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Abstract. We show very efficient constructions for a pseudorandom generator and 

for a universal one-way hash function based on the intractability of the subset-sum 

problem for certain dimensions. (Pseudorandom generators can be used for private-key 

encryption and universal one-way hash functions for signature schemes.) The increase 

in efficiency in our construction is due to the fact that many bits can be generated/hashed 

with one application of the assumed one-way function. 

All of our constructions can be implemented in NC using an optimal number of 

processors. 
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1. Introduction 

M a n y  c r y p t o s y s t e m s  are based  on  the in t rac tabi l i ty  o f  n u m b e r - t h e o r e t i c  p r o b l e m s  such  as 

fac to r ing  and  d iscre te  logar i thm.  B o t h  o f  these  p r o b l e m s  have  a long  h is tory  o f  a t t emp ted  

so lu t ions  as wel l  as m a n y  c o n v e n i e n t  features .  However ,  it is des i r ab le  to cons ide r  pro-  

tocols  ba sed  on  o the r  types  o f  p rob lems .  First ,  the p ro toco l s  tha t  are b a s e d  on  fac tor ing  

and  d isc re te  log tend  to be  r a the r  ineff icient .  Th i s  is one  r ea son  why  these  p ro toco l s  are 
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not extensively used in practice, although some "implementations of the simplest of these 

protocols have been made. Secondly, there are no (provably secure) parallelizations of 

these protocols. Finally, although considered unlikely, it is possible that feasible algo- 

rithms for these number-theoretic problems exist. In this case, it is good to have other 

protocols to fall back on. 

One alternative that has been considered since the early days of public-key cryptogra- 

phy is the subset-sum problem (a.k.a. the knapsack problem). The subset-sum problem 

is: given n numbers, each I bits long, and a target sum T, find a subset of the numbers 

whose sum is T. Many schemes were suggested that use this problem as the basis for 

public-key encryption. However, none of these schemes have been proven to be as se- 

cure as subset sum, and, in fact, most of them have been broken. See [9] and [41] for 

a survey. The first to suggest using subset sum were Merkle and Hellman [36], and the 

only method for using subset sum in a public-key protocol that has not been broken is 

Chor and Rivest's [ 11 ]. 

The approach taken here is different in two ways. We are less ambitious, and are not 

attempting to construct a public-key cryptosystem. Many important tasks in cryptog- 

raphy do not require the full power of public-key cryptography. These tasks include: 

private-key encryption, pseudorandom generation, zero knowledge protocols, identifi- 

cation schemes, and digital signatures. These tasks are known to be implementable based 

on any one-way function [24], [25], [38], [40], [22], [42]. However, the theoretical con- 

structions suggested are extremely inefficient. We give very efficient constructions for 

primitives such as pseudorandom generators and universal one-way hash functions 

(defined in [40]) which can be used to implement the above tasks. To break our protocols 

is provably as hard as solving the subset-sum problem for certain dimensions. 

Our constructions are extremely simple: at each step, it is only necessary to add n 

numbers of length O(n). Thus, each step can clearly be implemented in any "reason- 

able" model of parallel computation with optimal speed-up. Since the steps can also be 

implemented in parallel, we have optimal parallel implementation of the primitives. This 

is the first method that can be implemented in NC which is provably secure ~ for any 

of these tasks (except identification in which the on-line part can be computed in NC 

using the Fiat-Shamir [ 13] method). In fact, we show that, in the case of pseudorandom 

generators, expanding the seed by a small amount can even be done in AC ~ 

A major source of inefficiency in the general constructions mentioned above is the fact 

that the one-way function on which they are based must be evaluated at least as many 

times as there are bits in the "product" (i.e., the number of pseudorandom bits produced 

in pseudorandom generators or the number of bits hashed in one-way hashing). We give 

the first provably secure constructions where the number of times the one-way function 

is applied is substantially smaller than the number of bits processed. 

The next subsection defines precisely the subset-sum problem and the assumptions 

we make concerning its intractability. Section 1.2 surveys the known results about the 

complexity of solving subset-sum problems. 

In Section 2 we prove that for dimensions n, s with s > n for which the subset-sum 

I Here, "provably secure" means that breaking the primitive in question is provably as hard as inverting a 

well-studied function which is widely assumed to be one-way. Some parallel constructions have been given 

without this property, e.g., [37]. 
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problem is hard it is also pseudorandom. In Section 3 we show that for dimensions n, e 

with ~ < n for which the subset sum problem is hard it is also a universal  one-way 

hash function. 

In Section 4 we consider a generalization of our results about universal one-way hash 

functions to other groups (other than addition modulo powers of  2). We show how to 

relate the security of  such functions to conventional number-theoretic problems. We show 

for instance that the subset product rood N function is as secure a universal one-way 

hash function as factoring N. Our results for pseudorandom generators also generalize, 

but this is not as interesting in that we are not able to show any connections to widely 

accepted number-theoretic conjectures. Hash functions constructed using this method 

will not be particularly efficient, but will be implementable in parallel. 

A primitive for which there is no known construction under a general assumption (e.g., 

existence of one-way or trapdoor permutations) is bit commitment  versus a computation- 

ally unlimited receiver. This primitive constructed under number-theoretic assumptions 

was used by Brassard etal. [7] for minimum disclosure proofs. In Section 5 we show how 

to construct this primitive based on subset sum. Recently, Naor et al. [39] have shown 

how to construct such a bit commitment  from any one-way permutation; however, their 

construction requires many rounds of interaction. 

Finally, in Section 6 we show that the assumption that the subset-sum problem is 

hard yields a pseudorandom generator which can be implemented by a polynomial-size 

constant-depth circuit, i.e., in AC ~ 

1.1. The Subset-Sum Problem 

The subset-sum problem of dimensions n and e is: given n numbers, ~ = (a i, a2 . . . . .  an), 

each l bits long, and a number T, find a subset S C {1 . . . . .  n} such that ~-~.ies ai = 

T mod 2 e. We consider families of  subset problems where each family is determined by 

a function e(n) and for size n the length of  the n numbers is e(n). We can view this 

problem as that of  inverting the following function: 

f (~ ,  S) = ~ ~ ai mod 2 t~n), 

i ~ s  

i.e., the function which concatenates ~ with the sum of the ai ' s  for i E S. We usually 

think of  al ,  a2 . . . . .  a n  as a fixed parameter (like the modulus in RSA), and view f as 

mapping an n bit string S to an l(n) bit string. In this case we write f~(S) for f ( ~ ,  S). 

Also, we often identify the subset S C { 1 . . . . .  n } with its incidence vector s E {0, 1 }n 

and write f~(s). 

We now formally define what we mean by hard: 

Definition 1.1. Let {fn} be a sequence of functions indexed by n such that f,~: Dn 

Rn. We say that {fn} is one-way if: 

�9 .fn (x) is polynomial-time computable. 

�9 There is no polynomial-time algorithm I that can invert f on a random input: for 

every c > 0 and for every probabilistic polynomial-time algorithm I (that attempts 

to invert f ) ,  the probability that f ( l ( f ( x ) ) )  = f ( x )  is at most n -c for an input 

x c Dn chosen uniformly at random, for all but finitely many n. 
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We say that the subset-sum problem for length l(n) is h a r d  if the corresponding 

sequence of functions f is one-way. 

The character of  the subset-sum problem is quite different when l(n) > n and when 

I(n) < n. In the first case the function is almost 1-1 and expands the length of the input. 

In the second case the function is many to one, almost onto, and contracts the input. The 

applications we give for these two cases are consequently quite different. We use the 

first case for pseudorandom generation, and the second case for one-way hashing. We 

can quantify "almost onto" and "almost 1-1" as follows: 

The following definition of Santha and Vazirani [43] describes distributions that are 

close enough to uniform for our purposes. 

Definition 1.2 [43]. Let D be a probability distribution on {0, i }m. We say D is quasi- 

r a n d o m  within e, i fVX C {0, 1}m we have that IPro[X] - IXt/2ml < ~, where Pro[X] 

is the probability that an element chosen according to D is in X. 

Proposition 1.1. 

I. Let l (n) = cn for  c > 1. Let h = (at, a2 . . . . .  an) and S both be chosen uniformly 

at random. Except with probability exponentially small, there is no S' ~ S such 

that fa(S)  = fa(S') .  

2. Let I(n) < cn for  c < 1. For all but an exponentially small fraction of  ~ = 

(a 1, a2 . . . . .  an), the distribution given by f~ (S) for  a randomly chosen S is quasi- 

random within an exponentially small amount. 

Proof.  The main idea for obtaining both parts of the proposition is to view the different 

f~'s,  ranging over all choices of  ~, as a pairwise independent family of  hash functions 

from {0, 1} n to {0, 1}ten). Let S, S' e {0, 1} n be such that S ~ S' and S, S' ~ 0 n, 

and consider ~ being selected uniformly at random. Now, if Si ~ O, then f~(S)  = 

ai + Y~,j~i Sjaj is uniformly distributed, since ai is independent of  the other aj. Similarly 

for S'. Also, assume Si = 1 and S~ = 0. Then fixing all the aj for j -~ i determines f~ (S') 

but leaves f~(S)  completely undetermined. Hence, f~(S')  and f~(S)  are independent 

uniformly distributed variables, for every such pair S and S'. 

Hence, i f / (n)  > cn, c > 1, we have 

Prob[3S' # S, fa(S)  fa(S ' ) ]  < E Prob[fa(S ' )  fa(S)]  < 2n2 -t~n) < 2 -tc-l)n 

s'#s 

If l(n) < cn, c < 1, we can apply the leftover hash lemma of [25] and [26] to see 

that the expected distinguishability of  fa (S) and a random y E {0, 1 }t~n) is at most 

2 -(n-l(n))/2 <_ 2 -(( l -c) /2)n.  We then apply Markov's  inequality to get the result claimed 

in part 2 of  the proposition. [] 

From the above, it is not difficult to see that the most-secure choice of  parameters 

for subset sum is when l(n) = n. If  the subset S is, with high probability, uniquely 

determined by the sum for l(n) bits and an inversion algorithm exists for this length, 

then to invert the function given some l ' (n) > l(n) bits, all but the least-significant l(n) 

bits of  ~ and T can simply be ignored. On the other hand, if, for l(n) bits, the sum is 
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almost uniformly distributed, then to invert the function for l '(n) < I(n) bits, simply 

append l(n) - l '(n) random bits to each of the ai's and to T, and use whatever method 

inverts the function for l (n) bit strings. This is summarized in the following proposition: 

Proposition 1.2. 

1. Let n < l(n) < l'(n). I f  subset sum is hard for  l '(n), then it is also hard for  l(n). 

2. Let n >_ l(n) > l' (n). I f  subset sum is hard for  l' (n), then it is also hard for  l(n). 

3. I f  subset sum is hard for  l(n), and c > O, then subset sum is hard for  l(n) + c log n 

and l(n) - c log n. 

In the applications to come we assume that subset sum is hard for l(n) of the form 

c- n for some constant c. When l(n) is sufficiently larger than n the function f is almost 

1-1; when l(n) is sufficiently smaller than n the function f is almost onto, and almost 

all outputs occur roughly the same number of times. 

Efficiency of implementation. How efficient is it to use this one-way function fa ? A 

first impression is that large key length might make use of this function impractical. As 

�9 detailed in the next section, to withstand current attacks we must have n and l(n) on the 

order of 100, so to describe ~ will require on the order of 10,000 bits. However, this is 

actually misleading in that for all applications described here, ~ can be chosen once and 

for all by the protocol designer and publicly announced. Thus, individual keys will be 

of length O(n + l(n) ) instead of O(nl(n)  ). 

All that is required to compute f~ is the normal addition ofn numbers of length O(n), 

which requires approximately the same time as a single naive multiplication. Since 

there are very efficient and highly parallelizable implementations of iterated addition, 

it is highly suitable for either hardware or software implementations. As mentioned 

before, this function is in the class N C  l and all of the constructions in this paper can be 

implemented in NC.  

1.2. The Complexity of  Subset Sum 

Subset sum is one of the original problems that Karp [28] proved to be NP-hard, (i.e., 

the corresponding decision problem is NP-complete). However, although this probably 

means that no feasible worst-case algorithm exists for this problem, it says little about 

the hardness of a random instance. Many NP-complete problems are known to have 

polynomial average-case algorithms. The subset problem under the assumption that the 

inputs are chosen uniformly at random has been investigated in a number of papers 

[8], [12], [14], [15], [27], [32]. For the case l(n) > n 2, Lagarias and Odlyzko [32] and 

Brickell [8] have shown a feasible algorithm which solves this problem for almost all 

instances of these dimensions. 

The Lagarias-Odlyzko [32] and Brickell [8] algorithms mentioned above transform 

the subset-sum problem into a shortest vector in a lattice problem. A shortest vector in a 

lattice problem is: given vectors Vl, V2 . . . . .  Vn ~ R m find the shortest vector (Euclidean 
n 

norm) V in {)--~.i=l ziVilzi ~ Z}.  The n numbers at,  a2 . . . . .  an and the target sum T 

determine the lattice and every solution to the subset-sum problem corresponds to a 

vector in the lattice. 
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What they showed is that if s > 1.5472 �9 n, then with high probability (over the 

choices of the subset problem of these dimensions) the vector corresponding to the 

solution to the subset sum problem is the shortest in the lattice. This was improved 

very recently by Coster et al. [12] and Joux and Stern [27] who showed a different 

transformation that has the property that the vector corresponding to the solution is 

the shortest whenever g(n) > 1.0629 - n. (Reference [12] also contains some evidence 

showing the limitation of  this method.) 

The above-mentioned papers suggest as a second stage finding these shortest vectors 

using the lattice base reduction algorithm of Lenstra et al. [33] (or some modification of 

it, see [44]). This algorithm is not guaranteed to find a shortest vector but one that is at 

most 2 n times the shortest. In order to get that with high probability the shortest vector is 

much shorter than the other vectors, one has to require e(n) > n 2. However, the hardness 

of the shortest-vector problem is uncertain: the problem is not known to be NP-hard and 

it is conceivable that a polynomial-time algorithm exists. To our knowledge, there is no 

generally believed conjecture that it is hard. 

Thus, to be on the safe side we must assume that there is an efficient algorithm for the 

shortest-vector problem and chose the dimension e(n) to be smaller than 1.0629 - n. 

As for the other case, when l (n) is very small, say O (log n), then the subset-sum prob- 

I log n, lem can be solved via dynamic programming. (For very dense problems, e(n) < 

there are more efficient algorithms, as was recently shown by Galil and Margalit [ 17]. ) 

For the length function e(n) = n, the best known attack takes time 0 ( 2  ~/2) and space 

0 ( 2  ~/4) due to Schroeppel and Shamir [46]. 

The recent papers [44] and [45] report extensive experimental work on the subset-sum 

problem and several variants. They manage to solve problems of  size up to n = 74 using 

a moderate amount of  computation. 

From the discussion above it is clear that the subset sum of the dimensions we require 

is receiving considerable attention. However, we think that more cryptanalytic effort 

should be devoted to it before we can conclude that it is safe to assume that it hard for 

some specific e and n and use it in any actual implementation. 

2. An Efficient Pseudorandom Generator 

A pseudorandom generator is a way to obtain many random looking bits from a short truly 

random seed. Formally, a function G: {0, 1 }~ ~ {0, 1 }t~n) is a pseudorandom generator 

if every algorithm A that tries to distinguish between outputs of  G and truly random 

sequences has a negligible probability of  success (i.e., for each d > 0 except for finitely 

manyn 's ,  tPr[A(G(x))  = l ] - P r [ A ( y )  = 1]1 < n -c wherex c {0, 1} n a n d y  ~ {0, 1} t(m 

are uniformly chosen.) 

Pseudorandom generators have many applications in cryptography. These include: 

private-key encryption [2 l ], [18], [35], bit commitment [38] (the strong committer vari- 

ant, which allows zero knowledge proofs [22]), and succinct secret sharing [31 ]. 

Cryptographically strong pseudorandom generators were defined by Blum and Micali 

[5], who constructed a pseudorandom generator based on discrete-log. Blum et al. [4] 

constructed a pseudorandom generator based on quadratic residuosity. Yao [47] showed 

that the definition given above is equivalent to that of  Blum and Micali, and gave a 
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general construction that can be based on any one-way permutation. An essential part 

in these and other constructions is a hard bit for a one-way function f ,  i.e., a function 

b: {0, 1 }n ~ {0, 1} such that given f ( x )  no polynomial-time machine can guess b(x) 

with probability greater than 1/2 + l /poly(n).  Goldreich and Levin [20] have shown 

that for any one-way function f the inner product with a random vector is a hard bit. 

More precisely, if x, r 6 {0, 1 }n let r �9 x be the inner product (mod 2) of  x and r, i.e., 

r �9 x = 1 if the number of  bit positions i such that ri : x i  : 1 is odd, where ri and xi 

are the ith bits of  r and x, respectively. Then the Goldreich-Levin theorem is: 

Theorem 2.1 [20]. Let f be a one-way function. For any polynomial-time algorithm A 

andanypolynomial p,forallbutfinitelymanyn 's, Pr[A(f  (x), r) = r .x] < 1 /2+  l ip (n)  

where the probability is taken over uniformly chosen x, r ~ {0, 1 }n. 

We apply this theorem in a novel way. Functions that hide bits were used to generate 

pseudorandom sequences as follows: on a seed x, output b(x) and apply f to x; repeat 

this process with f ( x )  playing the role of  x. This yields only one bit per application of  

the one-way function and is sequential. Some improvements have been suggested, like 

extending the one hidden bit to O(log n) bits, but this is only a slight improvement in 

performance. Our construction obtains O (n) bits per application of  the one-way function 

(which is the subset-sum function). As was pointed out by Micali and Schnorr [37], the 

technique of  [18] can be used to generate pseudorandom sequences of  any polynomial 

length in parallel, once a way of  generating in parallel n + O (n) bits from n bits is given. 

Since subset sum is amenable to parallelism, this yields a parallel method for generating 

pseudorandom sequences. 

Suppose that the subset-sum problem with l (n) = ( 1 + c)n is hard, for c > 0. We show 

that it is also a pseudorandom generator. This is in contrast with previous results where 

the one-wayness of  a function was used to construct a different pseudorandom generator. 

(For instance, using the first part of  Proposition 1.1, that the subset-sum function is 1-1 

with high probability for l (n) = ( 1 + c)n, and using the method of  Goldreich et al. [ 19] a 

pseudorandom generator can be constructed. This generator will output one bit for each 

computation of  the subset sum.) In our case the one-way function and the pseudorandom 

generator are the same. The loss of  efficiency which occurs in the conversion process in 

previous constructions is no problem in ours. 

Theorem 2.2. Let l (n ) = (1 + c )n for c > O. If  the subset-sum function for length l (n ) 

is one-way, then it is also a pseudorandom generator. 

Proof. Although this theorem holds for subset sum as defined above, for ease of  expo- 

sition we prove it first for subset sum where the addition is performed modulo a prime 

p and all numbers are chosen at random from {0 . . . . .  p - 1 } and later explain how to 

obtain the case where the addition is modulo a composite, in particular 2 e. 

Assume that f is not pseudorandom. We will show that we can use the distinguisher 

to predict, given r and f~(s), the inner product of  r and s with probability at least 

1/2 + 1/poly(n). From the Goldreich-Levin theorem (Theorem 2.1) this contradicts the 

assumed one-wayness of  f .  In this particular case the inner product bit has a special 

interpretation. We think of  s and r as describing subsets of  the ai 's. The inner product 
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of s and r is 1 if the intersection of  these subsets is odd. Our strategy is to use the 

distinguisher to predict the size of  this intersection, and thus to predict its parity. 

The distinguisher gets as input al,  a2 . . . . .  an E {0, p - 1} and a supposed sum of a 

subset T e {0, p -  1}. Without loss of  generality, we assume that the distinguisher outputs 

1 with probability at least 1/2 + 1/p(n) when T is indeed the sum of a random subset 

and that it outputs 1 with probability almost exactly 1/2 when T is chosen uniformly at 

random from {0, p - 1}. On input f~(s), r our predictor does the following: 

1. Chooses a random k ~ {0 . . . . .  n} (this is our guess as to the size of  the inter- 

section). 

2. Chooses a random x c {0 . . . . .  p - 1 }. 

3. Lets bi = ai + x if ri = 1, and bi = a~ otherwise. 

4. Feeds the distinguisher with the bi's and f~(s) + kx(mod p). 

5. If the distinguisher outputs 1, then outputs the parity of  k, otherwise outputs the 

negation of  the parity. 

We show below that the above algorithm predicts the inner product with probability 

at least 1/2 + l /np(n) .  Suppose that at the first step we have guessed k correctly, i.e., k 

is the size of  the intersection of  r and s. In this case our prediction for the inner product 

is correct if the distinguisher outputs 1. Claim 2.1 says that this happens with probability 

at least 1/2 + 1/p(n). In the other cases Claim 2.2 says that the input to the distinguisher 

is totally random and hence the probability that our algorithm predicts the inner product 

is 1/2. Since the first case happens with probability 1 In, altogether the probability bf 

correctly predicting the inner product is at least 1/2 + 1/np(n). We now prove these two 

claims. 

Claim 2.1. The conditional probability that our algorithm predicts the inner product 

correctly, given that k is the size of the intersection of r and s, is at least 1/2 + 1/p(n). 

Proof. The distribution the distinguisher sees in this case can be generated as 

follows: 

�9 Pick a random s, r E {0, I }n and let k be the size of  their intersection. 

�9 Pick random al,  a2 . . . . .  an ~ {0 . . . . .  p - l} and let T = Y~iEs ai.  

�9 Pickxrandomlyandletbi = a iq-x  ifri = 1 andbi = ai otherwise.Let T'  = Tq-kx. 

�9 Output bl, b2 . . . . .  bn, T'. 

We claim that this distribution is exactly that ofal ,  a2 . . . . .  an, T. This is true since each 

bi is independent and uniformly distributed and since 

~ _ b i  = ~"~ ai + ~-~ x = T + k x  = T ' .  

iEs iEs iErMs 

Both the bi's and the ai's are independent and uniform and T and T'  are determined by 

their values in the same way. By assumption, the distinguisher outputs 1 with probability 

at least 1/2 + l /p (n )  oll this distribution. As we have noted, in this case our algorithm 

predicts the inner product precisely when the distinguisher outputs 1. [] 
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C la im 2.2. The conditional probability that the algorithm predicts the inner product 

bit, given that k is not the size o f  the intersection o f  r and s, is 1/2. 

Proof.  Fix any s, r E {0, 1} n and fix k to be different from k' = Ir fq s]. The distri- 

bution the distinguisher sees in this case can be generated as follows: Pick random 

al ,a2 . . . . .  an ~ {0 . . . . .  p -  1}. Let T = Y~4esai . Pick x ~ {0 . . . . .  p -  1} ran- 

domly. Let bi = ai + x if ri = 1 and bi = ai otherwise. Let T'  = T + kx and let 

T" = T + k'x. Output bl ,  b2 . . . . .  bn, T'. We claim that this distribution is exactly that 

of a l ,  a2 . . . . .  an, U where U is chosen uniformly at random from {0 . . . . .  p - 1}. As 

before, a l ,  a2 . . . . .  an, T and bl ,  b2 . . . . .  bn, T" are identically distributed. We also know 

that bl ,  b2 . . . . .  bn, T" is independent o fx .  We have that T' = T" + (k - k ')x and since 

we are working in a field and k - k'  # 0, T'  is uniformly distributed and independent of 

bl ,  b2 . . . . .  bn. 

From our assumption on the distinguisher, it outputs 1 on this distribution with prob- 

ability 1/2. Since this is true for every s, r ,  and k, the probabili ty of  correctly predicting 

is 1/2 in this case. [] 

We now turn to the case where the arithmetic is done modulo 2 t{"). The proof is similar, 

however, additional complications arise because the multiplication is no longer over a 

field. The proof of  Claim 2.1 remains unchanged. In Claim 2.2 we should consider what 

happens when k - k'  is not relatively prime to 2 e{m . Let g = GCD(2 e~n), k - k') < n and 

let y = (k - k ' )x  mod 2 eln). We know that glY and that y / g  is distributed uniformly in 

{0 . . . . .  2e{")/g - 1 }. On the other hand, since g is small (much smaller than e(n)), by part 

(2) of  Proposition 1.1, T" mod g is quasi-random over {0 . . . . .  g - 1 }. Note that given T ' ,  

bl ,  b2 . . . . .  b,  and k - k' the conditional distribution o f x  is uniform in {0 . . . . .  2 elm - 1 } 

and therefore T" is independent of  y. Hence we have that 

T" + y = g ( [T" /gJ  + y / g  mod2e /g )  + (T" m o d g )  

is quasi-random over {0 . . . . .  2 an) - 1 }. This shows that Claim 2.2 holds for arithmetic 

modulo 2 l~n) and concludes the proof  of  the theorem. [] 

Once we have a way of  obtaining (1 + c)n pseudorandom bits from a seed of  n bits, 

we can use the method of  Goldreich et al. [18] to extend an n bit seed to an arbitrary 

polynomial  length pseudorandom sequence. (Once a l, a2 . . . . .  an are chosen at random 

they can be fixed for all applications. Thus they do not count for the length of  the seed.) 

We start with a seed s ~ {0, 1 }n and compute f~ (s). The last en of this number are output 

and the rest are used as the new seed. This is repeated until we have as many bits as we 

want. 

To generate a sequence of  length m we need O (m/n )  iterations. Each iteration requires 

O (n) additions of  number which are O (n) bits long. In particular, to generate a sequence 

of  length 2n requires only O (1) iterations. Goldreich et al. [ 18] also show how a parallel 

pseudorandom number generator doubling the number of  bits can be used to implement 

in parallel a pseudorandom generator for any length. The number of  parallel iterations 

in their construction is log(re~n). 
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3. A Family of Universal One-Way Hash Functions 

A family of  universal one-way hash functions is a collection F of functions f :  {0, 1 }" w-~ 

{0, 1 }m with the property that for any element x 6 {0, 1 }" if f is chosen at random from 

the collection F, then it is hard to find an element y -r x such that f ( y )  = f ( x )  

(although many such y 's  exist2). We say that such a y collides with x. Such functions 

were introduced by Naor and Yung [40], who showed how they can be applied to various 

solve authentication problems, most notably signature schemes and public fingerprints 

for files. Naor and Yung showed how such a family can be constructed given any 1-1 

one-way function. However, in a dual way to the case of  the pseudorandom generation, 

the construction achieves compression of  one bit per application of  the one-way function. 

We suggest using the subset sum function in the case l(n) < n as a one-way hash 

function. If  l(n) = (1 - c)n for c > 0, then al,  a2 . . . . .  an E {0, 1} t~n) define a function 

fa: {0, 1} n w-> {0, 1} l~n/. We claim that the collection of  all such functions defines a 

family of  universal one-hash functions, assuming subset sum is hard for this length. 

Naor and Yung have shown that the composition of  several families of  universal one- 

way hash functions is also a universal one-way hash. Therefore, if we can construct a 

family that achieves compression ofcn bits we can construct from it a family that achieves 

any polynomial compression, i.e., for any N, polynomial in n, we can hash a string of 

N bits to one which is n bits long. This can be achieved by O( logn)  compositions, and 

therefore can be implemented in parallel poly-log time (NC). The number of  addition 

operations required to hash a string from N bits to n bits is linear in N. 

Theorem 3.1. Let l (n) = ( 1 - c )n for  c > O. I f  the subset-sum function for  length l (n ) 

is one-way, then it is also a family o f  universal one-way hash functions. 

Proof. We have to show that, for any S 1 E {0, 1}", if al ,  a2 . . . . .  an e {0, 1} tCn) are 

chosen at random, then finding Sl ~ s2 such that f~(sl)  = f~(s2) it as hard as inverting 

the subset sum function. 

Suppose not, i.e., an algorithm exists that with nonnegligible probability succeeds 

in finding such an s2, then we will show how to use it to invert f with nonnegligible 

probability. 

Given al, a2 . . . . .  an E {0, 1} t(n) and a target sum T, we construct an input to the 

collision-finding algorithm as follows: 

1. Let the collision-finding algorithm select a (nonempty) S l c  {0, 1 }n. 

2. Compute T' = ~,ies, ai. Choose a random j such that j E sl and define a~ = 

a j -  T'  + T. 

3. Give the instance a l, a2 . . . . .  a~ . . . . .  an and Sl to the algorithm that finds collisions. 

The algorithm attempts to find s2 such that f~a~.~2 ...... ~ ....... )(s2) = T'. 

If the algorithm returns s2 that collides with sL and j r s2, then s2 is a solution to our 

original problem, since swapping aj and a~ does not affect the sum over s2. If  we could 

argue that the distribution that the collision-finding algorithm sees is similar to its usual 

2 Note that we have notrequired that m < n, but the hash function is pretty useless otherwise. 
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one, then the probability that some colliding s2 will be found is nonnegligible. Note that 

we can assume that Sl ~ s2, since otherwise we can use the collision-finding algorithm 

for solving the subset problem on T = 0 (which is at least as hard as the general problem). 

Furthermore, since j was chosen at random, the probability that j r s2 is at least l / n .  

(Actually it is closer to 1/2, however, l / n  is good enough for our purposes.) Hence we 

have a 1/poly chance of  breaking the subset sum problem. 

The reason that the distribution the collision-finding algorithm sees is very close to its 

regular one is that ai is distributed uniformly and independently for all i -# j .  By part 

2 of  Proposition 1.1 we know that T is distributed quasi-randomly given at,  a2 . . . . .  an. 

Therefore a~ is quasi-random, and Sl looks like a random set whose sum is T. [] 

The following corollary is useful in the next section. 

Coro l la ry3 .1 .  Given a l , a 2  . . . . .  an~2 E {0, 1} nn) and a ' l ,a '  2 . . . . .  a ' /2 E {0, 1} t~n) 

chosen at random, f ind ing  two subsets  o f  the ai 'S and a~ 's that sum to the same value is 

as hard as inverting subset  sum on length l (n). 

As with pseudorandom generators, the system designer can chose ~ once and fix it. 

To generate from it a universal one-way hash function chose only a random r ~ {0, 1 }n. 

The function will be f r (S )  = f a ( r  �9 s).  This yields a succinct representation for the 

one-way hash function, and thus can lead to efficient provably secure digital signature 

schemes. Therefore in order to represent a hash function from N bits to s bits using as the 

building block subset sum of n number of length s we need altogether n- ~ + n �9 logn/e N 

bits. Furthermore, the amount of storage required in order to compute the hash function 

is only n logn/e N bits. 

4. Efficient Universal One-Way Hash Functions with Security Based on 

Group-Theoretic Problems 

The proof of  Theorem 3.1 in the previous section didnot  use very much of  the structure 

of  addition in showing the equivalence between subset sum as a one-way function and 

subset sum as a universal one-way hash function. In fact, the analogous result holds 

for subset G-product (see exact definition below) for any group G whose elements 

can be coded as strings of a certain length, so that it is possible to multiply and invert 

elements in polynomial time, and to sample from G at random in polynomial time. In 

this section we show that inverting the subset G-product function for n > log(lGI) is as 

hard as inverting any onto homomorphism to G (from any other group with the listed 

properties). In particular, for any prime p, and for n > log p, subset product mod p is 

as difficult to invert as it is to take discrete logarithms mod p, and for N a Blum integer, 

subset product mod N is as hard as factoring N. Using generalizations of  the results of  

last section, we then obtain efficiently parallelizable universal one-way hash functions 

based either on discrete log or factoring Blum integers. 

The results of  the first section are more specific, but can also be generalized to include 

subset product modulo any integer N as long as n is relatively prime to ~ ( N ) .  (In 

general, we need yn ~u  Gx for y ~u Gx.) However, we are not able to connect the 
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security of  this one-way function with that of  any group-theoretic problem. Thus, it 

is still an open problem to construct an NC-implementable pseudorandom generator 

(producing arbitrarily many output bits ) based on discrete log or factoring. (However, 

Kharitonov [30] constructed a pseudorandom generator based on factoring that has a 

fixed sequential preprocessing phase and can then be expanded to polynomial length in 

NC.)  

Definition 4.1. Let G = {Gx , x  ~ A}, A _ Z, be a family of  finite groups in- 

dexed by integers, whose elements are also integers. We say that G is polynomial- 

time computable if, given x, the following operations can be performed in probabilistic 

polynomial-time: 

1. Compute the identity of Gx. 

2. Given y, z ~ Gx compute y �9 z, where - is the group operation. 

3. Given y E G~ compute y -  l, the multiplicative inverse of  y in Gx. 

4. Select at random y 6 v  Gx. 

Definition 4.2. Let G = {Gx, x ~ A} be a polynomial-time computable family of  

groups. Then the subset G-produc t  function with parameters n, x takes as input an 

n-tuple of  elements Yl . . . . .  Yn of  Gx and an n-bit string S and outputs the product in Gx, 

in order of  appearance in the n-tuple, of  those elements yi with Si = 1. As before, we 

view n, x, S; as being fixed, and so consider the subset G-product function as a function 

from {0, 1} ~ ~ G~, f~(S)  = f~ ,x j (S ) .  

Proposition4.1. Let n > c log(lGxl) for  c > 1. Then, for  all but an exponentially 

small fraction o f  the choices of  ~ E u (Gx)n, the induced distribution f~ (S) for  S E u 

{0, 1 }" is statistically indistinguishable within an exponentially small amount from the 

uniform distribution on G x. 

Proof. The proof is analogous to Proposition 1.1. (One technical point is that one 

needs the leftover hash lemma of  [26], which works under the weaker assumption that 

the hash functions in question are universal2 in the sense of  [10], rather than pairwise 

independent.) [] 

Theorem4.1 .  Let G = {Gxlx r A} and H = {H~,Iy ~ B} be polynomial-time 

computable families o f  groups, let g: B ~ A be a polynomial-time computable function, 

and let h = { h y l Y ~ B } be a family o f  polynomial-time computable onto homomorphisms 

from Hy to Gg(y). Then any algorithm to invert the subset G-product function with 

parameters x = g(y) ,  n > c log(IGxl), c > 1 with nonnegligible probability o f  success 

on random inputs, yields an algorithm to invert hy. 

Proof. Let A be the algorithm inverting the subset G-product function. Let z ~v  Gx. 

To find hy  I (Z), we randomly generate bl . . . . .  bn-l eu  /-/y and compute ri = hy(bi) for 

i = 1 . . . . .  n - 1, and let rn = z. We then pick a random permutation Jr and let r[ = r,~{i). 



Efficient Cryptographic Schemes Provably as Secure as Subset Sum 211 

Let T ---- h y (t), t E u Hy. We then run A on input r '  and T. If it outputs a solution S so that 

S(~r(n)) = 1, we have (r'l) sCl) . . . (r~ln)_l)st~tn)-l)z(r'~n+l) sC~r " " " (rn) s<m = T. 

Since we know a n h y  I for all the r~, i r zr(n), and for T, we can then compute an h?  1 

for z. Now, since r '  is uniformlydistributed, by Proposition 4.1, the distribution on T 

(a random group element) given r '  is indistinguishable from the output of  the subset G- 

product function with the same parameters. Thus, by assumption, A finds some solution 

S with nonnegligible probability. If A does so, then since S = 0 ~ only when T = 1, 

and since rr is independent of  r ' ,  S(zr(n))  = 1 with probability at least l / n .  Hence, our 

inverting algorithm succeeds with nonnegligible probability. [] 

Corol lary  4.1. Subset  product  in a f ini te  f ie ld  Fp f o r  n > c log p, c > 1, is as secure 

as discrete log in Fp. 

P r o o f .  Let  g be  a generator for Fp and let Hp-l ,g  be the additive group mod p - 1. 

Then h p - l , g ( y )  = gY is an onto group homomorphism. [] 

Corol lary  4.2. Let  N be an integer and let Q RN be the subgroup o f  quadratic residues 

mod N.  T h e n , f o r  n > c log N, c > 1, the subset  product  in Q RN func t ion  is as secure 

as fac tor ing  N.  

P r o p o s i t i o n  4.2. Let  N = pq  be a product  o f  two pr imes .  Then, f o r  n > c log N, 

c > l, the subse tproduc t  mod N funct ion  is as secure as fac tor ing  N .  

Proof. We reduce to the subset product in Q RN function. Let A be any algorithm 

inverting subset product mod N function on random outputs. Let a and b be such that 

a E Q R e, a ~ Q Rq and b ~ Q Rp, b ~ Q Rq. (a and b can be chosen at random, and will 

have the desired properties with a constant probability.) Given an instance xl . . . . .  xn, T 

of subset product in QRN,  we reduce to an instance of  subset product mod N as follows. 

We let ri, si ~ { -  1,0, 1 } so that each is - 1 with probability l /4,  0 with probability 

1/2, and l with probability 1/4 and let yi = ar~bS'xi �9 We pick r, s ~ { - l ,  0, 1} similarly 

and let T'  = arbST.  All the yi ' s  and T'  are uniformly distributed mod N, and so by 

Proposition 4.1 are exponentially indistinguishable from a random output of the subset 

product mod N function. Thus, A finds a subset S with T'  = Hies  Yi. 

We claim that with probability at least f2 (1/n) ,  T = l-li~ s Xi. TO simplify the discus- 

sion, let Yn+l = (T')  - l ,  rn+l = - r ,  s .+t  = - s ,  Xn+l = T - l ,  and S' = S U {n + 1}. 

Then we have Flies, Yi = 1, Yi = ar~bS~xi, and we want l-Ii~s, xi = 1. Let R~ = 

{i E S'lri E {-1 ,  1}} = {i E S' lyi  ~ QRp} and R2 = {i ~ S'lsi E {-1 ,  1}} = 

{i ~ S'lYi r QRq }. Then given ~ (which determines the distribution on S and hence on 

RI, R2), for each i ~ Rl we have that r i is uniformly and independently distributed in 

{ -1 ,  1}, and similarl.y for each i 6 R2 and si. Hence, for any ~ and S = A(~;), there is 

an f2 (1/n 1/2) probability that Y~i~s' ri = 0 and a similar and independent probability 

that Y~i~s' si = 0. Therefore the probability that both events occur is f2(1/n).  In this 

case, 1 = l-Ii~s, yi = a~176 ' xi ,  so we have solved the instance of  Q R N  subset 

product. [] 
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Finally, we note: 

Theorem4.2 .  Let G = {G, lx E A} be a family  o f  polynomial-time computable 

groups. Then i f  n > c log(IGxl) f o r  c > 1, and the subset G-product function with 

parameters x and n is one-way, it is also a universal one-way hash function. 

Proof. Analogous to Theorem 3.1. [] 

5. Bit Commitment  Versus a Strong Receiver 

Bit commitment is a basic protocol which is useful and essential in many cryptographic 

applications, such as coin flipping by telephone [3], zero-knowledge and minimum 

disclosure proofs [22], [7], and identification schemes [13]. 

Naor [38] has shown how to implement bit commitment given any pseudorandom 

generator. His scheme suffices for the all applications above, except minimum disclosure. 

Furthermore, his scheme enables commitment to n bits at the price of  generating a 

pseudorandom sequence of  length O (n). In our context it implies that if subset sum with 

l(n) = (l + c)n is one-way, then commitment to n bits can be done with n additions. 

As mentioned, minimum disclosure requires a special kind of  bit commitment, one 

which is secure versus a computationally unlimited receiver. In [7] it is shown how to 

implement this kind of bit commitment based on factoring and discrete log. Naor et al. 

[39] show a general but highly interactive protocol, which can be based on any one-way 

permutation. 

Bit commitment is a way for a committer Alice to send a receiver Bob a locked box 

containing a bit. Only Alice has a key to the box, which she can send to Bob at a later 

stage. Bob can be sure that the contents of  the box are fixed, i.e., not tampered with 

between the time he received it and the time it was opened. Alice can be sure that Bob 

has no idea what the value of  the bit in the box is. Many times during a protocol, the box 

is never opened, and Alice wishes that it never be opened in any time in the future. In 

most bit commitment schemes, Bob can open the box, if he has superpolynomial time. 

In a strong receiver bit commitment protocol, Alice should have the confidence that the 

box cannot be opened even by a Bob with an unlimited computational ability. 

We give a construction which is based on the assumption that subset sum with l(n) ---- 

I is one-way. Unlike the other constructions in this paper, we do not cn, where c < ~, 

claim that it is particularly efficient. A more practical version is possible if we assume 

that a trusted third party, such as the protocol designer, fixes some parameters at random. 

(The trusted party need not be available during the execution of  the protocol!) 

We give the protocol assuming that the trusted third party has chosen a ~, a2 . . . . .  an~2 E 

{0, 1 }tlnl and a' l , a~ . . . . .  a'n/2 c {0, 1 },n~. (If there is no such third party, then the ai's and 

a~'s can be chosen via coin flipping over the telephone [3] which can be implemented 

using a bit commitment scheme versus a strong committer, as in [38]. This commitment 

can also be based on the hardness of  subset sum.) 

The commit protocol to a bit b: 

1. Alice chooses s ~R {0, 1} n/2. 

2. If b = 0, then Alice sends Bob T = ~'~-iEs ai.  

3. If b = 1, then Alice sends Bob T ---- )--~ie~ a;. 
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To reveal, she sends s and b. Bob verifies that the commit protocol was obeyed. 

Alice's unconditional security is based on part 2 of  Proposition 1.2: the distributions 

on T given that b = 0 or 1 are both quasi-random (with high probability) and thus 

indistinguishable even to a strong Bob. Bob's  security is based on the fact proved in 

Section 3 that if an l (n)  subset sum function is one-way, then given two sets of  n / 2  

numbers, it is hard to find two subsets that sum to the same value. 

6. Subset Sum with Constant-Depth Circuits 

One of  the few lower bounds known in complexity theory concern the class of  polynomial- 

sized constant-depth circuits (AC~ It is known that the parity function cannot be com- 

puted in A C  ~ and hence summing many numbers cannot be done in A C  ~ [1], [16] (expo- 

nential lower bounds on the size of  a constant-depth circuit to compute these functions 

are given in [48] and [23]). However, we show that random instances of  the subset-sum 

problem can be generated in A C  ~ If subset sum is secure for any length l(n),  then 

our construction gives a one-way function and a pseudorandom generator computable 

in A C  ~ This is the first example of such functions. In contrast, Linial et al. [34] have 

shown that no pseudorandomfunction generator, as defined by Goldreich et al. [ 18], can 

be implemented in A C  ~ (more precisely, no pseudorandom function secure against an 

adversary operating in n p~176 time can be computable in AC~ We should also note 

that our results have been applied by Kharitonov [29] to show the hardness of  learning 

problems. 

The basic idea is to generalize a method suggested by Babai [2] and Boppana and 

Lagarias [6]. Instead of  first generating a random ~ and then computing a sum, which 

cannot be done in A C  ~ we generate the sum, the subset, and ~ simultaneously. Successive 

members of  the subset should cancel each other, so that the biggest and smallest members 

of  the subset are the only indices that affect the sum. 

For any length l(n), we can generate uniformly at random al,  a2 . . . . .  a~ E {0, 1} t(n), 

S E {0, 1 ]~, and T = ~-~ics ai  mod 2 tt~). The generator is the following: 

Input: n + n �9 ((n) bits. 

1. Generate S ~ {0, 1 }n and a '  l, a~ . . . . .  a '  n ~ {0, 1 }t(n) from the input bits. 

2. Find imin = minies i and/max = maxims i. 

3. For every i E S such that i > imin evaluate ji = max{j < i l j  ~ S}. 

4. For each 1 < i < n set ai by the following rules: 

�9 If  i r S, then set ai  = a~. 

�9 If i 6 S and i > imin, then set a i  = a~ - -  a~. 

�9 If i = imin, then set ai = a~. 

5. Compute T = ~_,i~s ai  = ~-~i~S a~ - a~; = aim, - aim,, mod 2 l~o). 

Output :  T, al,  a2 . . . .  an ((n + 1)-e(n)bi ts ) .  

Every step in the above procedure can be computed in AC~ steps 2 and 3 require only 

an AND of at most n inputs and steps 4 and 5 are can be done in A C  ~ since addition and 

subtraction are in A C  ~ 
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Claim 6.1. I f  the inputs S E {0, 1}" and a' l, a~ . . . . .  a'n ~ {0, 11 t<n) to the above proce- 

dure are random, then the output T, al,  a2 . . . .  an is distributed as a sum o f  a subset o f  

numbers all chosen uniformly at random 

Thus, if subset sum is secure for any / (n ) ,  the procedure above defines a one-way 

function which is computable in AC ~ (The function maps S 6 {0, 1 }n and a '  I , a~ . . . . .  a '  n 

to T and a~, a2 . . . . .  an.) This is the first example of  such a function that we know of. As 

we have mentioned in Section 1, if subset sum is secure for any l(n), then it is secure for 

n + log n. Therefore, by Theorem 2.2 the procedure above with e(n) = n + log n defines 

a pseudorandom generator that expands the input by log n bits. We do not know if one 

can construct in AC ~ a pseudorandom generator based on subset sum that expands the 

input by any polynomial. 

7. Conclusions 

We have shown a number of  very efficient implementation of cryptographic schemes 

which are secure if subset sum is hard to invert for certain length parameters. More 

cryptanalytic effort should be devoted to understanding the difficulty of  subset sum for 

these parameters before our constructions should be used. We hope that our results will 

encourage such an effort. Our results also shed some light on the theoretical question 

of  whether it is possible to have meaningful cryptography in very low-level complexity 

classes. 
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that if the subset sum problem is easy on the average, then the shortest vector in a lattice 

problem is easy in the worst case. 
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