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AbstractÐSelection and join queries are fundamental operations in Data Base Management Systems (DBMS). Support for

nontraditional data, including spatial objects, in an efficient manner is of ongoing interest in database research. Toward this goal,

access methods and cost models for spatial queries are necessary tools for spatial query processing and optimization. In this paper,

we present analytical models that estimate the cost (in terms of node and disk accesses) of selection and join queries using R-tree-

based structures. The proposed formulae need no knowledge of the underlying R-tree structure(s) and are applicable to uniform-like

and nonuniform data distributions. In addition, experimental results are presented which show the accuracy of the analytical

estimations when compared to actual runs on both synthetic and real data sets.

Index TermsÐSpatial databases, access methods, query optimization, cost models, R-trees.
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1 INTRODUCTION

SUPPORTING large volumes of multidimensional (spatial)
data is an inherent characteristic of modern database

applications, such as Geographical Information Systems
(GIS), Computer-Aided Design (CAD), Image and multi-
media databases. Such databases need underlying systems
with extended features (query languages, data models,
indexing methods) as compared to traditional databases,
mainly due to the complexity of representing and retrieving
spatial data. Spatial Data Base Management Systems
(SDBMS), in general, should 1) offer appropriate data types
and query language to support spatial data and 2) provide
efficient indexing methods and cost models on the execu-
tion of specialized spatial operations, for query processing
and optimization purposes [15].

In the particular field of spatial query processing and

optimization, during the last two decades, several data

structures have been developed for point and nonpoint

multidimensional objects in low-dimensional space to meet

needs in a wide area of applications, including the GIS and

CAD domains. Due to the large number of spatial data

structures proposed (an exhaustive survey can be found in

[14]), active research in this field has recently turned to the

development of analytical models that could make accurate

cost predictions for a wide set of spatial queries. Powerful

analytical models are useful in three ways:

1. Structure evaluation: This allows us to better under-
stand the behavior of a data structure under various
input data sets and sizes.

2. Benchmarking: This can play the role of an objective
comparison point when various proposals for
efficient spatial indexing are compared to each other

3. Query optimization: This can be used by a query
optimizer in order to evaluate the cost of a complex
spatial query and its execution procedure.

Spatial queries addressed by users of SDBMS usually
involve selection (point or range) and join operations. In the
literature, most efforts toward the analytical prediction of
the performance of spatial data structures have focused on
point and range queries [13], [19], [28], [11], [37], while only
recently on spatial join queries [17], [38]. Some proposals
support both uniform-like and nonuniform data distribu-
tions, which is an important advantage, keeping in mind
that modern database applications handle large amounts of
real (usually nonuniform) multidimensional data.

In this paper, we focus on the derivation of analytical
formulae for range and join queries based on R-trees [16],
[4]; such models support data sets of various distributions
and make cost prediction based on data properties only.
The proposed formulae are shown to be efficient for several
distributions of synthetic and real data sets with the relative
error being around 10-15 percent for any type of data sets
used in our experiments.

The rest of the paper is organized as follows: In Section 2,
we provide background information about hierarchical tree
structures for spatial data, in particular R-tree-based ones,
and related work on cost analysis for R-tree-based methods.
Section 3 presents cost models for the prediction of the R-
tree performance for selection and join queries. In Section 4,
comparison results of the proposed models are presented
with respect to efficient R-tree implementations for different
data distributions. An extended survey of related work
appears in Section 5, while Section 6 concludes the paper.

2 BACKGROUND

Multidimensional data was first involved in geographical
applications (GIS, cadastral systems, etc.), CAD, and VLSI
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design. Recently, especially due to the development of
extensible DBMS [34], spatial data management techniques
have been applied to a wide area of applications, from
image and multimedia databases [9] to data mining and
warehousing [10], [31]. Fig. 1 is motivated by a geographical
application, where the database consists of several relations
(or classes, etc.) about Europe. In particular, Fig. 1 illustrates
capitals and regions of European countries (i.e., point and
region data).

The most common queries on such databases include
point or range queries on a specified relation (e.g., ªfind all
countries that contain a user-defined pointº or ªfind all
countries that overlap a user-defined query windowº) or
join queries on pairs of relations (e.g., ªfind all pairs of
countries and motorways that overlap each otherº).

2.1 Spatial Queries and Spatial Data Structures

The result of the select operation on a relation REL1 using a
query window q contains those tuples in REL1, with the
spatial attribute standing in some relation � to q. On the
other hand, the result of the join operation between a relation
REL1 and a relation REL2 contains those tuples in the
Cartesian product REL1 �REL2, where the ith column of
REL1 stands in some relation � to the jth column of REL2.

In traditional (alphanumeric) applications, � is often
equality. When handling multidimensional data, � is a
spatial operator, including topological (e.g., overlap), direc-
tional (e.g., north), or distance (e.g., close) relationships
between spatial objects. For each spatial operator, with
overlap being the most common, the query object's geometry
needs to be combined with each data object's geometry.

However, the processing of complex representations, such
as polygons, is very costly. For that reason, a two-step
procedure for query processing, illustrated in Fig. 2, has
been widely adopted [23]:

. Filter step: An approximation of each object, such as
its Minimum Bounding Rectangle (MBR), is used in
order to produce a set of candidates (and, possibly, a
set of actual answers), which is a superset of the
answer set consisting of actual answers and false hits.

. Refinement step: Each candidate is then examined
with respect to its exact geometry in order to
produce the answer set by eliminating false hits.

The filter step is usually based on multidimensional
indices that organize MBR approximations of spatial
objects [33]. In general, the relationship between two
MBR approximations cannot guarantee the relationship
between the actual objects; there are only few operators
(mostly directional ones) that make the refinement step
unnecessary [30].

On the other hand, the refinement step usually includes
computational geometry techniques for geometric shape
comparison [26] and, therefore, it is usually a time-
consuming procedure since the actual geometry of the
objects need to be checked. Although techniques for
speeding-up this procedure have been studied in the past
[5], the cost of this step cannot be considered as part of
index cost analysis and, hence, it is not taken into
consideration in the following.

Several methods for spatial indexing have been proposed
in the past. They can be grouped in two main categories:
indexing methods for points (also known as point access
methodsÐPAMs) and indexing methods for nonpoint
objects (also known as spatial access methodsÐSAMs). Well-
known PAMs include the BANG file [12] and the LSD-tree
[18], while, among the proposed SAMs, the R-tree [16], the
Quadtree [33], and their variants are the most popular. In
the next section, we describe the R-tree indexing method
and its algorithms for search and join operations.

2.2 The R-tree

The R-tree was proposed by Guttman [16] as a direct
extension of the B�-tree [20], [7] in d dimensions. The data
structure is a height-balanced tree that consists of inter-
mediate and leaf nodes. A leaf node is a collection of entries
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Fig. 1. An example of a spatial application: a database of capitals and

regions.

Fig. 2. Two-step spatial query processing: filter and refinement step.



of the form �oid; R�, where oid is an object identifier used to
refer to an object in the database and R is the MBR
approximation of the data object. An intermediate node is a
collection of entries of the form �ptr; R�, where ptr is a
pointer to a lower level node of the tree and R is a
representation of the minimum rectangle that encloses all
MBRs of the lower-level node entries.

Let M be the maximum number of entries in a node and
let m � M=2 be a parameter specifying the minimum
number of entries in a node. An R-tree satisfies the
following properties:

1. Every leaf node contains between m and M entries
unless it is the root.

2. For each entry �oid; R� in a leaf node, R is the
smallest rectangle that spatially contains the data
object represented by oid.

3. Every intermediate node has between m and M
children unless it is the root.

4. For each entry �ptr; R� in an intermediate node, R is
the smallest rectangle that completely encloses the
rectangles in the child node pointed by ptr.

5. The root node has at least two children unless it is a
leaf.

6. All leaves appear in the same level.

After Guttman's proposal, several researchers proposed
their own improvements on the basic idea. Among others,
Roussopoulos and Leifker [32] proposed the packed R-tree,
for the case that data rectangles are known in advance (i.e.,
it is applicable only to static databases), Sellis et al. [35]
proposed the R�-tree, a variant which guarantees disjoint-
ness of nodes by introducing redundancy, and Beckmann et
al. [4] proposed the R�-tree, an R-tree-like structure that
uses a rather complex, but more effective, grouping
algorithm. Gaede and Guenther [14] offer an exhaustive
survey of multidimensional access methods including
several other variants of the original R-tree technique. As
an example, Fig. 3 illustrates a set of data rectangles and the
corresponding R-tree built on these rectangles (assuming
maximum node capacity M � 4).

The processing of any type of spatial query can be
accelerated when a spatial index (e.g., an R-tree) exists.
Selection queries, for example, perform a traversal of the
R-tree index: Starting from the root node, several tree
nodes are accessed down to the leaves, with respect to the
result of the overlap operation between q and the

corresponding node rectangles. When the search algorithm
for spatial selection (so-called SS) accesses the leaf nodes,
all data rectangles that overlap the query window q are
added into the answer set.

// Spatial Selection Algorithm for R-trees

SS (R1: R-tree node, q: rectangle)

01 BEGIN

02 FOR all Er1 in R1 DO

03 IF Er1.rect overlaps q THEN
04 IF R1 is a leaf page THEN

05 Output (Er1.oid)

06 ELSE

07 ReadPage (Er1.ptr);

08 SS (Er1.ptr, q)

09 END-IF

10 END-IF

11 END-FOR
12 END.

On the other hand, the join operation between two
spatial relations REL1 and REL2 can be implemented by
applying synchronized tree traversals on both R-tree
indices. An algorithm based on this general idea, called
SpatialJoin1, was originally introduced by Brinkhoff et al. in
[3]. Two improvements of this algorithm were also
proposed in the same paper toward the reduction of the
CPU- and I/O-cost by taking into consideration faster main-
memory algorithms, and better read schedules for a given
LRU-buffer, respectively. Specifically, for two R-trees
rooted by nodes R1 and R2, respectively, the spatial join
procedure (algorithm SJ) is as follows:

// Spatial Join Algorithm for R-trees
SJ (R1, R2: R-tree nodes)

01 BEGIN

02 FOR all Er2 in R2 DO

03 FOR all Er1 in R1 DO

04 IF Er1.rect overlaps Er2.rect THEN

05 IF R1 and R2 are leaf pages THEN

06 Output (Er1.oid, Er2.oid)

07 ELSE IF R1 is a leaf node THEN
08 ReadPage (Er2.ptr);

09 SJ (Er1.ptr, Er2.ptr)

10 ELSE IF R2 is a leaf node THEN

11 ReadPage (Er1.ptr);

12 SJ (Er1.ptr, Er2.ptr)
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13 ELSE
14 ReadPage(Er1.ptr); ReadPage(Er2.ptr);

15 SJ(Er1.ptr, Er2.ptr)

16 END-IF

17 END-IF

18 END-FOR

19 END-FOR

20 END.

In other words, a synchronized traversal of both R-trees
is performed, with the entries of nodes R1 and R2 playing
the roles of data and query rectangles, respectively, in a
series of range queries.

For both operations, the total cost is measured by the
total amount of page accesses in the R-tree index (the
procedure ReadPage in the above algorithms). This proce-
dure either performs an actual read operation on the disk or
reads the corresponding node information from a memory-
resident buffer, thus we distinguish between node and disk
accesses in the analytical study that follows. (The distinction
between node and disk accesses is a subject of cache policy.
By definition, the number of node accesses is always greater
than or equal to the number of actual disk accesses; the
equality only holds for the case where no buffering scheme
exists.)

3 ANALYTICAL COST MODELS FOR SPATIAL

QUERIES

Complex queries are usually transformed by DBMS query
optimizers to a set of simpler ones and the execution
procedure takes the partial costs into account in order to
schedule the execution of the original query. Thus, query
optimization tools that estimate access cost and selectivity
of a query are complementary modules together with access
methods and indexing techniques. Traditional optimization
techniques usually include heuristic rules, which, however,
are not effective in spatial databases due to the peculiarity
of spatial data sets (multidimensionality, lack of total
ordering, etc.). Other, more sophisticated, techniques
include histograms and cost models. Although research
on multidimensional histograms has recently appeared in
the literature [24], in the spatial database literature, cost
models for selectivity and cost estimation seem to be the
most promising solutions.

Proposals in this area include models for spatial selection
[13], [19], [28], [21] and spatial join [2], [17]. However, as
will be discussed later, in Section 5, most of those proposals
require knowledge of index properties and/or make a uni-
formity assumption, thus rendering them incomplete tools for
the practical purposes of query optimization. In [37], 38], we
proposed appropriate extensions to solve those problems,
which are formally presented in the rest of the section.
Throughout our discussion we use the list of symbols that
appear in Table 1.

3.1 Selection Queries

Formally, the problem of the R-tree cost analysis for
selection queries is defined as follows: Let d be the
dimensionality of the data space and WS � �0; 1�d the d-
dimensional unit workspace. Let us assume that NR1

data

rectangles are stored in an R-tree index R1 and a query

asking for all rectangles that overlap a query window q �

�q1; . . . ; qd� needs to be answered. What is sought is a

formula that estimates the average number NA of node

accesses using only knowledge about data properties (i.e.,

without extracting information from the underlying R-tree

structure).

Definition. The density D of a set of N rectangles with average

extent s � �s1; . . . ; sd� is the average number of rectangles

that contain a given point in d-dimensional space.

Equivalently, D can be expressed as the ratio of the sum

of the areas of all rectangles over the area of the available

workspace. If we consider a unit workspace �0; 1�d, with

area equal to 1, then the density D�N; s� is given by the

following formula:

D N; s� � �
X

N

Y

d

k�1

sk � N �
Y

d

k�1

sk: �1�

Assume now an R-tree R1 of height hR1
(the root is

assumed to be at level hR1
and leaf-nodes are assumed to be

at level 1). If NR1;l is the number of nodes at level l and sR1;l

is their average size, then the expected number of node

accesses in order to answer a selection query using a query

window q is defined as follows (assuming that the root node

is stored in main memory):

NA total R1; q� � �
X

hR1
ÿ1

l�1

intsect NR1;l; sR1;l; q
ÿ �

; �2�

where intsect�NR1;l; sR1;l; q� is a function that returns the

number of nodes at level l intersected by the query

window q. In other words, (2) expresses the fact that the

expected number of node accesses is equal to the expected

number of intersected nodes at each level.

Lemma. Given a set of N rectangles r1; . . . ; rN with average

extent s and a rectangle r with extent q, the average number of

rectangles ri intersected by r is:

intsect N; s; q� � � N �
Y

d

k�1

sk � qk� �: �3�

Proof. The average number of a set of N rectangles with

average extent s that intersect a rectangle r with extent q

is equal to the number of a second set of N rectangles

with average extent s0 (where s0k � sk � qk; 8k) that

contain a point in the workspace. The latter one, by

definition, equals to the density D0 of the second set of

rectangles. Formally:

intsect N; s; q� � � intsect N; s0; 0� � � D0 N; s0� � � N �
Y

d

k�1

s0k;

where s0k � sk � qk. tu

Assuming that rectangle r represents a query window on

R1, we derive NA total�R1; q� by combining (2) and (3):
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NA total R1; q� � �
X

hR1
ÿ1

l�1

NR1;l �
Y

d

k�1

sR1;l;k � qk
ÿ �

( )

: �4�

In order to reach our goal, we have to express (4) as a
function of the data properties NR1

(number of data
rectangles or, in other words, cardinality of the data set)
and DR1

(density of the data set) or, equivalently, express
the R-tree properties hR1

, NR1;l, and sR1;l;k as functions of the
data properties NR1

and DR1
.

The height hR1
of an R-tree R1 with average node

capacity (fanout) f that stores NR1
data rectangles is given

by the following formula [13]:

hR1
� 1� logf

NR1

f

� �

: �5�

Since a node organizes, on the average, f rectangles, we
can assume that the average number of leaf nodes (i.e.,
l � 1) is NR1;1 � NR1

=f , and so on. Hence, in general, the
average number of R-tree nodes at level l is

NR1;l � NR1
=f l: �6�

A second assumption in our analysis is that we consider
square node rectangles (i.e., sR1;l;1 � � � � � sR1;l;d; 8l). This
squaredness assumption is a reasonable property for a ªgoodº
R-tree [19]. According to that assumption and (1) and (6),
the average extent sR1;l;k of node rectangles at level l is a
function of their density DR1;l:

DR1;l � NR1;l �
Y

d

k�1

sR1;l;k �
NR1

f l
� sR1;l;k

ÿ �d
)

sR1;l;k � DR1;l �
f l

NR1

� �1=d

:

�7�

What remains to be estimated is DR1;l. Suppose that, at
level l, NR1;l nodes with average size �sR1;l;k�

d are

organized in NR1;l�1 parent nodes with average size
�sR1;l�1;k�

d. As described in [39], each parent node groups
on the average f child nodes and f1=d out of them are
responsible for the size of the parent node along each
direction. The centers of the NR1;l node rectangles'
projections are assumed to be equally distanced and this
distance (denoted by tl;k) depends on N

1=d
R1;l

nodes along
each direction. Hence, the average extent sR1;l�1;k of a
parent node along each direction is calculated by:

sR1;l�1;k � f1=d ÿ 1
� �

� tl;k � sR1;l;k; �8�

where tl;k is:

tl;k � 1=NR1;l
1=d; 8l; �9�

denoting the distance between the centers of two con-
secutive rectangles' projections on dimension k. (To derive
(9), we divided the extent of the unit workspace by the
number of different node projections on dimension k.)

Lemma. Given a set of NR1;l node rectangles with density DR1;l,
the density DR1;l;k of their projections is derived by the
following formula:

DR1;l;k � DR1;l �NR1;l
dÿ1

ÿ �1=d
: �10�

Proof. Straightforward by applying (1), (6), and (7) (for
proof details see [39]). tu

Using (8), (9), and (10), the density DR1;l�1 of node
rectangles at level l� 1 is a function of the density DR1;l of
node rectangles at level l:

DR1;l�1 � 1�
D

1=d
R1;l

ÿ 1

f1=d

 !d

: �11�
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Essentially, by using (11), the density at each level of the

R-tree can be calculated as only a function of the density

DR1
of the data rectangles (which, according to the

terminology adopted, can be named DR1;0).
At this point, the original goal of our analysis has been

reached. By combining (4), (5), (6), (7), and (11), the

expected number NA total�R1; q� of node accesses for a

selection query can be computed by using only the data set

properties NR1
and DR1

, the typical R-tree parameter f , and

the query window q.

3.2 Join Queries

According to the discussion of Section 2.2, the processing

cost of a join query is equal to the total cost of a set of

appropriate range queries, according to the procedure

described in the algorithm SJ. In this section, we propose

a formula that estimates the cost of a join query.
Formally, the problem of R-tree cost analysis for join

queries is defined as follows: Let d be the dimensionality of

the workspace and WS � �0; 1�d the d-dimensional unit

workspace. Let us assume two spatial data sets of

cardinality NR1
and NR2

, with the corresponding MBR

approximations of spatial data being stored in two R-tree

indices R1 and R2, respectively. In correspondence with

Section 3.1, the goal of the cost analysis in this section is a

formula that would efficiently estimate the average number

of nodes accessed in order to process a join query between

the two data sets, based on the knowledge of the data

properties only and without extracting information from

the corresponding R-tree structures.
Let the height of an R-tree Ri �i � 1; 2� be equal to hRi

and assume that both root nodes are stored in main

memory. At each level li, 1 � li � hRi
ÿ 1, Ri contains

NRi;li nodes of average size sRi;li , each node consisting of a

set of entries ERi;li . Thus, in order to find which pairs of

entries are overlapping and downward traverse the two

structures, we compare entries ER1;l1 with entries ER2;l2

(line 04 of the spatial join algorithm SJ).
The cost of the above comparison at each level is the sum

of two factors, which correspond to the costs for the two R-

trees, namely NA�R1; R2; l1� and NA�R2; R1; l2�, respec-

tively. The above factors can be calculated by considering

that the entries of R1 (respectively, R2) play the role of the

data set (respectively, a set of query windows q); then we

can derive the pairs of intersecting nodes for each R-tree ((3)

in Section 3.1) in order to estimate the total access cost. Since

we do not consider the existence of a buffering scheme, the

access costs for both R-trees R1 and R2 at the corresponding

levels l1 and l2 are equal (since an equal number of nodes

are accessed, as can be extracted by algorithm SJ, line 14).

Line 04 of the SJ algorithm is repeatedly called at each level

of the two trees down to the leaf level of the shorter tree R2

(without loss of generality, it is assumed that hR1
� hR2

).
Formally, for the upper hR2

ÿ 1 levels of the two R-trees:

NA R1; R2; l1� � � NA R2; R1; l2� �

�
X

NR2 ;l2

intsect NR1;l1 ; sR1;l1 ; sR2;l2

ÿ �

) . . .

) NA R1; R2; l1� �

� NA R2; R1; l2� �

� NR2;l2 �NR1;l1 �
Y

d

k�1

sR1;l1;k � sR2;l2;k

ÿ �

;

�12�

where hR1
ÿ hR2

� 1 � l1 � hR1
ÿ 1 and 1 � l2 � hR2

ÿ 1.
In [38], we provide a slightly different formula: in

particular, instead of the factor sR1;l1;k � sR2;l2;k

ÿ �

, an upper
bound min 1; sR1;l1;k � sR2;l2;k

ÿ �� 	

is presented. Since, in the
whole discussion of the present section, we discuss unit
workspace, such a bound is already a presupposition in (3),
(4), and (12).

After the leaf nodes of the short tree R2 have been
accessed, l2 is fixed to value 1 (i.e., denoting the leaf level)
and the propagation of R1 continues down for another
hR1

ÿ hR2
levels. Overall, (13) estimates the total cost in

terms of R-tree node accesses for a spatial join:

NA total R1; R2� � �
X

hR1
ÿ1

l1�1

NA R1; R2; l1� � �NA R2; R1; l2� �f g;

�13�

where

l2 �
l1 ÿ hR1

ÿ hR2
� �; hR1

ÿ hR2
� 1 � l1 � hR1

ÿ 1

1; 1 � l1 � hR1
ÿ hR2

:

�

The involved parameters in (13) are:

. hRi
, calculated by (5),

. NRi;li , calculated by (6) as a function of the actual
cardinality NRi

of the corresponding data set, and
. sRi;li;k , calculated by (7) as a function of the density

DRi;li of node rectangles at level li (which, in turn, is
calculated by (11) as a function of the actual density
DRi

of the corresponding data set).

Qualitatively, (13) estimates the cost of a join query
between two spatial data sets based on their primitive
properties only, namely number and density of data
rectangles, in correspondence with the analysis for range
queries (Section 3.1). Note that (13) is symmetric with
respect to the two indices R1 and R2. The same conclusion is
drawn by the study of the algorithm SJ since the number of
node accesses is equal to the number of ReadPage calls
(line 14) which, in turn, are the same for both trees. The
equivalence of the two indices is not the case when a simple
path buffer (i.e., a buffer that stores the most recently visited
path for each R-tree) is introduced, as we will discuss in the
next section.

3.3 Introducing a Path Buffer

Extending previous analysis, we introduce a simple buffer-
ing mechanism that maintains a path buffer for the
underlying tree structure(s). The existence of such a buffer
mainly affects the performance of the tree index that plays
the role of the query set (namely R2), as will be discussed in
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detail in this section, since the search procedure (algorithm

SJ), reads R2 entries less frequently than R1 entries. With

respect to that, we assert that the cost of a selection query in

terms of disk accesses DA total�R1; q� can be considered

equal to NA total�R1; q�, as formulated in (4), without loss

of accuracy and, therefore, provide no further analysis for

path buffering. Moreover, the effect of a buffering mechan-

ism (e.g., an LRU buffer) has been already addressed in the

literature [21] and, according to experimental results, very

low buffer size (such as that of a path buffer) causes almost

zero impact on point and range query performance. On the

other hand, even a simple path buffer scheme highly affects

the actual cost of a join query.
As already mentioned, by examining algorithm SJ, we

conclude that the existence of such a buffering scheme

mainly affects the computation of the cost for R2 because its

entries constitute the outer loop of the algorithm and, hence,

are less frequently updated. As for R1, since its entries

constitute the inner loop of the algorithm, the respective

cost computation is not considerably affected by the

existence of a path buffer. These arguments are more

formally described through the following alternative cases

(for more details through an example, see [39]):

1. Suppose that an entry ER2;l2 of tree R2 at level l2
overlaps with m entries of a node ER1;l1�1, m entries
of a different node E0

R1;l1�1, etc., of the tree R1. ER2;l2

is kept in main memory during its comparison with
all entries of node ER1;l1�1 and will be again fetched
from disk, hence, recomputed in DA�R2; R1; l2� cost,
when its comparison with the entries of node E0

R1;l1�1

starts. As a result, the number of actual disk accesses
of the node rooted by ER2;l2 is equal to the number of
the nodes of R1 at level l1 � 1 (i.e., the parent level)
having rectangles intersected by ER2;l2 ; formally, it is
intsect�NR1;l1�1; sR1;l1�1; sR2;l2�.

2. On the other hand, an entry ER1;l1 of tree R1 at level l1
is recomputed in DA�R1; R2; l1� as soon as it over-
laps with an entry ER2;l2 of tree R2 with a single
exception: In case ER1;l1 is the last member of the
intersection set of ER2;l2 and, at the same time, it is
the first member of the intersection set of its
consecutive E0

R2;l2
. The above exception happens

rarely; moreover, it is hardly modeled since no order
can be assumed among R-tree node entries.

Since the cost for the tree that plays the role of the query

(data) set is affected in a high (low) degree, we distinguish

between two different cases: R1 that plays the role of the

data set being 1) taller (or of equal height) or 2) shorter than

R2. In the first case (hR1
� hR2

), the propagation of R1 down

to its lower levels adds no extra cost (in terms of disk

accesses) to the ªqueryº tree R2 that has already reached its

leaf level. In the second case (hR1
< hR2

), each propagation

of the ªqueryº tree R2 down to its lower levels adds equal

cost to the ªdataº tree R1 (denoting that buffer existence

does not affect the cost of R1).
Overall, with respect to the above discussion, the access

cost of each tree at a specific level li is calculated according

to the following formulae:

DA R1; R2; l1� � � NA R1; R2; l1� � �14�

DA R2; R1; l2� � �
X

NR2 ;l2

intsect NR1;l1�1; sR1;l1�1; sR2;l2

ÿ �

� NR2;l2 �NR1;l1�1 �
Y

d

k�1

sR1;l1�1;k � sR2;l2;k

ÿ �

�15�

and the total cost is given by (16) (note that if hR1
� hR2

,
then l2 � l1 ÿ �hR1

ÿ hR2
�, else l1 � l2 ÿ �hR2

ÿ hR1
�.

DA total R1; R2� � �

P

hR1
ÿ1

l1�hR1
ÿhR2

�1

DA R1; R2; l1� �f

�DA R2; R1; l2� �g

�
P

hR1
ÿhR2

l1�1

DA R1; R2; l1� �;

if hR1
� hR2

P

hR2
ÿ1

l2�hR2
ÿhR1

�1

DA R1; R2; l1� �f

�DA R2; R1; l2� �g

�
P

hR2
ÿhR1

l2�1

2 �DA R1; R2; l1� �f g;

if hR1
< hR2
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Again, the involved parameters hRi
, NRi;li , and sRi;li;k are

calculated as functions ofNRi
andDRi

. Note that, in contrast
to (13), (16) is sensitive to the two indices, R1 and R2. The
experimental results of Section 4 also strengthen this
observation.

In the above analysis, we have taken two cases into
consideration: adopting either zero or a simple path buffer
scheme. A more complex buffering scheme (e.g., an LRU
buffer of predefined size) would surely achieve a lower
value forDA total��. However, its effect is beyond the scope
of this paper (see [17], [21] for related work).

3.4 Support for Nonuniform Data Sets

The proposed analytical model assumes data uniformity in
order to compute the density of the R-tree node rectangles
at a level l� 1 as a function of the density of the child node
rectangles at level l (11). In particular, in order to derive (8)
and (9), the centers of the NR1;l node rectangles' projections
were assumed to be equally distanced. This uniformity
assumption [13] leads to a model that could be efficient for
uniform-like data distributions, but hardly applicable to
nonuniform distributions of data, which are the rule when
dealing with real applications.

In order to adapt the model in a way that would
efficiently support several types of data sets (uniform or
nonuniform ones), we reduce the global uniformity assump-
tion of the analytical model (i.e., by considering the whole
workspace) to a local uniformity assumption (by consider-
ing a small subarea of the workspace) according to the
following motivation: The densityof a data set is involved in
the cost formulae as a single number DRi

. However, for
nonuniform data sets, density is a varying parameter,
graphically a surface in d-dimensional space. Such a surface
could show strong deviations from point to point of the
workspace, compared to the average value. For example, in
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Fig. 4, the density surface of a real data set, called Lbeach, is

drawn (see Fig. 5 in Section 4 for an illustration of the Lbeach

data set [6]).
The average density of this data set is Davg � 0:13.

However, as extracted from Fig. 4, the actual density varies

from D � 0:0 (in zero-populated areas, such as the upper-

left and bottom-right corners) up to D � 2:0 (in high-

populated areas), with respect to the reference point.

Evidently, using the Davg value in a cost formula would

usually provide inaccurate estimations. On the other hand,

a satisfactory illustration of the density surface provides

more accurate D values with respect to a specified query

window q. Although the cardinality of a data set could be

very large, a near-to-the-actual density surface can usually

be computed by examining a sample of the data set

(efficient sampling algorithms have been proposed, among

others, by Vitter in [40], [41]).
Based on the above idea, the proposed cost formulae

could efficiently support either uniform or nonuniform data

distributions after the following adaptations:

1. The average density DRi
of the data set is replaced

by the actual density D0
Ri

of the data set within the
area of the specified query window q.

2. The amount NRi
of the data set is transformed to

N 0
Ri
, which is computed as follows:

N 0
Ri

� D0
Ri
=DRi

� �

�NRi
:

Note that, in discrete space, the average density of a data

set is always DRi
> 0, even for point data sets; DRi

� 0

corresponds to zero-populated areas only.
In this section, we provided analytical formulae for the

cost estimation of selection or join queries on spatial data

sets organized by disk-resident R-tree indices. The pro-

posed cost models are based on primitive data properties

only, without any knowledge of the corresponding R-trees.

In the next section, we evaluate our model by comparing

the analytical estimations with experimental results on

synthetic and real data sets in one- and two-dimensional

space.

4 EVALUATION OF THE COST MODELS

The evaluation of the analytical formulae proposed in
Section 3 is based on a variety of experimental tests on
synthetic and real data sets illustrated in Fig. 5. Synthetic
one- and two- dimensional data sets consist of random
(Fig. 5a) and skewed (Fig. 5b) distributions of varying
ca rd ina l i t y N (20K � N � 80K) and dens i t y D
(0:2 � D � 0:8), and have been constructed by using
random number generators. Real two-dimensional data
sets are parts of the TIGER/Line database of the U.S.
Bureau of Census [6]. In particular, we have used two
TIGER data sets: 1) the LBeach data set, consisting of 53,143
line segments (stored as rectangles) indicating roads of
Long Beach, California (Fig. 5c) and 2) the MGcounty data
set, consisting of 39,221 line segments (stored as rectangles)
indicating roads of Montgomery County, Maryland
(Fig. 5d).

For the experimental tests we built R�-trees [4] and
performed several spatial joins using the above data sets.
All experimental results were run on an HP700 workstation
with 256 Mbytes of main memory. On the other hand, the
analytical estimations of node accesses for selection queries
were based on (4) and the node (respectively, disk) cost
estimations for join queries were based on (13) (respec-
tively, (16)) with the average capacity of the tree indices set
to the typical 67 percent value.

4.1 Experiments on Uniform-like Data Sets

We present several test results in order to evaluate the cost
estimation of (4) for selection (either point or range) queries.
Fig. 6 illustrates the results for two random data sets
(N � 40K and 80K, respectively, both with densityD � 0:1).
The relative error was always below 10 percent for the two
experiments illustrated in Fig. 6, as well as for the rest
experiments with random data sets.

As a further step, we evaluated the analytical formulae
for join query estimation, presented in Section 3, on various
R-tree combinations. Fig. 7 illustrates the experimental and
analytical results of node and disk accesses (denoted by NA
and DA) for 1) one- and 2) two-dimensional random data
sets, respectively, for all NR1

=NR2
combinations.

The nonlinearity of the plots in Fig. 7b is due to the fact
that all R-tree indices are not of equal height; the height of
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the two-dimensional indices of cardinality 20K � N � 40K

(respectively, 60K � N � 80K) is equal to h � 3 (respec-
tively, h � 4), while the height of all one-dimensional
indices is equal to h � 3. According to our experiments, it
also turns out that the cost formulae for the estimation of
disk accesses DA are nonsymmetric with respect to the trees
R1 and R2, a fact that has been already mentioned during
the presentation of the cost models in Section 3.

The comparison results confirm that, for tree indices of
equal height, the choice of the smaller (larger) index to play
the role of the ªqueryº (ªdataº) tree is the best choice for the
effectiveness of the SJ algorithm, which, however, is not a
general rule for trees of different height, as illustrated in
Fig. 8 (areas 2 and 3 in Fig. 8 do not obey this rule).

Summarizing the results for join queries on random
(uniform-like) data sets, we conclude that:

1. When no buffering scheme is considered, the
accuracy of the estimation is high (the relative error
never exceeds 10 percent).

2. When a path buffer is adopted then the estimated
cost of R2 is always very close to the actual cost
(relative error usually below 5 percent), while the
estimated cost of R1 is usually within 10-15 percent
of the experimental result. The accuracy of the
estimation concerning R2 (i.e., the ªqueryº tree in
the join procedure) is expected since the existence of
a buffer has been taken into account in (15), while
(14) assumes that the buffer existence does not affect
R1 (i.e., the ªdataº tree in the join procedure), an
assumption that reduces the accuracy of the estima-
tion for the access cost of R1. However, as already

mentioned in Section 3.2, the exception to the rule is
hardly modeled.

4.2 Nonuniform Data Sets

As explained in Section 3, a transformation of the actual

density of each nonuniform data set is necessary in order

to reduce the impact of the uniformity assumption of the

underlying analytical model from global (i.e., assuming

the global workspace) to local (i.e., assuming a small

subarea of the workspace). In other words, instead of

considering the average density Davg of a data set, the

cost formulae ((4), (13), and (16)) consider the values of

the density surface D�x; y� that correspond to the

appropriate areas of the workspace. For experimentation

purposes, we extracted a density surface for each

nonuniform data set using a grid of 40� 40 cells, i.e., a

step of 0.25 percent of the workspace per axis.
Fig. 9 illustrates average results for selection queries on

skewed (d � 2, D � 0:1, N � 40K or 80K) and real (LBeach

and MGcounty) data sets. The analytical results (respec-

tively, experimental results) are plotted with dotted

(respectively, solid) lines. The relative error is usually

around 10-15 percent and this was the rule for all data sets

that we tested.
The flexibility of the proposed analytical model on

nonuniform distributions of data, using the density surface,

is also extracted from the results of our experiments. Fig. 10

illustrates the results for range queries (query rectangles of

size 0:12) around nine representative points on the above

skewed and real data sets (d � 2). Note that the analytical

estimate always follows the experimental value for each
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Fig. 6. Performance comparison for selection queries on uniform-like data (d � 2, D � 0:1, N � 40K or 80K, log scale).



representative point (the same behavior appears for point

queries also [39]).
The evaluation of the model for join queries also

includes a wide set of experiments. Fig. 11a illustrates

weighted average costs on skewed data sets for varying

density D (d � 2). (The weighted average number of disk

accesses, denoted by w:DA is computed by multiplying

each measured cost DAi with a factor inversely propor-

tional to the corresponding cardinality Ni, i.e.,

w:DA � 1
4
�
P4

i�1 wi �DAi, where wi � 10K=Ni in our experi-

ments, in order to achieve fair-minded portions for both

low- and high-populated indices). Apart from synthetic

data sets, we also used the two real data sets described

earlier. Fig. 11b illustrates the corresponding experimental

and analytical results. The labels _lb_ and _mg_ (respec-

tively, _lb'_ and _mg'_) denote the actual (respectively, after

mirroring of x- and y-axis) LBeach and MGcounty data sets.

In general, a relative error below 20 percent appears for all

nonuniform data combinations.
Summarizing the experiments, Table 2 lists the average

relative errors of the actual results compared to the

predictions of the proposed model.

4.3 The Benefit When Using a Path Buffer

As discussed in Section 3.3, the larger the buffer size in a

DBMS, the lower the access cost for a selection or join query.

However, the benefit for spatial selection queries by using a

simple path buffer is not clearly measurable; as already

mentioned, according to a related work [21], when the

buffer size is close to zero then no significant performance

gain is achieved.
On the other hand, a path buffer clearly affects the

performance of join queries, as the gaps between the lines

that represent NA and DA in Figs. 7 and 11 indicate. This

difference is illustrated in Fig. 12 with NA values being

fixed to value 100 percent and, hence, DA values showing

the relative performance gain.
Significant savings of 10-30 percent appear for one-

dimensional data. Recalling that all one-dimensional data

sets of our experiments generated equal height trees, one

can observe that the smaller the ªqueryº tree, the higher the

gain becomes. For two-dimensional data sets, the perfor-

mance gain increases up to a 50 percent level. The above

conclusion is also true in this case, showing, however, a less
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Fig. 7. Experimental vs. analytical NA and DA costs for join queries on

uniform-like data: (a) d � 1, (b) d � 2. Fig. 8. Analytical DA costs for join queries on uniform-like data for

varying cardinality NR1
or NR2

: (a) d � 1, (b) d � 2.



uniform behavior, which is due to the different index

heights.

5 RELATED WORK

In the survey of this section, we present previous work

on analytical performance studies for spatial queries

using R-trees. Several findings from those proposals have

been used as starting points for consequent studies and our

analysis as well.
The earlier attempt to provide an analysis for R-tree-

based structures appeared in [13]. Faloutsos et al. proposed

a model that estimates the performance of R-trees and R�-

trees for selection queries, assuming, however, uniform

distribution of data and packed trees (i.e., all the nodes of the

tree are full of data). The formulae for the height of an R-

tree as a function of its cardinality and fanout (5) and for the

average size of a parent node as a function of the average

size of the child nodes and the average distance between

two consecutive child nodes' projections (8) were originally

proposed in [13].
Later, Kamel and Faloutsos [19] and Pagel et al. [28]

independently presented a formula (actually a variation of

(2)) that calculates the average number of page accesses in

an R-tree accessed by a query window as a function of the

average node size and the query window size. Since, for

practical query optimization purposes, R-tree properties

such as the average node size cannot be assumed to be

known in advance, that analysis is qualitative, i.e., it cannot

provide an accurate cost prediction but rather presents the
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Fig. 9. Performance comparison for selection queries on (a) skewed and (b) real data.

Fig. 10. Performance comparison for selection queries around representative points: range queries on (a) skewed data, (b) real data.

Fig. 11. Experimental vs. analytical NA and DA costs for join queries on (a) skewed and (b) real data.



effect of three parameters, namely area, perimeter, and
number of objects, on the R-tree performance. In those
papers, the influence of the node perimeters was revealed,
thus helping one to understand the efficiency of the R�-tree,
which was the first R-tree variant to take the node perimeter
into consideration during the index construction procedure
[28]. Extending the work of [28], Pagel et al. [29] proposed
an optimal algorithm that establishes a lower bound result
for static R-tree performance. They also showed by experi-
mental results that the best known static and dynamic R-
tree variants, the packed R-tree [19] and the R�-tree
respectively, perform about 10-20 percent worse than the
lower bound. The impact of the three parameters (area,
perimeter, and number of objects) was further discussed in
[27], where performance formulae for various kinds of
range queries, such as intersection, containment, and
enclosure queries, were derived.

Faloutsos and Kamel [11] extended the previous formula
to actually predict the number of disk accesses using a
property of the data set, called the fractal dimension. The
fractal dimension fd of a point data set can be mathema-
tically computed and constitutes a simple way to describe
nonuniform data sets by using just a single number. The
formula constitutes the first attempt to model R-tree
performance for nonuniform distributions of data (includ-
ing the uniform distribution as a special case: fd � d)
superceding the analysis in [13] that assumed uniformity.
However, the model is applicable to point data sets only
and, thus, cannot handle a number of spatial applications
involving region data.

Since previous work focused on the number of nodes
visited (NA is our analysis) as a metric of query

performance, the effect of an underlying buffering mechan-
ism has been neglected, although it is a real cost parameter
in query optimization. Toward this direction, Leutenegger
and Lopez [21] modified the cost formula of [19] introdu-
cing the size of an LRU buffer. Comparison results on
different R-tree algorithms showed that the analytical
estimations were very close to the experimental cost
measures. A discussion of the appropriate number of R-
tree levels to be pinned argued that pinning may mostly
benefit point queries and, even then, only under special
conditions.

Considering join queries, Aref and Samet [2] proposed
analytical formulae for cost and selectivity, based on the R-
tree analysis of [19]. The basic idea of [2] was the
consideration of the one data set as the underlying database
and the other data set as a source for query windows in
order to estimate the cost of a spatial join query based on
the cost of range queries. Experimental results showing the
accuracy of the selectivity estimation formula were pre-
sented in that paper.

Huang et al. [17] recently proposed a cost model for
spatial joins using R-trees. Independently of [38], it was the
first attempt to provide an efficient formula for join
performance by distinguishing two cases: considering
either zero or nonzero buffer management. Using the
analysis of [19], [28] as a starting point, it provides two
formulae, one for each of the above cases. The efficiency of
the proposed formulae was shown by comparing analytical
estimations with experimental results for varying buffer
size (with the relative error being around 10-20 percent).
However, contrary to [38], that model assumes knowledge
of R-tree properties in the same way that [19], [28] do.
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Fig. 12. Relative performance gain when using a path buffer: uniform-like data, (a) d � 1, (b) d � 2.

TABLE 2
Average Relative Error for the Cost Estimation of Selection and Join Queries



Compared to related work, our model provides robust
analytical formulae for selection and join cost estimation
using R-trees, which:

1. do not need knowledge of the underlying R-tree
structure(s) since they are only based on primitive
data properties (cardinality N and density D of the
data set), and

2. turn out to be accurate after a wide set of experi-
mental results on both uniform-like and nonuniform
data sets consisting of either point or nonpoint
objects.

6 CONCLUSION

Selection and join queries are the fundamental operations
supported by a DBMS. In the spatial database literature,
there exist several techniques for the efficient processing of
those operations, mainly based on the R-tree structure.
However, for query optimization purposes, efficient cost
models should be also available in order to make accurate
cost estimations under various data distributions (either
uniform or nonuniform ones).

In this paper, we presented a model that predicts the
performance of R-tree-based structures for selection (point
or range) queries and extended this model to support join
queries as well. The proposed cost formulae are functions of
data properties only, namely, cardinality and density in the
workspace, and, therefore, can be used without any
knowledge of the R-tree index properties. They are
applicable to point or nonpoint data sets and, although
they make use of the uniformity assumption, they are also
adaptive to nonuniform distributions, which usually appear
in real applications, by reducing its effect from global to
local level (i.e., maintaining a density surface and assuming
uniformity on a small subarea of the workspace).

Experimental results on both synthetic and real (TIGER/
Line data [6]) data sets showed that the proposed analytical
model is very accurate, with the relative error being usually
around 10-15 percent when the analytical estimate is
compared to cost measures using the R�-tree, perhaps the
most efficient R-tree variant. In addition, for join query
processing, a path buffer was considered and the analytical
formula was adapted to support it. The performance saving
due to the existence of such a buffering mechanism was
highly affected by the sizes (and height) of the underlying
indices and reached up to 50 percent for two-dimensional
data sets. The proposed formulae and guidelines could be
useful tools for spatial query processing and optimization
purposes, especially when complex spatial queries are
involved.

In this paper, we focused on the overlap operator between
spatial objects. Any spatial operator could be used instead.
For instance, one of the topological operators (meet, covers,
contains, etc.) [8] or any of the 13d possible directional
operators between two d-dimensional objects [1], [30]. The
idea could be handling such relations as range queries with
an appropriate transformation of the query window. We
have already adopted this idea for selection queries in order
to estimate the cost of direction relations between two-
dimensional objects in GIS applications [36] and combina-

tions of topological and direction relations between three-
dimensional (spatiotemporal) objects in large multimedia
applications [42].

In a different direction, the work for (pairwise) join
queries that appears in this paper has been extended to
support multiway joins. Papadias et al. [25] provide a cost
model for alternative multiway join algorithms, which is
shown to be efficient for different types of join queries
(chain, clique, etc.). Mamoulis and Papadias [22] also adopt
the idea of the density surface, presented in Section 3.4, to
estimate the size of a multiway join.
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