability
bounded by the probability that the helper fails during restore. However, OPT(2,n)
has a smaller storage overhead; its ratio of check blocks over original blocks is 2/n
compared to (2+ x)/(n+ x) for OPT(2+x,n+x). When x ≥ 0, 2/n ≤ (2+ x)/(n+ x). Second,
since many Friendstore owners have a small number of neighbors, practical coding
schemes should compute check blocks from a small number of owners. For example
in our deployment, the median node degree is only three. Taking into account both
factors, we believe XOR(1,2) and XOR(2,3) achieve the most useful tradeoff points.
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