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Abstract
Noise analysis and avoidance is an increasingly critical step in

deep submicron design. Ever increasing requirements on perfor-
mance have led to widespread use of dynamic logic circuit families
and its other derivatives. These aggressive circuit families trade off
noise margin for timing performance making them more susceptible
to noise failure and increasing the need for noise analysis. Currently,
noise analysis is performed either through circuit or timing simula-
tion or through model order reduction. These techniques in use are
still inefficient for analyzing massive amount of interconnect data
found in present day integrated circuits. This paper presents efficient
techniques for estimation of coupled noise in on-chip interconnects.
This noise estimation metric is an upper bound for RC circuits, being
similar in spirit to Elmore delay in timing analysis. Such an efficient
noise metric is especially useful for noise criticality pruning and
physical design based noise avoidance techniques.

1. Introduction

Timing and power analysis have always been critical in the design
process. With increasing operating frequencies, noise analysis and
avoidance is becoming equally important, or in some cases, more
important than timing and power analysis. Advances in process tech-
nology allow shrinking of the minimum distance between adjacent
wires. This has led to increase in the coupling capacitance from a net
to its neighbors. Furthermore, the distance between two wires can be
reduced more than the height of the wire itself. The thickness of the
wire is typically greater than its width, causing an increase in ratio of
coupling capacitance to the total capacitance. For present day pro-
cesses, the ratio of coupling capacitor to the grounded capacitor can
be as high as 35%. Due to the increase in the coupling capacitance,
a switching net can electrical affect its neighboring nets. If the neigh-
boring net is quiet, this capacitive coupling induces a noise pulse
which can have a detrimental effect on the circuit response.

The criticality of the noise analysis problem is also dependent on
the type of logic circuits used in the design. Some logic circuits are
more susceptible to noise than others. Over the last several years,
dynamic logic circuit families and its derivatives have gained wide
spread acceptance. Dynamic circuits use a clock signal or clock-like
signal to precharge the output voltage. The circuit is then evaluated
by a N-tree structure. The advantage of dynamic logic is that the
capacitive load on the previous stage is reduced. The previous stage
has to drive the capacitance of only the NMOS transistor, as com-
pared to the capacitance of both the NMOS and PMOS transistors in
CMOS logic. However, the switching point of dynamic logic gates
is the threshold voltage of the NMOS transistor, rather than typically
half of the supply voltage for CMOS. Hence, dynamic logic circuits
trade noise margin to reduce the circuit delay. This reduced noise
margin and increased noise susceptibility mandates greater use of

noise analysis. The problem of noise failure can be more severe than
the problem of timing failure. For most circuits, timing failure can be
recovered by increasing the clock speed and thus allowing more time
for signal propagation. However, noise is caused by, among other
things, capacitive coupling and input slope, which are much more
difficult to control from the chip terminals. For example, changing
the capacitive coupling normally requires rewiring the chip. If the
noise problem goes undetected to fabrication, correcting it may
cause an expensive second fabrication run.

Various transient analysis techniques can be used to estimate
noise. Circuit or timing simulation techniques, like SPICE[3], can be
used. In cases when the problem can be modeled as a linear circuit
(which it can be for most coupled noise problems), specialized linear
model reduction techniques [4][5] are typically used[2]. Model
reduction helps in reducing the computational cost, but in several
cases, the cost is still unacceptable given the enormous complexity
of interconnects. Using modern moment matching methods, it may
still require more than a day to compute the noise in a modern micro-
processor. The constrains on efficiency are even greater if noise anal-
ysis is to be used within a physical design system. Most of the
current physical design systems use a geometric model for noise (e.g
based on geometric distance between wires, etc.). However, these
simple formulae do not have an electrical and circuit theoretic for-
mulation and are hence inaccurate. And use of accurate moment
matching or simulation techniques is often inefficient, both for noise
verification and noise avoidance. Hence, a more efficient electric
metric for noise analysis is needed to address these requirements.

This paper presents an electrical metric for efficiently estimating
the coupled noise for on-chip interconnects. It determines the maxi-
mum noise induced on a net (or a set of nets) by a switching net (or
set of switching nets). Nets with any circuit topology can be ana-
lyzed by this metric. The metric can be computed by inspection for
most typical interconnects. It determines an upper bound on the cou-
pled noise for RC and overdamped RLC interconnects. The paper is
organized as follows. Section 2 presents the noise estimation tech-
nique, followed in Section 3 by techniques for efficient computation.
Results are presented in Section 4 followed by conclusions.

2. Noise Estimation

Coupled noise in interconnect networks is caused by capacitive
coupling between an active (or aggressor) net and a passive (or vic-
tim) net. Consider the circuit shown in Figure 1. For noise coupling,
the aggressor net is the net that switches state, where as the victim
net is quiet or maintains its present state. Figure 2 represents the gen-
eral circuit model of the coupled noise problem, where the aggressor
and victim nets can have any topologies. The victim net, the aggres-
sor net and the coupling between them is represented by a linear cir-
cuit description.
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Figure  1Circuit schematic with aggressor and victim net for coupled
noise.

 In general, the number of victim nets and number of aggressor
nets may be more than one. Initially, the case with one victim and one
aggressor is analyzed. This can be easily extended to the case with
multiple victim and aggressor nets.

Figure  2General circuit representation for coupled noise.
The circuit equations for circuit shown in Figure 2 can be written

as

(1)

where  is a vector of node voltages in the aggressor net,  is
a vector of node voltages in the victim net, and  is the input to the
aggressor net. Or, in the Laplace Domain,

(2)

The first state equation in Equation (1) can be rewritten as,

(3)

For the coupled noise waveform ,

(4)

Or, (5)
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Alternatively,
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However, the interconnect networks that cause coupled noise
have special characteristics, which can be identified as follows.

[1].

Non zero value of  would indicate a resistive or DC path
from the aggressor net to victim net. It would mean that both the
aggressor and victim net are electrically the same net or signal,
which is not the case. Hence,  is zero for all coupled noise
problems.

[2].

Non zero value of  would indicate a resistive or DC path
from the victim net to the aggressor net. It would mean that both
the aggressor and victim net are electrically the same net or sig-
nal, which is not the case. Hence,  is zero for all coupled
noise problems.

[3].

Non zero value of  would indicate a resistive or DC path from
the source, , to the victim net as well as the aggressor net. It
would mean that a source is directly exciting the victim net and
notion of coupled noise is meaningless. Hence,  is zero for all
coupled noise problems.

Hence the circuit description of the coupled noise circuit, shown
in Figure 2, can be rewritten as,

(8)

Hence Equation (6) can be simplified to,

(9)

Let,

(10)

As seen from Equation (9),  has a zero at . This is
true for all networks that exhibit coupled noise. The zero at
is due to the fact that the coupling between the aggressor and victim
net is purely capacitive.

The fact that  has a zero at  allows us to compute the
maximum possible noise that can ever be induced on the victim net

. If the input to the circuit, , is an infinite ramp, output of the
aggressor net  is also an infinite ramp, but it is delayed by the sig-
nal delay in the aggressor net. However, all nodes in the victim net
exponentially chargeup to their respective finite maximum steady
state value. If input to the circuit, , is a finite ramp (which it typ-
ically is) or if the input is an infinite ramp, the derivative of coupled
noise, , is zero at  and the coupled noise  has a finite
maximum value.

The value of this finite maximum value can be computed from
Equation (10) through use of the final value theorem.

Final value of  at  is given by
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(11)

Or

(12)

Applying the final value theorem and combining it with Equation
(9) yields,

(13)

Equation (13) gives the maximum amount of coupled noise that
can be induced on the victim net , for the given linear circuit, i.e.

, , ,  and , and the input slope, . Equation (13)
yields an upper bound because the monotonicityy of the RC circuit
response[7][8]. In the presence of the inductors, if the circuit is over-
damped or critically damped, the monotonicity is still maintained.

3. Circuit Interpretation and Computation

The maximum coupled noise given by Equation (13) is relatively
easy to evaluate. We will now present steps and necessary circuit con-
ditions to further simplify the computation.

 Equation (13) can be rewritten as,

(14)

Where,

(15)

Equation (14) can be rewritten as,

(16)

Where,

. (17)

The computation of maximum coupled noise can be decomposed
into the following three steps:

• Computation of . This requires circuit anal-
ysis of the Aggressor net.

• Computation of . This requires a multiplication
step.

• Computation of . This requires circuit analy-
sis of the Victim net.

Step1: Computation of

The computation of the steady state ramp derivative on the aggres-
sor net is illustrated in Equation Figure 3. The input source is replaced
by a voltage source of value equal to the input derivative, . All the
capacitors in the aggressor net are replaced by open circuits and all
coupling capacitors to the victim net are not considered in the this cir-
cuit. The solution of the circuit so obtained gives the steady state
ramp derivative, , at each corresponding node. The solution of
this circuit involves the matrix factorization of the aggressor net’s dis-
sipative matrix. However, for typical interconnects, this solution is
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trivial as shown in the next subsection.

Figure  3Circuit Transformation to compute .
Step1: Typical Interconnects:

Figure 4 shows the computation of the steady state derivative for
the aggressor net for typical interconnects. For on chip intercon-
nects, the nets do not have a dissipative (or DC) path to ground. A
dissipative path to ground in the interconnection would mean DC
loss of signal, which typical is not the case for on chip interconnects.

Figure  4Computation of  for typical interconnects.
In the typical case of no dissipative path to ground, computation

of  is trivial. In such a case, there is no current flow in the cir-
cuit shown in Figure 4, and .

In summary, , in case of no resistive path to ground
in the aggressor net

Step2: Computation of

This step involves a simple multiplication step that converts the
steady state derivative of the aggressor net to a current on the victim
net using the coupling capacitor matrix, . For a node  in the vic-
tim net

(18)

where  is the coupling capacitor between node  on the vic-
tim net(s) to node  on the aggressor net.  indicates the summa-
tion of all nodes in the aggressor net (or set of aggressor nets)
capacitively coupled to node  on the victim net.

Step3: Computation of  or

Figure 5 shows the computation of the maximum induced noise
on the victim net. The capacitors on the victim net are replaced by
the coupling currents, , from the computation in step 2. Note that

 is a vector of currents. Each capacitive node in the victim net is
replaced by a current source of value corresponding to its index in
the  vector. The voltage on a node in this circuit gives the maxi-
mum noise than can be coupled at that node. That is, the voltage of
each node, say voltage  at node i, gives the maximum noise that
can be induced at the node i. The computation of the maximum
induced noise requires a DC solution of the victim net. The cost of
this DC solution is a single matrix factorization.

Step3: Typical Interconnects

Figure 6 shows the computation of the victim net for typical inter-
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connects. As mentioned in the previous section, the solution of the
maximum induced noise requires a DC solution of the victim net.
This cost is in addition to the cost of DC solution of the aggressor net
in order to determine the steady state derivative and coupling cur-
rents. However, as mentioned earlier, for typical interconnects, the
solution of aggressor net is trivial and does not require any computa-
tion cost. Similarly, for typical interconnects, the solution of the vic-
tim net is also greatly simplified and requires only a linear time
evaluation which can be carried out by inspection.

Figure  5 Circuit transformation for computation of maximum noise
.

Figure  6Computation of  for typical interconnects.
Consider the sample 3RC circuit in Figure 7 to illustrate the com-

putation of  by inspection for typical interconnects.

Figure  7 Illustration of solution by inspection for maximum induced
noise for typical interconnects.

The maximum induced noise at each node can be written by
inspection as,

(19)

(20)
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The maximum coupled noise can also be written as,
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In general, for a tree structure, the maximum induced noise,
, at node  can be computed as,

(25)

Where  denotes the summation of all coupling currents at
nodes which are in the load (i.e. in direction of the victim sink) of
that particular node in the victim net. And  denotes the
noise at the previous node (towards the root of the tree).

Since the metric is an closed form expression, it can also be used
to computed the maximum allowable coupling capacitance given the
noise budget. This value of the coupling capacitance can then be
used to compute the distance between the nets.

So the cost of computing the maximum coupled noise is the mul-
tiplication to computed the coupling currents and multiplications
shown in Equation (25) to computed the coupled voltage. The com-
plexity of this computation is significantly lower than either transient
analysis through numerical integration or moment matching meth-
ods.

In the case of multiple aggressor nets, linear superposition is
used.  in Equation (25) is computed for each aggressor net by mul-
tiplying its respective capacitive coupling by the respective input
slope of each aggressor net. ‘s from each aggressor net are added
together to compute the total current which can then be used to com-
pute the maximum noise. In case of timing orthogonality, the sum-
mation of currents from the aggressor nets has to be performed
differently. Timing orthogonality, in this case, implies that the arrival
time windows on the different aggressor nets are different. In such a
case only the aggressor nets with overlapping arrival time windows
have to be considered in computing the maximum noise on the vic-
tim net(s).

4. Results

The techniques described in the previous sections have been
implemented in a noise computation tool. This section presents noise
accuracy and computation speed results on various interconnect
structures.

The peak coupled noise on the victim net for a typical small RC
interconnect structure with a rise time of 200ps and power supply
voltage of 1.8v is computed by circuit simulation and proposed met-
ric. Table 1: summarizes the results for ten nodes in the circuit. As
seen for the table, the proposed metric and the simulation results
show an excellent match. Table 2: summarizes the peak coupled
noise for the same circuit but with a faster rise time of 100ps and
power supply of 1.8v. In this case, the metric is more conservative,
over estimation the peak noise by 14.11% in the worst case. The
accuracy of the metric degrades with reduction in rise times of the
signal of the aggressor net. However, note that the peak noise pre-
dicted is always more than the actual obtained by simulation. If the
rise time is small, like in the second example, the smaller rise time
does not allow the circuit to reach the ramp steady state noise (which
the metric predicts). Hence, the metric predicts a value of the peak
noise which is greater than the actual peak noise.

The loading of the interconnect normally does not allow for very
small rise times. The accuracy of the metric should normally be
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acceptable for several noise verification, noise pruning and physical
design applications.

Table 3: shows the run time comparison of the proposed metric
with an Krylov subspace based Arnoldi model reduction package for
several RC circuits. These circuits are RC trees, with capacitive cou-
pling between aggressor and victim net, and with no DC path to
ground in the interconnect. The drivers are modeled by linear resis-
tance and a voltage source, where as the victim net is modeled by a
linear resistance. The computation of the metric is performed both
through matrix factorization(Equation (13)) and by inspection(Equa-
tion (25)). The Arnoldi-based model reduction engine uses matrix
solution to compute the circuit response. Hence, the comparison of
the Arnold-based model reduction to the proposed metric (matrix fac-
torization) is more appropriate. It should be noted that path tracing
techniques can also be used in Arnoldi-based model reduction.

Node Circuit Simulation Proposed Metric

1 0.0084 0.0084

2 0.0160 0.0160

3 0.0227 0.0227

4 0.0286 0.0286

5 0.0336 0.0336

6 0.0378 0.0379

7 0.0412 0.0412

8 0.0437 0.0438

9 0.0454 0.0454

10 0.0462 0.0463

Table 1: Comparison of Noise as computed by circuit simulation and
the proposed metric. Units of noise are volts.

Node Circuit Simulation Proposed Metric % Error

1 0.0147 0.0168 7.73%

2 0.0277 0.0319 13.1%

3 0.0392 0.0454 13.65%

4 0.0492 0.0572 13.98%

5 0.0578 0.0673 14.11%

6 0.0651 0.0757 14.00%

7 0.0709 0.0824 13.95%

8 0.0752 0.0875 14.05%

9 0.0782 0.0908 13.87%

10 0.0797 0.0925 13.83%

Table 2: Comparison of Noise as computed by circuit simulation
and the proposed metric  with  rise time of 100ps. Units of noise
are volts.

As seen from the table, for the matrix based comparison the met-
ric shows significant computational advantage over the model reduc-
tion technique. The model reduction requires repeated matrix
factorizations, solution for eigenvalues for the reduced system and
time exponential evaluations. It should be noted however, that the
model reduction technique can be used to obtain the complete tran-
sient response of the noise waveform. But, if only peak noise is of
interest, which it is for several applications, the proposed metric is
more efficient.

5. Conclusions

This paper has presented an efficient metric for computing the
maximum coupled noise for on-chip interconnects. The noise metric
can be used to compute noise in nets of any circuit topology. For typ-
ical interconnects, the noise can be computed in linear time. The
computations can be performed by inspection instead of sparse
matrix construction and factorization. The metric is an upper bound,
with the error in estimation increasing with decrease in rise time. The
techniques presented in this paper for noise computation are signifi-
cantly more efficient than previous techniques, such as, moment
matching methods or numerical integration.
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Circuit Number of
Elements

Arnoldi
Model

Reduction

Proposed
Metric
(Matrix
Method)

Proposed
Metric

(By
Inspection)

ckt1 500 .2s .00s .00s

ckt2 5,000 5.86s .07s .01s

ckt3 50,000 145s 3.44s .05s

ckt4 500,000 - 360.55s .35s

Table 3: Comparison of runtime for the proposed metric with model
reduction techniques.


