
Practical Aspects of the Graph Parameter

Boolean-width

Sadia Sharmin

Dissertation for the degree of Philosophiae Doctor (PhD)

Department of Informatics

University of Bergen

Norway

June 2014

Acknowledgements

All praises to God almighty, the Lord of the World, who made me capable of going

through this PhD journey.

First, I would like to thank everyone in the Algorithms group at the University of Bergen

for upholding an excellent learning atmosphere. It has been a great experience to work

with such nice and warmhearted people, who are experts in their fields and from whom

I have learnt a lot.

I would like to acknowledge the tremendous help and support that I received from my

advisors, Fredrik Manne and Jan Arne Telle. My greatest gratitude and appreciation

goes to Fredrik Manne who advised me even with every single detail. His ideas, knowl-

edge, and insights were always of great help for my advancement. I also thank him for

his patience in reviewing so many inferior drafts, suggesting new ways of thinking, and

encouraging me. The thesis would not have existed without him. It has been such an

honor, privilege, and enjoyment to learn from and work with him.

Thanks to Martin Vatshelle, my friend and colleague, for helping me not only academi-

cally but also with many practical things. His nice and simple way of explaining and his

appreciation always encouraged me. My ideas were always clearer after every discussion

I had with him. And a special thanks to my office mates Reza and Naim who made my

office a cozy place to be.

My sincere thank goes to the administrative staff in the Department of Informatics for

easing many of the administrative activities. Thanks to the Norwegian Research Council

for their financial support and allowing the freedom of research.

Finally, I am grateful to my parents, parents-in-law, sisters, and all my relatives for

their continuous support and encouragement. I love them so much, and I would not

have made it this far without them.

Last, but not least, my heartfelt thanks to my husband Aasif Ridwan Khan for the love,

support, and endless sacrifices that he made throughout the last couple of years. None

of the things I thanked for above would have been possible if he was not there standing

by me. He had faith in me even when I didn’t have faith in myself. This PhD journey

has not been easy, both academically and personally. I believe we both have learned a

lot about life during this journey and strengthened our commitment and determination

to each other and to live life to the fullest. Special thanks to my son Ayman Arib for

his love and patience. He has endured my busy schedules and stress and given me so

much inspiration and motivation. Love you all.

Sadia Sharmin

June 2014

Bergen, Norway

I dedicate this thesis to my husband

Aasif Ridwan Khan

v

Contents

Acknowledgements iii

List of Figures xi

List of Tables xiii

I xv

1 Introduction 1

1.1 Width parameters of graphs . 3

1.1.1 Computing width parameters . 3

1.1.2 Practical applications of width parameters 4

1.1.3 Boolean-width . 4

1.1.4 Comparing boolean-width to other width parameters 5

1.2 The need for good decompositions . 6

1.3 Our contribution . 6

1.4 Overview of the thesis . 7

2 Preliminaries 11

2.1 Graph and problems on graph . 11

2.1.1 Runtime analysis . 12

2.2 Decompositions and boolean-width . 13

2.3 Properties of boolean-width . 15

2.4 Experimental setup . 16

2.4.1 Machine configuration . 16

2.4.2 Data Set . 16

3 A First Attempt at Generating Boolean Decompositions 19

3.1 The algorithm . 20

3.1.1 Greedy initialization . 20

3.1.2 Local search . 21

3.2 Performance analysis . 23

3.2.1 Discussion and implementation details 23

3.3 Experimental results . 24

3.3.1 Small grid graphs . 26

3.3.2 Rank-width upper bound vs boolean-width upper bound 27

3.4 Conclusion . 28

vii

Contents viii

4 Counting Maximal Independent Sets 29

4.1 Previous algorithms for counting and enumerating MISs 29

4.2 A new algorithm . 32

4.3 Experimental results . 35

4.3.1 General graphs . 35

4.3.2 Bipartite graphs . 38

4.3.2.1 Random bipartite graphs 39

4.3.2.2 Real-world graphs . 40

4.4 Conclusion . 41

5 Speeding up the generation of Boolean Decompositions 43

5.1 Reduction rules . 43

5.1.1 Proof of correctness . 44

5.1.2 Tree-width reductions that do not work 45

5.1.3 Implementation . 46

5.2 Experimental results . 46

5.2.1 Preprocessing . 46

5.2.2 Speeding up Algorithm 1 . 48

5.3 Conclusion . 50

6 Generating a Boolean Decomposition from a Tree Decomposition 51

6.1 Generating a tree decomposition . 51

6.2 Computing a boolean decomposition from a tree decomposition 52

6.2.1 Making nodes of the tree disjoint 53

6.2.2 Placing every vertex in a leaf node 54

6.2.3 Making a parent node contain every vertex in its children 55

6.2.4 Making the decomposition binary 55

6.2.5 Time complexity . 56

6.3 Experimental results . 56

6.4 Conclusion . 59

7 Exact and Random Boolean Decompositions 61

7.1 Exact boolean decomposition . 61

7.1.1 Experimental results . 62

7.2 Random boolean decompositions . 64

7.2.1 Experiments with random graphs 65

7.2.2 Experiments with real world graphs 66

7.3 Conclusion . 67

8 Generating Caterpillar Decompositions 69

8.1 Algorithms for generating caterpillar decompositions 69

8.1.1 Selecting the first vertex . 70

8.1.2 Trivial cases . 71

8.1.3 Least Uncommon Neighbors . 72

8.1.4 Relative Neighborhood . 72

8.1.5 Greedy . 73

8.1.6 Time complexity and implementation 74

8.2 Experimental results . 74

Contents ix

8.3 Other orderings . 79

8.4 Conclusion . 79

9 Maximum Independent Set using Caterpillar Decompositions 81

9.1 Using a Linear Decomposition to solve the ISP 82

9.1.1 Proof of correctness . 84

9.1.2 Time complexity and implementation 84

9.2 Experimental results . 85

9.3 Conclusion . 88

10 Maximum Independent Set using Branch-and-Bound 91

10.0.1 Background . 91

10.1 Our algorithm . 92

10.1.1 Preprocessing/reduction rules . 92

10.1.2 The recursive algorithm . 93

10.1.3 Vertex ordering . 97

10.1.4 Experimental results . 98

10.1.5 Conclusion . 101

11 Conclusion 103

11.1 Open problems . 103

Bibliography 105

II Papers 113

Paper I 115

Appendix- Paper I 131

Paper II 139

List of Figures

1.1 A partition of the vertices in G. 4

2.1 A graph G and a possible boolean decomposition of G. 13

2.2 A caterpillar decomposition of G from Figure 2.1. 15

3.1 Ratio (tree-width divided by boolean-width) versus edge density for all
the 300 graphs for which heuristically computed upper bounds are known. 24

3.2 Improvement of boolean-width upper bound as the local search progresses
over time, for the graph eil51.tsp (V (G)=51, E(G)=140). 25

3.3 Improvement of boolean-width upper bound as the local search progresses
over time, for the graph miles1500 (V (G)=128, E(G)=5198). 25

3.4 Upper-bound on boolean-width of square grids. 27

3.5 Comparison of experimental rank-width upper bounds with boolean-width
upper bounds. 27

4.1 A possible execution of Algorithm 8. 34

4.2 Relative performance ofTomitaMis compared to the algorithm by Gaspers
et al.. 36

4.3 Relative performance of different CCMis algorithms. 37

4.4 Comparing time for CCMis and UN(A) with respect to average degree
for bipartite graphs BG = (30, 30, E). 39

4.5 Comparing time for CCMis and UN(A) with respect to the number of
MISs for bipartite graphs BG = (30, 30, E). 40

5.1 Reversing the reduction rules by adding the reduced vertex v. 44

5.2 Simplicial vertices s1, s2, . . . , s6. 45

6.1 A graph G and a corresponding tree decomposition of tw(G) = 2. 52

6.2 For ∀Y ⊆ S boolean dimension of cut(A ∪ Y,B ∪ (S \ Y)) ≤ |S|. 53

6.3 Starting from Figure 6.1 after making the bags disjoint. 54

6.4 Starting from Figure 6.1 after making all bags leaves. 54

6.5 Starting from Figure 6.1 after copying every vertex to its parent. 55

6.6 Starting from Figure 6.1 a binary boolean decomposition tree of G with
boolw(G) = log(3)=1.58. 56

7.1 Exact rw and boolw for a set of small real world graphs 63

7.2 Boolean-width of random decompositions on random graphs with edge
probability 0.5. 65

7.3 Boolean-width of random decompositions on random graphs. 65

xi

List of Figures xii

7.4 Boolean-width of random graph with n = 20 vertices using exact and
random decompositions. 66

8.1 A graph G. 71

8.2 One stage of the selection process . 72

9.1 A graph G . 83

9.2 Logarithm (base 2) of the time required for dynamic programming for
different orderings . 87

10.1 Degree 2 vertex reduction . 93

List of Tables

3.1 Results for selected graphs . 26

4.1 Description for benchmark real world graphs from TreewidthLIB. 36

4.2 CPU time(sec) for benchmark real world graphs from TreewidthLIB . . . 38

4.3 CPU time(sec) for bipartite graphs generated from the graphs listed in
Table 4.1 . 40

5.1 Effect of reduction rules when applied to graph instances from probabilis-
tic networks . 47

5.2 Effect of reduction rules when applied to graph instances generated from
other sources than probabilistic networks 48

5.3 Comparison of greedy initialization for original and preprocessed graphs . 49

5.4 Comparison of the time required for greedy initialization in Algorithm 1
using UN(A) and CCMis . 49

5.5 Greedy initialization using CCMIS on large graphs 49

6.1 Comparison of boolean-width upper bound obtained from Algorithm 9
and tree-width upper bound listed in TreewidthLIB 57

6.2 Comparison of boolean-width upper bounds obtained from Algorithm 1
and Algorithm 9 . 58

7.1 Exact rw, boolw, and tw for a set of small real world graphs 62

7.2 Exact cw, rw, and boolw for a set of named graphs 64

7.3 Comparison of boolean-width upper bounds obtained from random de-
compositions, Algorithm 1, and Algorithm 9 67

8.1 Running time of the heuristics on small graphs 75

8.2 Linear boolean-width upper bounds given by the heuristics on small graphs 76

8.3 Running time of the heuristics on large graphs 77

8.4 Linear boolean-width upper bounds given by the heuristics on large graphs 77

8.5 Comparing linear boolean-width upper bounds of graphs with exact clique-
width . 78

9.1 Comparing running times for Algorithm 14 using different orderings . . . 86

9.2 Comparing running times for Algorithm 14 using different orderings . . . 86

9.3 Comparing running times for Algorithm 14 using different orderings for
the 2nd DIMACS graphs . 88

10.1 Comparing Algorithm 15 with the algorithm of McCreesh et al. 99

xiii

List of Tables xiv

10.2 Running times for Algorithm 15 on a set of graphs from the 2nd DIMACS
challenge . 100

10.3 Comparing running times of Algorithm 15 and Algorithm 14 101

Part I

xv

Chapter 1

Introduction

Many natural computational problems are NP-complete or NP-hard. As far as we know
these problems are computationally intractable, meaning that they lack polynomial time
algorithms. Still these tasks can be solved given sufficient time, but in practice this might
take too long to be useful.

Discovering that a problem is NP-complete or NP-hard provides a compelling reason
to stop searching for an efficient algorithm for it. But as such problems still need
to be solved quickly a number of methods have been developed to deal with these.
This includes various techniques such as heuristics that trade optimality, completeness,
accuracy, or precision for speed. Simulated annealing, tabu search, and ant colony
optimization are other well known metaheuristics to search for the global optimum of
a given function in a large search space. Approximation algorithms provide solutions
with guaranteed error bounds in polynomial time. This approach is increasingly being
used for large real world problems, but not all approximation algorithms are suitable for
practical applications.

While heuristics and approximation algorithms can in many cases give solutions of suffi-
cient quality, there are settings where an optimal solution is required. For these settings
techniques such as branch-and-bound search algorithms can be used to go through the
solution space looking for the best solution. Other methods include Integer linear pro-
grams and corresponding solvers, such as CPLEX.

Dynamic programming is yet another method for solving complex problems by breaking
them down into simpler subproblems, that is applicable to problems exhibiting the
properties of overlapping subproblems and optimal substructure. Common to these
approaches is that they might use an exponential amount of time and thus be impractical
in many settings.

If this is the case it might still be possible to simplify or restrict the problem. Although
a problem can be hard in general, there are situations in which it is possible to quantify
when an instance may be easier than the worst case. Many of the problem instances
that occur naturally have a hidden structure and taking advantage of this can make
our task easier. Parameterized Complexity is one such approach that extracts and ex-
ploits the power of this hidden structure of the input instances to solve hard problems.
In parameterized algorithms every problem instance comes with a relevant secondary
measurement k, called a parameter. The parameter indicates how difficult the instance

Introduction

is. Typically the larger the parameter value the harder it is to solve the problem and
for small values of the parameter, the problems can be solved efficiently. This eventu-
ally brings about the notion of fixed parameter tractability (FPT). A problem is fixed
parameter tractable (FPT) if an instance of size n with parameter k can be solved in
f(k)nO(1) time where f is a computable function independent of n. Thus for small k it
is feasible to solve these problems even on large input instances.

Many important computationally hard problems can be modeled as graph problems.
Parameterized algorithms for solving hard problems on graphs can be easier when the
parameters are small, i.e. when the input graph is structurally “simple”. Conceivably
trees are one of the simplest type of graphs, i.e. undirected connected graphs without
cycles. Trees are structurally easy to understand and many NP-hard problems can be
solved efficiently on these. The qualitative reasoning for this is: If we consider a subtree
T of the input, the solution to the problem restricted to T only interacts with the rest
of the graph through a single vertex v. Therefore, by considering the different ways in
which v might affect the solution for T , we can essentially decouple solving the problem
in T from the solution to the problem in the rest of the tree.

Tree-width (tw(G)) is a measure of how tree-like a graph is. It has been inspirational for
the introduction of many concepts and parameters measuring similarity of structures to
trees or how a structure is distinguished from a tree. Examples include path-width [1],
branch-width [2, 3], clique-width [4], and rank-width [5].

These parameters can be used to analyze the structure of input objects in algorithmic
problems, and aids in designing efficient algorithms to solve the regarded problem. The
runtime of such algorithms mainly depend on the size of the studied width parameter.
For solving problems many of these parameterized algorithms first finds a decomposition
tree of the given graph of small width. This decomposition is then used in a dynamic
programming algorithm to solve the original problem. There exists a large number of
both algorithmic and structural results for existing width parameters on graphs, see [6]
for an overview.

Computing a decomposition that exposes the minimum value of any of these width
parameters is an NP-hard problem in itself. Thus any practical use of these methods
must rely on heuristics or approximation algorithms that first computes decompositions
of sufficiently small width that the ensuing dynamic programming algorithm can run
efficiently. It follows that from a practical point of view there are two main issues that
needs to be addressed:

• How does one efficiently compute a decomposition with small width?

• How does one implement the ensuing dynamic programming algorithm so that the
combined running time compares favorably to other approaches?

In this thesis we have studied these issues for one such width parameter, namely boolean-
width. This is a recently introduced width parameter [7] and relates to the maximum
number of distinct neighborhoods across cuts of a recursive decomposition of the input
graph. In theory, boolean-width should for many problems be competitive compared
to other width parameters. But so far there has not been any studies that document
its practical use. We present in this thesis a first study that does this. This includes
the development, implementation, and testing of several new algorithms for computing

Introduction 3

boolean decompositions. We have also tested the output of these in a dynamic pro-
gramming algorithm for solving the Maximum Independent Set problem (ISP). As a
byproduct of this work we have developed a new efficient algorithm for counting the
number of Maximal Independent Sets (MISs) in a graph and a new efficient branch and
bound algorithm for the IS problem. In the following parts of this chapter we give a
more detailed introduction to width parameters in general and their practical use. We
also motivate the use of boolean-width and give a summary of the main contributions
of this thesis.

1.1 Width parameters of graphs

Tree-width is the most well studied graph width parameter. Given a decomposition
of tree-width k, there are case-specific algorithms solving many NP-hard problems [8].
Similar results hold for branch-width bw(G), since bw(G) ≤ tw(G) + 1 ≤ 1.5bw(G)
[2]. A drawback of tree-width and branch-width arises with dense graphs, where their
value can be high. The complete graph Kn has tree-width n − 1 and 2tw(Kn) is thus
exponential in n. The introduction of clique-width cw(G) was a large improvement
for dealing with dense graphs as it can be low even for these [4]. Moreover, given a
decomposition of clique-width k, many NP-hard problems can still be solved reasonably
fast. The parameter rank-width rw(G) introduced in [5], is potentially much smaller
than clique-width, tree-width, and branch-width: for any graph G it is known that
log cw(G) ≤ rw(G) ≤ cw(G), rw(G) ≤ tw(G) + 1, and rw(G) ≤ bw(G) [9]. Still,
for these parameters to have impact on solving real problems, it is required that one
implements and tests the associated algorithms.

1.1.1 Computing width parameters

For tree-width there is an O(n2O(k3)) algorithm for finding a decomposition of tree-
width k, if it exists [10]. This algorithm is not practical [11], but much work has been
done on finding decompositions of low tree-width in practical settings, see the overviews
[12, 13]. The web site TreewidthLIB [14] has been established to provide a benchmark
and to join the efforts of people working in experimental settings to solve graph problems
using tree-width and branch-width [15, 16]. This includes problems from computational
biology [17–19], constraint satisfaction [20, 21], and probabilistic networks [22]. Hicks
[23] studied the practical computation of branch-width for specific classes of graphs.

There is a recent study on computing rank-width [24] of real-world graphs. This was
inspired by an algorithm for computing boolean-width [25]. The authors compared rank-
width on graphs of practical relevance to established bounds of boolean-width. Although
the rank-width upper bounds of most graphs is lower than the known upper bounds for
tree-width, it turns out that the boolean-width upper bounds from [25] are significantly
lower than the rank-width upper bounds in almost all cases.

In [26] a new method was presented for computing the clique-width of graphs. This
is based on an encoding to propositional satisfiability (SAT) and then evaluating this
using a SAT solver. Results were given for a set of random graphs and named graphs,
but it should be noted that this approach only works for a limited number of vertices.

Introduction

1.1.2 Practical applications of width parameters

Though the concept of width parameters has mainly been considered from a theoretical
point of view, in recent years a number of computational studies has shown that results
from this field can also be applied successfully in practical settings. Initial attempts were
taken by Cook and Seymour [27], who used branch decompositions to obtain close-to-
optimal solutions for the Traveling Salesman problem. Path decompositions were used
by Verweij [28] to solve lifting problems of cycle inequalities for the independent set
problem. Tree decompositions were used to obtain lower bounds and optimal solutions
for a special type of frequency assignment problems [29, 30]. Moreover, tree decomposi-
tions have also been used to solve problems in the area of expert systems. There exists
an efficient algorithm for the inference calculation in probabilistic or Bayesian networks,
which builds upon a tree decomposition of the moralized graph of the networks [22]. All
these applications show that dynamic programming algorithms based on a path-, tree-,
or branch decomposition can be an alternative to other existing techniques for solving
hard combinatorial problems on graphs.

1.1.3 Boolean-width

In the following we describe and motivate the graph parameter boolean-width, that
was recently introduced by Bui-Xuan, Telle, and Vatshelle [7]. Consider the problem
of computing a Maximum Independent Set in a graph G. If we divide the vertices into
two sets A and A then one way to do this is to compute every possible independent
sets of A and A separately. Then the optimal solution can be found by taking the two
solutions S1 ⊆ A and S2 ⊆ A such that |S1| + |S2| is maximized and there is no edge
between a vertex in S1 and one in S2. We can speed up this computation and reduce

B

B

A

A

Figure 1.1: A partition of the vertices in G.

the storage requirements by noting that if solutions S ⊂ A and T ⊂ A both have the
same neighborhood in A, then it is sufficient to only store the larger of these and use
this when comparing with the solutions of A. Thus we can group all the independent
sets in A with the same neighborhood in A into one equivalence class and only store the
best solution for each class. The same applies to the solutions in A. With some care this
idea can be used to design a recursive algorithm for the ISP. Partition A into two parts
B and B as shown in Figure 1.1 and assume that we have (recursively) computed the
largest IS in B for every possible neighborhood in V −B and similarly for B. Then we
can combine these solutions to obtain the best solution for every possible neighborhood
in A of an independent set in A. To do this we note that for a particular neighborhood
in A the corresponding independent set of A must consist of an independent set T1 ⊆ B
and one T2 ⊆ B such that there is no edge between any vertex in T1 and T2. Thus we
iterate over every stored IS T1 ⊆ B and T2 ⊆ B, and if there is no edge between them
we test if T1 ∪ T2 gives a new better solution for their combined neighborhood in A.

Introduction 5

For this idea to be efficient it is clear that A should be chosen in such a way that the
number of distinct neighborhoods in A of vertices in A is small. Since we have to perform
the same type of computation on every recursive cut we would like these to be such that
the overall work is minimized. But as the number of cuts is linear in the size of V (G)
we get a good estimate of the optimal decomposition by requiring that the maximum
number of neighborhoods of any cut should be as small as possible. The logarithm of
this number is known as the boolean dimension of the cut and the maximum of these
over all cuts in a decomposition tree where this maximum is minimized is known as the
boolean-width of G.

In this way, boolean-width is defined by a decomposition tree that minimizes the number
of different unions of neighborhoods across the resulting cuts in the decomposition tree of
the graph. It has been used to solve problems where vertex sets having the same neigh-
borhoods across the cuts can be treated as equivalent. This includes problems related to
Independent Set, Dominating Set, Perfect Code, H-Homomorphism, H-Covering, H-Role
Assignment etc. [31]. Similarly to tree-width, dynamic programming algorithms to solve
these problems using boolean-width employ a table at each node of the decomposition
tree, to store solutions to partial problems. Algorithms using boolean-width have been
shown to have better runtime compared to dynamic programming algorithms param-
eterized by other width parameters, due to a lower parameter value for many graphs
[7].

1.1.4 Comparing boolean-width to other width parameters

There are several ways to compare different width parameters. This includes looking at
the values of the parameters on various graph classes. One can also consider the runtime
of algorithms for finding the corresponding optimal decomposition and the classes of
problems that can be solved by dynamic programming using a particular decomposition
along with the runtime of these parameterized algorithms.

The value of boolean-width, boolw(G), is smaller than clique-width and potentially much
smaller than rank-width: we have that log cw(G) ≤ boolw(G) ≤ cw(G) and log rw(G) ≤
boolw(G) ≤ 0.25rw2(G) + O(rw(G)), with both lower bounds tight to a multiplicative
factor [7]. In [7] it is also shown that well-known classes of graphs, like random graphs
and interval graphs, have clique-width and rank-width exponential in their boolean-
width. It is known that boolean-width is never higher than tree-width or clique-width
and can be as low as logarithmic in clique-width. For example, any interval graph or
permutation graph has boolean-width O(log n) [32], while there exist such graphs of
clique-width Ω(

√
n) and tree-width Ω(n). Also, a random graph with constant edge

probability will almost surely have boolean-width Θ(log2 n) [31] but linear clique-width
and tree-width.

In contrast to tree-width, the dynamic programming for boolean-width involves a non-
negligible preprocessing phase computing indices of the tables, the so-called “represen-
tatives”. Regardless, the total runtime is in many cases close to that for tree-width,
e.g. given a decomposition of tree-width k Maximum Weight Independent Set is solved
in time O(n2k) and Minimum Weight Dominating Set in time O(n3kk2) [8]. For a de-
composition of boolean-width k Maximum Weight Independent Set is solved in time
O(n2k22k) and Minimum Weight Dominating Set in time O(n2 + nk23k) [7]. These
boolean-width-based algorithms are straightforward and described in [7]. Comparing

Introduction

dynamic programming algorithms based on tree-width versus boolean-width to solve
Maximum Independent Set, we see that for Maximum Independent Set the exponential
factor in the runtime is 2tw(G) versus 22boolw(G). Thus given decompositions of tree-width
k and boolean-width k′, the boolean-width algorithm becomes preferable when k > 2k′.
For Minimum Dominating Set the exponential factor in the runtime is 3tw versus 23boolw

and the cutoff is a bit lower, i.e. when k ≥ 1.9k′.

1.2 The need for good decompositions

A large number of the FPT algorithms uses dynamic programming along a decomposition
tree [8, 33]. The efficiency of solving the problems based on its decomposition trees
depends greatly on the width of the decompositions. Whereas the dynamic programming
phase is application dependent, the calculation of a tree decomposition of small width
for a graph can be done independently of the application. The same decomposition can
then be used to run many dynamic programming algorithms based on the current width
parameter. Thus if we spend more time on the generation of a good decomposition this
can improve the running time of any ensuing FPT algorithm.

There are three main measures by which we can compare the quality of the generated
decomposition trees. The first is the value of the computed width parameter. Next, the
time needed to compute this value is also of importance. Finally, we need to consider the
time spent to solve a given problem using dynamic programming along the decomposition
tree. These issues will be discussed further when we compare different heuristics in
chapters 7 and 8.

1.3 Our contribution

Boolean width is a comparatively newly introduced graph parameter. Previous work
on boolean-width has mainly been theoretically oriented, focusing on analytical studies
and on developing, but not testing algorithms. In this thesis we investigate and develop
techniques to make boolean-width usable in some practical situations. We devise and test
several alternative heuristics for generating different decompositions. Computational
upper bounds from each of these heuristics are compared against each other as well
as with bounds available for other width parameters. Our first heuristic is based on a
greedy initialization approach, followed by refinement of the initial decomposition via
local search. In this heuristic the boolean dimension computation is done by listing the
neighborhoods across a bipartite graph. This is the first work of this kind and shows
promising results when comparing boolean-width against other known width values on
a number of test graphs.

Computing the boolean dimension is the most time consuming part of evaluating a
boolean decomposition. Following our initial work it was shown that one can also com-
pute the boolean dimension of a cut in a decomposition tree by counting the number
of maximal independent sets across the same cut. To exploit this we developed a new
algorithm for counting the number of maximal independent sets in a general graph and
compare this with other existing algorithms. We then test our algorithm on bipar-
tite graphs and compare with the strategy of listing neighborhoods to evaluate cuts in

Introduction 7

boolean decomposition trees. Though both approaches are exponential, experimental
results show that counting maximal independent sets is favorable in a practical setting
and extends the range of graphs for which the boolean dimension can be computed.

In order to increase the number of application areas it is important to be able to compute
the boolean decomposition and corresponding boolean-width of a given graph reasonably
fast. Preprocessing to reduce the size of the considered problem is almost always a very
useful technique while solving large NP-hard problems. We present simple preprocessing
rules for boolean-width and show their effectiveness through experiments.

Next we consider how boolean-width of a decomposition tree generated from a tree
decomposition compares from a practical point of view. It is known that a boolean
decomposition of a graph can always be generated from a tree decomposition of the same
graph [31]. We have implemented this method and compared the obtained boolean-
width, with the tree-width on a set of benchmark graphs for which tree-width upper
bounds are already known. This study shows that boolean-width is in a number of cases
substantially smaller than tree-width. From theory all that is known is that boolean-
width is never higher than tree-width. We have also computed the optimal boolean-width
for a number of small graphs and compared with the corresponding optimal rank-width
from [34] and optimal clique-width from [26]. This again compares favorably, with the
boolean-width being the smallest in most cases.

We then consider how boolean-width can be used to solve the Maximum Independent
Set problem. We do this in two stages. First, we design and test heuristics for generating
caterpillar decompositions corresponding to linear orderings of the vertices in a graph.
These are compared based on their runtime and width of the generated decomposition.
Next we test these decompositions using a dynamic programming algorithm for com-
puting a maximum independent set in a graph. To compare how good these results
are we have also designed and implemented a branch-and-bound algorithm for the ISP.
This algorithm is based on several of the same ideas as we used for counting maximal
independent sets. This comparison shows that there are instances where the dynamic
programming algorithm is the fastest.

To conclude, the results from this thesis is a first study to document the practical use
of boolean-width.

1.4 Overview of the thesis

In this section we outline the structure of this thesis, which consists of two parts. The
first part is composed of 11 chapters. The second part is composed of two published
papers that form the core of chapters 3 and 4 from the first part:

Paper I: Eivind Magnus Hvidevold, Sadia Sharmin, Jan Arne Telle, and Martin Vat-
shelle, Finding Good Decompositions for Dynamic Programming on Dense Graphs, Pro-
ceedings of the 6th International Symposium on Parameterized and Exact Computation,
IPEC’11, LNCS 7112, pages 219-231, 2011.

Paper II: Fredrik Manne and Sadia Sharmin, Efficient Counting of Maximal Inde-
pendent Sets in Sparse Graphs, Proceedings of the 12th Symposium on Experimental

Introduction

Algorithms, SEA’13, LNCS 7933, pages 103-114, 2013.

Let us give an outline of the 11 chapters of the first part.

• Chapter 1. Introduction is the current chapter which covers the motivation for
the work carried out in this thesis.

• Chapter 2. Preliminaries presents necessary definitions, key examples, common
notation, and some known results that are useful for the following chapters.

• Chapter 3. A First Attempt at Generating Boolean Decompositions
describes the first heuristic algorithm for finding relatively low-width boolean de-
compositions for real-world graphs. Using greedy initialization and local search
we generate various decomposition trees of the graph. These are compared by
evaluating the boolean dimension of the cuts induced by edges of the tree, done
by listing all unions of neighborhoods of the cut.

• Chapter 4. Counting Maximal Independent Sets attacks a bottleneck in
the heuristic algorithm from the previous chapter, giving a new and fast algorithm
for exactly counting the number of maximal independent sets in a bipartite graph,
which corresponds to the number of unions of neighborhoods of the related cut.
The new counting algorithm is compared with existing algorithms.

• Chapter 5. Speeding up the generation of Boolean Decompositions starts
by discussing preprocessing rules for the computation of boolean-width and shows
results of three simple reductions on real-world graphs. The insights of Chapters
4 and 5 are then used to improve on the results of Chapter 3.

• Chapter 6. Generating a Boolean Decomposition from a Tree Decom-
position presents a completely different heuristic algorithm for finding relatively
low-width boolean decompositions for real-world graphs. Firstly, using a minimum
degree heuristic a tree decomposition of the graph is computed, with relatively low
tree-width. Secondly, an algorithm is given that transforms this into a boolean
decomposition of no larger width.

• Chapter 7. Exact and Random Boolean Decompositions starts by show-
ing the results of brute-force computation of exact boolean-width on some small
well-known graphs, comparing their value to that of other width parameters, like
tree-width, clique-width, and rank-width. Experiments with randomly generated
boolean decompositions are also given.

• Chapter 8. Generating Caterpillar Decompositions gives heuristics for
finding boolean decompositions with a linear structure rather than a tree structure.
Several approaches are compared experimentally.

• Chapter 9. Maximum Independent Set using Caterpillar Decomposi-
tions gives an exact algorithm computing the Maximum Independent Set in a
graph, based on dynamic programming along a caterpillar decomposition as de-
scribed in the previous chapter. Related experimental results and drawbacks of
this approach are discussed.

Introduction 9

• Chapter 10. Maximum Independent Set using Branch-and-Bound gives
a different exact algorithm computing the Maximum Independent Set in a graph,
and compares its performance with that of the previous chapter.

• Chapter 11. Conclusion gives a summary and points to possible directions for
future work.

Chapter 2

Preliminaries

We describe a general framework for decomposing graphs and use this to define unions
of neighborhoods (boolean dimension) and boolean-width. To build this framework
Chapter 2 begins with some basic graph theoretic terminology. It continues with some
fundamental tools from preliminary work regrading boolean-width, with key examples
to facilitate understanding. We also list some known facts about boolean-width that we
will make use of in the subsequent chapters. Finally, we describe the experimental setup
used in throughout this thesis.

2.1 Graph and problems on graph

We start by giving basic graph theoretic definitions. Standard textbooks relevant to
graph theory can also be referenced, such as the introductory book by R. J. Wilson [35]
or for an in-depth perception the more advanced book by R. Diestel [36].

A graph G = (V (G), E(G)) consists of the set of vertices V (G) and edges E(G). Each
edge consists of an unordered pair of vertices. Vertices u and v are adjacent if the
edge {u, v} ∈ E(G). Further the vertices u and v are incident to the edge {u, v}, and
are referred to as the endpoints of the edge {u, v}. For v ∈ V (G), we define EG(v)
to be the set of edges incident on v. If {v, v} /∈ E(G) for all v ∈ V (G), then G
is loopless. Two or more edges that are incident to the same two vertices are called
multiple edges. A graph without loops and multiple edges is simple. Unless specifically
stated otherwise the graphs considered in this thesis are simple and undirected. The
graph obtained by removing a vertex subset X ⊆ V (G) and all its incident edges from
G is denoted by G \ X. The open neighborhood or just neighborhood of a vertex v in
the graph G is the set NG(v) = {u : {u, v} ∈ E(G)} and the closed neighborhood of a
vertex v is the set NG[v] = NG(v) ∪ {v}. The neighborhood of vertex set S ⊆ V (G) is
NG(S) = (∪v∈SNG(v))\S. The degree of a vertex v, deg(v) is |NG(v)|. When the graph
is clear from the context we will omit the subscript. A vertex v ∈ V (G) of degree 0 is
called an isolated vertex or islet. A pendant vertex is a vertex v ∈ V (G) of degree 1. Two
vertices u, v ∈ V (G) are twins if NG(u) \ v = NG(v) \ u. If NG(u) = NG(v) then u and
v are false twins and if NG[u] = NG[v] they are true twins. For a vertex set A ⊆ V (G),
the complement of A is denoted by A = V (G) \A. We use the convention that sets are
denoted by capital letters. A set is given as an unordered list {··}. Sequences are given
as ordered lists inside parentheses (· · ·).

Preliminaries

A vertex or edge set with a specific property is minimal (maximal) if no proper subset
(superset) of the set has the property. A graph H is a subgraph of a graph G if
V (H) ⊆ V (G) and E(H) ⊆ E(G) denoted by H ⊆ G. For S ⊆ V (G) the subgraph of G
induced by S is denoted by G[S] and is the maximal subgraph H ⊆ G having V (H) = S.

A walk in a graph G is a sequence v1,, vk of vertices such that {vi, vi+1} ∈ E(G). A
walk that never contains the same vertex twice is called a path. A walk where the first
and last vertex is the same but other vertices are unique is called a cycle. The length
of a walk is k − 1. A graph G = (V (G), E(G)) is bipartite if the vertices can be divided
into two disjoint sets X and Y such that every edge connects a vertex in X to one in
Y . We refer to a bipartite graph with the notation BG(X,Y,E). For A ⊆ V (G), a cut
in a graph G is a bipartition of V (G) in A and its vertex complement A and defined as
cut(A,A) = cut(A, V (G)\A). A cut(A,A) defines a bipartite graph BG(A,A,E) where
the edges E(BG) only contains edges in E(G) connecting a vertex from A to a vertex
in A. These are the edges across the cut. A graph G is connected if for every pair of
vertices u, v ∈ V (G) there exists a path from u to v. A graph that is not connected is
disconnected. A set S ⊆ V (G) is a separator if removing S and all edges incident on S
from a connected graph G makes G disconnected. A separator of size 1 is called a cut
vertex.

A tree is a connected graph with no cycles. In a tree T , to avoid confusion with a graph,
we call the elements in V (T) nodes. A node with degree at most 1 is called a leaf and a
node of degree at least 2 is called an internal node. A tree is a rooted tree if one node has
been designated the root, in which case the edges have a natural orientation, towards
the root. For a rooted tree T and u ∈ V (T) the neighbor of u on the path towards the
root is called the parent of u and a vertex v is a child of u if u is the parent of v. A full
binary tree is a rooted tree where every node is either a leaf or has two children. We do
not distinguish between the left and the right child in a binary tree, but for convenience
we might refer them as the left and the right child of a node. A subcubic tree is a tree
where every node has degree at most 3.

A set of vertices S ⊆ V (G) of pair-wise adjacent vertices is called a clique and a set
S ⊆ V (G) of pairwise non-adjacent vertices is called an independent set. Accordingly,
a maximal independent set is an independent set that is not a subset of any other
independent set. A maximum independent set is a largest independent set for a given
graph G and its size is denoted α(G). The problem of finding such a set is called the
Maximum Independent Set problem (ISP) and is an NP-hard optimization problem [37].

2.1.1 Runtime analysis

Let G be a graph with n = |V (G)| vertices. We use big O, O∗, and θ notation to measure
the runtime of algorithms. This implies the following for functions f and g:

• f(n) ∈ O(g(n)) if there exist c and n0 such that for all n > n0 we have f(n) ≤
c · g(n).

• f(n) ∈ θ(g(n)) if f(n) ∈ O(g(n)) and g(n) ∈ O(f(n)).

• f(n) ∈ O∗(g(n)) if there exist a polynomial poly, such that f(n) ∈ O(g(n)·poly(n)).

Preliminaries 13

2.2 Decompositions and boolean-width

This section gives definitions and notations regarding boolean-width and decomposi-
tions. We do not provide definitions for branch-width, clique-width, and rank-width, as
these are not required for understanding the scientific results of this thesis. Definitions
and notations regarding tree-width and tree decompositions are presented in Chapter 6
where we use tree decompositions to generate boolean decompositions.

Definition 2.1 (Full and partial decomposition trees). A partial decomposition tree
of a graph G = (V (G), E(G)) is a pair (T, δ), where T is a full binary tree and δ is a
mapping from the nodes of T to non-empty subsets of V (G), satisfying the following: if
x is the root of T then δ(x) = V (G). Moreover if nodes y and z of T are children of a
node x then (δ(y), δ(z)) is a partition of δ(x). Let V (T) be the nodes of T , then every
node x ∈ V (T) defines a cut (δ(x), V (G) \ δ(x)) of G. If a subtree of T rooted at x has
|δ(x)| leaves then it is called a full decomposition subtree. If T has |V (G)| leaves then
(T, δ) is called a full decomposition tree. Note that in a partial decomposition tree (T, δ)
of a graph G, if La is the set of leaves of T then Va = {δ(x) : x ∈ La} is a partition of
V (G), i.e. (Va, V (G) \ Va).

In a full decomposition tree there will for each vertex v of G be a unique leaf x of T with
δ(x) = {v}. Similarly, for each vertex of δ(x) there is one leaf in a full decomposition
subtree rooted at x.

A full decomposition tree is a subcubic tree where each internal node other than root
has degree three. If we remove an edge from T , it will result in two subtrees. Most of
the FPT algorithms parameterized by boolean-width uses divide-and-conquer dynamic
programming on the decomposition tree (T, δ) following the edges of T in a bottom-up
fashion. In the conquer step one combines solutions from two cuts given by the edges
from a parent node to its two children. Eventually the root stores the solution for the
whole graph. The solutions stored at each node depends on the problem being solved.

b

e

f

c

d

a

f

abc
def

abd cef

bd c

a

d f
eb
c

a

e

ef

db

1 2

5 6

107 8

x0

x

3x x4

x x

x

x x

9x x

Figure 2.1: A graph G and a possible boolean decomposition of G.

Figure 2.1 illustrates a full decomposition tree (T, δ) for the graph given in Figure 2.1.
The decomposition tree is rooted at node x0. The leaves of (T, δ) are mapped to the
vertices of G, i.e. δ(x3) = a. Each edge in the decomposition tree corresponds to a cut.
The bipartite graph BG({a, b, d}, {c, e, f}, E) induced by the cut corresponding to the
edge {x0, x2} ∈ E(T) is also shown in Figure 2.1.

Preliminaries

Definition 2.2 (Unions of neighborhoods and boolean dimension). The set of unions
of neighborhoods of subsets of a set A ⊆ V (G) across the cut (A,A) is defined as

UN(A) = {N(X) ∩A : X ⊆ A}.

where X runs over all possible subsets of A and UN(A) therefore lists all different neigh-
borhoods in A. For the graph shown in Figure 2.1 UN({a, b, d}) = {∅, {e}, {c, e, f}}.
For a graph G and for A ⊆ V (G), the boolean dimension of the cut(A,A) is based on a
function bool-dim : 2V (G) →
 and is defined as the logarithm base 2 of the size of the
set of unions of neighborhood in A.

bool-dim(A) = log2(|UN(A)|).

The boolean dimension of a cut induced by two adjacent nodes x and y of a decompo-
sition tree (T, δ) i.e. (the edge {x, y} ∈ E(T)) is denoted by bool-dim({x, y}, T, δ).

Now, consider the problem of computing the Maximum Independent Set in the graph G
of Figure 2.1 using the boolean decomposition tree given in Figure 2.1. Processing the
decomposition tree in a bottom up fashion, node x1 in (T, δ) stores the solution for the
subgraph G[{a, b, d}] in a table indexed by UN({a, b, d}) and node x2 for the subgraph
G[{c, e, f}] in a table indexed by UN({c, e, f}). Combining solutions from these two
tables yields the solution for the root at node x0, which again is the solution for G.

Definition 2.3 (Boolean-width). The boolean-width of a decomposition tree (T, δ) is

boolw(T, δ) = max
x∈V (T)

{log2 |UN(δ(x))|} = max
x∈V (T)

bool-dim(δ(x)).

The boolean-width of a graphG is the minimum boolean-width over all full decomposition
trees

boolw(G) = min
full (T,δ)ofG

{boolw(T, δ)}.

Boolean-width of a decomposition tree is the maximum boolean dimension over all cuts in
that decomposition tree and boolean-width of a graph is the width of the decomposition
tree having minimum width among all such trees. Taking the logarithm base 2 in the
definition of boolean-width helps in the comparison of boolean-width to other existing
graph width parameters as boolean-width of a graph on n vertices then becomes a value
between 0 and n.

In many situations it is convenient to define a simpler type of boolean decomposition
tree. For this purpose we define a variant of the decomposition tree corresponding to a
linear arrangement of V (G).

Definition 2.4 (Caterpillar decomposition). A caterpillar decomposition is a binary
decomposition tree (T, δ) where every internal node of T has a child that is a leaf. We
can construct a caterpillar decomposition (T, δ) from any ordering π of V (G) by letting
T be any binary tree where every internal node has a child that is a leaf such that T
has |V (G)| leaves and for all 1 ≤ i ≤ |V (G)| let δ map the i-th leaf encountered by a
breadth first search starting from the root of T to π(i). A caterpillar decomposition is
also referred to as a linear decomposition.

Preliminaries 15

(δ

(

(

δ

x

x

0

2

(δ
4x

x

x

x

6

8

10

δ

δ

((δ

x1)=a

x3

x5

x7

x9 x10

)=b

)=c

)=d

)=e)=f

Figure 2.2: A caterpillar decomposition of G from Figure 2.1.

Figure 2.2 shows a caterpillar decomposition (T, δ) of the graph G in Figure 2.1, with
x0 being the root of T . The ordering of V (G) used to create (T, δ) is a, b, c, d, e, f . The
node x6 ∈ V (T) defines via δ the vertex subset δ(x6) = {d, e, f} of V (G).

Definition 2.5 (Linear boolean-width). The linear boolean-width of G, denoted by
lbw(G), is the minimum boolean-width over all caterpillar decomposition trees (T, δ) of
G where T has |V (G)| inner nodes, each with an attached leaf, corresponding to a linear
arrangement of V (G).

2.3 Properties of boolean-width

While there are several ways to define the boolean-width of a graph, there are some
inherent properties that have been proven previously [7, 32, 38]. In following we list
some of these, that we will be using in this thesis.

• The number of unions of neighborhoods across the cut(A,A) is symmetric, i.e.
|UN(A)| = |UN(A)|.

• If any cut or the corresponding bipartite graph BG(A,A,E) is the union of
a complete bipartite graph and some isolated vertices then |UN(A)| = 2 and
BG(A,A,E) has boolean dimension 1.

• If the edges of BG(A,A,E) defines a perfect matching of G then |UN(A)| =
2|V (G)|/2 and BG(A,A,E) has boolean dimension |V (G)|/2.

• Since boolean dimension is defined as log2 |UN(A)| it follows that, 0 ≤ boolw(G) ≤
|V (G)| for any graph G. As a consequence, the boolean-width of a graph is not
always an integer.

• There is a bijection between the union of neighborhoods across a cut(A,A) and the
number of maximal independent sets (MISs) in the bipartite graph BG(A,A,E).
This implies |UN(A)| = number of maximal independent sets in (BG(A,A,E)).

Preliminaries

• The boolean-width of a graph G will at most be reduced by 1 if a vertex is removed
from G. For a graph G and a vertex v ∈ V (G) this implies that:
boolw(G \ v) ≤ boolw(G) ≤ boolw(G \ v)+1.

2.4 Experimental setup

As this thesis is concerned with the practical use of boolean-width for solving hard
problems, it consists to a large extent of implementations of algorithms and heuristics as
well as experiments using these. To avoid having to describe the machine configurations
in each chapter, we give these here together with the programming languages and data
sets used in our experiments.

2.4.1 Machine configuration

We have used two machines for experimentation. All presented results in chapters 3 and
4 have been carried out on a 64-bit Fedora 14 Linux machine with 2.33 GHz Intel Core
2 Duo CPU E6550 and 2GB of main memory. For the rest of the chapters all tests have
been performed on a Linux workstation running 64-bit Ubuntu 12.04, with Intel Core
i5 CPU 660, 3.33 GHz processors, and 8GB of main memory. The programs written in
C are compiled with gcc (version 4.5.1) with the -O3 flag. The implementations done
in Java are compiled with javac version 1.6.0 30. The programming language used will
be specified in each chapter.

2.4.2 Data Set

To evaluate the performance of our proposed algorithms we test out our approaches on
graphs originating from various sources. In the following we list all the different sources
of our input graphs.

• TreewidthLIB [14]: This contains an online repository of around 700 graphs. These
are real-world graphs coming from areas such as computational biology, frequency
assignment, register allocation problem, evaluation of probabilistic inference sys-
tems. We are interested in these graphs because for most of them tree-width upper
bounds are known. The effect of preprocessing rules are also known for a subset
of these graphs.

• DIMACS Challenge [39]: The DIMACS Implementation Challenges provides a
collection of graphs where solving specific hard problems can provide guides to
realistic algorithm performance. For these graphs different hard problems, such
as Graph Coloring, Maximum Independent Set, Maximum Clique have been op-
timally or approximately solved and the results have been used as benchmarks
for many experimental algorithms. We have used graphs from the 2nd DIMACS
challenge to evaluate our heuristics as well as to test performance of the dynamic
programming algorithm solving the Maximum Independent Set problem.

• BHOSLIB [40]: Our experiments also contain graphs from BHOSLIB. For these
graphs results for the Maximum Independent Set problem and Maximum Clique

Preliminaries 17

have been reported. These benchmarks are transformed from forced satisfiable
SAT benchmarks of Model RB [41], with the set of vertices and the set of edges
respectively corresponding to the set of variables and the set of binary clauses in
SAT instances. Graphs in BHOSLIB are generated from a simple random graph
model as follows:
-Generate n disjoint cliques, each of which has nα vertices (where α > 0 is a
constant).
-Randomly select two different cliques and then generate without repetitions pn2α
random edges between these two cliques (where 0 < p < 1 is a constant).
-Run Step 2 rn lnn− 1 times (where r > 0 is a constant).

• Random graphs [42]: We also consider random graphs generated by the Erdös-
Rényi model. For a constant 0 < p < 1 the Erdös-Rényi model generates a
graph Gp of |V (Gp)| = n vertices where for every pair of vertices an edge is added
independently with probability p.

• Named graphs: Research in graph theory has involved a large number of special
graphs. These special graphs have been used as counter examples for conjectures or
for showing the tightness of combinatorial results. We consider several well known
graphs from the literature and compute exact values of different width parameters
for these graphs. Several graphs have names, sometimes inspired by the graph’s
topology, and sometimes after their discoverer. The definition for each considered
graph can be found in MathWorld [43].

Chapter 3

A First Attempt at Generating
Boolean Decompositions

FPT algorithms parameterized by the width of the input graph G, are often solved by
doing dynamic programming over some decomposition tree of G. Boolean-width also
uses this technique. The efficiency of solving problems based on some decomposition
tree depends greatly on the width of the decomposition. Thus it is of high interest
to generate decompositions of small width. In this chapter we present and evaluate a
heuristic to do this

An exponential algorithm that in O∗(2.52n) time computes a binary decomposition tree
of a given graph having optimal boolean-width is given in [38]. It is also known that
we can compute a decomposition of boolean-width 22boolw(G) using the algorithm for
decompositions of optimal rank-width in FPT time parameterized by boolw(G) [38].
Moreover, there exists polynomial time algorithms for computing decomposition trees
with boolean-width polynomial or logarithmic in n for some graph classes [32]. But
for general graphs no polynomial time approximation algorithm is known so far. Thus,
there is a need for practical algorithms that find decompositions of given graphs of
small boolean-width. Heuristics without theoretical quality guarantees are easier to
design, provide some guidance, and can serve as a promising practical starting point.
Therefore we have developed, implemented, and tested several heuristics to generate
boolean decompositions.

This Chapter is based on Paper I and presents a local search heuristic to compute
a boolean decomposition tree, where the initial solution is generated using a greedy
approach. Local search heuristics have also been used to generate tree decompositions
in a practical setting [44–48]. In our approach the key issue is to minimize the width
of the boolean decomposition tree. The algorithm is described in Section 3.1. Since
tree-width has been extensively studied computationally, we compare the experimental
boolean-width upper bounds obtained using this heuristic with existing known tree-
width upper bounds on a set of benchmark graphs.

A First Attempt at Generating Boolean Decompositions

3.1 The algorithm

Given a graph G, our local search heuristic computes a full decomposition tree (T, δ)
of G. The initial solution is generated in a greedy fashion. Afterwards search for new
solutions in the space of candidate solutions is based on a fine balance between greedy
choices and random choices. Each heuristic pass iterates over all decomposition nodes of
the current partial decomposition tree, including the children created by this heuristic
pass. A newly created tree node always starts out as a leaf node, which maps to a set
of vertices of G via δ. In this chapter, for a graph G and a decomposition (T, δ) and
node x of T , we denote by Px the set δ(x). Thus δ(x) = Px ⊆ V (G). Algorithm 1 keeps
track of the best full decomposition subtrees found for each P ⊆ V (G) encountered so
far and call it Best(P). The heuristic, given in Algorithm 1: LocalSearch(G), runs
for a predefined length of time and then returns the best full decomposition found.

Algorithm 1 : LocalSearch(G)

Input: A graph G
Output: A full decomposition tree (T, δ) of G
Step 1: /∗ Greedily generate initial full decomposition tree ∗/

Initialize T with V (T) = {root}, δ(root) = V (G)
while ∃ leaf x of T with |Px| > 1

(A,B) ← Split(Px)
Add leaves y and z as children of x with Py = A and Pz = B

for all x ∈ V (T) store Best(Px), the subtree rooted at x
Step 2: /∗ Local Search for better trees ∗/

for a fixed amount of time do
TryToImproveSubtree(root)
if (T, δ) is a full decomposition tree then Best(V (G)) = (T, δ)

return Best(V (G))

3.1.1 Greedy initialization

Step 1 of Algorithm 1 greedily generates a full decomposition tree, to serve as the starting
tree for the local search in Step 2. The greedy initialization starts with T containing
a single node x (as both root and leaf) with δ(x) = V (G) and repeatedly calls the
Split subroutine until we get a full decomposition tree.

A split of a set P is a partition into two subsets A and B, with the constraint that
min{|A|, |B|} ≥ 1

3 |P |. The Split(P) subroutine returns a split (A,B) of P and is given
in Algorithm 2. When the Split subroutine is called for the root, one of the partition, A
is initially set with A = ∅ to allow the full benefit of the greedy choices. Then it adds new
vertices to A one by one in a greedy fashion while minimizing |UN(A)| and |UN(P \A)|,
and returns the best split found along the way complying with the split constraint. When
Split subroutine is called for node other than root, A is assigned a random half of the
vertices of P . Note that the local search in TryToImproveSubtree will for leaves of
the current tree make calls to Split(P) but not for P = V (G), since the root of T will
never again become a leaf and instead the RandomSwap subroutine described in the
next subsection will be applied to the root.

A First Attempt at Generating Boolean Decompositions 21

Algorithm 2 : Split(P)

Input: Set of vertices P ⊆ V
Output: A partition (A,B) of P such that min{|A|, |B|} ≥ 1

3 |P |
if P = V (G) then A1 ← ∅
else A1 ← random half of the vertices in P
i = 1
while |P \Ai| ≥ 1

3 |P | do
find x ∈ P \Ai s.t. max{UN(Ai ∪ {x}),UN((P \Ai) \ {x})} is minimized
Ai+1 ← Ai ∪ {x}
i ← i+ 1

end while
find i such that max{UN(Ai),UN(P \Ai)} is minimized and |Ai| ≥ 1

3 |P |
return (Ai,P \Ai)

The objective function optimized locally in Split(P) is |UN(A)|, the number of unions
of neighborhoods of A, which directly relates to boolean dimension. The computation
of |UN(A)| is done in a separate subroutine called UN(A) given in Algorithm 3. This
subroutine starts by restricting from the cut(A,A) to the subsets of vertices (S1, S2)
having edges going across the cut(A,A). The list LN is used to accumulate the set
UN(A) in a straightforward way. Correctness is easy to show by induction on |S1|.

Algorithm 3 : UN(A)

Input: Set of vertices A ⊆ V (G)
Output: |UN(A)|, the number of unions of neighborhoods of the cut (A,A)

if |UN(A)| has already been computed return the stored value
S1 ← {v ∈ A : ∃u ∈ A ∧ {u, v} ∈ E}
S2 ← {v ∈ A : ∃u ∈ A ∧ {u, v} ∈ E}
LN ← {∅} /∗ neighborhood set accumulator ∗/
for all u ∈ S1 do

for all Y ∈ LN do
X ← (N(u) ∩ S2) ∪ Y
if X /∈ LN then add X to LN

return The number of elements in LN

3.1.2 Local search

The local search used to improve the current decomposition tree is initiated at the root of
the tree (T, δ), in Step 2 of Algorithm 1. In the subroutineTryToImproveSubtree(x),
given in Algorithm 4, x is a node of the current partial decomposition tree (T, δ) such
that |Px| > 1 and the goal is to improve the subtree of T rooted at x. This subroutine
has four main parts.

(1) if x is a leaf with |Px| > 1 then find a candidate split of its subset

(2) if x is a non-leaf then find a candidate swap between its two children subsets

(3) conditionally update (T, δ)

A First Attempt at Generating Boolean Decompositions

(4) for each child of x either use the stored subtree or recurse

For (1) we use the Split subroutine described earlier. For (2) we use the subroutine
RandomSwap(A,B) given in Algorithm 5 that randomly swaps vertices between A and
B while complying with the split constraint. At the very onset of the local search, the
current (T, δ) is the full decomposition tree found by the greedy initialization. How-
ever, the current decomposition tree ceases to be full as soon as the split given by
RandomSwap(Py, Pz) in (2) is a good one and (3) updates (T, δ) so that y and z be-
come leaves. If the new Py is a subset of vertices for which a full decomposition subtree
has never been stored, or the stored one is not good enough, then in (4) a recursive call
is made to TryToImproveSubtree(y), with y a leaf of the current tree. If in that
recursive call the split found in (1) is not good then in (3) we will return with y a leaf
of the current (T, δ) having |Py| > 1, which explains the if-statement at the very end of
Algorithm 1. Therefore an improved full decomposition tree can only be found if the
improvement sustains for all subtrees in the decomposition tree.

Algorithm 4 : TryToImproveSubtree(x)

Input: A node x of T with δ(x) = Px and |Px| > 1
Output: Improve or as good as the subtree rooted at x
(1) if x is a leaf then (A,B) ← Split(δ(x))
(2) else

Let y and z be the children of the node x
(A,B) ← RandomSwap(Py, Pz)

(3) if max{UN(A),UN(B)} < boolw(Best(V (G)))
then set y and z as new leaf children of x with Py = A and Pz = B

else if x is still a leaf then return /* in case we came from (1) */

(4) if max{UN(Py),UN(Pz)} < boolw(Best(V (G))) then
for w ∈ {y, z}

if subtree for Pw is stored and boolw(Best(V (G))) > boolw(Best(Pw))
then use root of Best(Pw) as w.

else if |Pw| > 1 call TryToImproveSubtree(w)
if the subtree Tx rooted at x is a full subtree of Px

then update Best(Px) to Tx

Algorithm 5 : RandomSwap(Py, Pz)

Input: Py, Pz ⊆ V (G) for sibling nodes y and z of (T, δ)
Output: Split(A,B) of Py ∪ Pz

Let x be the parent of y and z
choose randomly i in 0..(|Py)| − |Px|

3) and j in 0..(|Pz| − |Px|
3)

choose randomly Mi ⊂ Py and Mj ⊂ Pz with |Mi| = i and |Mj | = j
A ← (Py \Mi) ∪Mj

B ← (Pz \Mj) ∪Mi

return (A,B)

Note that the local improvements made in the local search are based on randomly
swapping vertices between Py and Pz for two nodes y and z with the same parent. As

A First Attempt at Generating Boolean Decompositions 23

usual in local search, there is a fine balance to trying new splits versus sticking with old
splits. The goal is to neither get stuck in local minima nor to swap so many nodes that
we re-randomize completely and don’t get a hill-climbing effect. Note in (4) that we
store for each subset P of vertices encountered so far the best found full decomposition
subtree Best(P). The decision of when to try new splits and when to use the old splits is
tied to the boolean-width of the best subtrees, and to the upper bound on boolean-width
of G given by Best(V (G)). If the upper bound on boolean-width of the old subtree is
below the upper bound on boolean-width of G given by Best(V (G)) we continue with
the old split.

3.2 Performance analysis

In this section we report the experimental results for the proposed heuristics. We start
with discussing some implementation details.

3.2.1 Discussion and implementation details

We implemented the heuristic in Java. Subsets of vertices are stored as bitvectors of
length |V (G)|, i.e. the number of vertices in the graph. This is an efficient way to

store subsets if most of the subsets we store to be of size at least |V (G)|
2 . Since our

implementation of subroutine UN(A) uses memory proportional to |V (G)| ∗ |UN(A)|
bits. We limited the boolean dimension 31, i.e. |UN(A)| ≤ 231. The bottleneck is the

memory available on our machines. Since |UN(A)| ≤ 2min(|A|,|A|) the ‘boolean-width ≤
31’might become a bottleneck even if the graph has at least 64 vertices. In that case the
implementation is handling a list of neighborhoods of size 64 ∗ 231 bits which is 16 GB
of memory and that is more memory than our desktop had. In Chapter 4 we propose
memory efficient and faster methods to compute |UN(A)|.
As described, we are currently storing the best full decompositions of subtrees. Since
bitvectors are easy to compare they are stored in a binary search tree for quick look-up.
Storing all these solutions eats up memory, and for some big graphs this is one of the
limiting factors.

Although not specified in the pseudocode, for small subtrees we just return an arbitrary
one, since if |Px| ≤ boolw(Best(V (G))) then any full subtree at x will have boolean-width
at most boolw(Best(V (G))). The Split(P) subroutine given in Algorithm 2 could be
stopped as soon as a subset Ai with low |UN(Ai)| and |UN(P \ Ai)| values has been
found. It is not clear that this is always better and currently it is not done. The UN(A)
subroutine given in Algorithm 3 does not recompute known values, but otherwise it
may seem naive. It forms the inner loop of the heuristic and it is the bottleneck for
running on graphs with many vertices. We tried different approaches such as randomly
sampling subsets to approximate |UN(A)| and exploiting a correlation between the
degree of a vertex and its contribution to |UN(A)|. These tests led to only insignificant
improvements therefore we kept the naive algorithm.

We did try imposing stronger conditions in order to arrive at better splits sooner, but
only minor improvements were seen, and only in some cases.

A First Attempt at Generating Boolean Decompositions

3.3 Experimental results

All presented results have been carried out on machine configuration specified in Chapter
2. Experiments have been done on graphs from TreewidthLIB.

TreewidthLIB contains 710 graphs. For 482 graphs a tree-width bound is given in
TreewidthLIB, and for 426 graphs we give a boolean-width bound using our heuristic.
For the comparison we concentrate on the 300 graphs for which we have a bound on both
tree-width and boolean-width. Among the rest 410 graphs, there are 126 having only
a boolean-width bound, 182 having only a tree-width bound, and 102 having neither.
For majority of these 182 graphs our heuristic simply timed out already at the greedy
initialization stage. Note that for these 182 graphs, if we were given the decomposition
of low tree-width k, we could easily have produced a decomposition of boolean-width at
most k+1, using the O(nk2) algorithm which can be deduced from [31]. This approach
will be discussed further in Chapter 6.

We now summarize our findings for the 300 graphs having both a tree-width bound
and a boolean-width bound. Firstly, the boolean-width bound is always better than the
tree-width bound, with the ratio of the tree-width bound divided by the boolean-width
bound ranging from 1.15 to 29, with an average of 3.13. Not surprisingly, the ratio
increased with higher edge density. In Figure 3.1 we have plotted this ratio against the
edge density of the graphs for the 300 graphs. The trend line shows the growth of the
ratio with the edge density.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

R
at

io
=

T
W

U
B

/B
W

U
B

Edge density

Graph instances

y=143x4−164x3+48x2+1.9x+1.6

Figure 3.1: Ratio (tree-width divided by boolean-width) versus edge density for all
the 300 graphs for which heuristically computed upper bounds are known.

Our heuristic algorithm starts with greedily finding a full decomposition tree which gives
an Initial Bound on boolean-width and then improves this bound iteratively. We set the
maximum time for local search including greedy initialization to 1000 seconds. But for
some graphs it took more than 1000 seconds to finish the greedy initialization and we

A First Attempt at Generating Boolean Decompositions 25

have not tried local serach for those ones, for example, graphs BN 9, 1bkb. In the exper-
iments we kept track of the decrease in the boolean-width over time. In Figure 3.2 and
Figure 3.3 the upper bounds on boolean-width, i.e. the values of boolw(BEST (V (G))),
are shown as they decrease over time, for the two graphs called eil51.tsp (V (G)=51 and
E(G)=140) and miles1500 (V (G)=128 and E(G)=5198). For the graph eil51.tsp the
Initial Bound was 9.1 after less than a second, then at the ‘knee’of the curve before the
improvement decays we found a Fast Bound of 6.2 after 4 seconds, and finally the Best
Bound of 5.8 was found after 124 seconds. For each graph, we can likewise speak of three
bounds: i) the Initial Bound given by the greedy initialization, ii) a Fast Bound found
at the knee of the curve, and iii) the Best Bound found possibly after a long runtime.

0 20 40 60 80 100 120 140
5.5

6

6.5

7

7.5

8

8.5

9

9.5

Time(sec)

B
oo

le
an

−
w

id
th

Best Bound

Fast Bound

Initial Bound

Figure 3.2: Improvement of boolean-width upper bound as the local search progresses
over time, for the graph eil51.tsp (V (G)=51, E(G)=140).

0 100 200 300 400 500 600 700

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

B
oo

le
an

−
w

id
th

Time(sec)

Initial Bound

Fast Bound
Best Bound

Figure 3.3: Improvement of boolean-width upper bound as the local search progresses
over time, for the graph miles1500 (V (G)=128, E(G)=5198).

From Figure 3.2 and Figure 3.3 it can be observed that the rate of improvement of
boolean-width upper bound over time using local search varies from graph to graph.

A First Attempt at Generating Boolean Decompositions

This might be caused by the random choices during swapping or the internal graph
structures.

In Table 3.1 we summarize results for 8 selected graphs having a good variety of number
of vertices V (G), edge density density, time in seconds to find Initial Bound, Fast Bound,
and Best Bound on boolean-width, its best known tree-width upper bound,TWUB,
and Ratio=TWUB/BWUB(Best Bound). The graphs are sorted by this Ratio. The
miles1500 graph is translated from the Stanford GraphBase. The zeroin.i.1 and mul-
sol.i.5 graphs originate from the 2nd DIMACS implementation challenge [39] and are
generated from a register allocation problem based on real code. The queen8 12 also
comes from the DIMACS [39] graph coloring problems and is an example of the n-
queens puzzle. The graph 1awd is from the field of computational biology with each
vertex representing a single side chain and each edge representing the existence of a
pairwise interaction between the two side chains. The graph celar06-wpp is a frequency
assignment instance. The graph BN 28 originates from Bayesian Network from evalua-
tion of probabilistic inference systems at UAI 2006. The graph eil51.tsp is a Delaunay
triangulation of a Traveling salesman problem.

Table 3.1: Results for selected graphs

Edge Initial Bound Fast Bound Best Bound
Graph V density BWUB Time(s) BWUB Time(s) BWUB Time(s) TWUB Ratio
miles1500 128 0.64 5.5 32.6 4.9 345.7 4.8 609.6 77 15.85
zeroin.i.1 211 0.19 4.0 74.1 3.8 116.2 3.7 168.0 50 13.51
mulsol.i.5 186 0.23 6.4 55.3 5.4 130.0 4.9 365.2 31 6.25
queen8 12 96 0.30 16.7 3055 16.7 3055 16.7 3055 65 3.91
1awd 89 0.27 13.3 67.5 11.1 521.1 10.8 702.9 38 3.52
celar06-wpp 34 0.28 4.5 0.1 3.2 0.8 3.0 4.8 11 3.37
BN 28 24 0.18 3.3 0.02 2.3 0.05 2.0 0.3 5 2.50
eil51.tsp 51 0.11 9.1 0.9 6.2 4.1 5.8 124.6 9 1.55

3.3.1 Small grid graphs

We also ran our heuristic on graphs corresponding to the n×n grid. However, Algorithm
3 is too memory-intensive and we limit the size to n ≤ 9. Square grids are sparse
graphs having tree-width n and the upper bound on boolean-width is about 0.695n [38].
Therefore, the values computed by our heuristic are substantially close to the optimal
values.

A First Attempt at Generating Boolean Decompositions 27

2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

n

B
oo

le
an

−
w

id
th

 o
f g

rid
(n

xn
)

Boolean−width from Algorithm 1
0.69n
Tree−width

Figure 3.4: Upper-bound on boolean-width of square grids.

3.3.2 Rank-width upper bound vs boolean-width upper bound

Finally, we note that inspired by Paper I, on which this chapter is based, a heuristic
algorithm for computing rank-width was published [24]. In this work experimental rank-
width upper bounds for a set of graphs has been compared to experimental tree-width
and boolean-width upper bounds. It was observed that the rank-width upper bound of
most of the graphs are lower than the known values for tree-width upper bound, whereas
the boolean-width heuristic in Algorithm 1 is able to find decompositions of significantly
lower width. They experimented for graphs that have between 25 to 256 vertices. Figure
3.5 (from [24]) plots boolean-width upper bounds of 114 graphs with respect to their
rank-width upper bounds. The dotted line in Figure 3.5 marks the equality of both
parameters.

Figure 3.5: Comparison of experimental rank-width upper bounds with boolean-
width upper bounds.

A First Attempt at Generating Boolean Decompositions

It was also reported in [24] that for the considered set of graphs, the boolean-width to
rank-width ratio was between 1.44 and 0.32 with an average of 0.57.

3.4 Conclusion

In this chapter we have presented the first experimental study on computing decomposi-
tions that can achieve a low width parameter even for non-sparse graphs. Experiments
show the potential strength of boolean-width versus tree-width, in particular for graphs
of higher edge density. This study has made us aware of some of the bottlenecks in
the overall process of generating boolean decompositions. The most pressing issue is to
have a faster way to compute the boolean dimension of a cut which we address in the
next chapter. Another issue is to come up with heuristic for computing a good upper
bound on |UN(A)|. Although alternative approaches may not asymptotically improve
the running-time of the heuristic, these can still have a positive effect on the running
time. Moreover, in our experiments the heuristic ran for a predefined amount of time
for each graph before stopping. But there are several ways of experimenting with the
stopping criteria, for example based on the size of the input graph, or on the fraction of
time since an improved tree was last found.

Chapter 4

Counting Maximal Independent
Sets

As was stated in Definition 2.2 in Chapter 2, the boolean width of a decomposition
tree is defined using the number of unions of neighborhoods across the cuts of the tree.
Each cut corresponds to a bipartite graph BG, induced by the vertex partition of the
cut. The algorithm presented in Chapter 3 used the UN(A) definition for computing
boolean-width. Following this work it was observed [38, 49] that the number of unions
of neighborhoods in BG coincides with the number of maximal independent sets (MISs)
in BG.

This relationship offers a different and potentially faster way of computing the boolean
dimension of a particular cut. However, it is known that counting MISs is #P-hard
even for planar bipartite graphs [50] and designing an approximation algorithm for this
problem is also intricate [51, 52]. In consequence we started looking at existing exact
algorithms for generating or counting all MISs in general graphs and ended up devising
our own adaptation for the problem. This is based on certain vertex selection criteria
and the use of checking for connectedness. We have performed extensive experiments
comparing our algorithm with the previous best algorithms for this problem using both
real world as well as synthetic input graphs to facilitate our selection for the best one.

Our proposed algorithm was initially developed for counting MISs in general graphs and
was presented in Paper II. In the following we first describe the algorithm along with
accompanying experiments and comparisons with other algorithms for this problem while
using general graphs. We then show results from applying the algorithm to bipartite
graphs.

4.1 Previous algorithms for counting and enumerating MISs

In the following we first present previously suggested algorithms for counting or enu-
merating all MISs of a general graph G = (V (G), E(G)). For the enumeration problem
we present algorithms that have been used in experimental studies and that are fairly
straight forward to implement. We also outline the counting algorithm by Gaspers et al.
[53]. Since our main interest is to count the number of MISs, we describe all algorithms
as applied to this problem.

Counting Maximal Independent Sets

The Bron-Kerbosch algorithm in its basic form uses recursive backtracking to list all
maximal cliques in a given graph [54]. In the following we present the dual of this
algorithm, so that instead of cliques the algorithm counts all MISs in G = (V (G), E(G)).

Given three vertex sets R,P, and X, Algorithm 6: BKMis(R,P,X) finds all MISs that
include all vertices in R, any possible legal subset of the vertices from P , and none of the
vertices in X. The recursion is initiated by setting both R and X to ∅ and P = V (G).
Within each recursive call, the algorithm considers in turn every vertex in P for inclusion
in R. Thus for each v ∈ P the algorithm makes a recursive call in which v is moved
from P to R and any neighbor of v is removed from P and X. In any subsequent call
where both P and X are empty, R is counted as an MIS. This will find all maximal
independent set extensions of R that contain v. When the recursive call returns, v is
moved from P to X before the algorithm continues with the next vertex in P .

Intuitively, one can think of the algorithm as having already found the MISs that contain
any vertex from X. Thus any set that does not dominate every vertex in X cannot be
a new MIS.

Algorithm 6 : BKMis(R,P,X)

Input: Three vertex sets R,P , and X.
Output: Number of MISs containing all vertices in R, some from P and none from
X.
if P ∪X = ∅ then
Count R as a MIS

end if
for each vertex v ∈ P do
BKMis(R ∪ {v}, P \NG[v], X \NG(v))
P ← P \ {v}
X ← X ∪ {v}

end for

The Bron–Kerbosch algorithm is not output-sensitive meaning that it does not run in
polynomial time per generated set. The worst-case running time of the Bron–Kerbosch
algorithm is O(3

n
3), matching the Moon and Moser bound [55, 56]. In 1965 Moon and

Moser showed that, the maximum number of distinct maximal cliques in an |V (G)| = n

vertex graph (with n > 1) is 3
n
3 , 4 · 3 (n−4)

3 , or 2 · 3 (n−2)
3 , according to the value of n

mod 3 being 0, 1, 2 respectively. The complement is applicable for counting maximal
independent sets.

The lower bound can be realized by forming a graph from the disjoint union of copies
of K3 (the complete graph on 3 vertices i.e. a triangle). Each maximal independent set
has exactly one vertex from each of these complete subgraphs from which the formula
follows.

Tomita et al. presented an improved variant of the Bron-Kerbosch algorithm by using a
pivoting heuristic [57]. Here we present its dual for computing MISs. In Algorithm 6, |P |
recursive calls are made, one for each vertex in P . The pivoting strategy seeks to reduce
this number. Consider a vertex u ∈ P ∪X. It follows that no vertex in NG[u] has been
added to R so far. But for the current R to be expanded to a MIS at least one vertex of
P ∩NG[u] must be included in R, otherwise R will not be maximal. Thus once the pivot

Counting Maximal Independent Sets 31

u has been selected, it is sufficient to iterate over the vertices in P ∩NG[u] for inclusion
in R. The idea in Algorithm 7: TomitaMis(R,P,X) is then to choose u such that this
number is as small as possible. Computing both the pivot and the vertex sets for the

Algorithm 7 : TomitaMis(R,P,X)

Input: Three vertex sets R,P and X.
Output: Number of MISs containing all vertices in R, some vertices from P and no
vertex from X.
if P ∪X = ∅ then
Count R as a MIS

end if
Choose a pivot u ∈ P ∪X that minimizes |P ∩NG(u)|
for each vertex v ∈ P ∩NG[u] do
TomitaMis(R ∪ {v}, P \NG[v], X \NG(v))
P ← P \ {v}
X ← X ∪ {v}

end for

recursive calls can be done in time O(|P |(|P | + |X|)) within each call to the algorithm
using an adjacency matrix, giving an overall running time of O(3

n
3). Experimental

comparisons have shown that the maximal clique algorithm by Tomita et al. is faster by
orders of magnitude compared to other algorithms [57]. However, both the theoretical
analysis and implementation rely on the use of an adjacency matrix representation of the
input graph. For this reason, the algorithm has limited applicability for large graphs,
whose adjacency matrix may not fit into working memory [58].

Eppstein et al. [59] also proposed a variant of the Bron-Kerbosch algorithm. On the
top level this algorithm is similar to the Bron-Kerbosch algorithm, although the vertices
are processed according to a degeneracy ordering. Such an ordering can be found by
repeatedly selecting and removing a minimum degree vertex. The algorithm then makes
|V | calls to the algorithm by Tomita et al., each time with R initially set to the next
vertex in the ordering and with P and X updated accordingly. With this setup the
algorithm can be implemented to list all maximal cliques of an n-vertex graph in time

O(dn3
d
3), where a graph has degeneracy d if every subgraph has a vertex of degree at

most d. In a recent study Eppstein and Strash [58] show that the algorithm is highly
competitive with the algorithm by Tomita et al. This is particularly true for large sparse
graphs where it in many cases outperform the algorithm by Tomita et al. by orders of
magnitude.

Gaspers et al. gave a fast exponential time algorithm of complexity O(1.3642n) for
counting the number of MISs in a graph [53]. This running time is lower than the Moon
and Moser bound, something that is possible since the algorithm, unlike the previous
mentioned ones, does not enumerate the MISs but only counts their number.

The structure of the algorithm is similar to TomitaMis in that a vertex u ∈ P ∪X is
selected as a pivot according to a degree based criterion before branching on the vertices
in P ∩ N [u]. But unlike the previous algorithms, it will in each call first try if any
of seven reduction rules (see [53]) can be applied to achieve a smaller but equivalent
instance. If this is possible then the instance is reduced accordingly before calling the
recursive function again. We note that all rules but one, will return the value given by
the following recursive call. The only exception being a rule which checks if there exist

Counting Maximal Independent Sets

two vertices u and v such that their current neighborhoods are identical (false twins).
In this case v will be removed from the graph and the value of the recursive call will
be returned plus the number of MISs discovered in this call that contained u. Another
difference is that the algorithm tests if there is a vertex in X having no neighbor in P
indicating that the current configuration cannot be expanded to a MIS. If this is the case
then the algorithm returns immediately. In the paper it is also noted that if the graph
at some stage should become disconnected then the algorithm is called (recursively) for
each of its connected components, and the product of the returned values then gives
the number of MISs. As far as we know there has been no study of how practical the
algorithm is. We refer the interested reader to [53] for the details of the algorithm.

4.2 A new algorithm

In the following we present a simple recursive branching algorithm for counting the
number of MISs in a graph. Our algorithm is based on locating and exploiting vertex
separators of the graph, and is similar in spirit to the algorithm by Lipton and Tarjan
for computing a Maximum Independent Set (IS) in a planar graph [60].

The Lipton and Tarjan algorithm initially finds a vertex separator S ⊂ V (G) such
that |S| = O(

√
n) and such that no component of G \ S contains more than 2

3 |V (G)|
vertices. This is possible since G = (V (G), E(G)) is assumed to be planar. Then for
every independent set IS of S the algorithm recursively finds a maximum independent
set for each connected component of G\(S∪NG(IS)). The solution giving the combined
largest solution is then the maximum independent set of G. The running time of the
algorithm is 2O(

√
n).

We modify the Lipton and Tarjan algorithm to compute the number of MISs by using
ideas from BKMis and TomitaMis. Note however first that it is not possible to use the
algorithm of Lipton and Tarjan to count MISs. The reason for this is that if we pick a
particular independent set IS from a separator S in G = (V (G), E(G)) and (recursively)
calculate the number of MISs in each component of G[V \ (S ∪NG(IS))], then it is not
given that IS together with every combination of MISs from each of the components will
form a MIS in G as some combinations might leave undominated vertices in S \ IS .
The new algorithm, Algorithm 8: CCMis, is recursive and uses two vertex sets P and
X to count the number of MISs in G[P ∪X] containing any combination of vertices from
P while using none of the vertices in X. Thus if P ∪X = ∅ this will be counted as one
MIS. Also, similar to the algorithm by Gaspers et al. if there exist a vertex in X that
is not adjacent to any vertex in P then the algorithm will return 0, as this indicates
that the current solution cannot be expanded into a complete MIS. The algorithm also
tests at each level of recursion if G[P ∪X] is connected. If this is not the case then the
recursive procedure will be called once for each connected component and the product
of the number of MISs in each component will be returned. Checking for connectedness
and listing the components is done using a linear depth first search through G[P ∪X].

In the case that none of the mentioned conditions apply, the algorithm picks one remain-
ing vertex v from P and then performs two recursive calls, first to compute the number
of MISs containing v and then to compute the number of MISs excluding v. Finally, the
sum of these two numbers is returned. When counting the number of MISs containing
v, any vertex in NG[v] is first removed from P and X as these will be dominated by v.

Counting Maximal Independent Sets 33

Similarly, when counting the number of MISs not containing v, the vertex v is moved
from P to X as it must then be dominated by some other vertex in P in an MIS. Note
that it is only following a recursive call where v is set to be in the current MIS that the
structure of G[P∪X] will change so that there is any possibility of getting a disconnected
graph. The recursion is initiated by setting X = ∅ and P = V (G).

Algorithm 8 : CCMis(P,X)

Input: Two vertex sets P and X.
Output: Number of MISs in G[P ∪X] containing only vertices from P .
if P ∪X = ∅ then
return 1

end if
if ∃w ∈ X with no neighbor in P then
return 0

end if
if G[P ∪X] is not connected then
count ← 1
for each connected component CC(VCC , ECC) of G[P ∪X] do
count ← count ∗CCMis(Vcc ∩ P, Vcc ∩X)

end for
return count

end if
Select a vertex v ∈ P to branch on
count ← CCMis(P \NG[v], X \NG(v))
count ← count+CCMis(P \ {v}, X ∪ {v})
return count

As we explain in the following the algorithm CCMis differs substantially from the pre-
vious algorithms in which order the vertices are selected from P to branch on. It is
clear from the description of CCMis that one can select any vertex v ∈ P to branch
on. Thus one could similar to the previous algorithms use degree based information
when selecting the branching vertex v. Picking a maximum degree vertex could be
advantageous for the first recursive call as it would give a maximum reduction in the
size of G[P ∪X], thus making it more likely that the remaining graph is disconnected.
Picking a minimum degree vertex could be advantageous for the second recursive call as
there would be fewer remaining vertices in P that could dominate v. However, as our
main interest is in computing the number of MISs for sparse graphs we use a different
selection criterion that exploits this. Algorithm 8: CCMis has a considerable advantage
over the Bron-Kerbosh type enumeration algorithms whenever the remaining graph be-
comes disconnected. This follows since the CCMis algorithm does not have to generate
every MIS but only needs to find the number of MISs in each connected component and
then to multiply these numbers together. Although the algorithm by Gaspers et al. also
exploit connected components in this way, their algorithm is bound to using a degree
based criterion when selecting a pivot. Thus this might limit how often the remaining
graph becomes disconnected. Since we have no restrictions in CCMis when selecting
the branching vertex v ∈ P we do so with the sole objective that the remaining graph
should become disconnected.

Prior to running the algorithm we compute a nested dissection ordering
π = {v1, v2, . . . , v|V (G)|} on the vertices of G = (V (G), E(G)) [61]. Such an ordering
strives to number vertices that make up a (preferably small) separator S ⊆ V (G) of G

Counting Maximal Independent Sets

first, with the added constraint that the remaining components of G \ S should be of
roughly equal size. This is then repeated recursively for each connected component. One
can also view a nested dissection ordering as an elimination tree [62]. This tree displays
the separators in π, with vertices in a separator S making up a path hanging off the
preceding separator S′ on the component containing S. Within each separator, a vertex
vj ∈ S will be a child of the highest numbered vertex vk ∈ S where k < j. If vj , j �= 1, is
the first ordered vertex in S then vj will be a child of the last ordered vertex of S′, where
S′ is as defined above. It follows that a low elimination tree height is an indication that
it was possible to (recursively) partition the graph using small separators.

f

c

s

s

a

b

c fd

d d

e ef

g h

g hs

s

a b

c

ff

e ee

g

h

O
g g

h
aa

(a) (b)

5

2 3

2 2 1

1

1

1

1

1 O

b

Figure 4.1: A possible execution of Algorithm 8.

The strategy we employ is now to choose the first vertex w ∈ π that is also in P ∪X. We
have two cases for selecting the vertex v to branch on. If w ∈ P then we set v = w and
if w ∈ X then we select v to be a vertex in P ∩NG(w). Such a vertex must exist since
the algorithm would already have returned if w ∈ X had no neighbor in P . The effect
of following π in this way is that we will only expand solutions where each vertex in S
is eventually included in the current MIS or is being dominated. Thus we are ensured
that the remaining graph will become disconnected. Note that the strategy of picking
a vertex in NG(w) to branch on whenever w ∈ X is similar to the pivoting strategy in
TomitaMis. Comparing with the algorithm by Lipton and Tarjan the difference is that
even though we follow the separator structure, for a particular separator S we allow for
vertices in NG(S) to be assigned values before deciding exactly which vertices from S
should be in the MIS.

The tree in Figure 4.1(b) shows the recursion tree of the algorithm when applied to
the graph in Figure 4.1(a). Each time the algorithm branches on a particular vertex is
denoted by a round node, where the left branch denotes that the branching vertex is
in the current MIS and the right branch that it is not. Whenever the remaining graph
consist of just one vertex in P we only show the name of the vertex as it must be in any
MIS. When the remaining graph is empty we write ∅, and if a particular branch cannot
be extended to a MIS we write s. We use a square node to indicate when the graph has
become disconnected and then draw one branch for each connected component. The
number inside each node is the number of MISs returned by a particular branch.

With the current description of the algorithm there is still some freedom as to the order
in which the branching vertices are selected. As already pointed out, we can reorder the
vertices within a separator in π. Also, once a vertex v ∈ S has been chosen to branch
on then in the configuration where v is considered to be out of the current MIS, we are
free to decide the order in which we pick vertices from NG(v) ∩ P to dominate v. We
will expand further on these issues in Section 4.3.

Counting Maximal Independent Sets 35

4.3 Experimental results

In the following we describe experiments performed to evaluate the presented algorithms.
Machine configuration is the same as for in Chapter 3. The programs are written in C
(compiled with gcc (version 4.5.1) with the -O3 flag) and Java (compiled with javac

version 1.6.0 30). Each reported running time is the average of five runs.

4.3.1 General graphs

For this experiments we use graphs from TreewidthLIB [14]. We have chosen a set of 22
graphs drawn from areas such as computational biology, frequency assignment, register
allocation problem, and evaluation of probabilistic inference systems. The graphs were
chosen so that in most cases our implementation of TomitaMis would terminate within
24 hours. This limited the maximum size to about 400 vertices. Moreover we also
avoided most graphs having fewer than 106 MISs as all algorithms would spend less
than a second on these. Table 4.1 gives the statistics for the chosen 22 graphs. Here
p gives the edge density, eth gives the elimination tree height, while MISs gives the
number of maximal independent sets. In addition to these graphs we have performed
experiments using rectangular grids.

Our first set of experiments concerns a comparison between the algorithm by Gaspers
et al. and TomitaMis. In addition to the regular algorithm by Gaspers et al. we
also implemented variants of it where we only apply the reduction rules at regular
intervals, the most extreme case being when the reduction rules are not used at all.
Since the algorithm by Gaspers et al. is by far the most complex of the considered
algorithms, we have performed these comparisons using Java as this offers better support
for more complex data structures such as sets. The results of the comparisons on nine
representative graphs can be seen in the Figure 4.2. Here the first seven graphs are the
ones marked with * in Table 4.1, while the 8th graph is a path on 40 vertices, and the
9th and 10th graphs are grids of size 7 × 7 and 8 × 8, respectively. The numbers are
reported relative to the performance of the regular algorithm by Gaspers et al. (G100).
G50 denotes the algorithm where the reduction rules are only applied in 50% of the
recursive calls and G0 where they are not used at all.

Counting Maximal Independent Sets

Table 4.1: Description for benchmark real world graphs from TreewidthLIB.

Graph No. Graph name V E p eth MISs

1∗ risk 42 83 0.01 13 66498
2∗ pigs-pp 48 137 0.12 17 131402
3∗ 1sem 57 570 0.35 41 12405
4∗ BN 100 58 273 0.16 31 160312
5∗ 1r69 63 692 0.35 46 22993
6∗ 1ail 69 631 0.26 44 134201
7 macaque71 71 444 0.18 30 182044
8 jean 80 508 0.16 22 1251960
9∗ 1aba 85 886 0.25 54 1067404
10 david 87 406 0.11 22 4.41x107

11 celar02 100 311 0.06 29 2.87x1010

12 celar06 100 350 0.07 22 2.72x1010

13 1lkk 103 1162 0.22 62 1.44x107

14 1fs1 114 1351 0.21 73 5.10x107

15 1a62-pp 120 1507 0.21 73 7.56x107

16 miles250 128 387 0.05 36 1.75x1013

17 anna 138 493 0.05 23 2.75x1010

18 mulsol1.i.5 186 3973 0.23 47 3.33x109

19 celar05 200 681 0.03 36 7.86x1020

20 zeroin.i.3 206 3540 0.17 43 1.29x107

21 zeroin.i.2 211 3541 0.16 43 1.81x107

22 BN 93 422 1705 0.02 38 4.55x1011

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

110

Sample graphs

P
er

ce
nt

ag
e

of
 ti

m
e

sp
en

t w
.r

.t
th

e
al

go
rit

hm
 b

y
G

as
pe

rs
 e

t a
l.

G100
G50
G0
Tomita

Figure 4.2: Relative performance of TomitaMis compared to the algorithm by
Gaspers et al..

Counting Maximal Independent Sets 37

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

400

450

500

Graphs

P
er

ce
nt

ag
e

of
 G

lo
ba

l M
in

 ti
m

e

NDCC
SortSep
SortSep+SortAdl
NDCC+SortAdl

Figure 4.3: Relative performance of different CCMis algorithms.

As can be observed there is no advantage in using the reduction rules, and when they are
not used at all the performance is very similar to that of TomitaMis. Based on these
results we did not pursue the algorithm by Gaspers et al. any further. For the remaining
experiments all algorithms have been implemented in C as this gave considerable faster
code compared to using Java.

We then compared BKMis, TomitaMis, and the algorithm by Eppstein et al. These
experiments showed that, as expected, TomitaMis outperformed BKMis, while there
was little difference between TomitaMis and the algorithm by Eppstein et al. We note
that this last observation does not contradict the results in [58] as these were concerned
with enumerating cliques in sparse graphs which is equivalent to enumerating MISs in
dense graphs, while we are enumerating MISs in sparse graphs.

Our next set of experiments concerns different variants of CCMis where we use METIS
[63] to precompute a nested dissection ordering. The time spent on this was insignificant
compared to the algorithm itself and is not included in the timings. The versions we
tried include the basic algorithm (NDCC) where the vertices are processed for branching
according to the ordering given by Metis and versions where we reorder the vertices
within each separator and also the relative order of the neighbor lists. Similar in spirit
with TomitaMis we tried a version where one branches on a vertex v in the current
separator such that |P ∩NG[v]| is minimized. This slowed down the algorithm compared
to NDCC and we therefore switched to presorting each separator based on their degree
in G. We label this algorithm SortSep. Next we considered the order in which the
neighbor lists are ordered. This is of importance when trying to dominate a vertex v
currently in X. Consider a vertex w with several undominated neighbors in the current
separator S. In the configuration where w is in the current MIS all neighbors of w will be
dominated, thus reducing the number of undominated vertices in S. In the configuration
where w is in X each undominated neighbor of w will have one vertex less that must be
tried to dominate it. Based on these observations we implemented a version (SortAdl)
where the adjacency list of every vertex v was presorted according to the number of
neighbors each vertex has in the same separator as v belonged to. We also tried to
compute this ordering on the fly using the number of remaining undominated vertices in
the current separator but this only increased the running time. In Figure 4.3 we display

Counting Maximal Independent Sets

the relative running time for all four combinations of these approaches. For each graph
we report the relative performance compared to the best algorithm for that graph. In
all of these implementations we only check if the graph is disconnected if the previous
call to CCMis moved a vertex into the current MIS.

The average distances from the best algorithm was for SortSep + SortAdl 36%, for
NDCC 185%, for SortSep 172%, for NDCC + SortAdl 167%. Thus it is clear that
sorting both the separators and the neighbor lists is crucial for performance.

Finally, we tried two versions of CCMis where the selection criterion for which vertex to
branch on was strictly based on the degree of the remaining vertices, one where we always
selected the vertex of minimum degree and one where we selected the vertex of maximum
degree (MaxDegCC). Both of these were considerably slower than any of the other
CCMis variations. The absolute running times for MaxDegCC, TomitaMis, NDCC,
and SortSEp+SortAdl are given in Table 4.2. We note that the average distance from the
best algorithm for each graph was for MaxDegCC 1371% and for TomitaMis 1.6×106%.

Table 4.2: CPU time(sec) for benchmark real world graphs from TreewidthLIB

Graph 1 2 3 4 5 6 7 8 9 10 11
TomitaMIS 0.07 0.22 0.02 0.25 0.03 0.14 0.31 0.69 1.09 29.05 20095.5
NDCC 0.01 0.08 0.02 0.26 0.04 0.09 0.11 0.13 1.04 1.03 0.06
MaxDegCC 0.02 0.23 0.02 0.46 0.05 0.14 0.15 0.09 1.59 0.31 4.56
SortSep+SortAdl 0.01 0.05 0.01 0.22 0.03 0.07 0.06 0.24 0.73 0.22 0.06
Graph 12 13 14 15 16 17 18 19 20 21 22
TomitaMIS 10648.1 16.24 61.5 87.85 - 32716.1 2722.0 - 23.81 32.66 135407.1
NDCC 0.38 8.7 16.4 84.38 3.56 1.18 0.03 187.63 0.06 0.06 1303.0
MaxDegCC 8.67 15.3 40.9 82.06 7.17 0.69 0.18 - 0.84 0.86 1658.85
SortSep+SortAdl 0.07 5.7 8.7 24.37 0.81 0.2 0.04 290.57 0.22 0.22 76.12

As can be seen the running time of TomitaMis is by far the highest, for some graphs
the algorithm did not finish. Also, following a nested dissection ordering is advantageous
in most cases, and as already noted presorting the separators and neighbor lists further
emphasizes this effect.

We have also experimented with how often one should check if the graph is disconnected
in CCMis. We tried version where we only checked for a certain percentage of the calls,
where we only checked once a separator had been dominated, and checking when the
remaining graph is at least of some predefined size. From these tests we conclude that
when the remaining graph has at least 10 vertices, then checking every time after some
vertex has been added be in the current MIS was the best option.

4.3.2 Bipartite graphs

In the following we describe experiments using Algorithm 8 on bipartite graphs. As our
main motivation for this is computing boolean dimension we compare our results with
those from Algorithm 3 presented in Chapter 3.

Note that these algorithms solve slightly different problems. While the algorithms pre-
sented in this chapter only counts the number of MISs, Algorithm 3 generates and stores
each MIS. This can require a substantial amount of memory; i.e. for a graph with 100

Counting Maximal Independent Sets 39

vertices and boolean dimension ≥ 30 at least 32GB of memory is needed, even if subsets
of vertices are stored as bitvectors of length |V (G)|. This is beyond the capacity of our
computer. But if the intention is only to evaluate the boolean dimension of a particular
cut then this is clearly not needed.

Algorithm 3 has been implemented in Java as it uses the underlying graph data structure
designed for experimenting with the generation of boolean decompositions. So in order
to expedite the comparison we have implemented the MaxDegCC version of Algorithm
8 in Java as well. The reason for not implementing the SortSep+SortAdl version is
both simplicity and that this requires access to METIS which has been done through
writing to files, thus slowing down the execution considerably. Moreover as experiments
show, the MaxDegCC version is considerably faster than Algorithm 3. In the following
we report and analyze results for random bipartite graphs as well as bipartite graphs
obtained from random bipartition of real world graphs.

4.3.2.1 Random bipartite graphs

For these experiments we have generated random bipartite graphs BG = (A,B,E) with
|A| = |B| = 30 and varying the average degree. Starting from 1 the average degree
increases by 1 until it reaches 30. We have generated five random graphs of same
average degree and the reported timing for each graph is the average of five runs, both
for Algorithm 3 and Algorithm 8. For random bipartite graphs with min(|A|, |B|) > 30,
Algorithm 3 takes more than a minute when the average degree is in between 2 to 5, i.e.
the edge density ranges from 0.05 to 0.2. This is the reason for limiting the the size of
the partitions to 30.

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

Average degree

T
im

e(
m

se
c)

Algorithm 3:UN(A)
Algorithm 8:CCMIS

Figure 4.4: Comparing time for CCMis and UN(A) with respect to average degree
for bipartite graphs BG = (30, 30, E).

Figure 4.4 illustrates the time required in msec for CCMis and UN(A). The time is
plotted against the average degree of the vertices in the bipartite graphs. .

Figure 4.5 shows the time required in msec for CCMis and UN(A) for the same set
of bipartite graphs. But this time the results are plotted against the number of MISs

Counting Maximal Independent Sets

0 2 4 6 8 10 12 14

x 10
5

0

5000

10000

15000

MISs(BG)=UN(A)

T
im

e(
m

se
c)

Algorithm 8:CCMIS
Algorithm 3:UN(A)

Figure 4.5: Comparing time for CCMis and UN(A) with respect to the number of
MISs for bipartite graphs BG = (30, 30, E).

in BG. The time and the number of MISs reported is the average of five runs. From
this figure it can be seen that the time to list grows linearly with the number of MISs
and takes considerably more time than counting MISs in particular when the boolean
dimension is high.

4.3.2.2 Real-world graphs

In this set of experiments we use 18 graphs from Table 4.1 as listed in Table 4.3.

Table 4.3: CPU time(sec) for bipartite graphs generated from the graphs listed in
Table 4.1

Graph V E |A| |B| |E(BG)| pBG MISs bool-dim(A) T
CCMis

T
UN(A)

pigs-pp 48 137 24 24 67 0.12 26532 14.70 0.54 2.10
1sem 57 570 29 28 295 0.36 4556 12.15 1.26 0.46
BN 100 58 273 29 29 144 0.17 117457 16.84 2.39 2.59
1ail 69 631 35 34 316 0.27 33344 15.03 2.71 1.47
jean 80 254 40 40 129 0.08 18388 14.17 0.37 1.66
1aba 85 886 43 42 424 0.23 171572 17.39 5.58 27.30
david 87 406 44 43 206 0.11 283050 18.11 2.09 12.11
celar02 100 311 50 50 156 0.06 3.16x107 24.92 0.58 -
celar06 100 350 50 50 172 0.07 6.33x107 25.92 0.48 -
1lkk 103 1162 52 51 585 0.22 1509424 20.53 31.88 -
1fs1 114 1351 57 57 687 0.21 7359279 22.81 53.91 -
1a62-pp 120 1507 60 60 775 0.22 1.91x107 24.19 223.48 -
miles250 128 387 64 64 201 0.05 4.53x109 32.08 1.05 -
anna 138 493 69 69 252 0.05 2.01x107 24.27 0.51 -
mulsol.i.5 186 3973 93 93 1970 0.23 965115 19.88 0.56 310.25
celar05 200 681 100 100 344 0.03 3.68x1015 51.71 54.79 -
zeroin.i.3 206 3540 103 103 1787 0.17 240274 17.87 2.01 61.74
BN 93 422 1705 211 211 847 0.02 1.02x1010 33.26 4.42 -

Counting Maximal Independent Sets 41

To obtain bipartite graphs we split the vertices into two random groups A and B of
equal size (differing by one if |V (G)| is odd). The edges in the bipartite graphs are then
the edges crossing the cut(A,B). We are interested in these bipartite graphs as they are
similar to the ones we consider while computing the boolean-width of a decomposition
tree. We ran Algorithm 8 for all these graphs but Algorithm 3 only for those having
|UN(A)| < 220. When |UN(A)| > 220 it took more than 10 minutes to finish the com-
putation and oftentimes this ran out of memory. The boolean dimension, bool-dim(A),
the time required for CCMis (T

CCMis
), and the time required for UN(A) (T

UN(A))
are reported in Table 4.3.

From these above mentioned comparisons it is obvious that Algorithm 3: UN(A) is
substantially and often in orders of magnitude slower than Algorithm 8: CCMis (for
example, mulsol.i.5). This is particularly true when the boolean dimension is high and
the graph is sparse.

4.4 Conclusion

The duality of the number of maximal independent sets in a bipartite graph and boolean
dimension shows an interesting way to look at these problems. Both algorithms consid-
ered in the previous section are exponential, but counting MISs decomposes into small
subproblems when the remaining graph becomes disconnected. It is evident from the re-
sults that the multiplicative factor we get while combining MISs from different connected
components allows us to compute significantly higher boolean dimensions.

We have experimented on dense graphs as well, but the sparse graphs are the ones
where listing takes substantially more time than branching. Using CCMis can give
us far-reaching improvement is case of memory requirement as well. In addition, as
this approach can rapidly evaluate large cuts it could also help us to speed up the
initialization process described in Chapter 3. Furthermore, the local search in Algorithm
1 could be able to explore the search space to a greater extent within the same predefined
amount of time.

Chapter 5

Speeding up the generation of
Boolean Decompositions

In this chapter we investigate several ways of speeding up the generation of boolean
decompositions. This can be done by applying simple preprocessing rules to reduce
the instances as well as computing the boolean dimension faster. In Chapter 4 we
have already discussed a faster and more memory efficient way to compute boolean
dimension. In this chapter we first develop and test three very simple preprocessing rules
for reducing instances prior to computing boolean-width. A number of experiments in
Section 5.2 show the contribution of both the preprocessing and applying Algorithm 8
for accelerating Algorithm 1 from Chapter 3.

Reduction rules can be very useful when solving NP-hard problems, particularly for
large instances that can possibly be reduced to a manageable size. For graph problems
reduction rules typically consists of removing or contracting edges or vertices in such
a way that a solution to the reduced problem can be expanded to a solution of the
original one. The rules that are used for doing this are often simple and based on local
properties. Thus they can be applied very efficiently and save considerable time in the
ensuing computations.

Preprocessing rules have been used in the computation of tree-width and weighted tree-
width and have been studied in practical settings [64–66]. The experimental results
reported in these papers show that there are simplification routines that give significant
size reductions for many practical instances, making it more feasible to compute the
tree-width of those graphs exactly or approximately. Theoretical analysis of the poten-
tial of preprocessing for tree-width, studying whether there are efficient preprocessing
procedures whose effectiveness can be proven, and what the resulting size bounds look
like have been investigated in [67], with the help of kernelization [68], and analyzed
based on parameterized complexity theory [69, 70].

5.1 Reduction rules

Given a graph G, a vertex v is safe (with respect to boolean-width) if removing v and
all incident edges does not change the boolean-width of G. Similarly, a reduction rule
is safe if applying the reduction rule does not change the boolean-width of the given

Speeding up the generation of Boolean Decompositions

graph. In the following we present three simple safe reduction rules. We will show the
correctness of the rules in Section 5.1.1. In the following u, v ∈ V (G). The three rules
are as follows.

1. Islet rule : If deg(v) = 0 then remove v.

2. Pendant rule : If deg(v) = 1 and |E(G)| > 1 then remove v.

3. Twin rule : If |E(G)| > 1 while N [u] = N [v] or N(v) = N(u) (i.e. v and u are twins)
then remove v.

5.1.1 Proof of correctness

In the following we assume that there will always be at least one edge left after the
preprocessing. This means that boolw(G) ≥ 1. Assume now that (T, δ) is a boolean
decomposition of V (G) \ v. We will show for each of the three rules how this can be
expanded to a boolean decomposition of V (G) without changing the boolean width.

To do so we will pick two vertices x, y ∈ V (T) such that x is a leaf in T and {x, y} ∈ E(T),
i.e. y is the parent of x. Let (T ′, δ′) be the tree obtained from (T, δ) by deleting {x, y}
and adding two new nodes w and z and three new edges {y, w}, {w, x}, and {w, z} as
shown in Figure 5.1. We further set δ′(z) = v while keeping δ′(a) = δ(a) for each
a ∈ V (T). It follows that (T ′, δ′) is a boolean decomposition of G. We now show for
each rule how x should be chosen so that the boolean dimension of the cuts in (T ′, δ′)
does not increase from the boolean dimension of the cuts in (T, δ).

x z

w

yy

x

(

δ

δ δ(

(x)=u

x)=u z)=v

Figure 5.1: Reversing the reduction rules by adding the reduced vertex v.

Lemma 5.1. If v is an islet and x is any leaf in T , then boolw(T, δ) = boolw(T ′, δ′).

Proof. Note first that the boolean dimension of a cut having only a vertex in one partition
of the cut is 0 if the vertex is an islet and 1 otherwise. Thus bool-dim({w, z}, T ′, δ′) = 0.
Since v is not incident on any edge crossing any cut in (T ′, δ′) it follows that v will not
influence the boolean dimension of any cut. In particular, for the cuts defined by {w, x}
and {y, w} any crossing edge must be incident on u and we have bool-dim({w, x}, T ′, δ′)
= bool-dim({y, w}, T ′, δ′) = bool-dim({y, x}, T, δ). In the same way it is straight forward
to see that the boolean dimension of all other cuts will remain unchanged from (T, δ) to
(T ′, δ′) and the result follows.

Speeding up the generation of Boolean Decompositions 45

Lemma 5.2. If v is a pendant, δ(x) = u, and {v, u} ∈ E(G), then boolw(T, δ) =
boolw(T ′, δ′).

Proof. The boolean dimension of {w, z} ∈ E(T) is 1 as {u, v} ∈ E(G) is the only
edge crossing this cut. Similarly, the boolean dimension of {w, x} ∈ E(T) is 1 as u
is a singleton with at least one adjacent edge. For all other cuts v is not adjacent to
any crossing edge and does not contribute to the boolean dimension. It follows that
bool-dim({y, x}, T, δ) = bool-dim({y, w}, T ′, δ′) ≤ 1 and that the boolean dimension of
all other cuts remain unchanged from (T, δ) to (T ′, δ′). Since boolw(T, δ) ≥ 1 and
{y, w}, {w, x}, and {w, z} all have boolean dimension at most 1 in (T ′, δ′) the result
follows.

Lemma 5.3. If δ(x) = u and v and u are twins, then boolw(T, δ) = boolw(T ′, δ′).

Proof. Since u and v are twins it follows that bool-dim({w, x}, T ′, δ′) = bool-dim({w, z},
T ′, δ′) which again is equal to bool-dim({y, x}, T, δ). Also, v does not contribute to any
new neighborhood across any cut in (T ′, δ′) that did not already exist in (T, δ). Note
that none of these observations are dependent on if {u, v} ∈ E(G) or not. It follows that
boolw(T, δ) = boolw(T ′, δ′).

Since lemmas 5.1 through 5.3 are true for any decomposition tree T , they are in partic-
ular true for one giving the optimal boolean width decomposition. We thus have that
boolw(G \ v) = boolw(G) as long as v is removed according to one of rules 1 through 3.

5.1.2 Tree-width reductions that do not work

Tree-width preprocessing has been studied for quite some time and there are several
effective reduction rules. Removing a simplicial vertex is one such rule. A vertex v is
simplicial in a graph G if the neighbors of v form a clique in G. We note that both an
islet and a pendant are simplicial. In addition, tree-width has the almost simplicial rule.
In the following we explain why the simplicial vertex rule is not safe for boolean-width
preprocessing.

v1 2

vv6

5 4

3

v

vv

s

s

s4

5

6

s2

s1

s3

Figure 5.2: Simplicial vertices s1, s2, . . . , s6.

In Figure 5.2 the vertices v1, v2, . . . , v6 form a clique and vertices s1, s2, . . . , s6 are sim-
plicial as the neighborhood of each of these vertices form a clique. The boolean-width
of any boolean decomposition of the induced subgraph containing v1, v2, . . . , v6 is 1, as
all vertex subsets have exactly two different neighborhoods (one being ∅) across all the

Speeding up the generation of Boolean Decompositions

cuts in the decomposition tree. Now while introducing the simplicial vertices, whenever
we have a simplicial vertex along with one other vertex on one side of a cut, this vertex
subset will have more than two different neighborhoods across the cut, thus increasing
the boolean-width of the decomposition. It follows that a simplicial rule would not be
safe. On the other hand twin rule cannot be used for tree-width preprocessing.

It is well known that, the tree-width of a minor of G is never larger than the tree-width
of G itself [71]. A graph H is a minor of a graph G if H can be obtained from G by
zero or more vertex deletions, edge deletions, and edge contractions (edge contraction
is the operation that replaces two adjacent vertices v and w by a single vertex that is
connected to all neighbors of v and w). On the contrary, boolean-width of a minor of G
can be larger than the boolean-width of G. This is most obvious from the fact that the
boolean-width of a complete graph is 1, and every graph is a minor of some complete
graph.

5.1.3 Implementation

To preprocess a graph, rules 1 through 3 are applied iteratively until no rule is applicable.
When a boolean decomposition of the reduced graph has been generated, we can undo
the reduction operations in reverse order to get a boolean decomposition of the original
graph. Each time a rule is applied, a vertex and its remaining incident edges are removed.
To be able to execute rules 1 and 2 it is sufficient to maintain a counter for each vertex
giving the number of remaining neighbors. When this reaches 0 or 1 the appropriate
rule can be applied. It is clear that this can be done in linear time. For discovering twins
we maintain a bit vector representation of the adjacency lists. Then we can efficiently
determine if two vertices u and v are twins by testing if N(v) \ u = N(u) \ v. Note that
this test is true both if v and u are true or false twins. Thus to discover all twins we
loop over all pairs of vertices. We note that this could have been done faster by only
considering distance 2-neighbors, but the preprocessing still only takes a small fraction
of the time compared to the boolean-width computation.

5.2 Experimental results

In this section we report on results from computational experiments when applying the
three very simple preprocessing rules on a number of graphs. We also report the effect of
using these preprocessing rules prior to running Algorithm 1. Moreover, we compare the
running times of the greedy initialization part of Algorithm 1 using both Algorithm 3 and
Algorithm 8 for computing the boolean dimension. Finally, we show how preprocessing
and Algorithm 8 together help improving the running time of Algorithm 1 and allow us
to run greedy initialization for larger graphs. Note that in Chapter 3 most of the graphs
having more than 270 vertices timed out during the greedy initialization process.

5.2.1 Preprocessing

We have implemented the reduction rules in Java and use the machine configuration
described in Chapter 2. For performance evaluation we use both random graphs and
graphs from TreewidthLIB [14] and DIMACS [39]. The graphs listed in Table 5.1 are

Speeding up the generation of Boolean Decompositions 47

from probabilistic networks developed for real-life instances. The graphs alarm, boblo,
diabetes, link, munin*, oesoca*, pignet2, and several others are taken from medical
applications. There are networks for agricultural purposes, such as barley and mildew.
The water graph models a water purification process and oow* graphs are developed
for maritime applications. For the graphs in Table 5.1 experiments using tree-width
preprocessing rules has been reported in [66].

In Table 5.1 and 5.2 we report the number of vertices removed by rules 1, 2, and 3 for
each graph. For the twin rule the number of edges removed is also listed. Column 8
and 9 of Table 5.1 and 5.2 show the total number of vertices and edges removed by all
three rules. Column 10 reports the percentage of vertices removed. In addition the two
rightmost columns of Table 5.1 list the total number of vertices and edges removed by
the preprocessing for tree-width (TWpp) reported in [66].

Table 5.1 shows that the number of vertices and edges removed by tree-width preprocess-
ing rules is substantially larger than what is removed by the boolean-width preprocessing
rules on this particular set of graphs. Among the boolean-width preprocessing rules the
pendant rule has removed the most vertices except for the two graph pigs and pignet2
where the twin rule reduces the most. On average around 20% of the vertices are re-
moved by the preprocessing for boolean-width, with a minimum of 0% and a maximum
of 48%. Whereas for tree-width on average over 50% of the vertices are removed for
these 23 graphs.

Table 5.1: Effect of reduction rules when applied to graph instances from probabilistic
networks

Removed by individual rules Removed by (1+2+3) Removed by TWpp

Graph V E Islet(1) Pendant(2) Twin(3) E(Twin) V E %V V E
wilson-hugin 21 27 0 12 1 3 13 15 61.9 21 27
oow bas 27 54 0 1 1 2 2 3 7.41 27 54
water 32 123 0 2 1 3 3 5 9.38 11 29
oow trad 33 72 0 0 0 0 0 0 0 10 18
mildew 35 80 0 1 0 0 1 1 2.86 35 80
alarm 37 65 0 10 3 7 13 17 35.14 37 65
vsd-hugin 38 62 0 15 1 2 16 17 42.11 38 62
oesoca 39 67 0 15 2 5 17 20 43.59 39 67
oow solo 40 87 0 2 1 2 3 4 7.5 13 24
oesoca42 42 72 0 17 1 3 18 20 42.86 42 72
barley 48 126 0 1 2 5 3 6 6.25 23 50
ship-ship 50 114 0 0 0 0 0 0 0 26 49
oesoca+-hugin 67 208 0 19 0 0 19 19 28.36 53 133
munin1 189 366 0 29 3 7 32 36 16.93 123 178
boblo 221 328 0 104 1 4 105 108 47.51 221 328
diabetes 413 819 0 2 4 11 6 13 1.45 297 543
pigs 441 806 0 7 24 48 31 55 7.3 394 672
link 724 1738 10 73 1 2 84 75 11.6 416 580
munin2 1003 1662 0 184 0 0 184 184 18.34 838 1211
munin4 1041 1843 0 179 1 2 180 181 17.29 826 1201
munin3 1044 1745 0 192 0 0 192 192 18.39 962 1472
munin kgo 1066 1730 0 184 0 0 184 184 17.26 1066 1730
pignet2 3032 7264 0 2 157 314 159 316 5.24 2030 3534

Table 5.2 also shows the effect of the preprocessing rules when applied to graphs from
TreewidthLIB but generated from other sources than probabilistic networks. The graphs
are sorted by the number of vertices. The zeroin.i.*, inithx.i.1, and mulsol.i.* graphs
originate from the 2nd DIMACS implementation challenge [39] and are generated from
a register allocation problem based on real code. The other graphs are collected from
the Stanford GraphBase [72]. These representative graphs are selected from a large set

Speeding up the generation of Boolean Decompositions

of preprocessed graphs and have a good variety both in the number of vertices and edge
densities.

Table 5.2: Effect of reduction rules when applied to graph instances generated from
other sources than probabilistic networks

Removed by individual rules Removed by (1+2+3)
Graph V E Islet(1) Pendant(2) Twin(3) E(Twin) V E %V
zeroin.i.1-pp 54 1267 0 1 51 1265 52 1266 96.3
zeroin.i.2-pp 57 1097 0 0 18 710 18 710 31.58
jean 80 254 3 18 3 13 24 31 30
anna 138 493 0 26 2 4 28 30 20.29
mulsol.i.5 186 3973 10 0 30 937 40 937 21.51
mulsol.i.1 197 3925 59 0 20 746 79 746 40.1
zeroin.i.3 206 3540 49 0 34 1322 83 1322 40.29
zeroin.i.1 211 4100 85 0 12 973 97 973 45.97
zeroin.i.2 211 3541 54 0 31 1256 85 1256 40.28
fpsol2.i.1 496 11654 227 0 23 1358 250 1358 50.4
homer 561 1628 5 215 5 2 225 217 40.11
inithx.i.1 864 18707 345 0 63 2632 408 2632 47.22
BN 26 3025 14075 0 1010 0 0 1010 1010 33.39

In Table 5.2 the majority of the vertices are removed by the twin rule. We also note
that the number of edges removed by the twin rule can be significantly higher than the
number of vertices removed by this rule. For the set of graphs listed in Table 5.2 on
average around 37% of the vertices are removed, with a minimum of 20% and a maximum
of 96%. Though the graphs in Table 5.1 are not reduced as much by the boolean-width
preprocessing as by the tree-width preprocessing rules, Table 5.2 shows that there are
graphs that can be considerably simplified using the boolean-width preprocessing rules.
It was also observed that most of the graphs from protein structure and Delaunay
triangulation do not reduce at all using these preprocessing rules.

5.2.2 Speeding up Algorithm 1

In the following we show the effect of applying the simple preprocessing rules prior
to running Algorithm 1. The graphs presented in Table 5.3 are from TreewidthLIB
and already used in Chapter 3 for the experiments on Algorithm 1. We report the
number of vertices, Vpp and edges, Epp for each preprocessed graph. Columns 6 and
7 present the boolean-width upper bound of the greedy initial decompositions, (Initial
Bound) and time required in seconds for the original graphs respectively when using
Algorithm 1. Similarly, columns 8 and 9 present the initial bound and time required for
the preprocessed graphs respectively when using Algorithm 1. Each reported running
time in tables 5.3 and 5.4 is the average of five runs. It can be observed from Table 5.3
that though the initial boolean-width upper bounds for the original and the preprocessed
graphs compare favorably with each other, the running times for the preprocessed graphs
are substantially lower for these graphs. The average reduction in running time is 287%
for the preprocessed graphs.

Speeding up the generation of Boolean Decompositions 49

Table 5.3: Comparison of greedy initialization for original and preprocessed graphs

Original Preprocessed Original Preprocessed
Graph V E Vpp Epp Initial Bound Time(s) Initial Bound Time(s)
BN 28 24 49 13 34 3.32 0.02 2.58 0.02
celar06-wpp 34 156 28 96 4.46 0.11 4.17 0.1
oesoca42 42 72 24 52 3.7 0.12 3.32 0.1
jean 80 508 56 223 5.21 1 5.04 0.9
anna 138 493 110 463 8.35 15.8 8.28 5.1
mulsol.i.5 186 3973 146 3036 6.38 55.3 4.58 16.6
zeroin.i.3 206 3540 123 2218 5.39 65.7 5.32 32.8
zeroin.i.1 211 4100 114 3127 4 74.1 4 16.9

In Table 5.4 we compare the time required for greedy initialization in Algorithm 1 using
UN(A) and CCMis. To do this we report the boolean-width upper bound of the greedy
initial decompositions (Initial Bound), time required in seconds using UN(A), T1, and
CCMis, T2. Table 5.4 shows that for this set of graphs the time required using UN(A)
is substantially larger than the time required using CCMis. For these selected graphs
the average reduction in running time is 289%.

Table 5.4: Comparison of the time required for greedy initialization in Algorithm 1
using UN(A) and CCMis

Graph V E Initial Bound T1 T2

david 87 406 7.06 2.3 1.9
graph05-pp 91 394 14.22 312.6 37.5
1aac 104 1316 12.64 150 105.6
BN 9 105 1259 18.43 4358 391.1
1a62 122 1516 13.65 740 107.9
celar10-pp 133 646 10.74 24.2 9.6
anna 138 493 8.35 15.7 6.4
pr152 152 428 10.64 28.3 14.2
mulsol.i.5 186 3973 6.38 55.3 30.7
munin4-wpp 271 724 10.61 93.9 91.1

Results from the final set of experiments are reported in Table 5.5. We have used a
set of graphs having more than 271 vertices to test how preprocessing and CCMis af-
fects Algorithm 1 when running on larger graphs. For the graphs in Table 5.5 we ran
greedy initialization on the preprocessed graphs having Vpp vertices and Epp edges and
CCMis was used for the computation of boolean dimension. The values in the column
labeled Initial Bound gives the resulting boolean-width found after T2 seconds. The
reported times are the average of two runs.

Table 5.5: Greedy initialization using CCMIS on large graphs

Graph V E Vpp Epp Initial Bound T2

a280 280 788 280 788 12.64 147.7
Link-pp 308 1158 305 1152 21.86 188.6
Diabetes-wpp 332 662 329 651 7.13 192.3
Link-wpp 339 1194 336 1175 21.18 243.4
celar10 340 1130 326 1106 9.91 193.2
celar08 458 1655 433 1622 8.77 621.2
fpsol2.i.1 496 11654 246 10296 6.78 391.1

Speeding up the generation of Boolean Decompositions

Though preprocessing and faster computation of boolean dimension allow us to run the
greedy initialization on larger instances, greedy selection still takes a significant amount
of time as the size of the input grows. As greedy selection requires O(n2) computations
of the boolean dimension which can be exponential in n, this is still most likely the
bottleneck in the whole decomposition generation process.

5.3 Conclusion

The size and structure of the graphs is a limiting factor when experimenting with al-
gorithms and heuristics for computing boolean decompositions. As the experimental
results show, preprocessing can have a significant impact on reducing the size of the
input graphs. Since there is a direct connection between the running time of a decom-
position algorithm and the size of the input, preprocessing can both help in reducing the
running time and also allow us to investigate a larger search space within a fixed amount
of time. The suggested rules are all very simple. It would be of interest to investigate
if there exist more complex rules that can be used to reduce the graphs even further.
Moreover, for larger graphs we should look for heuristics that generate decompositions
in polynomial time.

Chapter 6

Generating a Boolean
Decomposition from a Tree
Decomposition

Tree-width has been inspirational for the investigation of many other well known width
parameters. A number of NP-hard graph problems can be solved in linear time for
graphs of bounded tree-width [8, 33, 73]. Several studies have shown that this is not
only of theoretical interest but can also be successfully applied to optimally solve many
optimization problems [74–76]. Independent of the problem being solved one must first
compute a tree decomposition of a given graph. Computing a tree decomposition of the
minimum width is known to be NP-hard [77].

A significant amount of work has been done to determine the tree-width of graphs
[10, 78, 79]. In practice, algorithms with a large constant hidden in the running time,
or with the tree-width in the exponent have limited use [10]. For this reason a number
of heuristics have been developed with easily computable upper and lower bounds for
tree-width [11–14].

It is known that, for a given graph G, boolw(G) ≤ tw(G) + 1 [31]. If we are given a tree
decomposition of tree-width k, we can generate a boolean decomposition of width at
most k+1, using the O(nk) algorithm that can be inferred from [31]. In this chapter we
investigate the practical applicability of this approach. A promising outcome of this will
not only benefit the dynamic programming algorithms using boolean decompositions,
but also establishes an interesting application of tree decompositions. To do this we have
used one of the simplest heuristics described in [12] to first produce a tree decomposition.
which we then use to compute a boolean decomposition of the graph.

6.1 Generating a tree decomposition

We start this section by giving the definition of a tree decomposition and tree-width. We
also discuss some properties of a tree decomposition which facilitates the understanding
of the subsequent transformation algorithm.

Generating a Boolean Decomposition from a Tree Decomposition

a

b

e

f

c

d

h

g

dg dhabe

bce

cef

cde

Figure 6.1: A graph G and a corresponding tree decomposition of tw(G) = 2.

Definition 6.1 (Tree-width and tree decompositions). A tree decomposition of a graph
G = (V (G), E(G)) is a pair (X,T) where T = (I, F) is a tree and X = {Xi|i ∈ I is a
collection of subsets of V (G)} called bags, such that

• for all v ∈ V (G), there exists an i ∈ I with v ∈ Xi, i.e.
⋃

i∈I Xi = V (G)

• for each edge {u, v} ∈ E(G), there is an i ∈ I with u, v ∈ Xi, and

• for each v ∈ V (G), the set of nodes Iv = {i ∈ I|v ∈ Xi} forms a connected subtree
of T .

The width of a tree decomposition ({Xi|i ∈ I}, T = (I, F)) equals maxi∈I{|Xi| − 1}.
The tree-width of a graph G is the minimum width over all tree decompositions of G.

The Definition 6.1 implies all vertices and edges of G are in some bag in the decompo-
sition tree (X,T). Suppose S be a node (bag) in (X,T), then X − S has X1, X2, ..., Xd

components and subgraphs induced by G[X1], G[X2], ..., G[Xd] has no vertices in com-
mon and there are no edges between them. An example of a tree decomposition is shown
in Figure 6.1.

In the following we review a heuristic for computing the tree-width of a graph G =
(V (G), E(G)). This is based on first computing a permutation π of the vertices of
V (G) called an elimination ordering. The fill-in graph H of G with respect to π is
constructed as follows: for i = 1 to |V (G)|, we iteratively add an edge between each
pair of higher numbered neighbors of the i-th vertex in the order. In [12] a recursive
procedure is given that builds a tree decomposition from a permutation or elimination
ordering where the width of the decomposition is given by the maximum number of
higher numbered neighbors of any vertex in the fill-in graph H. We thus see that any
algorithm that computes an elimination ordering also can be seen as a heuristic for
computing an upper bound on tree-width.

6.2 Computing a boolean decomposition from a tree de-
composition

As shown in [31] it is possible to transform any tree decomposition into a boolean
decomposition. The intuition behind this result is as follows:

Generating a Boolean Decomposition from a Tree Decomposition 53

Consider a tree decomposition (X,T) and two adjacent bags X1 and X2. Let (X1, T1)
and (X2, T2) be the two components of (X,T) after deletion of the edge {X1, X2} ∈
(X,T). Then deleting V (G[X1]) ∩ V (G[X2]) = S from V (G) disconnects G into the
two subgraphs G[(V (G[X1])− S) = A] and G[(V (G[X2])− S) = B] as shown in Figure
6.2. More precisely these two subgraphs do not share any vertices and there is no
edge with one end in each of them. Therefore for ∀Y ⊆ S the boolean dimension of
cut(A ∪ Y,B ∪ (S \ Y)) ≤ log2(2

|S|) ≤ |S|, as S is a separator of G.

A B

S

Figure 6.2: For ∀Y ⊆ S boolean dimension of cut(A ∪ Y,B ∪ (S \ Y)) ≤ |S|.

Since this is true for any tree decomposition, including the optimal one, where we have
|S| ≤ tw(G)+1, we have that boolw(G) ≤ tw(G)+1 as long as we can refine and trans-
form a tree decomposition into a complete boolean decomposition without increasing
the boolean dimension of any cut beyond this value. In the following we show how this
is possible. There are some structural differences between a tree decomposition and a
boolean decomposition. The bags of a tree decomposition can be overlapping, and there
might not be one leaf bag for every vertex of G. To alleviate this we apply a series of
transformations to get a boolean decomposition from a given tree decomposition. The
procedure is outlined in Algorithm 9, and described in more detail in sections 6.2.1
through 6.2.4.

Algorithm 9 : TDtoBoolD(X,T)

Input : A tree decomposition (X,T) of graph G = (V (G), E(G))
Output : A boolean decomposition (T, δ) of G = (V (G), E(G))
Root the tree decomposition
(1) Remove multiple copies of any vertex v ∈ V (G) from the tree decomposition such
that v remains only in the bag which is closest to the root
(2) Copy every non-leaf bag to a new leaf node as a child of the original bag
(3) Copy every vertex from each bag into its parent node if the vertex is not already
present in the parent
(4) Make the decomposition tree both binary and full
return the boolean decomposition obtained by (1)-(4)

6.2.1 Making nodes of the tree disjoint

We root the tree decompositions at the last bag returned by the tree decomposition
process. In a tree decomposition every edge appears in some bag and bags containing

Generating a Boolean Decomposition from a Tree Decomposition

the same vertex form a connected subtree. But in a boolean decomposition tree a vertex
of a parent node only appears in one of its children, i.e. children of the same parent have
disjoint vertices. So in order to make the vertex partition disjoint we retain only the
topmost instance of every vertex.

h

cef

b d

ga

Figure 6.3: Starting from Figure 6.1 after making the bags disjoint.

Applying step (1) on the tree decomposition in Figure 6.1, we get the tree in Figure
6.3 where every vertex now appears only in one bag. It can be noticed that this stage
involves only vertex deletions so that it is not possible to introduce new neighborhoods
across any edge in the decomposition tree.

6.2.2 Placing every vertex in a leaf node

In a boolean decomposition every vertex should be in some leaf node as vertices of the
graph are mapped to the leaves of the decomposition tree. But in a tree decomposition
this is not a necessary condition. The next step is then to copy every non-leaf bag to a
new leaf as a child of the original bag.

cef

d

cefb d

a b g h

Figure 6.4: Starting from Figure 6.1 after making all bags leaves.

In Figure 6.4, every internal bag of the tree in Figure 6.3 has been copied to a leaf.
Note that although new edges can be introduced to the decomposition tree following
this operation, every new leaf containing a set of vertices A will have |UN(A)| ≤ 2|A|,
where |A| is bounded by the size of the maximum bag in the original tree decomposition.

Generating a Boolean Decomposition from a Tree Decomposition 55

6.2.3 Making a parent node contain every vertex in its children

For a binary boolean decomposition tree every vertex contained in a child node should
be present in the parent node. To ensure this every vertex from each bag is copied into
its parent node if the vertex is not already present in the parent. Note that this is done
recursively so that the root node contains all vertices in V (G).

db

dgh

abcd
efgh

g h

cefab

a

Figure 6.5: Starting from Figure 6.1 after copying every vertex to its parent.

This operation might cause new vertices to be introduced in the bags and for our example
we now get the tree in Figure 6.5. But as discussed in Section 6.2, the size of UN(A)
of a vertex set A in a bag will not exceed 2|S|, where |S| is the size of the maximum
separator in the tree.

6.2.4 Making the decomposition binary

Following the steps (1)-(3) of Algorithm 9 the root of the tree contains V (G) and every
vertex is now exactly in one leaf. Step (4) makes the tree binary and ensures that every
leaf of the decomposition tree corresponds to a unique vertex of V (G). To do this we
consider the following cases.

- An internal node having two children does not need to be altered and considers
one child as its left child and the other one as its right child.

- A node having more than two children sets the first child as its left child and adds
a new node as its right child. This node gets all the remaining children of the
original node as its children and is assigned the union of their vertices. If the new
node has more than two children, the process is repeated recursively.

- Similarly a leaf node assigned more than one vertex just splits the vertices ran-
domly into two parts and adds these as its left and right child. The leaf nodes are
decomposed recursively until we get a full binary decomposition or every vertex is
mapped to exactly one leaf of the decomposition tree.

Generating a Boolean Decomposition from a Tree Decomposition

ab

cef dgh

g h

d

c

ce gh

abcd
efgh

a b

cde
fgh

f

e

Figure 6.6: Starting from Figure 6.1 a binary boolean decomposition tree of G with
boolw(G) = log(3)=1.58.

Figure 6.6 shows the final full decomposition tree for the graph in Figure 6.1 obtained
from Algorithm 9.

6.2.5 Time complexity

Step (1) in Algorithm 9 is accomplished using a depth first search in time O(nk). The
time complexity of step (2) is proportional to the number of nodes in the tree which is
O(n). In step (3) copying vertices to the parent node checks for containment, therefore
the running time of this step is O(nk). The time complexity of transforming the tree to
a binary one is O(n). Therefore Algorithm 9: TDtoBoolD(X,T) has a total running
time of O(nk).

6.3 Experimental results

Computing a tree decomposition of low tree-width often depends heavily on the first
chosen vertex and the overall criteria used for selecting vertices for the elimination or-
dering. It is therefore important to have a good criteria even at the expense of increasing
the running time. There are a number of different criteria that can be used for this.
In our work we have used the minimum degree heuristic for selecting the next vertex
for π. In each step this selects the remaining vertex of smallest degree and adds to π.
This heuristic was designed by Markowitz [80] in the context of sparse matrix computa-
tions and has been compared against other greedy approaches for generating elimination
orderings in [12]. Once π has been computed we then use the algorithm from [12] to
compute the tree decomposition.

In the following we describe experiments performed to test the procedure from Section
6.2. Different heuristics for computing tree-width upper bounds such as Greedy Degree,
Greedy Fill-in, Minimum Triangulation have been tested and reported on graphs from
TreewidthLIB [14]. For performance evaluation we ran our experiments on around 450
graphs from TreewidthLIB with known tree-width upper bounds. Moreover we tested on
random graphs as well as other real world graphs for which tree-width upper bounds has
not been listed in [14]. The graphs presented in Table 6.1 are selected from TreewidthLIB
[14] in such a way that, they have good variation in the number of vertices, edge densities,

Generating a Boolean Decomposition from a Tree Decomposition 57

and tree-width. Machine configuration is the same as described in Chapter 2 and the
algorithm is implemented in Java.

Table 6.1 lists the tree-width upper bounds obtained from the Minimum Degree Fill-
In heuristic, TW-MDH and the boolean-width upper bound values computed from
the boolean decomposition generated by Algorithm 9, BW-A9. We report the tree-
width upper bounds listed in TreewidthLIB [14] for the corresponding graph instances.
They are denoted by TW-LIB. The running time of Algorithm 9, TA9 in seconds is also
reported. Both the time for generating the tree decomposition and for the transformation
to get boolean decomposition is included in TA9. The time in parentheses is the time to
compute the initial tree decomposition.

Table 6.1: Comparison of boolean-width upper bound obtained from Algorithm 9
and tree-width upper bound listed in TreewidthLIB

Graph V E TW-MDH BW-A9 TW-LIB TA9

water 32 123 11 7.85 9 0.01 (0)
queen7 7 49 476 36 11.36 35 0.01 (0)
jean 80 254 9 4.81 9 0.01 (0)
david 87 406 13 9.84 13 0.01 (0)
celar06 100 350 11 4.58 11 0.03 (0.01)
graph01 100 358 26 22.05 24 0.02 (0)
queen10 10 100 1470 83 20.77 72 0.05 (0.01)
1lkk 103 1162 48 21.75 34 0.45 (0.05)
1gef 119 1492 52 23.19 43 0.36 (0.16)
anna 138 493 12 9.77 12 0.07 (0.01)
kroA150 150 432 16 16.61 12 0.04 (0.01)
mulsol.i.5 186 3973 30 5.17 31 0.15 (0.02)
celar07 200 817 16 8.82 16 0.11 (0.01)
zeroin.i.1 211 4100 42 6.73 50 0.22 (0.02)
munin4-wpp 271 724 8 7.6 8 0.07 (0)
pigs 441 806 10 10 9 0.14 (0)
link 724 1738 15 15.4 13 1.75 (0.02)
munin2 1003 1662 7 7.32 7 0.69 (0.01)
munin3 1044 1745 7 8 7 0.87 (0.01)

Note that the graphs in Table 6.1 are preprocessed according to the rules described
in Chapter 5 before we generate the tree decompositions. From Chapter 5, we know
that it is always possible to get a boolean decomposition of the original graph from
the boolean decomposition of the reduced graph without increasing the width of the
decomposition. Because of this preprocessing for some graphs we get TW-MDH lower
than TW-LIB. Each reported value from our experiments is the minimum over five runs.
This is because some randomness might emerge in the tree decomposition while breaking
ties among vertices with the same degree. The generated boolean decompositions might
also vary due to the use of a random bipartition of the vertices in the leaves. However
in most cases TW-MDH and BW-A9 only vary within a very small range.

From the results in Table 6.1 it can be observed that the upper bound obtained from
TDtoBoolD(X,T) complements the theoretical result as BW-A9≤ TW-MDH+1. Of-
tentimes the boolean-width upper bound can be substantially lower than the tree-width
of the corresponding tree decomposition. This is true for graphs such as queen10 10,

Generating a Boolean Decomposition from a Tree Decomposition

zeroin.i.1, and celar06. Though we have used one of the simplest heuristics to generate
the tree decompositions, TW-MDH compares favorably with TW-LIB. The average dis-
tance of TW-MDH and TW-LIB is around 10% for the presented graphs. The ratio of
TW-LIB to BW-A9 is ranging from 0.72 to 7.8, with an average of 2.08. For most of
the graphs in Table 6.1 except for 1gef, the tree decomposition generation phase takes
only a small fraction of the total time.

In Chapter 3 we presented Algorithm 1 that generates full boolean decompositions using
refinement via local search after an initial decomposition. As the greedy initialization
is computationally expensive Algorithm 1 has only been tested on graphs having less
than or equal to 271 vertices. In Table 6.2 we compare the boolean-width upper bound
values obtained from Algorithm 1 and Algorithm 9. For this we have selected a set of
representative graphs having less than or equal to 271 vertices from the set of graphs
listed in TreewidthLIB. In Table 6.2 BW-A1 and BW-A9 represents boolean-width
upper bounds obtained from Algorithm 1 and Algorithm 9 respectively. The running
times in seconds for Algorithm 1 is given as TA1. This includes the time for both greedy
initialization and the local search.

Table 6.2: Comparison of boolean-width upper bounds obtained from Algorithm 1
and Algorithm 9

Graph V E BW-A9 BW-A1 TA1 TA9

water 32 123 7.85 4.39 175.3 0.26 (0.04)
queen7 7 49 476 11.36 10.36 22.9 0.9 (0.1)
jean 80 254 4.81 3.91 61 0.39 (0.05)
david 87 406 9.84 5.32 284 0.55 (0.05)
celar06 100 350 4.58 3.81 132 0.47 (0.04)
1lkk 103 1162 21.75 11.89 968 9.8 (0.3)
1gef 119 1492 23.19 13.6 1917 58.1 (0.2)
anna 138 493 9.77 6.67 178 0.97 (0.07)
mulsol.i.5 186 3973 5.17 4.95 365 1.56 (0.16)
zeroin.i.1 211 4100 6.73 3.7 168 1.28 (0.18)
munin4-wpp 271 724 7.6 9.98 747 1.19 (0.09)

From the results listed in Table 6.2 it can be observed that in almost all cases the
boolean-width upper bound values from Algorithm 1 are better than those obtained
from Algorithm 9. The average distance from the best boolean-width upper bound is
45% for Algorithm 9 and 2% for Algorithm 1 for the graphs in Table 6.2. But in terms of
computational time Algorithm 9 is always better and almost always orders of magnitude
faster than Algorithm 1.

Analyzing the results reported in tables 6.1 and 6.2 we observed that Algorithm 9 can
be applied to comparatively larger graphs than Algortihm 1. Though Algorithm 1
gives better boolean-width upper bounds, this comes at the cost of considerably higher
running times. We note that this TW-MDH+1 can always serve as a boolean-width
upper bound for a decomposition obtained using Algorithm 9, if the computation of the
actual boolean-width is computationally too expensive.

Generating a Boolean Decomposition from a Tree Decomposition 59

6.4 Conclusion

In this chapter we have shown how to generate boolean decompositions from tree decom-
positions in practice. Though this approach is basically based on combinatorial insights,
the experimental outcomes show that this approach can serve as a good alternative for
generating boolean decompositions within a reasonable time. As stated we have cho-
sen one of the simplest heuristics to generate our tree decompositions. It is possible to
replace this by other more intricate algorithms to get a starting tree decomposition of
smaller width. Moreover, local search over the resulted boolean decomposition can also
play an important role to obtain a lower boolean-width upper bound.

Chapter 7

Exact and Random Boolean
Decompositions

In order to apply FPT algorithms to solve hard problems on graphs, where the parameter
is the width measure of the input, it is desirable that the value of the parameter be as
small as possible. Moreover, in order to choose between algorithms parameterized by
different width measures, the exact values of these parameters can play an important
role. For example, for a graph of tree-width k and boolean-width k′ there are dynamic
programming algorithms to solve Minimum Dominating Set with running times O∗(3k)
and O∗(8k′), respectively. Discounting constant and polynomial factors it therefore
seems that boolean-width is preferable if k ≥ 1.9k′.

In chapters 3 and 6 we studied two different methods for generating boolean decompo-
sitions. However, these experiments did not tell us how the optimal boolean-width of
the considered graphs compares to the optimal values of other width parameters. In
this chapter we therefore first compare the optimal boolean-width to available optimal
values for tree-width, clique-width, and rank-width for a set of small graphs. We also
present experiments with random decompositions consisting of random bipartition of
vertices. For random graphs there exists theoretical bounds on the values of different
width parameters. It is known that random graphs with constant edge probability has
linear tree-width, clique-width, and rank-width [81–83]. Experimental results from these
approaches will expedite a way of verifying the existing theoretical bounds for these pa-
rameters. This can also help to show slackness and point to where such bounds can be
strengthened.

7.1 Exact boolean decomposition

It is known that we can compute a decomposition of boolean-width 22boolw(G) using the
algorithm for decompositions of optimal rank-width [5] in FPT time parameterized by
boolw(G) [38]. Given G, a binary decomposition tree having optimal boolean-width can
also be computed in O(2.52n) time, where n = |V (G)| [38, 49].
We have implemented an algorithm for computing the exact boolean-width from a cor-
responding decomposition of a graph. Our algorithm is based on brute-force search and

Exact and Random Boolean Decompositions

explores all possible decomposition trees to find the one with the minimum boolean-
width. For this reason it can only solve graphs with less than 32 vertices within 30
minutes. For a particular boolean decomposition the corresponding width is the maxi-
mum boolean dimension over all cuts. In our algorithm we always keep track of the best
decomposition found so far. While trying new decompositions we discard any decom-
position as soon as it is known that the particular decomposition is not good enough to
beat the so far best decomposition.

7.1.1 Experimental results

Algorithms for computing decompositions of minimum width has previously been devel-
oped for tree-width [14], clique-width [26], and rank-width [34]. Even though generating
tree decompositions is reasonably fast, obtaining exact values are computationally more
expensive for the other width parameters. Krause et al. has computed exact rank-width,
rw [34]. This can only handle up to 32 vertices and works up to 28 vertices within a
reasonable amount of time. The exact clique-width values, cw, are collected from [26],
which used a SAT solver approach for computation. This approach is also computation-
ally expensive and in [26] the exact clique-width has been reported for a set of named
graphs with |V (G)| ≤ 24 and random graph with |V (G)| = 5, 10, 20. Tree-width values,
tw, are collected from TreewidthLIB.

In Table 7.1 we compare values for exact tree-width and rank-width with the exact
boolean-width for a set of real world graphs from TreewidthLIB [14]. The computation
of exact rank-width, rw, has been done using the rank-width software package provided
by Krause et al. [34]. As exact clique-width is not available for these graphs we do not
compare clique-width in Table 7.1.

Table 7.1: Exact rw, boolw, and tw for a set of small real world graphs

Graph V E rw boolw tw
Diabetes-pp-002 8 17 2 2.32 4
Mainuk-pp 9 28 2 1.58 6
pcb3038-pp-001 11 22 3 3.00 5
fl3795-pp-004 11 23 3 3.00 4
1fjl-pp-003 11 47 2 1.58 8
Pathfinder-pp 12 43 3 2.58 6
oesoca+-hugin-pp 14 75 3 2.00 11
games120-pp-001 14 63 3 2.58 9
weeduk 15 49 2 1.58 7
Mildew-wpp 15 31 3 2.58 4
fungiuk 15 36 2 1.58 4
celar06-pp 16 101 1 1.00 11
Barley-pp-001 16 50 4 3.32 7
munin2-pp-005 16 36 3 3.00 5
celar02-pp 19 115 3 2.00 10
anna-pp 22 148 6 3.46 12
Water-pp 22 96 5 4.17 9
myciel4 23 71 6 4.95 10
Grid5x5 25 40 4 3.58 5
Queen5 5 25 320 5 5.29 18

Exact and Random Boolean Decompositions 63

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Graph no.

E
xa

ct
 r

w
 a

nd
 b

oo
lw

 rw
 boolw

Figure 7.1: Exact rw and boolw for a set of small real world graphs

Table 7.1 shows that for most of the graphs boolean-width is the smallest among the
three widths. Only for 2 out of the 20 graphs is boolean-width larger than rank-width
and then only by a small factor (Diabetes-pp-002 and Queen5 5). These factors stays
within the theoretical bound log rw(G) ≤ boolw(G) ≤ 0.25rw2(G)+ rw(G) [7] as stated
earlier in Chapter 1 (Section 1.1.4). For 4 graphs out of the 20 the optimal values are
equal for rank-width and boolean-width. Figure 7.1 shows this graphically. The average
rank-width to boolean-width ratio is 1.2 with a minimum of 0.86 and maximum of 1.73.
Similarly, the tree-width to boolean-width ratio ranges from 1.33 to 11 with an average
of 3.3.

We next consider implications on FPT algorithms parameterized by the practical val-
ues obtained from the experiment reported in Table 7.1. For a graph of tree-width k,
boolean-width k′, and rank-width k′′ FPT algorithms (using dynamic programming)
solving the Minimum Dominating Set problem have running times O∗(3k) [8], O∗(8k′)
[7], and O∗(20.75k′′2+O(k′′)) [84] respectively. Focusing only on the exponential factor in
the running times, for 11 out of 20 graphs the boolean-width algorithm is preferable
over the rank-width algorithm. For tree-width the corresponding result is 17 out of 20.

Similarly, for Maximum Independent Set the running times are O∗(2k) [8], O∗(4k′) [7],
and O∗(20.25k′′2+O(k′′)) [84], respectively. Analyzing the exponential factor, for only 1 out
of 20 graphs, the rank-width algorithm is preferable over the boolean-width algorithm,
and for 5 out of the 20 graphs the tree-width algorithm is preferable over the boolean-
width algorithm. Note that we have only considered the effect of the width parameters
on the exponent, although the running times also include the number of vertices and
edges as well as polynomial functions depending on the width measures.

In Table 7.2 we compare exact boolean-width with exact rank-width and clique-width
for a set of named graphs. The values of width parameters on these graphs may be of
interest in combinatorics and graph theory. The exact clique-width for these graphs has
been collected from [26]. Exact rank-widths are obtained using [34]. As TreewidthLIB
does not list bounds for these graphs we do not compare tree-width in Table 7.2.

Exact and Random Boolean Decompositions

Table 7.2: Exact cw, rw, and boolw for a set of named graphs

Graph V E cw rw boolw
Petersen 10 15 5 3 3
Chavatal 12 24 5 4 3.17
Franklin 12 18 4 2 2
Frucht 12 18 5 3 3
Poussin 15 39 7 4 3.7
Clebesch 16 40 8 4 4
Hoffman 16 32 6 3 3.58
Shrikhande 16 48 9 4 4.52
Sousselier 16 27 6 4 3.7
Errera 17 45 8 4 3.7
Pappus 18 27 8 4 4
Robertson 19 38 9 5 5.64
Desargues 20 30 8 4 4.64
Flower snark 20 30 7 5 4.81
Folkman 20 40 5 3 3.32
Brinkmann 21 42 10 6 5.81
Kittell 23 63 8 5 4

From Table 7.2 it can be observed that for 12 out of the 17 graphs boolean-width is
the smallest among the three widths. For these 17 graphs the average rank-width to
boolean-width ratio is 1.01 with a minimum ratio of 0.83 and maximum ratio of 1.26.
Similarly, the clique-width to boolean-width ratio ranges from 1.45 to 2.16 with an
average of 1.8. For 5 of the graphs boolean-width is marginally larger than rank-width.
However, this value stays within the theoretical proven bound log rw(G) ≤ boolw(G) ≤
0.25rw2(G) + rw(G) [7].

7.2 Random boolean decompositions

There exists theoretical evidence that random bipartitions are useful for boolean decom-
positions, at least for random graphs [31]. The analysis shows that any decomposition
of a random graph is expected to be a decomposition of relatively low boolean-width.
Furthermore, for random graphs the expected boolean-width is significantly lower than
tree-width, clique-width, and rank-width. In the following we consider random graphs
generated by the Erdös-Rényi model. For a constant 0 < p < 1 the Erdös-Rényi model
generates a graph Gp with |V (Gp)| = n vertices where for every pair of vertices an
edge is added independently with probability p. It is known from [31] that boolw(Gp) ∈
O(ln

2 n
p). If p is a constant, then almost surely: tw(Gp), cw(Gp), rw(Gp) ∈ θ(n), whereas

boolw(Gp) ∈ θ(log2 n) [31, 81–83]. To demonstrate this in practice, we have experi-
mented with random boolean decompositions.

Random boolean decompositions are easy to generate. We start with a root node con-
taining all the vertices and then recursively use a random bipartition of the remaining
vertices at every node of the boolean decomposition tree until each vertex has a one-to-
one bijection to a leaf of the decomposition tree.

Exact and Random Boolean Decompositions 65

7.2.1 Experiments with random graphs

In Figure 7.2 we present the boolean-width of random decompositions of random graphs
with constant edge probability p=0.5. For each graph we generate five random decom-
positions and report the average boolean-width. The boolean width is plotted against
the number of vertices, for n = 5 to 100. As the θ notation hides any constant factor we
have drawn the trend line y = m log2 x with m = 1

3 . It can be seen from the figure that
this trend line approximates the observed results fairly well. The time taken for each of
these experiments increases with n and for n = 100 it takes about 7 seconds in total to
generate and evaluate one random decomposition.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

n

bo
ol

w
 (

G
p)

Random decomposition

(1/3)log2n

Figure 7.2: Boolean-width of random decompositions on random graphs with edge
probability 0.5.

The second set of experiments consists of three sets of Erdös-Rényi graphs having
|V (Gp)| = 30, 40, and 50 respectively. For each set of graphs we vary the edge proba-
bility p from 0 to 1 with an increase of 0.01. For each random graph generated within
these configurations the plotted boolean-width is an average of the boolean-width of five
random decompositions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

16

18

p, edge density

bo
ol

w
 (

G
p)

|V(G)|=30
|V(G)|=40
|V(G)|=50

Figure 7.3: Boolean-width of random decompositions on random graphs.

Exact and Random Boolean Decompositions

Figure 7.3 illustrates how the boolean-width of the random graphs changes as p varies.
The time taken for these experiments increases with n and for n = 50 and p = 0.1 it
takes about 1 second in total to generate and evaluate one random decomposition.

Theoretical result boolw(Gp) ∈ O(ln
2 n
p) implies that for fixed n, boolw(GP) decreases as

p increases. On the other hand Figure 7.3 indicates that this relation holds only after
a certain value of p. Moreover, this threshold value seems to depend on n. We note
that there exists similar theoretical results for other width parameters, where separate
bounds hold for very sparse random graphs. For example, let c be a constant with
p = c/n then the following holds asymptotically almost surely [83]:

(1) If c > 1, then rw(Gp), cw(Gp), and tw(Gp) are at least c′n for some constant c′

depending only on c.
(2) If c < 1, then rw(Gp) and tw(Gp) are at most 2 and cw(Gp) is at most 5.

Together with the results in Figure 7.3 this could be an indication that it might also be
possible to split the edge density scale at the very sparse end depending on the number
of vertices to obtain tighter bounds for sparse random graphs. It can also be noted that
the maximum width obtained from the random decompositions for any n and p ranges
from 0 to n/3.

Next, in Figure 7.4 we have compared the optimal boolean-width with the boolean-
width obtained from random decompositions for a set of random graphs. For this set of
experiments we have used n = 20 while varying p from 0 to 1 with an increase of 0.05.
The results show that the exact boolean-width of random graphs can be substantially
lower than those from random decompositions. However, we note that this is only based
on small graphs on 20 vertices. The relative difference in the computed numbers between
exact and random decompositions ranges from 21% to 206% with an average of 65%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

p, edge density

bo
ol

w
 (

G
p)

Exact decomposition
Random decomposition

Figure 7.4: Boolean-width of random graph with n = 20 vertices using exact and
random decompositions.

7.2.2 Experiments with real world graphs

In the next set of experiments we test how random decompositions perform on real world
graphs. To do this we compare the experimental boolean-width upper bounds obtained
using random decompositions with the boolean-width upper bounds from Algorithm 1

Exact and Random Boolean Decompositions 67

and Algorithm 9. In Table 7.3 we have used the same set of graphs as was used in Table
6.2. The boolean-width upper bounds for Algorithm 1 and Algorithm 9 is denoted by
BW-A1 and BW-A9, respectively. For each graph the average boolean-width upper
bound from five random decompositions is denoted by BW-RD in Table 7.3.

Table 7.3: Comparison of boolean-width upper bounds obtained from random de-
compositions, Algorithm 1, and Algorithm 9

Graph V E BW-A1 BW-A9 BW-RD
water 32 123 4.39 7.85 8.22
queen7 7 49 476 10.36 11.36 11.93
jean 80 254 3.91 4.81 13.23
david 87 406 5.32 9.84 16.57
celar06 100 350 3.81 4.58 23.72
1lkk 103 1162 11.89 21.75 20.94
1gef 119 1492 13.6 23.19 23.31
anna 138 493 6.67 9.77 24.97
mulsol.i.5 186 3973 4.95 5.17 19.63
zeroin.i.1 211 4100 3.7 6.73 10.4
munin4-wpp 271 724 9.98 7.6 59.97

From the above experiments it can be observed that random decompositions are always
outperformed by the two other approaches. In some cases the values from random
decompositions are substantially larger than those from Algorithm 1 and Algorithm 9.
For example on munin4-wpp BW-RD is almost 8 times larger than BW-A1. The average
distance from the best boolean-width upper bound for each graph is 242% for random
decompositions, 45% for Algorithm 9, and 2% for Algorithm 1. We can thus conclude
that random bipartitions are not as useful for real world graphs as for random graphs.

7.3 Conclusion

Since graph width measures are important structural graph parameters used for cap-
turing the algorithmic tractability of computationally hard problems, it is interesting
to see how the exact values of these parameters behave for a set of graphs of practical
relevance. Studying the probabilistic behavior of boolean-width of random graphs is also
an interesting combinatorial problem. Except for the theoretically established bounds
there has been no previous work reflecting the strength of random boolean decomposi-
tions. The experiments in this chapter show that the exact boolean-width is in most
cases smaller than the other studied exact width measures. Likewise, exact width values
on certain graph classes can give us better combinatorial insight.

The performance of the random decompositions on random graphs seems to indicate
that tight bounds are possible for sparse random graphs. Also, these decompositions
can serve as a starting point prior to computing improvements via local search. In
any case, random decompositions can be used by the dynamic programming algorithms
solving hard problems on random graphs.

Chapter 8

Generating Caterpillar
Decompositions

In chapters 3 and 6 we presented algorithms for generating full binary boolean decom-
positions. Even though these in many cases generated decompositions of low boolean-
width, this also came at the expense of high computational time. For a specific problem
instance one has to look at the combined time to first compute the decomposition and
then to solve the problem. As generating a good decomposition is a hard problem in it-
self, sometimes it is convenient to work with simpler decompositions. For this reason we
now investigate efficient heuristics for computing caterpillar decompositions. As these
are linear orderings (as opposed to tree orderings) we expect that they will be easier
and faster to generate. Even though these orderings might give a higher boolean-width
upper bound (which we will refer to as linear boolean-width) than those from more
general algorithms, it is still possible that the combined solution time is lower. These
decompositions also serve as an upper bound of what can be achieved by a full decom-
position. Moreover, given a caterpillar decomposition tree of linear boolean width k one
can solve the ISP in time O∗(2k), Dominating Set, Independent Dominating Set, and
Total Dominating Set in time O∗(22k) [49]. The combination of linear decompositions
and dynamic programming gives moderately-exponential exact algorithms on general
graphs also for solving weighted and counting versions of all these problems [49].

In the following we propose various approaches for generating linear decompositions
and evaluate their performance experimentally. We will in particular be looking at
approaches where the vertices are chosen based on some greedy condition.

8.1 Algorithms for generating caterpillar decompositions

As stated, all our heuristics use a greedy approach and select vertices in the order they
will appear in the final caterpillar decomposition. Thus, except for some trivial cases,
each heuristic uses a different criterion for selecting the next vertex. This vertex is then
appended to the end of the current ordering before the procedure is repeated until all
vertices have been selected and the ordering is returned. Algorithm 10 outlines the
general structure of our heuristics.

Generating Caterpillar Decompositions

Once the ordering π = (v1, v2, ..., v|V (G)|) has been computed it is straightforward to
compute the caterpillar decomposition (T, δ). We do this by generating a tree T with
|V (G)| leaves and where every internal node has a right child that is a leaf. Then δ
maps the ith leaf in the caterpillar numbered from left to right to the ith vertex in the
ordering. The linear boolean-width of the decomposition is then the maximum number
of maximal independent sets among all graphs of BG = ({v1..vi}, {vi+1...v|V (G)|}, EBG)
for i = 1 to |V (G)| − 1.

Algorithm 10 : GenerateVertexOrdering(G)

Input : Graph G = (V (G), E(G))
Output : Vertex Ordering Sequence = (v1, v2, ..., v|V (G)|)
Right ← V (G).
v ←Vertex returned by the strategy for selecting the first vertex
Sequence ← {v}
Left ← {v}
Right ← Right \ {v}
while Right �= ∅ do
chosen ← ∅
for ∀v ∈ Right do
if v belongs to any of the trivial cases then

chosen ← v
break

end if
end for
if chosen == ∅ then
chosen ← Best v in Right as described in algorithms 11, 12, and 13

end if
Sequence ← Sequence · {chosen}
Left ← Left ∪ {chosen}
Right ← Right \ {chosen}

end while
return Sequence

In the following we outline three different heuristics for obtaining a linear decomposition.
But first we look at some issues that are common to all three heuristics.

8.1.1 Selecting the first vertex

Our heuristics progress by selecting the next vertex based on its relationship to the
already chosen ones. This leaves open the question of how to choose the first vertex.
One possibility would be to start from a random vertex, but as the following example
shows all vertices are not equally suitable to be used as the starting vertex. Consider
the graph in Figure 8.1.

Generating Caterpillar Decompositions 71

i

j

hge

f

dc

b

a

Figure 8.1: A graph G.

Let π1 = (a, b, c, d, e, f, g, h, i, j) and π2 = (f, g, e, d, h, a, b, c, i, j) be two different cater-
pillar decompositions of the graph, where δ and δ′ map the leaves of the decomposition
trees to the vertices of G respectively. Note that π1 starts with the vertex a while π2
starts with the minimum degree vertex f . The linear boolean-width of π1 and π2 is 1
and 2 respectively. In fact, when we have vertex f in one side of a cut along with two
other vertices, then the number of unions of neighborhoods across the cut will be more
than 2, hence increasing the linear boolean-width of the caterpillar decomposition.

It is not hard to see that in π2 once f and g have been selected the remaining graph
is not connected. Whereas in π1 we are able to keep both the selected graph and the
remaining graph connected. Thus we suggest to choose a vertex to be the first vertex
in such a way that its neighborhood does not get scattered over different connected
components. Such a vertex can be found by performing a breadth first search (BFS)
starting from any vertex and then picking a vertex v from the last BFS level. In fact, we
found that repeating this process once more from v gave an even better starting point
and this is what we do in all our heuristics.

8.1.2 Trivial cases

Once the initial vertex v has been selected we place this as the first vertex in Sequence
and also in a set labeled Left, whereas all other vertices are placed in a set labeled
Right. The heuristics now progress by selecting vertices from Right and adding these
to Left while also appending them at the end of the linear ordering.

There are some cases common to all heuristics where we override the selection criteria,
thus we cover these first.

1. If the neighbors of a vertex v ∈ Right are all contained in Left, then select v as
the next vertex.

2. If there are two vertices v ∈ Right and u ∈ Left such that v and u have exactly the
same set of neighbors in Right\v then select v. That is, select v if N(v)∩Right =
(N(u) \ v) ∩Right. In Figure 8.2 x is such a vertex.

Generating Caterpillar Decompositions

N(Left)

Left Right

xu

v
I

I

E

Figure 8.2: One stage of the selection process

Note that for both of these cases no new neighborhoods will be created in Right. Thus
using either of them will not increase the boolean dimension of the ordering being com-
puted. We now present the three different selection criteria that we have based our
heuristics on.

8.1.3 Least Uncommon Neighbors

In the Least Uncommon Neighbors approach we pick the next vertex from Right as the
one having the fewest neighbors in Right that are not adjacent to a vertex in Left.
That is, we pick a vertex v that minimizes the number of vertices u ∈ (N(v) ∩ Right)
where N(u) ∩ Left = ∅.
The intuition behind this strategy is that each step will add as few new vertices as
possible in Right that are adjacent to vertices in Left. The selection criteria is outlined
in Algorithm LeastUncommonNeighbor.

Algorithm 11 : LeastUncommonNeighbor(Left,Right)

Input : A partitioning of V (G) into Left and Right
Output : A vertex from Right having the least number of uncommon neighbors with
N(Left)
MinSymmDiff ← |Right|
for ∀v ∈ Right do
SymmDiffv ← |(N(v) ∩Right) \N(Left)|
if SymmDiffv < MinSymmDiff then
chosen ← v

end if
end for
return chosen

8.1.4 Relative Neighborhood

While the Least Uncommon Neighbors heuristic selects a vertex based on trying to mini-
mize the absolute number of vertices in Right that becomes adjacent to a vertex in Left,
our next strategy, Relative Neighborhood, selects a vertex such that its ratio of neighbors
not inN(Left)∩Right relative to those which are already inN(Left)∩Right is kept low.

Generating Caterpillar Decompositions 73

More formally, for every vertex v ∈ N(Left) we partition each vertex w ∈ N(v)∩Right
into one of two sets: Internal(v) if w ∈ N(Left) and External(v) if w �∈ N(Left).
In Figure 8.2 Internal(v) and External(v) are labeled as I and E respectively. Our
heuristic then selects the next vertex v ∈ Right such that |External(v)|/|Internal(v)|
is minimized. This selection criteria is outlined in Algorithm 12.

Algorithm 12 : RelativeNeighborhood(Left,Right)

Input : A partitioning of V (G) into Left and Right
Output : A vertex from Right having the least Ratio
Minratio ← |Right|
for ∀v ∈ N(Left) do

Ratiov ← External(v)
Internal(v)

if Ratiov < Minratio then
chosen ← v

end if
end for
return chosen

With this criteria we want v to be adjacent to a large number of vertices that were
already in N(Left). Then a vertex u ∈ Left where N(u)∩N(Left) ⊆ N(v)∩N(Left)
will not create any new neighborhood together with v.

8.1.5 Greedy

Our final heuristic, Greedy, is outlined in Algorithm 13. This strategy tries all ver-
tices in Right and picks the one that gives the smallest boolean dimension when moved
to Left. The boolean dimension of the potential cuts are evaluated using the routine
CCMis(Left ∪ v) for the bipartite graph BG = (Left ∪ {v}, Right \ {v}, E(BG)) de-
scribed in Chapter 4. We note that although this strategy picks the locally best vertex
this might not be the globally best choice. Also, computing the boolean dimension
multiple times increases the running time.

Algorithm 13 : LeastCutValue(Left,Right)

Input : A partitioning of V (G) into Left and Right
Output : A vertex of Right which gives the least boolean dimension compared
when moved to Left
MinBooldim ← 2min(|Left|+1,|Right|−1)

for ∀v ∈ Right do
Booldimv ← CCMis(BG = (Left ∪ {v}, Right \ {v}, E(BG)))
if Booldimv < MinBooldim then
chosen ← v
MinBooldim ← Booldimv

end if
end for
return chosen

Generating Caterpillar Decompositions

8.1.6 Time complexity and implementation

To compute a linear ordering of a given graph G Algorithm 10 first tries to pick a
vertex according to one of the trivial rules. Rule 1 checks every vertex in Right hence
it needs time proportional to the size of the Right i.e. O(n) if |V (G)| = n. Rule 2
determines if two vertices u ∈ Left and v ∈ Right are twins by testing every pair
of vertices thus yielding a time complexity of O(n2). If no trivial rule succeeds, then
the selection criteria of one of the algorithms 11, 12, and 13 is used. This is done
O(n) times. Algorithm 11 selects a vertex in running time proportional to the size of
Right i.e. in time O(n). In addition to selecting a vertex in time O(n), Algorithm 12
has an extra operation of updating external and internal neighbors of all vertices in
N(Left). The time complexity for this is O(n). Therefore Algorithm 12 has a running
time of O(n2). The greedy heuristic in Algorithm 13 requires O(n) computations of
boolean dimension to select the next vertex. Therefore Algorithm 10 using Algorithm
13 will require O(n2) computations of boolean dimension, where computing the boolean
dimension is exponential in n. We have implemented vertex subsets as bitsets in Java
so that set operations such as union, intersections, and checking for containment of an
element in the set take constant time.

8.2 Experimental results

In the following we describe experiments performed to evaluate the heuristics presented
for computing a caterpillar decomposition. The programs are written in Java and com-
piled with javac version 1.6.0 30. These heuristics are mainly run on the benchmarks
graphs from TreewidthLIB [14] and the 2nd DIMACS challenge [39] that we have al-
ready used to assess previous boolean decomposition algorithms described in chapters 3
and 6. This includes graphs originating from various computational problems and real
life applications as described in Chapter 2.

There are several measures that can be used to compare the quality of the different
caterpillar decompositions. Some examples include:

1. The time taken by each heuristic to compute the vertex ordering and also the time
taken to compute the linear boolean width.

2. The value of the computed linear boolean-width of the corresponding caterpillar
decomposition.

3. The time taken by the subsequent dynamic programming algorithm that uses the
computed decomposition.

4. The total time required to compute the vertex ordering and the subsequent dy-
namic programming.

In the following experiments we will only consider items 1 and 2. In Chapter 9 we will
look at an application where we actually use the computed decompositions to solve other
problems. We have partitioned our experiments into two parts, the first is for graphs
having less than 300 vertices, while the second part is for graphs having more than 300
vertices. We do not include experiments for the Greedy heuristic for the larger graphs.

Generating Caterpillar Decompositions 75

This is because this heuristic requires O(n2) computations of boolean dimension for each
graph which took at least several minutes for graphs with more than 300 vertices.

The results for the small graphs are presented in tables 8.1 and 8.2. We ran experiments
on all graphs from TreewidthLIB having vertices less than 300. However the graphs
listed in tables 8.1 and 8.2 are selected in such a way that we have boolean-width upper
bounds from Algorithm 1 and Algorithm 9 as well as tree-width upper bounds for all
of these graphs. This will not only help us measure the relative performance of our
proposed heuristics, but also to compare boolean-width with tree-width.

The results from LeastUncommonNeighbor is labeled as O1, the results from
RelativeNeighborhood as O2, and LeastCutValue as O3. In Table 8.1 for O1

and O2 we report the time required to compute the ordering, T1, the time to compute
the linear boolean-width upper bound of the ordering, T2, and the sum of these, Total.
For O3 we report the total time, Total, as this includes both generating and computing
linear boolean-width upper bounds, lbw.

Table 8.2 lists statistics for the linear boolean-width upper bounds obtained from all
three ordering heuristics. Moreover, we report boolean-width upper bounds obtained
from Algorithm 1, BW-A1, and Algorithm 9, BW-A9. Tree-width upper bounds listed
in TreewidthLIB are also shown for the same set of graphs in Table 8.2 as TW-LIB. All
times are in seconds measured as the average of five runs. Algorithm 8, CCMis, de-
scribed in Chapter 4 has been used for computing the boolean-dimension.

Table 8.1: Running time of the heuristics on small graphs

O1 O2 O3

Graph V E T1 T2 Total T1 T2 Total Total
alarm 37 65 0.04 0.03 0.07 0.02 0.01 0.02 0.25
barley 48 126 0.03 0.05 0.08 0.03 0.04 0.07 0.43
pigs-pp 48 137 0.04 2.3 2.35 0.04 0.14 0.18 0.45
BN 100 58 273 0.06 10.32 10.38 0.03 7.93 7.97 7.1
eil76 76 215 0.06 0.52 0.58 0.07 1.07 1.14 1.65
david 87 406 0.06 1.41 1.47 0.03 0.1 0.14 2.22
1jhg 101 841 0.05 0.76 0.81 0.09 1.53 1.62 6.94
1aac 104 1316 0.1 22.99 23.09 0.09 113.95 114.04 118.41
celar04-pp 114 524 0.1 12.85 12.94 0.11 3.91 4.02 4.77
1a62 122 1516 0.08 7.2 7.28 0.11 12.81 12.93 108.08
1bkb-pp 127 1473 0.08 2.26 2.34 0.11 14.72 14.83 46.13
miles250 128 387 0.08 0.14 0.22 0.08 0.16 0.24 4.07
miles1500 128 5198 0.08 0.11 0.2 0.15 0.11 0.26 39.07
1dd3 128 1356 0.07 2.66 2.73 0.11 5.63 5.73 30.24
celar10-pp 133 646 0.08 1.41 1.49 0.11 1.86 1.97 9.03
anna 138 493 0.14 16.24 16.38 0.05 1.02 1.07 6.41
pr152 152 428 0.08 9.68 9.76 0.13 1.43 1.56 16.33
munin2-pp 167 455 0.08 1.2 1.28 0.19 0.1 0.28 13.46
mulsol.i.5 186 3973 0.08 1.18 1.26 0.09 0.33 0.42 34.36
zeroin.i.2 211 3541 0.11 0.35 0.46 0.06 0.06 0.11 15.92
boblo 221 328 0.08 2.18 2.26 0.09 0.01 0.1 3.14
fpsol2.i-pp 233 10783 0.13 3.29 3.42 0.17 2.02 2.19 222.26
munin4-wpp 271 724 0.15 0.8 0.95 0.23 0.88 1.11 105.52

Generating Caterpillar Decompositions

Table 8.2: Linear boolean-width upper bounds given by the heuristics on small graphs

Graph lbw1 lbw2 lbw3 BW-A1 BW-A9 TW-LIB
alarm 7.71 4.95 3 2.58 4 4
barley 7.9 6.54 6 4 6.95 7
pigs-pp 8.33 6.7 7.07 5.7 8.55 9
BN 100 9.72 8.05 12.07 10.06 15.92 21
eil76 8.95 6.52 9.22 7.17 13.9 14
david 9.15 7.21 7.03 5.32 9.84 13
1jhg 9.52 8.28 8.49 8.87 14.43 25
1aac 11.87 13.07 12.4 12.29 20.76 41
celar04-pp 9.34 8.08 9.6 7.29 11.79 16
1a62 11.1 11.24 11.85 13.62 24.78 37
1bkb-pp 10.17 9.98 9.98 11.55 19.72 30
miles250 8.97 7.66 4.7 4.95 14.33 9
miles1500 10.28 9.35 5.58 4.86 7.87 77
1dd3 10.32 9.05 9.82 11.68 24.14 31
celar10-pp 9.46 6.92 10.95 9.08 9.24 16
anna 10.39 7.19 8.2 6.67 9.77 12
pr152 9.55 7.77 10.36 6.7 13.81 13
munin2-pp 9.66 7.95 10.54 5.49 6.12 7
mulsol.i.5 7.53 8.25 4.81 4.95 5.17 31
zeroin.i.2 9.94 8.44 4.64 5.39 5.67 32
boblo 9.19 7.61 3.81 3.54 3.32 3
fpsol2.i-pp 8.1 6.73 5.78 4.91 11.68 66
munin4-wpp 10.52 9.61 9.27 9.98 7.6 8

As can be seen from the results in Table 8.1, for both O1 and O2, in almost all cases
it takes considerably more time to compute the linear boolean-width than to compute
the ordering. Comparing the total time of O1 and O2 it follows that it varies which
algorithm is the fastest, but on average O2 is the faster one. For the graph boblo O1 is
more than a factor of 20 slower than O2. O3 is as expected the slowest algorithm being
up to two orders of magnitude slower than the best of O1 and O2.

Comparing the boolean-width upper bounds in Table 8.2 the average distance from the
best upper bound for each graph is 60.68% for O1, 34.81% for O2, 24.55% for O3, 8.98%
for Algorithm 1, and 74.13% for Algorithm 9. The average ratio of TW-LIB to the
minimum boolean-width upper bounds for these graphs is 3.66, with a minimum ratio
of 0.9 and maximum of 15.8. Though O3 is the slowest among the three heuristics,
in terms of linear boolean-width upper bounds it performs better than O1 and O2.
Specifically for the 1∗ graphs related to protein structures lbwO3 is almost always lower
than BW-A1, which was obtained using local search over a greedy initialization.

Tables 8.3 and 8.4 give similar statistics as tables 8.1 and 8.2 but for a set of graphs
each containing more than 300 vertices. Boolean-width upper bounds from Algorithm 1,
(BW-A1) and Algorithm 9, (BW-A9) are not presented for these graphs as Algorithm
1 is computationally very expensive and Algorithm 9 is already outperformed by other
heuristics on the smaller graphs.

Generating Caterpillar Decompositions 77

Table 8.3: Running time of the heuristics on large graphs

O1 O2

Graph V E T1 T2 Total T1 T2 Total
link-pp 308 1158 0.12 1.72 1.84 0.28 77.3 77.58
diabetes-wpp 332 662 0.09 1.77 1.86 0.34 1.3 1.64
link-wpp 339 1194 0.12 1.99 2.11 0.37 28.39 28.76
celar10 340 1130 0.12 1.94 2.05 0.32 1.2 1.52
celar11 340 975 0.09 1.88 1.97 0.29 1.16 1.45
rd400 400 1183 0.14 6.68 6.81 0.6 5.05 5.65
diabetes 413 819 0.14 3.32 3.46 0.54 2.19 2.73
fpsol2.i.3 425 8688 0.13 3.3 3.44 0.26 1.85 2.1
pigs 441 806 0.15 2.98 3.13 0.48 2.29 2.78
celar08 458 1655 0.17 3.88 4.05 0.58 2.96 3.54
d493 493 1467 0.15 10.7 10.85 0.98 67.12 68.11
homer 561 1628 0.17 200.96 201.13 0.35 176.21 176.56
rat575 575 1699 0.17 11.33 11.49 1.8 21.54 23.34
u724 724 2117 0.32 22 22.31 3.1 67.52 70.62
inithx.i.1 864 18707 0.21 11.62 11.83 0.54 8.7 9.24
munin2 1003 1662 0.37 21.53 21.9 3.6 20.66 24.27
vm1084 1084 2869 0.49 64.72 65.21 13.58 198.71 212.29
BN 24 1819 4541 0.32 151.81 152.13 32.71 151.68 184.38
BN 25 1819 4541 0.34 151.87 152.21 32.42 151.29 183.71
BN 23 2425 6055 0.83 453.13 453.95 106.53 450.16 556.69
BN 26 3025 14075 0.81 386.3 387.11 84.85 380.35 465.21

Table 8.4: Linear boolean-width upper bounds given by the heuristics on large graphs

Graph lbw1 lbw2 TW-LIB
link-pp 34.81 28.68 13
diabetes-wpp 8.58 18.58 4
link-wpp 35 29.03 13
celar10 20.81 15 16
celar11 19.54 14.7 16
rd400 34.73 21.32
diabetes 29.32 19.32 4
fpsol2.i.3 15.87 8.92 31
pigs 24.04 18 9
celar08 24.95 15 16
d493 20.29 48.1
homer 36.22 28.49 31
rat575 16.48 37.23
u724 18.72 50.09 26
inithx.i.1 11.98 7.22 56
munin2 31.25 12.13 7
vm1084 15.21 48.95 23
BN 24 4.91 2.32 4
BN 25 4.64 2.32 4
BN 23 8.48 3.17 4
BN 26 6.98 2.32 4

Generating Caterpillar Decompositions

As can be seen from the results in Table 8.3, both for O1 and O2, in almost all cases
it takes considerably more time to compute the linear boolean-width than to compute
the ordering. Comparing the total time of O1 and O2 indicates that on average O1 is
the faster one. For the graph link-pp O2 is more than factor of 40 slower than O1. For
large graphs the average distance from the best total running time is 12.5% for O1 and
311.8% for O2.

Table 8.4 reports the linear boolean-width upper bounds corresponding to O1 and O2.
The average distances from the best upper bound is 58.8% for O1 and 36.6% for O2. The
average ratio of TW-LIB to the minimum of lbw1 and lbw2 for these graphs is 1.53. It
follows that for large graphs RelativeNeighborhood generates orderings with lower
width but at the cost of running time.

In [26] a new method is presented for computing the exact clique-width of graphs. This
is based on encoding the problems as a satisfiability instance (SAT) and then solving
these using a SAT solver. This approach is used on a set of random graphs as well
as some named graphs. We have already compared optimal clique-width and boolean-
width for graphs in Table 7.2. In Table 8.5 we compare the computed exact clique-
width cw from [26] with the linear boolean-width upper bound given by Algorithm 13
LeastCutValue .

Table 8.5: Comparing linear boolean-width upper bounds of graphs with exact clique-
width

Graph V E cw lbw3 T3

Petersen 10 15 5 5.32 0.01
Chavatal 12 24 5 4 0.1
Franklin 12 18 4 3.32 0.019
Frucht 12 18 5 3 0.019
Poussin 15 39 7 3 0.002
Clebesch 16 40 8 4 0.1
Hoffman 16 32 6 4.91 0.003
Shrikhande 16 48 9 5.17 0.07
Errera 17 45 8 4.58 0.046
Pappus 18 27 8 4.17 0.1
Robertson 19 38 9 4.09 0.12
Desargues 20 30 8 5.81 0.57
Flower snark 20 30 7 5.39 0.18
Folkman 20 40 5 4 0.003
Brinkmann 21 42 10 6.77 1.6
Kittell 23 63 8 4.75 0.1

It can be observed that for all of these graphs except one (Petersen), the linear boolean-
width upper bound is smaller than the exact clique-width. The average ratio of cw
to lbw3 for these graphs is 1.5, with a minimum ratio of 0.93 and maximum of 2.3.
We also note that the time needed to compute the linear boolean-width, even using
the greedy heuristic, is negligible, whereas the SAT approach for exact clique-width is
computationally expensive. As reported in [26] for a random graph with 20 vertices and
95 edges it took about 358 seconds only to generate the representative encoding for the
SAT solver on a 4-core Intel Xeon CPU.

Generating Caterpillar Decompositions 79

8.3 Other orderings

In addition to the three heuristics already mentioned, we have also tried other orderings
that did not prove successful. For completeness we list these here. The following two
criteria for picking the next vertex in Algorithm 10 were tested:

• Choose a minimum degree vertex.

• Choose a maximum degree vertex.

We have also unsuccessfully tried orderings based on other algorithms. These include:

• Nested dissection [61]: This is an ordering π = {v1, v2, . . . , v|V (G)|} on the vertices
of G = (V (G), E(G)), that strives to number vertices that make up a (preferably
small) separator S ⊆ V (G) of G first, with the added constraint that the remain-
ing components of G \ S should be of roughly equal size. This is then repeated
recursively for each connected component. One can also view a nested dissec-
tion ordering as an elimination tree [62]. We have used the graph partitioning
tool METIS [63] to generate this ordering. Similar orderings were also used in
Algorithm 8, CCMis.

• Minimum degree fill-in ordering: This ordering can be obtained by repeatedly
selecting the minimum degree vertex from the remaining subgraph and making
its neighborhood in the subgraph into a clique. We used this type of ordering in
Chapter 6 to generate tree decompositions.

• Degeneracy ordering: We have also tried using the degeneracy ordering of a graph
G as defined in Chapter 4, Section 4.1. Note that the degeneracy of a graph is a
measure of how sparse it is and has also been used by Eppstein et al. for counting
maximal cliques [59].

8.4 Conclusion

In this chapter we have designed and tested various heuristics to generate linear de-
compositions and studied their performance relative to previous suggested algorithms as
well as to tree-width and clique-width. Caterpillar decompositions are simple to gener-
ate and give a quick upper bound on the boolean-width of a graph. As the experiments
showed these orderings gave competitive upper bounds for boolean-width relatively fast
compared to the approaches described in chapters 3 and 6.

We have already seen in Chapter 5 that preprocessing rules help in reducing the input
graphs. Therefore designing preprocessing rules for caterpillar decompositions is an
issue to investigate in order to handle larger graphs. Our vertex selection heuristics are
rather general and not customized for specific structure of the given graph. Orderings
with a focus on the graph structure might also be favorable for linear decompositions of
relatively low width.

Chapter 9

Maximum Independent Set using
Caterpillar Decompositions

The main motivation for computing width parameters of graphs is to be able to solve NP-
hard problems on instances where the parameter is small. In the following chapter we will
solve the Maximum Independent Set problem (ISP) using the caterpillar decompositions
obtained from the algorithms developed in the previous chapter. To do this we must
also have an algorithm that solves the ISP based on the decomposition.

In [7] Bui-Xuan et al. presented a number of dynamic programming algorithms paramete-
rized by boolean-width. These algorithms traverse the rooted decomposition tree in a
depth first manner. For each node the algorithm builds up solutions on the subgraph
induced by vertices corresponding to the leaves of the processed subtree, with the final
solution being computed when all the vertices are processed.

For caterpillar decompositions one end of the linear ordering is set as the root such that
every internal node has a child that is a leaf. Thus in each step we are merging a larger
solution with that of a leaf. This simplifies the corresponding dynamic programing algo-
rithm. For instance, for the ISP the running time for a general boolean decomposition
tree of boolean width k is O(n2k22k), whereas for a caterpillar decomposition tree of
boolean width k′ one can solve the ISP in time O(n2k

′
). Thus if the linear boolean-

width is no larger than twice the boolean-width then this gives an indication that this
approach could be competitive.

The ISP can also be solved using other width parameters. For a value k of the cor-
responding width parameter, this includes tree-width in O∗(2k) time, branch-width in
O∗(2.28k) time, clique-width in O∗(2k) time, and rank-width in O∗(1.42k2) time. Similar
results also exists for other problems such as the Dominating Set problem.

In this chapter we give an FPT algorithm for the ISP parameterized by linear boolean-
width. Though linear boolean-width algorithms are implicit in the general algorithms
in [7], our proposed algorithm differs substantially on the information stored across the
cut. We evaluate the performance of our algorithm on a set of benchmark graphs.

Maximum Independent Set using Caterpillar Decompositions

9.1 Using a Linear Decomposition to solve the ISP

In the following we describe our dynamic programming algorithm for solving the ISP
based on a linear decomposition. This algorithm is a variation of the algorithm for
solving the ISP outlined in [7], using a general boolean decomposition. The current
algorithm is given as Algorithm 14. It traverses the vertices from left to right as given
by a linear decomposition (T, δ). All unprocessed vertices are kept in the set Right.
As they are processed, they are moved to the set Left. Initially Right = V (G) and
Left = ∅.
For each processed vertex, the algorithm maintains a set LN containing different unions
of neighborhoods of different independent sets in Left. One possibility could then be to
store the size of all the independent sets seen so far among the processed vertices. But
instead of doing this, if two independent sets have the same set of neighbors among the
unprocessed vertices, only the size of a largest one is kept. In this way the number of
different independent sets kept at any given time will never be higher than the number
of different unions of neighborhoods across the cut(Left,Right). It follows that we will
always have |LN | ≤ 2lbw(T,δ).

When processing a new vertex v we check how this vertex interacts with the stored
neighborhoods in LN . Let J be an element in LN . Then J represents an independent
set I in Left that is not explicitly stored. Instead we store the size of I in J.size and
the set N(I)∩Right in J.elements. We define an operator LN.update(J) that will add
J to LN if there is not already an entry with the same neighborhood as J.elements. If
such an entry already exists then the size value of this will be set to J.size if this is
smaller than its current value. To be able to easily iterate through the elements of LN
we place any updated element of LN in a new set New LN . When each element of LN
has been processed we set LN equal to New LN .

We now consider two cases depending on if the current vertex v is in J.elements or not.
Note that in either case v will be moved from Right to Left.

Case (1): If v ∈ J.elements then the independent set I that gave rise to J is still a
valid independent set in Left, but with N(I) = J.elements \ {v}. We therefore update
J.elements accordingly before reinserting J . Note again that the outcome of this update
operation is dependent on the already existing neighborhoods and their corresponding
independent sets.

Now if v /∈ J.elements then we must consider two cases depending on if v is added to I
or not.
Case 2(a): If v is not added to I then I is still an independent set in Left and
N(I) ∩Right remains unchanged. We therefore store J unchanged in New LN .
Case 2(b): If v is added to I then the size of I increases by one while N(I) also contains
N(v) ∩Right. We therefore update J accordingly before inserting it in New LN .

When the algorithm terminates LN will contain an empty neighborhood where the
corresponding J.size will be the size of the maximum independent set in the given
graph.

As an example of using Algorithm 14 consider the graph G in Figure 9.1.

Maximum Independent Set using Caterpillar Decompositions 83

b

c

a

e

f

d

Figure 9.1: A graph G

Let the linear ordering for V (G) be π = {a, b, c, d, e, f} and assume that the algo-
rithm has reached a stage when Left = {a, b, c} , Right = {d, e, f} and d is the
next vertex to be considered. For the cut({a, b, c}, {d, e, f}) the set LN will contain
{{∅, 0}, {{d}, 1}, {{d, e}, 1}, {{d, f}, 1}}. These four sets of Right correspond to the
neighborhoods and sizes of the independent sets {∅}, {a}, {b}, and {c} in Left re-
spectively. After the next vertex d has been processed then the set LN will contain
{{∅, 1}, {{e}, 1}, {{f}, 1}, {{e, f}, 1}}. These four sets of Right correspond to the neigh-
borhoods and sizes of the independent sets {a}, {b}, {c}, and {d} in Left respectively.

Algorithm 14 : MaxIS(G, π)

Input: π, a linear arrangement of V (G) of G = (V (G), E(G)) and G
Output: Size of the maximum independent set in G = (V (G), E(G))
Left ← ∅
Right ← V (G)
LN ← ∅
LN.update({∅, 0})
MaxIS ← 0
while Right �= ∅ do
v ← NextV ertex(π)
New LN ← ∅
for J ∈ LN do

if (1): v ∈ J.elements then
J.elements ← J.elements \ {v}
New LN.update(J)

else
// 2(a): v is not included in the current IS
New LN.update(J)
// 2(b): v is included in the current IS
J.size ← J.size+ 1
J.elements ← J.elements ∪ (NG(v) ∩Right)
MaxIS ←Max(MaxIS, J.size)
New LN.update(J)

end if
end for
Left ← Left ∪ {v}
Right ← Right \ {v}
LN ← New LN

end while
return MaxIS

Maximum Independent Set using Caterpillar Decompositions

9.1.1 Proof of correctness

Assume that vertices π(1) to π(i) have been processed and that LN has been filled
correctly. We show that after executing one more iteration of the while loop (v = π(i+1))
in Algorithm 14 the set LN will be filled correctly with the neighborhoods and sizes
corresponding to the independent sets (I) in Left.

To show this we consider how v interacts with all the neighborhoods stored in LN and
updates LN correctly for the next iteration. First we consider the neighborhoods in LN
containing v (Case 1). The independent sets having these neighborhoods will not be
affected by moving v from Right to Left and thus cannot result in larger independent
sets than already computed. Next we consider neighborhoods not containing v. If v
is not included in corresponding I (Case 2(a)) the new entry will be the same as the
previous entry in LN . Similarly, including v in I will increase the size of I by one while
expanding the neighborhood with NG(v) ∩ Right as well (Case 2(b)). To finish the
correctness proof, we need to show that if maxJ∈LN (J.size) = k then there exists an
independent set of size k in G. Note that only the operation in Case 2(b) can increase
the size of the largest independent set seen so far. Since LN has been filled correctly
for up to π(i) we have a new independent set in G with I ∪ {v} of size one larger than
the size of I.

9.1.2 Time complexity and implementation

The while loop in Algorithm 14 is executed O(n) times and loops over |LN | entries. In
each execution of this loop we must check if v is in J.elements or not. As vertex subsets
are implemented as bitsets, this is done in constant time. Whether an entry already
exists in LN is determined by searching the hashmap which stores LN . The amortized
time for searching in a hashmap is O(1) and adding new element is also a constant time
operation. The total runtime for Algorithm 14 is therefore O(n · |LN | · O(1)), hence
O(n2lbw(T,δ)) since |LN | ≤ 2lbw(T,δ).

Even though the basic principle of Algorithm 14 is the same as the one in [7], there
are some differences that allows us to speed up the computation. The algorithm in [7]
solves the ISP and stores the solution for all different unions of neighborhoods across
the cuts of the decomposition tree. This should be compared with Algorithm 14 that
only stores the neighborhoods where there actually exists a valid independent set across
the cut. Still, a linear boolean decomposition is more restricted than a general boolean
decomposition and will therefore most likely give a higher linear boolean-width.

One observation that can be made from Algorithm 14 is that it is not strictly necessary
that the linear order be precomputed before starting the algorithm. This opens up the
possibility of selecting the next vertex in each step in such a way that it can exploit
properties of the problem being solved. Besides using a precomputed ordering for the
ISP, we have also experimented with an approach where the next vertex v from Right
was selected as the one being present in the most number of neighborhoods in Right.
Since v cannot be combined with any independent set having v in their neighborhood,
this will be Case (1) and neighborhoods will be updated only by extracting v. In order
to find v according to this strategy we have to loop over the set LN and then for each
entry count the number of times each vertex appears. This increases the running time
of the while loop in Algorithm 14 by O(|LN | · |Right|).

Maximum Independent Set using Caterpillar Decompositions 85

9.2 Experimental results

In the following we describe experiments to compute the size of a maximum independent
set for a given graph using Algorithm 14. The machine configuration is as described in
Chapter 2 while the Algorithm has been developed in Java. To get orderings for the
algorithm we use the heuristics from Chapter 8. For input graphs we mainly use the
same benchmark graphs from TreewidthLIB [14] and the 2nd DIMACS [39] as we have
used in previous chapters.

We have partitioned our experiments into two parts, the first is for graphs having less
than 300 vertices, while the second part is for larger and denser graphs for the same
reason as described in Chapter 8. In tables 9.1 and 9.2 we present results using small
graphs from TreewidthLIB. We ran experiments on around 500 graphs and selected a
set of representative graphs having a good variety in the different reported measures.
These graphs are from different categories. Munin∗, diabetes, and BN∗ are from prob-
abilistic networks, celar∗ graphs are from frequency assignment, 1∗ graphs are from
protein structure, and pr∗ graphs originate from Delanay triangulations. The zeroin.i.∗,
inithx.i.1, and mulsol.i.∗ graphs are from the 2nd DIMACS implementation challenge
and are generated from a register allocation problem based on real code.

The results from Algorithm 14 using vertex orderings from LeastUncommonNeighbor

is labeled O1. Similarly the results from using RelativeNeighborhood is labeled O2,
and LeastCutValue is labeled as O3. Results for the runtime vertex selection ap-
proach is denoted by ORuntime. In order to compute the runtime order we keep track
of some additional statistics. For each vertex v in Right, i.e. the unprocessed ones,
we maintain the number of different neighborhoods that contain v. According to these
scores we pick the next vertex as one that is contained in the maximum number of
different neighborhoods in Right. For each of the algorithm we report the size of the
maximum independent set IS, the time needed to generate the ordering ,T1 and time
spent on the dynamic programming, TDP . We also include the summation of the time
spent by the heuristics and the dynamic programming, denoted by Total. Since DP
indicates the total time for the runtime selection approach we only report this time
for ORuntime. In this way it is possible to compare the total time spent on computing
the size of the maximum independent set for each graph for each heuristic. The linear
boolean-width (lbw) upper bound for each heuristic is also listed in tables 9.1 and 9.2.
For ORuntime we keep track of the order in which vertices are chosen to compute the
associated linear boolean-width upper bound.

Maximum Independent Set using Caterpillar Decompositions

Table 9.1: Comparing running times for Algorithm 14 using different orderings

O1 O2

Graph V E IS T1 TDP Total lbw T1 TDP Total lbw
BN 0-pp 67 243 21 0.001 0.38 0.381 16.53 0.003 0.078 0.081 15.47
BN 1-pp 74 340 21 0.004 0.29 0.294 17.98 0.008 0.054 0.062 17.92
huck 74 301 27 0.003 0.001 0.004 8.73 0.004 0.001 0.005 4.46
jean 80 254 38 0.003 0.003 0.006 8.64 0.003 0.001 0.004 5.81
david 87 406 36 0.001 0.008 0.009 10.46 0.004 0.001 0.005 9.33
celar02 100 311 34 0.002 0.007 0.009 9.32 0.008 0.001 0.008 7
miles1000 128 3216 8 0.014 0.002 0.016 8.74 0.02 0.001 0.021 9.07
anna 138 493 80 0.005 0.28 0.285 14.9 0.017 0.001 0.018 10.18
pr152 152 428 51 0.003 0.02 0.023 13.24 0.021 0.006 0.027 10.48
1g3p 185 2221 28 0.018 0.18 0.198 15.65 0.053 0.003 0.056 16.11
mulsol.i.2 188 3885 90 0.014 0.003 0.017 7.54 0.029 0.001 0.03 8.25
1cuk 189 2404 27 0.014 0.05 0.064 15.43 0.052 0.025 0.077 16.97
celar08-pp 189 1016 43 0.009 0.02 0.029 13.72 0.039 0.003 0.042 10.86
mulsol.i.1 197 3925 100 0.011 0.002 0.013 7.26 0.032 0.002 0.034 7.01
celar03 200 721 64 0.012 1.46 1.472 17.49 0.054 0.001 0.055 9.44
celar05 200 681 66 0.009 0.59 0.599 16.92 0.048 0.002 0.05 9.11
zeroin.i.1 211 4100 120 0.015 0.001 0.016 7.15 0.028 0.001 0.029 4.58
tsp225 225 622 73 0.01 0.03 0.04 12.25 0.083 0.11 0.193 16.99
fpsol2.i.1-pp 233 10783 63 0.056 0.005 0.061 8.14 0.049 0.003 0.052 7.1
munin4-wpp 271 724 101 0.013 0.006 0.019 9.64 0.122 0.003 0.125 9.78
a280 280 788 90 0.088 0.03 0.118 12.11 0.237 0.25 0.487 18.81
pr299-pp 286 828 92 0.011 0.19 0.201 14.53 0.174 0.026 0.2 15.84

Table 9.2: Comparing running times for Algorithm 14 using different orderings

O3 ORuntime

Graph T1 TDP Total lbw TDP lbw
BN 0-pp 10.166 0.034 10.2 13.58 0.091 17.51
BN 1-pp 47.675 0.062 47.737 15.01 0.16 18.5
huck 0.92 0.001 0.92 3.91 0.002 5.29
jean 1.211 0.001 1.211 4.7 0.001 6.75
david 2.632 0.002 2.634 7.12 0.001 8.41
celar02 2.922 0.001 2.923 6.39 0.001 6.58
miles1000 41.037 0.002 41.039 7.03 0.011 9.82
anna 13.57 0.001 13.571 10.02 0.008 12.28
pr152 17.833 0.006 17.839 10.36 0.03 15.58
1g3p 398.385 0.004 398.389 13.91 2.342 25.61
mulsol.i.2 71.776 0.001 71.777 4.81 0.004 8.82
1cuk 552.521 0.005 552.526 14.9 1.002 20.15
celar08-pp 32.675 0.007 32.682 10.95 0.063 13.61
mulsol.i.1 56.602 0.001 56.603 4.7 0.004 7.16
celar03 35.74 0.003 35.743 10.07 0.007 9.91
celar05 39.349 0.003 39.352 9.09 0.005 9.86
zeroin.i.1 54.73 0.001 54.731 3.32 0.008 7.14
tsp225 72.797 0.027 72.824 12.45 1.361 20.24
fpsol2.i.1-pp 343.975 0.003 343.978 5.78 0.009 6.32
munin4-wpp 100.178 0.004 100.182 9.27 0.018 11.67
a280 146.531 0.02 146.551 11.64 0.532 18.02
pr299-pp 174.346 0.012 174.358 9.95 0.497 17.85

Maximum Independent Set using Caterpillar Decompositions 87

For O1 and O2 the ordering generation time is comparatively smaller but the value of
lbw is higher compared to O3. It can be noted that for O3 the total running times
are higher than other approaches due to the greedy vertex selection. For this reason,
despite spending less time on the DP compared to the other approaches, we did not use
O3 for larger graphs. From the results in tables 9.1 and 9.2 it can be calculated that for
the total running time the average distance from the best algorithm for each graph is
1852% for O1, 312% for O2, 594598% for O3, and 439% for ORuntime. We can therefore
conclude that O2 and the runtime selection performs better than the other heuristics in
terms of combined running time for the selected set of graphs. If we exclude the time for
T1 and only compare the dynamic programming time, then the average distances from
the best algorithm is 9812% for O1 , 100% for O2, 30% for O3, and 5307% for ORuntime.

2 4 6 8 10 12 14 16 18 20 22
−10

−8

−6

−4

−2

0

2

Linear boolean−width(lbw) of generated orderings

Lo
g

(T
im

e(
se

c)
 fo

r
A

lg
or

ith
m

 1
4

(D
P

))
 u

si
ng

 v
er

te
x

or
de

rin
gs

Log(DP) time using O

1

Log(DP) time using O
2

Log(DP) time using O
3

Log(DP) time using O
Runtime

Figure 9.2: Logarithm (base 2) of the time required for dynamic programming for
different orderings

In Figure 9.2 the logarithm base 2 of the time required for the dynamic programming
is plotted against the linear boolean-width of the corresponding ordering for the graphs
listed in Table 9.1. As can be observed from the above figure the logarithm of the DP
time increases linearly with the lbw. This complements the running time from Section
9.1.2.

For the set of small graphs, O2 and runtime ordering performed relatively better than
O1 and O3 in terms of total running time. Therefore we compare O2 and ORuntime for a
set of larger and denser graphs. For this comparison we have used graphs from the 2nd
DIMACS challenge [39]. We have selected instances for which the exact or approximate
size of the maximum clique has been reported. From this set we tested on graphs having
between 300 and 1035 vertices and report results for those which did not run out of
memory due to the size of LN . Similar measures are reported as in tables 9.1 and 9.2.
But as the lbw computation takes at least several hours for some of these graphs we
have not calculated this value. Instead we list the maximum size of the set LN .

Maximum Independent Set using Caterpillar Decompositions

Table 9.3: Comparing running times for Algorithm 14 using different orderings for
the 2nd DIMACS graphs

O2 ORuntime

Graph V E IS T1 TDP Total |LN | TDP |LN |
p hat300-3 300 33390 9 0.3 0.96 1.25 21436 7.1 20301
MANN a27 378 70551 3 0.26 0.03 0.3 30 0.3 145
brock400 3 400 59681 7 0.7 1.9 2.6 32111 33.6 34729
San400 0.9 1 400 71820 5 0.58 0.94 1.52 747 20 757
San400 0.7 1 400 55860 11 0.7 0.05 0.75 16179 1 20127
johnson32-2-4 496 107880 31 1.2 0.07 1.3 840 7 3229
C500.9 500 112332 5 1.5 0.34 1.85 3202 7 3521
c-fat500-1 500 4459 40 0.73 0.002 0.73 6 0.03 6
c-fat500-10 500 46627 4 0.5 0.012 0.52 6 0.04 6
c-fat500-5 500 23191 8 0.6 0.006 0.6 6 0.04 6
p hat700-3 700 183010 10 3.9 82.8 86.7 756052 1133 674885
keller5 776 225990 31 5.04 20.3 25.34 109753 1310 351350
C1000.9 1000 450079 6 12 4.2 16.2 20863 200.5 22591
hamming10-2 1024 518656 2 12.5 0.21 12.7 513 7.3 514
MANN a45 1035 533115 3 5.85 0.17 6.02 48 5.1 376

Looking at the total run times in Table 9.3 the average distance from the best algorithm
for each graph is 340% for O2 and 734% for ORuntime. If we exclude the time for T1 and
only compare the time spent on dynamic programming, then the average distance from
the best algorithm is 19% for O2. Similarly, excluding the time for vertex selection the
average distance from the best algorithm is 29% for ORuntime. It can also be noted that
|LN | is almost always smaller for O2 than for ORuntime. From the above experiments in
can be remarked that even though LeastCutValue on small graphs takes much longer
time than the other orderings, it pays of while doing dynamic programming. If the
total running time is the main concern then O2 performs better than other strategies for
both the smaller and larger graphs. O2 takes moderate time for generating the ordering
and Algorithm 14 using O2 also outperforms other approaches in terms of DP time.
Moreover, it is applicable for larger graphs. It follows that based on the graph sizes and
the available computation time one can alternate among different vertex orderings to
get the best possible result.

9.3 Conclusion

As the experiments show, using dynamic programming along a caterpillar decomposition
can be an alternative for solving NP-hard problems such as ISP. Which ordering strategy
to use depends on the type of graph and the problem being solved, but it seems to be
a good idea to tailor the strategy to the particular problem. The main drawback that
we have experienced with this approach is that we sometimes run out of memory. This
is because we have to store a large number of neighborhoods across each cut. For some
graphs we ran out of memory when the number of different neighborhoods was larger
than 230. In this case even if the graph has 100 vertices, the implementation is in the
worst case handling a list of neighborhoods of size 100 ∗ 230 bits. This is 16 GB of
memory and is more than we had available. Moreover, during the computation we look

Maximum Independent Set using Caterpillar Decompositions 89

up in LN if a particular neighborhood already exists or not. Though the amortized time
for searching elements in a hashmap is O(1), it might require more time when LN gets
larger. It would also be of interest to find more memory efficient methods to store the
neighborhoods.

We note that the approach in Algorithm 14 can easily be extended to general boolean
decompositions to exploit issues such as connectedness of the underlying graph, prepro-
cessing, and other techniques to speed up the computation. This has not been done in
our current implementation but we will expand further on this issue in the next chapter.
We have also implemented an algorithm from [7] for the ISP using a general decomposi-
tion tree. As this was done using a different underlying graph data structure we do not
report the results. Although lbw of a caterpillar decomposition is the maximum boolean
dimension over all cuts, Figure 9.2 shows the exponential trend in the running time of
the given algorithm. Therefore it is of key importance that we look for orderings with
as low linear boolean-width as possible. Moreover, if we spend more time to generate
an ordering of low width, it can be reused for other dynamic programming algorithms
parameterized by linear boolean-width.

Chapter 10

Maximum Independent Set using
Branch-and-Bound

As we saw in Chapter 9 dynamic programming on linear decompositions can be used to
efficiently solve the Maximum Independent Set problem (ISP) on a number of graphs.
In order to test how good this approach is we now present and compare it to a branch-
and-bound algorithm for the same problem. This algorithm is based on many of the
same ideas that were used for developing CCMis in Chapter 4.

10.0.1 Background

ISP is an NP-hard optimization problem and is also complementary to the Maximum
Clique problem that asks for the size of the largest clique in a graph. The relationship is
that if a vertex set S is a solution to ISP on G then S is also a solution to the Maximum
Clique problem on G, where V (G) = V (G) and where two vertices in G are adjacent if
and only if they are not adjacent in G. Thus both solutions and algorithmic techniques
that applies to one of these problems also applies to the other. If S is a solution to ISP
then V \ S is also a minimum vertex cover in G, that is a minimum subset of vertices
such that each edge of G is incident on at least one vertex in the set.

The fastest exact algorithm for ISP on general graphs was given by Robson [85] and
has a running time O(1.1888n). Fomin et al. [86] subsequently applied the Measure and
Conquer technique to the analysis of a very simple backtracking algorithm obtaining a
time bound of O(1.2209n). This is competitive with the so far best time bounds achieved
by more complicated algorithms and analysis. A significant amount of work has also
been done for sparse graphs [87]. These algorithms are all search-tree based using a
branch and reduce paradigm along with a set of reduction and branching rules.

For some classes of graphs, including claw-free graphs and perfect graphs, ISP can be
solved in polynomial time [88]. In general, ISP cannot be approximated to a constant
factor in polynomial time (unless P=NP). However, there are efficient approximation
algorithms for restricted classes of graphs, such as planar graphs and graph families
closed under taking minors [89, 90].

In addition to the improvement in the theoretical running times for solving ISP/Clique,
there has also been a substantial amount of experimental work to solve these problems

Maximum Independent Set using Branch-and-Bound

using search based heuristics. Most of this work has focused on the Clique problem.
This includes a series of papers by Tomita et al. [57, 91–93]. A recent computational
study and comparison of several algorithms for the Clique problem can be found in [94].
This paper also contains a summary of previous work on the Clique problem. Even more
recent work is presented in [95, 96].

In the following we present an algorithm for solving ISP using the classical branch-
and-bound approach. We employ a number of well known techniques to limit the search
space. The main difference compared to previous implementations for ISP (or the Clique
problem) is that our algorithm exploits connectedness. This is similar to Algorithm 8
from Chapter 4 that selects vertices for branching so that the remaining graph would
more likely become disconnected. A variation of this idea was also proposed by Lipton
and Tarjan [60] in the setting of planar graphs, but as far as we know has never tested
experimentally.

We have conducted experiments using various benchmark graph data sets, including
graphs from the 2nd DIMACS challenge [39] and the Florida Sparse Matrix library [97].
We also present comparisons with some recent Maximum Clique algorithms [95, 96] as
well as the dynamic programming approach from Chapter 9.

10.1 Our algorithm

Consider a graph G on which we wish to solve ISP. Then one can branch on any vertex v
obtaining two possible sets of solutions, those that include v in the current IS and those
that do not include v. This observation lies at the bottom of all branching algorithms
for ISP. The main difference between algorithms lies in the order in which vertices are
selected and which pruning rules are used to discard infeasible solutions.

Thus a branch-and-bound algorithm will incrementally build up an IS of G by selecting
or discarding vertices one by one from a candidate set P . Initially this set includes
all vertices in V (G). If a vertex is not to be in the current IS then it is moved from
P to a set X, indicating that this vertex will not be considered again in the current
branch. Once P is empty the current IS cannot be expanded further and the algorithm
backtracks and explores the remaining branches.

Our algorithm follows the basic branching strategy creating two branches for every
selected vertex v, one where v is in the current IS and one where it is not (i.e. v is
placed in X). We note that other strategies are possible, for example the algorithm by
Tomita [57] will select a vertex v and then create one branch for every vertex in N [v],
the intuition being that for a maximal IS at least one vertex in N [v] must be included.

Before going into the details of the algorithm we first point out some simple reduction
rules that we employ to simplify a given instance.

10.1.1 Preprocessing/reduction rules

There exists a number of well known preprocessing rules for reducing an instance of
ISP/Clique/Vertex cover [98]. In our algorithm we employ the following ones:

Maximum Independent Set using Branch-and-Bound 93

1. Singleton: Include any vertex v of degree 0 in the IS and remove v from G.

2. Pendant: Include any vertex of degree 1 in the IS and remove all vertices in N [v]
from G.

3. Simplicial: If N [v] induces a clique in G then include v in the IS and remove N [v]
from G.

4. Neighborhood subset: If ∃v, w ∈ P : NG[v] ⊆ NG[w] then remove w from G.

5. Path: If ∃u, v ∈ P both of degree 2 such that {u, v} ∈ E(G) then remove u and
v from G and increase the IS count by 1. In addition, add the edge {x, y}, where
x ∈ ((N(u) \ v) and y ∈ (N(v) \ u).

Any vertex found to satisfy Rule 3 is said to be simplicial. Note that Rule 3 covers rules
1 and 2 as special cases. We still choose to include these as separate rules as they are
simpler and easier to check for during computation. The intuition for Rule 3 is that at
least one vertex in N [v] has to be included in a maximal IS and then v is the one that
restricts the current solution the least.

The motivation for Rule 4 is that any IS that includes w can be transformed by replacing
w with v in the IS without decreasing the size of the solution. To see this consider a
solution that includes w, then clearly no vertex in either N [v] \ w or N(w) \N(v) can
be in the solution. But replacing w with v in the IS maintains the size of the current
solution and possibly allows for vertices from N(w) \N(v) to be included in the IS.

Figure 10.1 outlines the actions taken in Rule 5. The idea behind this rule is that there
will always exist an optimal solution that includes either u or v. To see this consider a
solution that neither includes u nor v. To be maximal this solution must include both x
and y. But then we can replace x with u (or y with v) and get a less restrictive solution
of the same size.

u v

yx

Figure 10.1: Degree 2 vertex reduction

We apply all of these rules initially before starting the main recursive algorithm. The
rules are applied iteratively until no further rule is applicable. During the execution of
the algorithm we also check if Rule 3 can be applied but only for vertices of degree at
most two, thus including rules 1 and 2.

10.1.2 The recursive algorithm

In the following we outline the structure of the main recursive procedure. We note
that this strongly resembles Algorithm 8 from Chapter 4. The current version of the

Maximum Independent Set using Branch-and-Bound

algorithm only computes the size of the largest IS, but it would be straight forward to
return the actual vertices as well.

The algorithm considers the vertices in some linear order. Initially this order contains
all vertices in G but as the algorithm progresses vertices are removed from G. We keep
track of the remaining vertices that can be included in an IS by maintaining a set of
active vertices P . In addition we maintain a set X of vertices that explicitly cannot be
included in the current IS.

For each considered vertex v the algorithm makes two recursive calls, one where v is
included in the IS and where all vertices in N [v] are removed from P and X, and
one where v is excluded from the solution and thus moved from P to X. When the
algorithm backtracks from these two calls, v will again be placed in P before returning.
Throughout the computation the algorithm maintains the size of the largest IS seen so
far.

To avoid having to test every possible configuration it is important to be able to cut of
branches of the computation if they cannot lead to a solution better than the current
best one. We do this in several ways. At the start of the recursive procedure we first
test if there is a vertex in X that is not adjacent to any vertex in P . If this is the case
it follows that the current solution cannot be expanded to a maximal IS and therefore
neither to a maximum IS.

We compute upper and lower bounds on the size of the largest IS in P . The lower bound
is computed by running a greedy IS algorithm on the vertices in P . This selects vertices
in P as long as they are not adjacent to any previously selected vertex. Thus the number
of vertices already included in the current IS plus the size of the greedily selected set
gives a possible solution. If this is larger than the largest IS seen so far, we update this
accordingly.

For the upper bound we use a clique cover. This is a partition of the vertices in G
into disjoint subsets such that the vertices in each set induces a clique in G. Then it
follows that an IS can at most include one vertex from each such set. Thus the number
of sets for any clique cover gives an upper bound on the maximum IS in G. To avoid
having to compute a clique cover for every recursive call, we instead do this before the
first time the recursive routine is called but after the initial reduction rules have been
applied. This is done using a greedy algorithm. Then during the recursive computation
we keep track of the number of cliques that still have vertices left in P . It follows that
the current solution cannot be expanded by more than this number. Thus if the size
of the current solution plus the number of remaining cliques is not larger than the best
solution seen so far, then the current solution cannot be expanded to a new optimal
solution and we return from the current call. Also, if the number of remaining cliques
is equal to the lower bound given by the greedy IS algorithm, then the greedy solution
must be optimal and there is no need to pursue the current branch further. The idea of
using a clique cover for the ISP problem is equivalent to the use of a vertex coloring for
the Clique problem [94].

The final technique we use is to test at each level of recursion if G[P ∪X] is connected.
We do this using a linear depth first search through G[P ∪ X]. If this graph is not
connected then the recursive procedure is called once for each connected component to
compute the size of its maximum IS. As each component is treated individually it should
be possible to get tighter upper and lower bounds in this way. Also, we expect the sum

Maximum Independent Set using Branch-and-Bound 95

of the processing times for each component to be less than if the graph is treated as a
whole. Still, testing for connectedness comes at a cost. Thus it is not immediately clear
if the overall contribution of this approach will be positive.

Note that throughout the computation we maintain the current degree of each vertex
in order to easily check if we can apply the simplicial reduction rule on any vertex of
degree at most two.

The algorithm is given as Algorithm 15: MaxIS() and is initially called with
MaxIS(V, ∅, 0, 0). The two first parameters P and X have already been described.
The third parameter SolutionSoFar gives the size of the current IS computed prior to
this call while the fourth parameter RemainingUpperBound gives an upper bound on
the largest IS that can be found in other connected components apart from the current
one that is being processed.

Initially, a series of tests are made to check if this is a trivial case where we immediately
can determine the outcome. Whenever it is found that it is not possible to compute a
solution larger than the current best lower bound the algorithm will return a value of
−∞. We are assuming that there is a global variable GlobalBest where we will keep the
current best lower bound.

Next, if G[P ∪ X] is disconnected the algorithm starts processing the different con-
nected components. To do this we first compute upper and lower bounds for each
component using the number of cliques each component intersects with and a greedy
IS algorithm, respectively. We also accumulate all the upper bounds in a variable
NewUpperBound. When processing a specific component this variable will contain
an upper bound on all other unprocessed connected components. Note that this also
includes components not visible on the current level of recursion. Next, the size of a
maximum IS of each component is computed recursively. While doing this we accumu-
late the size of this IS in the variable CurrentSolution. Note that the upper bound
on the unprocessed components is decremented accordingly for each component. Also,
we can avoid the recursion if the lower and upper bounds of a component are equal. If
it should become evident that the current solution cannot lead to a new better global
solution (by a return value of −∞) the current call immediately exits.

If the current graph is connected then a vertex v is selected to branch on. Two branches
are created, one where v is in the current solution and one where it is not. For each of
these, new sets for P and X are computed before the routine TestConfig is called.
This is given as Algorithm 16. TestConfig first removes any simplicial vertices of
degree at most 2 (using Algorithm 17) before computing upper and lower bounds for
the current graph. The lower bound is then used to test if we have a new better global
solution (where the best solution is stored in GlobalBest). If the solution given by the
lower bound is optimal or if there are not sufficient vertices left that a new better global
solution can be reached the algorithm returns. If this is not the case then a new recursive
call to MaxIS is made to continue solving this component.

Maximum Independent Set using Branch-and-Bound

Algorithm 15 : MaxIS(P,X, SolutionSoFar,RemainingUpperBound)

Input: Two vertex sets P and X, the size of the IS found so far, and an upper bound
on the optimal IS of other connected components than the current one.
Output: Size of the maximum IS in G[P ∪X] containing only vertices from P , −∞
if this cannot be expanded to a new optimal solution.

if P ∪X = ∅ then
return 0

end if
if ∃w ∈ X with no neighbor in P then
return −∞

end if
if |P | = 1 then
return 1

end if

if G[P ∪X] is disconnected then
NewUpperBound = RemainingUpperBound
for each connected component CCi(Vi, Ei) of G[P ∪X] do

UpperBoundi ←RemainingCliques(Vi)
LowerBoundi ←GreedyIS(Vi)
NewUpperBound ← NewUpperBound+ UpperBoundi

end for

CurrentSolution ← 0
for each connected component CCi(Vi, Ei) of G[P ∪X] do
NewUpperBound ← NewUpperBound− UpperBoundi
if UpperBoundi = LowerBoundi then

CurrentSolution ← CurrentSolution+ UpperBoundi
else
CurrentSolution ← CurrentSolution+
MaxIS(Vi ∩P, Vi ∩X,SolutionSoFar+CurrentSolution,NewUpperBound)

end if
if CurrentSolution = −∞ then

return −∞
end if

end for

return CurrentSolution
end if

Select a vertex v ∈ P to branch on
InP = P \NG[v]
InX = X \NG(v)
CurrentSolution ← 1
InTotal = TestConfig(InP, InX, SolutionSoFar, CurrentSolution,
RemainingUpperBound)

OutP = P \ {v}
OutX = X ∪ {v}
CurrentSolution ← 0
OutTotal = TestConfig(OutP,OutX, SolutionSoFar, CurrentSolution,
RemainingUpperBound)

return max{InTotal, OutTotal}

Maximum Independent Set using Branch-and-Bound 97

Algorithm 16 : TestConfig(P,X, SolutionSoFar, CurrentSolution,
RemainingUpperBound)

Input: Vertex sets P and X, various bounds as explained in the text.
Output: The size of a maximum IS in G[P], −∞ if this cannot be expanded to a
new optimal solution.

CurrentSolution ← CurrentSolution+ Reduce(P,X)
UpperBound ←RemainingCliques(P)
LowerBound ←GreedyIS(P)
GlobalBest ← max(GlobalBest, SolutionSoFar+CurrentSolution+LowerBound)
if UpperBound = LowerBound then
return CurrentSolution+ UpperBound

end if
if GlobalBest ≥ SolutionSoFar + CurrentSolution + UpperBound +
RemainingUpperBound then
return −∞

end if
return CurrentSolution+
MaxIS(P,X, SolutionSoFar + CurrentSolution,RemainingUpperBound)

Algorithm 17 : Reduce(P,X)

Input: Vertex sets P and X.
Output: Number of vertices included in the IS by reduction rules. Updated sets P
and X.

NrIncluded ← 0
while ∃v ∈ P such that deg(v) ≤ 2 and v is simplicial in G[P] do
NrIncluded ← NrIncluded +1
P ← P \N [v]
X ← X \N(v)

end while
return NrIncluded

10.1.3 Vertex ordering

The only design issue that remains to specify is in what order vertices are selected to
branch on. This is a crucial decision in any branch-and-bound algorithm as obtaining
good solutions early on in the computation can allow for more pruning later on. We
have experimented with a number of different orderings, including the following.

• Process vertices according to a nested dissection ordering on the original graph.
Then when the vertices of a separator have either been included in the current IS or
removed, the remaining graph will be disconnected. To avoid that vertices placed
in X maintain the connectedness it is possible to first branch on all neighbors of
a vertex from the current separator that has been placed in X. This is similar to
what was done in Algorithm CCMis.

Maximum Independent Set using Branch-and-Bound

• Order the vertices according to the initial clique cover, with vertices in larger
cliques coming before vertices in smaller cliques. Then when a vertex is selected
to be in the IS the rest of the vertices in its clique gets removed.

• Order vertices based on a nested dissection ordering of the clique graph H. This
graph is constructed by replacing each clique from the original clique cover on G
by a node in H. Two nodes in H are adjacent if the corresponding cliques contains
a vertex each that are adjacent in G. The vertices of each clique would then be
ordered consecutively, but the order between the cliques would be determined by
the nested dissection ordering on H. The intuition behind this ordering is that
one can at most select one vertex from each clique and whenever a vertex from
each of the nodes of the first separator in H has been included in the current IS,
then the remaining graph of G must be disconnected.

10.1.4 Experimental results

In the following we describe experiments performed on Algorithm 15: MaxIS.

We use the same machine configuration as described in Chapter 2. The algorithm has
been implemented in C and each reported timing is given in seconds and is the average
of five runs. For these experiments we use graphs from TreewidthLIB [14], the Florida
Sparse Matrix collection [97], the DIMACS challenge [39], and from BHOSLIB [40].
TreewidthLIB and the Florida Sparse matrix collection include graphs from various
computational problems and real life applications as described in Chapter 2. From the
DIMACS challenge we have chosen graphs that were also used in [95, 96] to facilitate
comparison. The BHOSLIB graphs are also chosen as they have been used [96].

Among the different vertex orderings we have tried, we found that in almost all cases
it was most efficient to order the vertices according to the initial clique cover, with
vertices belong to large cliques being processed before vertices of smaller cliques. This
consistently outperformed all versions where the graph was ordered according to some
nested dissection ordering, either on G itself or on the clique meta graph. For this reason
we only present results using the clique ordering and report timings where the only
variation is whether we employ the discovery and processing of connected components
or not.

As there is very little experimental work on solving ISP we instead compare our results
with those from computing the maximum clique in a graph. To do this we first take the
complement of the considered graph before applying our algorithms. As we did not have
access to the code we make comparisons with what is reported in the papers. For this
reason one should not read too much into the relative numbers. All processors involved
are Nehalem based Xeon processors from the same generation. Also, in many cases a
problem is either solved rapidly or not solved at all. Thus these comparisons mainly
show if our algorithm is in the correct ballpark or not.

The time required for preprocessing, identifying connected components, and checking
for branches that can be pruned was negligible compared to the total branching time
and never more than 10% of the total time. To see the effect of disconnectedness on
the total running time we therefore report the total time of Algorithm 15 including,
WithCC and excluding, WithoutCC connected component part.

Maximum Independent Set using Branch-and-Bound 99

Our first set of experiments is a comparison with the work done in [96]. This presents a
parallel branch-and-bound algorithm for the maximum clique problem. The algorithm
processes the vertices by non-increasing vertex degree and uses a graph coloring to bound
the search (in a similar way as using a clique cover for ISP). It is also optimized to use
bit-set encoding. Experiments are performed on a set of DIMACS graphs [39] and graphs
from BHOSLIB [40]. For the experiments they used a computer with two 2.4 GHz Intel
Xeon E5645 processors, with a total of at most 12 threads (24 with hyper threading).

Algorithm 15 did not finish within 60 minutes on any of the complemented DIMACS
graphs. We note that the running times reported in [96] for these graphs varies from
seconds to several weeks. The results from running Algorithm 15 on the graphs from
BHOSLIB are given in Table 10.1. These graphs were not reduced during the initial
preprocessing step. We also show timings from [96], both when running on a single
thread and also when using 24 threads. For all of these graphs the dynamic programming
approach from Chapter 9 ran out of memory. For each graph we report the size of the
maximum independent set in the column labeled IS.

Table 10.1: Comparing Algorithm 15 with the algorithm of McCreesh et al.

MaxClique from [96] Algorithm 15
Graph V E IS Single thread 24 threads WithCC WithoutCC
Frb30-15-1 450 17827 30 657.1 35.5 167 118
Frb30-15-2 450 17874 30 1183.1 65.8 456.8 339
Frb30-15-3 450 17809 30 356.7 19.5 289.1 190
Frb30-15-4 450 17831 30 1963.2 124.4 45 32
Frb30-15-5 450 17794 30 577.1 42.1 520 354
Frb35-17-1 595 27856 35 51481.7 2532 896 448
Frb35-17-2 595 27847 35 91275 5677.3 3718 1665
Frb35-17-3 595 27931 35 33852.1 2349.3 1537 571
Frb35-17-4 595 27842 35 37629.2 2196.1 1232 348
Frb35-17-5 595 28143 35 205356 10363.4 6728 3702

From the results in Table 10.1 it can be observed that the running time of Algorithm
15 is lower if we omit checking for connected components. This indicates that these
graphs do not disconnect well. Comparing the results with those from [96] we see that
Algorithm 15 without checking for connected components, is always faster than the
sequential algorithm from [96] and in many cases it is faster than the parallel algorithm
using 24 threads. We believe that this is due to that Algorithm 15 is able to compute
good upper and lower bounds and thus to prune more of the computation. We note that
obtaining the lower bound on the fly comes at a cost as we compute a greedy IS in each
recursive step of the algorithm.

Our next set of experiments consists of a set of graphs from the DIMACS challenge [39]
on which Pattabiraman et al. [95] were unsuccessful in computing the maximum clique
size. In their studies they used a sequential branch-and-bound code particularly suited
for sparse graphs and running on a 2.00 GHz Intel Xeon E7540 processor. We note
that there is no overlap between the DIMACS instances from [96] and those in [95]. We
believe that this might be due to [96] omitting instances where their code did not use
enough time to warrant using a parallel algorithm. The data from the experiments is
given in Table 10.2. Note that all reported graph statistics are on the complemented
graphs.

Maximum Independent Set using Branch-and-Bound

Table 10.2: Running times for Algorithm 15 on a set of graphs from the 2nd DIMACS
challenge

Algorithm 15
Graph V E IS Density WithCC WithoutCC
brock200 1 200 5066 21 0.25 631 1560
san200 0. 1 200 5970 30 0.3 1.5 975.9
hamming8-2 256 1024 128 0.03 < 0.01 < 0.01
hamming8-4 256 11776 16 0.36 202 306.3
MANN a27 378 702 126 0.01 55.1 40
p hat500-2 500 61804 36 0.5 3000 > 10000
c-fat500-5 500 101559 64 0.81 < 0.01 < 0.01
hamming10-2 1024 89600 512 0.17 < 0.01 < 0.01

From the results in Table 10.2 it can be observed that the running time of Algorithm 15
increases if we omit checking for connected components except for the graph MANN a27.
We also tried the dynamic programming approach for the graphs in Table 10.2. Using
vertex orderings from Algorithm 12 Algorithm 14 took 0.12 seconds for the graph c-
fat500-5 and 258.4 seconds for the graph hamming8-4. For the rest of the graphs it
ran out of memory. Note that for these two graphs Algorithm 15 performs better than
Algorithm 14. None of graphs in Table 10.2 reduced during the initial reduction phase.

Results from the final set of experiments are reported in Table 10.3. Here we compare
Algorithm 15 and Algorithm 14 from Chapter 9 on graphs from TreewidthLIB. This
includes all graphs that were used in the experiments in Chapter 9. For several of these
the ISP specific reduction rules were able to reduce the graph completely or to just a few
remaining vertices. Thus we omit these from our listing. In addition we have included
a representative set of graphs where at least one of the algorithms was able to compute
a solution within 100 seconds. We put an * for any algorithm that did not finish within
one hour.

For Algorithm 14, we report running times using vertex orderings from Algorithm 12
RelativeNeighborhood (O2) and using runtime vertex selection (ORuntime). For
O2 we report the time needed to generate the ordering (T1), and the time spent on the
dynamic programming (TDP). We also include the summation of the time spent by
the heuristics and the dynamic programming (Total). Since DP gives the total time
for the runtime selection approach we only report this time for ORuntime. In this way
it is possible to compare the total time spent on computing the size of the maximum
IS for each graph for each approach. These graphs reduce to some extent during the
preprocessing and we report the number of remaining vertices (Vpp) and edges (Epp).

Maximum Independent Set using Branch-and-Bound 101

Table 10.3: Comparing running times of Algorithm 15 and Algorithm 14

Algorithm 15 Algorithm 14
Graph V E Vpp Epp IS WithCC WithoutCC T1 TDP Total TDP

Queen10 10 100 1470 100 1470 10 0 0 0.02 1.1 1.12 3.7
eil101 101 290 100 285 32 4.24 5.01 0.02 0.008 0.03 0.006
games120 120 638 117 612 22 0.21 3.53 0.02 1.9 1.92 2.76
Queen11 11 121 1980 121 1980 11 0.01 0.01 0.03 8.7 8.73 27.1
1on2 135 1527 108 944 20 0.68 1.18 0.01 0.004 0.02 0.04
kro150 150 432 119 313 48 11.21 7.76 0.02 0.04 0.06 0.003
1g3p 185 2221 120 1069 28 10.63 2.43 0.02 0.01 0.03 0.05
1cuk 189 2404 135 1136 27 32.26 15.33 0.03 0.02 0.05 0.22
graph04 200 734 116 294 52 4.61 * 0.02 0.15 0.17 0.6
tsp225 225 622 73 206 534 * * 0.08 0.11 0.19 1.36
a280 280 788 242 651 90 * * 0.1 0.004 0.104 0.6
pr299-pp 286 828 92 286 828 * * 0.17 0.02 0.19 0.49
rajat04 1041 4317 215 535 578 3.02 0.08 0.22 0.14 0.36 0.18

We observe again that there is no clear cut decision on whether one should use exploit
the connected components in Algorithm 15. There are instances where each approach
outperforms the other. The same is true when comparing the total time spent on
solving each graph. For the 1* graphs from protein structure Algorithm 14 using O2

performs better than the other approaches. Whereas for the Queen* graphs Algorithm
15 outperforms the dynamic programming algorithm.

10.1.5 Conclusion

We have presented a simple branch-and-bound algorithm for ISP. The novelty of the
algorithm is in that it exploits that the graph can become disconnected during the
processing. Experiments showed that there are cases where the algorithm is competitive
with state of the art branch-and-bound algorithms.

Comparisons with Algorithm 14 showed that the dynamic programming approach can
be the best choice. However, for this to be a feasible approach for more instances one
must limit the memory use of the algorithm. This could possibly be done by developing
specific reduction rules that could exploit that some solutions cannot be expanded to
global optimal solutions. Also, one could try to keep track of the connected components
similarly to what is done in Algorithm 15.

Chapter 11

Conclusion

In recent years a noticeable amount of computational experiments has been done to
explore the upper and lower bounds, as well as exact values of different width parameters
of graphs in practical settings [12, 13, 15, 16, 23, 24, 26]. Our focus has been to do the
same for boolean-width and demonstrate its usefulness in solving hard problems.

In this thesis we have designed several algorithms for computing boolean decompositions
and tested their suitability compared to other well known graph parameters. Moreover,
we have tried simple preprocessing rules to reduce the input size. To demonstrate the
practical use of these methods we have implemented a dynamic programming algorithm
using the generated decompositions to solve the Maximum Independent Set problem.
The results of this thesis indicates that boolean-width can be used not only in theory
but also in practice and that it is competitive with other approaches. Still there is much
potential for improvement. In this chapter we present some open problems and point to
possible future directions for advancing the implementations.

11.1 Open problems

To be able to use boolean-width in practical settings, generating boolean decompositions
of small width reasonably fast is of high relevance. Our experimental results shows that
fast evaluation of boolean dimension can aid in this regard. In addition more intricate
reduction rules could help to simplify the problem. Finally, designing meaningful exper-
iments and performance analysis is of great importance. Consequently, the selection of
graphs to test the proposed heuristics also plays a vital role. In the following we discuss
some observations from this thesis that might lead to further relevant research.

• Maximum matching on the bipartite graph induced by a cut is an upper bound
on the boolean dimension of the cut. We can use this upper bound whenever
computing the exact boolean dimension is too expensive. Tighter upper bounds
can also help in this regard.

• An approximation algorithm for boolean dimension can also be a good practical
alternative to the exact boolean dimension.

Conclusion

• We employed local search to improve an initial decomposition in Chapter 3. This
was based on random swapping of vertices across the cuts of the decomposition
tree. Improving the local search search strategy, the predefined time, and the
search space can be potential areas for overall improvement of the generated de-
compositions. Swapping vertices can be based on their neighborhoods across the
cuts as well as their internal neighbors. Moving to a new upgraded cut or staying
in the current state can be decided probabilistically as is done in simulated an-
nealing. The allowed time for local search could also be a function of improvement
and cost.

• Implementing decomposition algorithms for special graph classes, like planar graphs,
can be investigated.

• The preprocessing rules we tried are fairly simple. More complex reduction rules
would be of interest.

• Boolean-width based dynamic programming algorithms can be tested and com-
pared against similar approaches parameterized by other width parameters.

• As dynamic programming using linear decompositions runs out of memory when
the linear boolean-width is high, storing neighborhoods efficiently could help this
to improve in some extent.

• Several algorithms in this thesis could most likely benefit from using parallel meth-
ods.

Bibliography

[1] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. Journal of
Combinatorial Theory, Series B, 35:39–61, 1983.

[2] N. Robertson and P. D. Seymour. Graph minors. X. Obstruction to
tree-decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190,
1991.

[3] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths
problem. Journal of Combinatorial Theory, Series B, 63:65–110, 1995.

[4] B. Couecelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hyper-graph
grammars. Journal of Graph Theory, 46(2):218–270, 1993.

[5] P. Hliněný and S. Oum. Finding branch-decomposition and rank-decomposition.
In Proceedings of the 15th Annual European Symposium on Algorithms, ESA
2007, volume Springer Verlag, Lecture Notes in Computer Science, vol. 4698,
pages 163–174. Springer Berlin Heidelberg, 2007.

[6] P. Hliněný, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond
tree-width and their applications. The Computer Journal, 51(3):326–362, 2008.

[7] B. M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Boolean-width of graphs.
Theoretical Computer Science, 412(39):5187–5204, 2011.

[8] J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In Proceedings of
the 17th Annual European Symposium on Algorithms, ESA 2009, volume Springer
Verlag, Lecture Notes in Computer Science, vol. 5757, pages 566–577, 2009.

[9] S. Oum. Rank-width is less than or equal to branch-width. Journal of
Combinatorial Theory, Series B, 57(3):239–244, 2008.

[10] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[11] H. Röhrig. Tree decomposition: A feasibility study. Master’s thesis,
Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1998.

[12] H. L. Bodlaender and A. M. C. A. Koster. Treewidth computations I. Upper
bounds. Information and Computation, 208:259–275, 2010.

[13] H. L. Bodlaender. Treewidth: Characterizations, applications, and computations.
In Proceedings of the 32nd International Workshop on Graph-Theoretic Concepts
in Computer Science, WG 2006, volume Springer Verlag, Lecture Notes in
Computer Science, vol. 4271, pages 1 – 14, 2006.

Bibliography

[14] TreewidthLIB. A benchmark for algorithms for treewidth and related graph
problems. See http://www.staff.science.uu.nl/ bodla101/treewidthlib/, 2004.

[15] I. V. Hicks, A. M. C. A. Koster, and E. Kolotoğlu. Branch and tree decomposition
techniques for discrete optimization. In TutORials 2005, INFORMS Tutorials in
Operations Research Series, chapter 1, pages 1–29. INFORMS Annual Meeting,
2005.

[16] A. Overwijk, E. Penninkx, and H. L. Bodlaender. A local search algorithm for
branchwidth. In Proceedings of the 37th Conference on Current Trends in Theory
and Practive of Computer Science, SOFSEM 2011, volume Springer Verlag,
Lecture Notes in Computer Science, vol. 6543, pages 444–454, 2011.

[17] Y. Song, C. Liu, R. Malmberg, F. Pan, and L. Cai. Tree decomposition based fast
search of RNA structures including pseudoknots in genomes. In Proceedings of the
2005 IEEE Computational Systems Bioinformatics Conference, CSB’05, pages
223–234, 2005.

[18] J. Zhao, D. Che, and L. Cai. Comparative pathway annotation with protein-DNA
interaction and operon information via graph tree decomposition. In Proceedings
of Pacific Symposium on Biocomputing, PSB 2007, volume 12, pages 496–507,
2007.

[19] J. Zhao, R. L. Malmberg, and L. Cai. Rapid ab initio prediction of RNA
pseudoknots via graph tree decomposition. Journal of Mathematical Biology, 56
(1–2):145–159, 2008.

[20] H. Chen. Quantified constraint satisfaction and bounded treewidth. In
Proceedings of the 17th European Conference on Artificial Intelligence, ECAI
2004, pages 161–165, 2004.

[21] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP
decomposition methods. Artificial Intelligence, 124(2):243–282, 2000.

[22] S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. The Journal of the
Royal Statistical Society. Series B (Methodological), 50:157–224, 1988.

[23] I. V. Hicks. Branch Decompositions and their Applications. PhD thesis, Rice
University, Houston, Texas, 2000.

[24] M. Beyß. Fast algorithm for rank-width. In Proceedings of Annual Doctoral
Workshop on Mathematical and Engineering Methods in Computer Science
MEMICS’12, volume Springer Verlag, Lecture Notes in Computer Science, vol.
7721, pages 82–93, 2013.

[25] E. M. Hvidevold, S. Sharmin, J. A. Telle, and M. Vatshelle. Finding good
decompositions for dynamic programming on dense graphs. In Proceedings of the
6th International Symposium on Parameterized and Exact Computation, IPEC’11,
volume Springer Verlag, Lecture Notes in Computer Science, vol. 7112, pages
219–231, 2011.

[26] M. H. Heule and S. Szeider. A sat approach to clique-width. In Proceedings of
16th International Conference on Theory and Applications of Satisfiability
Testing, SAT 2013, volume Springer Verlag, Lecture Notes in Computer Science,
vol. 7962, pages 318–334. Springer Berlin Heidelberg, 2013.

Bibliography 107

[27] W. Cook and P. D. Seymour. An algorithm for ring-router problem. Technical
report, Bellcore, 1994.

[28] B. Verweij. Selected applications of integer programming: A computational study.
Phd thesis, Department of Information and Computing Sciences, Utrecht
University, 2000.

[29] A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving frequency
assignment problems with tree decomposition. Technical report, Maastricht
University, 1999.

[30] A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Lower bounds for
minimum interference frequency assignment problems. Ricerca Operativa, 50
(94-95):101–116, 2002.

[31] I. Adler, B. M. Bui-Xuan, Y. Rabinovich, G. Renault, J. A. Telle, and
M. Vatshelle. On the boolean-width of a graph: Structure and applications. In
Proceedings of the 36th International Workshop on Graph-Theoretic Concepts in
Computer Science, WG 2010, volume Springer Verlag, Lecture Notes in Computer
Science, vol. 6410, pages 159–170, 2010.

[32] R. Belmonte and M. Vatshelle. Graph classes with structured neighborhoods and
algorithmic applications. Theoretical Computer Science, 511(0):54 – 65, 2013.

[33] H. L . Bodlaender. Dynamic programming on graphs with bounded treewidth.
Automata, Languages and Programming, Springer Verlag, Lecture Notes in
Computer Science, vol. 317:105–118, 1988.

[34] P. K. Krause. A program that calculates rank-width and rank-decompositions, rw
v 0.2. http://pholia.tdi.informatik.uni-frankfurt.de/ philipp/software/rw.shtml.

[35] R. J. Wilson. Introduction to graph theory. Fourth edition. Prentice Hall, 1996.

[36] R. Diestel. Graph theory (graduate texts in mathematics). Fourth edition.
Springer-Verlag, 2010.

[37] R. M. Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations, page 85–103., 1972.

[38] M. Vatshelle. New width parameters of graphs. PhD thesis, University of Bergen,
Bergen, Norway, 2012.

[39] DIMACS. The second DIMACS implementation challenge: NP-Hard Problems:
Maximum Clique, Graph Coloring, and Satisfiability. See
http://dimacs.rutgers.edu/Challenges/, 1992–1993.

[40] BHOSLIB. Benchmarks with hidden optimum solutions for graph problems. See
http://www.nlsde.buaa.edu.cn/ kexu/benchmarks/graph-benchmarks.htm.

[41] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. A simple model to generate
hard satisfiable instances. In Proceedings of 19th International Joint Conference
on Artificial Intelligence, IJCAI 2007, volume 171, pages 337–342, 2005.

[42] P. Erdös and A. Rényi. On the evolution of random graphs. Publications of the
Mathematical Institute of the Hungarian Academy of Sciences, 5:17–61, 1960.

Bibliography

[43] E. Weisstein. Wolfram mathworld - the web’s most extensive mathematics
resource. See http://mathworld.wolfram.com.

[44] P. Larranaga, C.M.H Kujipers, M. Poza, and R.H. Murga. Decomposing bayesian
networks: triangulation of the moral graph with genetic algorithms. Statistics and
Computing (UK), 7(1):19–34, 1991.

[45] F. Clautiaux, A. Moukrim, S. Ngre, and J. Carlier. Heuristic and meta-heurisistic
methods for computing graph treewidth. RAIRO-Operations Research, 38(1):
13–26, 2004.

[46] U. Kjaerulff. Optimal decomposition of probabilistic networks by simulated
annealing. Statistics and Computing, 2(1):2–17, 1992.

[47] N. Musliu. Generation of tree decompositions by iterated local search. In
Evolutionary Computation in Combinatorial Optimization, volume Springer
Verlag, Lecture Notes in Computer Science, vol. 4446, pages 130–141. 2007.

[48] T. Hammerl and N. Musliu. Ant colony optimization for tree decompositions. In
Evolutionary Computation in Combinatorial Optimization, volume Springer
Verlag, Lecture Notes in Computer Science, vol. 6022, pages 95–106. 2010.

[49] Y. Rabinovich, J. A. Telle, and M. Vatshelle. Upper bounds on boolean-width
with applications to exact algorithms. In Proceedings of the 6th International
Symposium on Parameterized and Exact Computation, IPEC’13, volume Springer
Verlag, Lecture Notes in Computer Science, vol. 6410, pages 159–170, 2013.

[50] S. P. Vadhan. The complexity of counting in sparse, regular, and planar graphs.
SIAM Journal on Computing, 31(2):398–427, 1997.

[51] J. Radhakrishnan M. M. Halldorsson. Improved approximation of independent
sets in bounded-degree graphs via subgraph removal. Nordic Journal of
Computing, 1:475–492, 1994.

[52] T. Matsui. Approximation algorithms for maximum independent set problems
and fractional coloring problems on unit disk graphs. Discrete and Computational
Geometry, Springer Verlag, Lecture Notes in Computer Science, vol. 1763:
194–200, 2000.

[53] S. Gaspers, D. Kratsch, and M. Liedloff. On independent sets and bicliques in
graphs. Graph-Theoretic Concepts in Computer Science, Springer Verlag, Lecture
Notes in Computer Science, vol. 5344:171–182, 2008.

[54] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph.
Communications of the ACM, 16:575–577, 1973.

[55] J. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics, 3(1):
23–28, 1965.

[56] R. E. Miller and D. E. Muller. A problem of maximum consistent subsets. IBM
Research Report RC-240, J. T. Watson Research Center, Yorktown Heights, NY,
1960.

[57] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for
generating all maximal cliques and computational experiments. Theoretical
Computer Science, 363:28–42, 2006.

Bibliography 109

[58] D. Eppstein and D. Strash. Listing all maximal cliques in large sparse real world
graphs. In Proceedings of the 10th Symposium on Experimental Algorithms, SEA
2011, volume Springer Verlag, Lecture Notes in Computer Science, vol. 6630,
pages 364–375, 2011.

[59] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in sparse
graphs in near-optimal time. In Proceedings of the 20th International Symposium
on Algorithms and Computation, ISAAC 2010, volume Springer Verlag, Lecture
Notes in Computer Science, vol. 6506, pages 403–414, 2010.

[60] R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM
Journal on Computing, 9(3):615–627, 1980.

[61] A. George. Nested dissection of a regular finite element mesh. SIAM Journal on
Numerical Analysis, 10(2):345–363, 1973.

[62] S. C. Eisenstat and J. W. H. Liu. The theory of elimination trees for sparse
unsymmetric matrices. SIAM Journal on Matrix Analysis and Applications, 26(3):
686–705, 2005.

[63] METIS. Metis - serial graph partitioning and fill-reducing matrix ordering. See
http://glaros.dtc.umn.edu/gkhome/views/metis/.

[64] H. L. Bodlaender, A. M. C. A. Koster, and F. V. D. Eijkhof. Preprocessing rules
for triangulation of probabilistic networks. Computer Intelligence, 21(3):286–305,
2005.

[65] H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. Discrete
Mathematics, 306(3):337–350, 2006.

[66] H. L. Bodlaender, A. M. C. A. Koster, and F. V. D. Eijkhof. Safe reduction rules
for weighted treewidth. Algorithmica, 47(2):138–158, 2007.

[67] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Preprocessing for treewidth:
A combinatorial analysis through kernelization. SIAM journal of Computing, 27
(4):2108–2142, 2013.

[68] H. L. Bodlaender. Kernelization : New upper and lower bound techniques. In
Proceedings of the 6th International Symposium on Parameterized and Exact
Computation, IPEC’09, volume Springer Verlag, Lecture Notes in Computer
Science, vol. 5971, pages 17–37, 2009.

[69] R. Downey and M. R. Fellows. Parameterized complexity. Monographs in
Computer Science. Springer, New York, 1999.

[70] J. Flum and M. Grohe. Parameterized complexity theory. Springer-Verlag New
York, 2006.

[71] H. L. Bodlaender. A partial k-arboretum of graphs with bounded tree-width.
Theoretical Computer Science, 209(1–2):1–45, 1998.

[72] D. E. Knuth. The Stanford Graph Base: A Platform for Combinatorial
Computing. Addison-Wesley, 1993.

[73] S. Arnborg and A. Proskurowski. Linear time algorithms for np-hard problems
restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989.

Bibliography

[74] A. M. C. A. Koster. Frequency Assignment - Models and Algorithms. PhD thesis,
University Maastricht, Maastricht, The Netherlands, 1999.

[75] A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving partial
constraint satisfaction problems with tree decomposition. Networks, 40(3):
170–180, 2002.

[76] J. Alber, F. Dorn, and R. Niedermeier. Experimental evaluation of a tree
decomposition-based algorithm for vertex cover on planar graphs. Discrete
Applied Mathematics, 145(2):219 – 231, 2005.

[77] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8:
277–284, 1987.

[78] F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for
treewidth and minimum fill-in. Automata, Languages and Programming, Springer
Verlag, Lecture Notes in Computer Science, vol. 3142:568–580, 2004.

[79] V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI
’04, pages 201–208, 2004.

[80] H. M. Markowitz. The elimination form of the inverse and its application to linear
programming. Manage Science, 3:255–269, 1957.

[81] T. Kloks and H. L. Bodlaender. Only few graphs have bounded treewidth.
Technical Report UU-CS-92-35, Department of Information and Computing
Sciences, Utrecht University, Utrecht, the Netherlands, 1992.

[82] Ö. Johansson. Cique decomposition, nlc-decomposition and modular
decomposition- relationships and results for random graphs. Congressus
Numerantium, 132:39–60, 1998.

[83] C. Lee, J. Lee, and S. Oum. Rank-width of random graphs. Journal of Graph
Theory, 57(3):239–244, 2008.

[84] B. M. Bui-Xuan, J. A. Telle, and M. Vatshelle. H-join decomposable graphs and
algorithms with runtime single exponential in rankwidth. Discrete Applied
Mathematics, 158(7):809–819, April 2010.

[85] J. M. Robson. Finding a maximum independent set in time O(2n/4). Technical
report, LaBRI, Université Bordeaux I, 2001.

[86] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: A simple
O(20.288n) independent set algorithm. SIAM Journal on Computing, 36(2):
354–393, 2006.

[87] M. Fürer. A faster algorithm for finding maximum independent sets in sparse
graphs. In LATIN 2006: Theoretical Informatics, volume Springer Verlag, Lecture
Notes in Computer Science, vol. 3887, pages 491–501. 2006.

[88] N. Sbihi. Algorithme de recherche dún stable de cardinalité maximum dans un
graphe sans étoile. Discrete Mathematics, 29:53–76, 1980.

Bibliography 111

[89] S. B. Baker. Approximation algorithms for np-complete problems on planar
graphs. Journal of the ACM, 41(1):153–180, 1994.

[90] M. Grohe. Local tree-width, excluded minors, and approximation algorithms.
Combinatorica, 23:613–632, 2003.

[91] E. Tomita and T. Seki. An efficient branch-and-bound algorithm for finding a
maximum clique. Theoretical Computer Science, Springer Verlag, Lecture Notes in
Computer Science, vol. 2731:278–289, 2003.

[92] E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global
Optimization, 37:95–111, 2007.

[93] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki. A simple and
faster branch-and-bound algorithm for finding a maximum clique. In Proceedings
of the WALCOM : Algorithms and Computation, 2010, volume Springer Verlag,
Lecture Notes in Computer Science, vol. 5942, pages 191–203, 2010.

[94] P. Prosser. Exact algorithms for maximum clique: A computational study.
Algorithms, 5(4):545–587, 2012.

[95] B. Pattabiraman, M. M. A. Patwary, A. H. Gebremedhin, W. Liao, and A. N.
Choudhary. Fast algorithms for the maximum clique problem on massive sparse
graphs. In Proceedings of the 10th International Workshop on Algorithms and
Models for the Web Graph, WAW 2013, pages 156–169, 2013.

[96] C. McCreesh and P. Prosser. Multi-threading a state-of-the-art maximum clique
algorithm. Algorithms, 6(4):618–635, 2013.

[97] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM
Transactions on Mathematical Software, 38(1):1–25, 2011.

[98] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H. Suters,
and C. T. Symons. Kernelization algorithms for the vertex cover problem: Theory
and experiments. In Proceedings of the 6th Workshop on Algorithm Engineering
and Experimentation and the 1st Workshop on Analytic Algorithmics and
Combinatorics, ALENEX/ANALCO 2004, pages 62–69, 2004.

