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Abstract—Industrial control systems (ICSs) are widely used
and vital to industry and society. Their failure can have severe
impact on both the economy and human life. Hence, these systems
have become an attractive target for physical and cyber attacks
alike. In this paper, we examine an attack detection method
based on simple and lightweight neural networks, namely, 1D
convolutional neural networks and autoencoders. We apply these
networks to both the time and frequency domains of the data
and discuss the pros and cons of each representation approach.
The suggested method is evaluated on three popular public
datasets, and detection rates matching or exceeding previously
published detection results are achieved, while demonstrating a
small footprint, short training and detection times, and generality.
We also show the effectiveness of PCA, which, given proper
data preprocessing and feature selection, can provide high attack
detection rates in many settings. Finally, we study the proposed
method’s robustness against adversarial attacks that exploit
inherent blind spots of neural networks to evade detection while
achieving their intended physical effect. Our results show that
the proposed method is robust to such evasion attacks: in order
to evade detection, the attacker is forced to sacrifice the desired
physical impact on the system.

Index Terms—Anomaly detection; Industrial control systems;
Convolutional neural networks; Autoencoders; Frequency analy-
sis; Adversarial machine learning; Adversarial robustness.

I. INTRODUCTION

Industrial control systems (ICSs), also known as supervisory

control and data acquisition (SCADA) systems, combine

distributed computing with physical process monitoring and

control. They are comprised of elements providing feedback

from the physical world (sensors) and elements influencing

it (actuators), as well as computers and controller networks,

which process the feedback data and issue commands to the

actuators. Many ICSs are safety-critical, and an attack interfer-

ing with their functionality can cause substantial financial and

environmental harm, and endanger people.

The importance of ICSs makes them an attractive target

for attacks, particularly cyber attacks. Several high impact

incidents have been reported in recent years, including the

attack on a power grid in Ukraine [1], the infamous Stuxnet

malware targeting nuclear centrifuges in Iran [2], and attacks

on a Saudi oil company [3]. In the past, ICSs ran on proprietary

hardware and software in physically secure locations; more

recently they have adopted remote connectivity and a common

information technology (IT) stack, a trend exposing ICSs to

cyber threats that leverage existing attack tools. However, the

ICS defender’s toolbox is limited due to the need to support

legacy protocols built without modern security features, as well

as the endpoints’ inadequate processing capabilities. These

problems can be addressed by using traditional IT network-

based intrusion detection systems (IDSs) to identify malicious

activity. However, this approach is ineffective, given the few

known attacks on ICSs. Alternatively, model-based methods

have been proposed to detect ICSs’ anomalous behavior [4]–[7].

Unfortunately, creating an accurate model of complex physical

processes requires in-depth understanding of the system and

its implementation, and is time-consuming and difficult to

scale. Thus, recent studies have utilized machine learning (ML)

to model the system. Some studies used supervised machine

learning [8], [9] and achieved high precision results. With

supervised learning, both benign and malicious data must

be present and labeled; thus it is limited to known attacks.

In contrast, unsupervised learning trains with unlabeled data,

assuming that most of the data is normal. Semi-supervised

learning combines unlabeled data with some supervision

information [10], often in the form of labels, for a small

subset of the data. In the context of this work, semi-supervised

learning assumes that the training data represents normal system

behavior and contains no attacks.

To overcome the limitations of supervised learning, other

studies used unsupervised and semi-supervised deep neural

networks (DNNs) to detect anomalies and attacks in ICS

data [11]–[16]. Kravchik and Shabtai [17] suggested using

semi-supervised neural networks (NNs) based on 1D CNNs

and demonstrated the detection of 31 of 36 cyber attacks in

the SWaT dataset [18].

Despite their achievements, these studies suffer from some

limitations. First, they were typically verified on a single dataset,

limiting the ability to address the method’s generality and appli-

cability in other settings. Second, these studies barely addressed

the need to properly preprocess the input data and conduct

feature selection, an important step which may have significant

impact on performance. In some studies, the proposed model

was applied selectively to a subset of features [11], [19]. Others

applied different detection mechanisms to different features [13].

However, unified and systematic quantitative criteria for feature

selection is still lacking. Third, we believe that the ability

of these methods to detect many attacks is limited, because

they focus on processing the time domain signals. Recently,

electromagnetic side-channel monitoring studies demonstrated
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the effectiveness of frequency domain analysis in malicious

code detection [20]. Advantages of this domain include noise

removal and sensitivity to slow attacks or attacks that speed up

the controlled process (as in the Stuxnet case) and are difficult

to detect in the time domain. Finally, most studies using neural

networks do not consider adversarial attacks on the proposed

methods.

A. Problem Description

The threat model assumed in our research considers a

powerful adversary whose goal is to change a physical-level

process of the targeted ICS. The adversary considered has

penetrated the system and is able to falsify the sensory data,

send malicious commands to the actuators, and present a fake

system state to the system’s operators by manipulating network

traffic between the field process and control center. An attacker

that can completely fake the system state would be nearly

impossible to detect, however it is unlikely that an attacker

would have the ability to control the whole system (i.e., all

of the sensors, actuators, PLCs). Therefore, we consider an

attacker that can only falsify some of the information.

Our goal is to develop an anomaly and attack detection (AD)

system that can identify the activity of such an attacker based

on data collected on the physical process state of the protected

ICS. We assume that the attacker is aware of the AD system’s

presence and will try to achieve his/her goals while evading

detection.

Our research aims to address the following research questions:

1) Can we propose an effective and accurate ICS anomaly

detection method based on lightweight neural networks or

PCA?

2) Is the proposed method generic and effective across multiple

environments and datasets?

3) What quantitative criteria should be used for anomaly

detection feature selection?

4) Does detection in the frequency domain provide any

benefits (i.e., a better detection rate with fewer false alarms)

compared to detection in the time domain?

5) How robust are the proposed NN architectures to adversarial

machine learning attacks?

B. Contributions

In this paper, we propose a method for detecting anomalies

and cyber attacks in physical-level ICS data using 1D CNNs,

shallow undercomplete autoencoders (UAEs), variational au-

toencoders (VAEs), and PCA. The method improves upon the

method presented in [17], allowing arbitrary length sequence

prediction and an arbitrary prediction horizon, adding a max-

based method for threshold detection, and formalizing the

detection hyperparameter criteria. In addition, we propose a

feature selection approach using the Kolmogorov-Smirnov test

and transform time domain signals into frequency representa-

tion using short-time Fourier transform and energy binning,

and model the system in both the time and frequency domains.

The method was evaluated on three popular public datasets

representing both real-world and simulated data (SWaT,

BATADAL, WADI) and achieved better detection performance

than previously published research in this area. In addition, we

demonstrate the effectiveness of the proposed feature selection

method and its generalizability.

Finally, the proposed method’s robustness to adversarial

evasion attacks under a threat model of a white-box attacker

that has gained control of the sensor data was evaluated. The

results show the method’s resilience: to evade detection, the

attacker must abandon his/her goal of physically impacting the

system.

The main contributions of this paper are as follows.

• An effective and generic method for detecting anomalies

and cyber attacks in ICS data using 1D CNNs, shallow

UAEs, VAEs, and PCA.

• A method for robust feature selection based on the

Kolmogorov-Smirnov test and experimental validation

of its effectiveness.

• The efficient and novel application of the abovementioned

detection method to the frequency domain.

• An algorithm for conducting adversarial evasion attacks

on the proposed detection method and a demonstration

of the robustness of the proposed models to such attacks

(to the best of our knowledge, this is the first research to

cover adversarial attacks on 1D CNNs and AEs, and to

examine their robustness under this threat model).

II. BACKGROUND

A. Industrial Control Systems

A typical ICS combines network-connected computers

with physical processes, which are both controlled by these

computers and provide the computers with feedback. The key

components of an ICS include sensors and actuators that are

connected to a local computing element, commonly called a

programmable logic controller (PLC).

Sensors and actuators are usually connected to the PLC with

a direct cable connection, and commands are sent to the PLC

via a local networking protocol, such as CAN, Modbus, or S7.

Remote nodes’ PLCs are managed from the control segment

of the network and are connected to it via protocols, such as

TCP, over a wireless, cellular, or wired network. A central

element of the control segment is an engineering workstation

running SCADA software that provides a means to both monitor

the PLCs and change their internal logic. A human machine

interface (HMI) computer is another important element of the

control segment, providing the operator with the current state

of the controlled process. A historian server that collects and

stores data from the PLCs also resides in the control segment.

B. Attacks on ICSs and Threat Model

The central role of ICSs in critical infrastructure, medical

devices, transport, and other areas of society makes them an

attractive target for attacks. Motives for such attacks are diverse

and include criminals seeking control of an important asset,

industrial espionage and sabotage, political reconnaissance,

cyber warfare, and privacy evasion.

Several attack vectors, or a combination of them, can be

used to attack an ICS (see Figure 1). For example, an adversary

can attack:
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Fig. 1. A schematic of ICS architecture and possible attack vectors.

1) the HMI machine, by exploiting software vulnerabilities

in its OS and application stack, presenting a fake view of

the process and causing the operator to issue erroneous

commands [21];

2) the SCADA and/or engineering workstation machine,

by exploiting software vulnerabilities and obtaining full

control of the ICS, as occurred in the attack in Ukraine [1];

3) the communication network in the control segment,

the remote segment, or between them, by performing

eavesdropping, replay, or false packet injection attacks;

4) the PLC, by exploiting software vulnerabilities or trust

between the PLC and SCADA - this allows the attacker to

change the PLC’s logic, influencing the controlled process

and causing damage, as in the Stuxnet case;

5) the sensors, by leveraging physical effects, interfering

with the measurements, or replacing the sensor with a

malicious one, as shown in [22];

6) the actuators, by altering the signal sent by the actuators

to the controlled process, as described in [23]; or,

7) the actuators and communication channels to create a

covert channel, as demonstrated in [24].

The threat model assumed in this research considers an

adversary whose ultimate goal, regardless of the attack vector,

is a physical-level process change. The adversary considered

has penetrated the system and is able to falsify the sensor data,

send malicious commands to the actuators, and present a fake

system state to its operators by manipulating network traffic

between the field process and control center. We assume that

the attacker can falsify only some of the information.

Therefore, we apply a physics-based attack detection [23]

approach. The main idea behind this approach is modeling the

physical state of the protected system. Using NNs for modeling

does not require defining the specific equations and parameters

describing the system modeled, as the NN learns the best

system representation itself. Monitoring the physical system

state and deviations from the model facilitates the detection of

anomalous behavior, including deviations caused by spoofed

sensor readings and injected control commands.

Despite the fact that our anomaly detection domain is purely

physical, we argue that our method goes beyond simple anomaly

detection. As we show, it can detect sophisticated multi-point

cyber attacks that combine data tampering, malicious com-

mands, and replay attacks. These attacks are targeted, evasive,

and performed by means of the cyber domain. Therefore, we

classify the method as cyber attack detection.

C. Time - Frequency Domain Transformation

Raw data measured by ICS sensors produces a time series.

While in most ICS anomaly and attack detection research

this data is processed directly, it is very common in signal

processing to analyze data in the frequency domain. Using

the Fourier transform (Equation 1) we can build a signal’s

frequency domain representation:

f̂(k) =

∫ +∞

−∞

f(x)e−2πixkdx, (1)

where f is some function depending on time x, f̂ is its Fourier

transform, and k is the frequency. When dealing with periodic

data samples, rather than a continuous function, the discrete

Fourier transform is used:

Fk =
N−1
∑

n=0

fne
−2πink/N , (2)

where fn denotes the n-th sample of f .

Fourier transform of a time series provides its spectrum

over the entire period of time measured. To detect changes in

the signal spectrum over time, we use the short-time Fourier

transform (STFT) which applies the Fourier transform to short

overlapping segments of the time series.

Frequency domain analysis has several advantages: First, it

provides a more compact representation of the dominant signal

components. Second, it allows for the detection of attacks in

which the frequency of regular operation modes is changed,

e.g., quickly starting and stopping the engine. Lastly, according

to the uncertainty principle [25], functions localized in the

time domain (e.g., represented by a short spike) are spread

across many frequencies, and functions that are concentrated

in the frequency domain are spread across the time domain.

This means that slow attacks that usually evade time domain

detection methods will stand out in frequency analysis, but

quick attacks will be difficult to detect in the frequency domain.

As an illustration, consider a sensor reporting a regular sine

signal and an adversary that decreases the signal frequency

by 25% for some period of time to use it as a covert channel.

This change will barely be noticeable in the time domain but

will be very distinct in the frequency domain, as shown in

Figure 2.

D. Adversarial Attacks on Machine Learning Models

Adversarial data consists of specially crafted input samples

which cause the algorithm to produce incorrect results at test

time. The field of adversarial learning in DNNs has attracted
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Fig. 2. Frequency domain transformation benefits for anomaly detection. The
highlighted part of the top signal has a frequency that is 25% smaller than
the rest of the signal. This difference is practically indistinguishable in the
time domain but clearly stands out in the frequency domain (the bottom part).

interest, since [26] showed that NN-based classifiers can be

tricked into mislabeling an image by changing a small number

of pixels in a way that is imperceptible to the human eye. Since

then, adversarial attacks on NNs have been demonstrated in

malware detection, speech classification, etc.

Adversarial machine learning attacks can be divided into

poisoning attacks performed at training time and evasion attacks

performed at test time. To model adversarial attacks, we need to

consider the attacker’s goals and knowledge. In [27], the goals

are subdivided into the desired violation (integrity, availability,

or privacy) and specificity (targeting a set of inputs or all of

them, as well as producing specific incorrect output or just

any incorrect output). In the context of anomaly detection, the

attacker’s goal might be to cause the system to classify an

anomaly as benign (a specific integrity attack) or to classify

many benign samples as anomalous in order to affect the ability

to trust the detection results (an indiscriminate availability

attack).

Biggio et al. [27] defined the attacker’s knowledge in terms

of the training data D, the feature set X , the algorithm f and

its objective function L, and the training hyperparameters and

the detection parameters w learned. In our study’s context, X
is the set of sensor and actuator states used to train the model,

while f and L represent the selected NN architecture and its

loss function. Thus, the attacker’s knowledge is represented by

components (D,X , f, w). The worst-case perfect knowledge

white-box scenario happens when all four components are

known. Gray-box attacks occur if at least one of the components

is unknown and cannot be reproduced; for example, the attacker

might know the feature set and the NN type, but not the network

parameters and weights. Black-box attacks are characterized

by the lack of specific knowledge about any of the four

components. We will review the relevant research on adversarial

attacks in the ICS anomaly detection context in the next

section.

III. RELATED WORK

The area of anomaly and intrusion detection in ICSs has

been widely studied. Extensive surveys [28]–[31] and surveys

of surveys [32] are devoted to classifying research in this

field. Our review of related work focuses on ICS anomaly and

cyber attack detection using the physical state of the system,

as measured by the sensors. As noted in [23], the first step in

physics-based detection is system state prediction. Some studies

used autoregressive models [33], [34] or linear dynamical

system modeling [35]–[37] for this purpose. Unfortunately,

both approaches’ assumptions include linearity of the modeled

system which is not typically fulfilled in ICSs.

Specification-based system modeling [7], [38] and invariant-

based mechanisms [39], [40] were also shown to be effective.

One of their main drawbacks is specificity, i.e., the solution

should be tailored to the system and its operating conditions

or known invariants.

Recently, ML-based modeling became popular in ICS

research. PASAD [19] is based on ideas from singular spectrum

analysis and detects attacks in the signal subspace representing

the deterministic part of the time series. The principle difference

between our approach and PASAD is our approach’s ability

to detect anomalies based on the correlation of multiple input

features, while PASAD deals with a single feature.

In a recent competition on water distribution system cyber

attack detection (the BATADAL [41]), seven teams demon-

strated their solutions on a simulated dataset. The best results

were shown by the authors of [42], who modeled the system

precisely using MATLAB. The main limitation of this solution

is its reliance on the ability to create a precise system

model, a non-generic and difficult task. Another work that

achieved a high score in the competition is [14], in which the

authors proposed a three-layer method: the first layer detects

statistical anomalies, the second layer is an NN aimed at finding

contextual inconsistencies with normal operation, and the third

layer uses principal component analysis (PCA) on all sensor

data to classify the samples as normal or abnormal. Our work

differs from [14] in the following ways. First, we study the

efficiency of a single generic mechanism, as opposed to the

multistage system used by [14]. Second, our solution evaluates

types of NNs not covered by [14]. Lastly, we study feature

selection criteria, frequency domain anomaly detection, and

adversarial robustness.

Another NN-based study from the BATADAL competition

is [15], which used variational autoencoders (VAEs) to calculate

the data’s reconstruction probability. In our research, we found

that VAEs are not very accurate in reconstructing time series

data. Therefore, we suggest using simpler autoencoder models

and demonstrate their effectiveness at this task.

NNs have been used in other physics-based cyber attack

detection research ( [11]–[13], [43]). Unlike our work, these

studies use more complex recurrent neural networks (RNNs)

and graphical models and do not study the frequency domain.

Autoencoders (AEs) have been used for anomaly and

intrusion detection before [44], [45]. The differences between

our work and [44] are that in our research (1) AEs are applied

to raw physical signals without statistical feature extraction,

and (2) AEs are applied to the frequency domain. We extend

the research in [45] by applying AEs to cyber attack detection

in time series, combining control, status, and raw physical

data, as well as by applying AEs to the frequency domain. We
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also enhance the network’s architecture and present a feature

selection method which improves network performance.

A study by Taormina et al. [16] applied AEs to the

BATADAL dataset, a method which was able to detect all of the

attacks and achieve an F1 score of 0.886. Our research differs

from that study in the following ways: First, we study both

1D CNNs and AEs on three different datasets, two of which

come from real-world testbeds. Second, we use a different

AE architecture that is adapted to multivariate time series

prediction, uses noise and an inflation layer, and achieves a

higher F1 score. Third, we study frequency domain detection.

Finally, we present adversarial attacks on the proposed network

and demonstrate the network’s robustness.

Little attention has been given to adversarial attacks in the

ICS context, and there are a number of differences between

our study and the work in the area where most adversarial

research has been done (image and sound processing):

• most existing work is focused on supervised learning

problems, while our research deals with semi-supervised

learning problems,

• most existing work is focused on classification tasks, while

we deal with prediction (regression) tasks,

• while in tasks, such as image classification, the output

variable (image class) is not part of the input, in our task

the input and output features are the same, and

• in our case, there are multiple constraints on the internal

structure of the data, due to the laws of physics and PLC

logic, which are not present in other domains.

A successful evasion attack framework on machine learning

anomaly detection was demonstrated in [46]. The authors

brought a monitored simulated Tennessee Eastman (TE) pro-

cess to a dangerous pressure level by manipulating sensor

measurements in a way that was classified by both a linear

regression and feedforward NN as normal. This research differs

from [46] in the types of NN detectors attacked, the system

modeling approach, and the adversarial attack strategy - we use

state-of-the-art gradient-based adversarial optimization, while

the authors of [46] used iterative linear approximation of the

detector.

In [47], the authors used a generative adversarial network

(GAN) to create stealthy attacks on an ICS, evading a baseline

LSTM anomaly detector. In our research, we target different

types of NN detectors, and use a gradient-based optimization

for the attack generation, unlike [47] that uses GANs, which

are complex and hard to train.

Most recently, Erba et al. [48] showed how to create suc-

cessful evasion attacks against an autoencoder-based detection

mechanism. The main difference between [48] and our approach

is the threat model chosen. The authors of [48] consider a very

powerful attacker that can both generate arbitrary malicious

inputs to the PLC and create fake traffic that is fed to the

detector. We consider a more constrained attacker that can

only control the sensor data that is seen by the PLC and the

detector. We argue that our threat model represents a more

realistic scenario, as elaborated upon in Section IV-G. Table I

summarizes related studies and compares them to our research.

TABLE I
COMPARISON OF STUDIES ON PHYSICS-BASED, MACHINE LEARNING

ANOMALY DETECTION FOR ICSS.

Ref.
Detection

method
Dataset

Frequency

domain

Feature

selection

Adversarial

robustness

[11] RNN
SWaT (sub-

set)
No No No

[12] DNN, SVM SWaT No No No

[14] MLP, PCA BATADAL No No No

[15] VAE BATADAL No No No

[13]
Bayesian

Network
SWaT No Some No

[19]

Singular

Spectrum

Analysis

SWaT (sub-

set), propri-

etary

No No No

[17] 1D CNN SWaT No No No

[16] AE BATADAL No No No

[47] LSTM
Gas

pipeline [49]
No No Yes

[46] MLP
Simulated

TE
No No Yes

[48] AE BATADAL No No Yes

[43] GAN
SWaT,

WADI
No No No

Our re-

search

1D CNN,

UAE, VAE,

PCA

SWaT,

BATADAL,

WADI

Yes Yes Yes

IV. METHODOLOGY

A. Formal Definitions

Consider an ICS containing N measured elements (i.e.,

sensors and actuators) s1, s2, . . . , sN . The sensor measurements

and the actuator states are represented by N -dimensional

vectors yi ∈ RN , where yi contains the values of the features

at time i and ysi is the value of the sensor (or actuator) s at time

i. The physical state of the ICS at a given time yi is a function

f ∈ F of its past states yi−1, yi−2, . . .. The machine learning

model approximates this function by producing estimates

ŷi = f̂N (yi−1−l, . . . , yi−1). (3)

Please note that the single vector prediction presented in

Equation 3 can be further generalized to a multi-vector

prediction (as described in Section IV-E).

Let L(D, f̂) be a loss function quantifying the approximation

error over all instances of the dataset D. In this paper, the mean

squared error (MSE) loss was used: L = 1
n

∑n
i=1 (yi − ŷi)

2. In

the training phase, we search for the largest subset M of all N

features that minimizes the value of the loss function L for the

validation dataset Dval (for the approximation function trained

on a dataset Dtrain). In this paper, our suggested approach

for feature selection is based on the Kolmogorov-Smirnov test

(described in Section IV-C).

In the testing phase, deviations between the predicted and

observed values of the measurements are used by an anomaly

detection function A(yi, ŷi, θ) which compares these deviations

to some detection hyperparameters θ and returns one if an

anomaly is detected at time i and zero otherwise. In our method,

two detection hyperparameters are used: a threshold τ and a

window w; in Section IV-E we provide the precise definition

of function A (presented by Equation 11).

Let’s consider an adversary whose goal is to compromise a

measured value of a sensor s at time i and set it to a value

within some range that causes the attacker’s desired effect. For
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example, setting the water tank level to above 700 mm causes

the system to turn the water pump on, potentially causing an

underflow that could empty the tank. The attacker’s goal is

to introduce the change without triggering anomaly detection

alerts, and this might require the attacker to change additional

sensors’ values at time i or other times before or after the

attack. Formally, let Dtest denote the test set, ysi ∈ Dtest be

the value of the sensor measurement the attacker wants to

change, and δ be the total perturbation added by the attacker.

The attacker’s goal is to find a minimal perturbation that will

both bring ysi into the desired value range and not result in any

alerts by function A (see Equation 4). In addition, the perturbed

dataset must conform to the features’ range constraints, which

we omit from the following equation for brevity.

min
δ

A(Dtest + δ, D̂test + δ, θ) = 0,

s.t. sal ≤ ysi ≤ sau,
(4)

where sal and sau are the lower and upper limits of the desired

attack range. For easy reference, we provide a list of the

symbols used in this section in Table II.

TABLE II
LIST OF SYMBOLS.

Symbol Description

ys

i
Observed feature (sensor) s value at time i

yi Observed feature vector at time i
ŷi Predicted feature vector at time i
r̂i Feature residual vector at time i
w NN model weights

τ Anomaly detection threshold

w Anomaly detection window

Ai Anomaly detection indicator at time i
D Dataset

B. Method Overview

In this section, we provide an overview of the proposed

method. The method’s steps are presented in Figure 3. The

input data comprises time series of the monitored system’s

sensor and actuator values. The data is first normalized (not

shown in Figure 3). In the training phase, the normalized

training data passes to the sensor (feature) selection step (step

(1)). For each feature we calculate the revised Kolmogorov-

Smirnov statistic (see Section IV-C) to select the features

with a consistent probability distribution. The selected features

will be modeled by the learning algorithm. Feature selection

should be performed prior to training the model by using

the training and validation sets, and comparing the statistics

of the two sets. To maintain the detection accuracy, periodic

validation of the features’ consistency can be performed during

the detection phase, and the model can be retrained if significant

changes are detected. In step (2) the data of the selected features

can be transformed to the frequency domain, as described in

Section IV-D (note that this is an optional step). Then, in step

(3) the learning algorithm uses the selected features’ data, either

in the time (original values) or frequency domain (when step

(2) is performed), to train a model that represents the features.

The learning algorithms used in this study are discussed in

Sections IV-E1 and IV-E2.

The trained models are tested on the validation data, and the

anomaly detection hyperparameters (the detection threshold

and window) are determined, as described in Section IV-F.

During the detection (testing) phase, the normalized test data

is first filtered (step (5)) according to features selected in

the feature selection phase. In cases in which the model was

trained on frequency-based features, the normalized, filtered

test data is transformed to the frequency domain (step (6)).

Then, the time or frequency domain representations of the

normalized selected features are passed to the trained model

(step (7)), and the attacks are detected based on the difference

between the predicted and observed values of the features and

the pre-defined threshold and window (step (8)). The steps are

described in the subsections that follow.

C. Feature Selection Using K-S Test

Our detection mechanism is based on the ability to model

and predict the system’s behavior. This can be accomplished if

the data meets the following requirement: the training data must

be representative of the test data; more specifically, it should

contain all the (latent) states and the transitions between the

states which appear in the test data. Therefore, our anomaly

detection method is based on the assumption (common in

anomaly detection [50]) that the normal test data has the same

probability distribution as the training data (only the anomalies

have a different distribution). However, we found that several

SWaT features do not have the same distribution in the training

and test data (see Figure 4), which might be a result of a concept

drift. To find stable features, we use the Kolmogorov-Smirnov

test (K-S test) [51] as a quantitative measure of the similarity

between the probability distributions of the training and test

data. We chose the K-S test, because it is non-parametric and

isn’t based on any assumptions on the probability distributions

tested. It is also more sensitive than comparing the mean and

standard deviation or the using the t-test, both of which do

not work well with multimodal and non-normal distributions.

While the goal of the feature selection step is to determine

the features that are stable across the training and the test sets.

However, in many machine learning tasks the real test set is

assumed to be unknown. For such settings, feature selection

can be performed using the validation set, where the validation

set approximates the test set. We present the comparative

evaluation results for the validation and tests sets using the

K-S test, as well as an alternative feature selection method

in Section V-C. The K-S test statistic for two distributions

is the maximal difference between their empirical cumulative

distribution functions (ECDFs):

K-S = sup
x

|F1(x)− F2(x)| , (5)

where F1 and F2 are ECDFs of the compared distributions.

They can be calculated as:

Fx =
1

n

n
∑

i=1

I[−∞,x](Xi), (6)

where

I[−∞,x] =

{

1, if Xi < x

0, otherwise.
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Fig. 3. An overview of the proposed method.

The original K-S test is limited to fully specified distribu-

tions [52], however we modified it slightly to obtain a concise

metric for filtering out features unsuitable for modeling. Using

the maximum as a statistic makes the K-S test extremely

sensitive to small CDF differences when the distribution’s

mean is slightly offset on the x-axis. To increase the test’s

robustness, we used the area between the CDFs instead, which

is calculated as:

K-S∗ =

∫

x

|F1(x)− F2(x)| dx. (7)

Figure 4 illustrates three SWaT features, their values over

time, histograms, and K-S and K-S* statistics, providing an

example of the the K-S* statistic’s advantage over the original

K-S statistic. LIT101’s (first row) training and test data’s

distributions are very close, and those of AIT401 (second row)

are close as well, as both of the CDF graphs (left column) and

histograms (middle column) show. However, the K-S statistic

for AIT401 is about 10 times larger than that of LIT101. Using

the area between the two CDF curves (K-S*) instead of the

maximal distance between them (K-S) allows us to conclude

that the feature is stable and leave it in the experiment.

D. Frequency Domain Transformation

In our experiments (see Section V) we explore and evaluate

the usefulness of the frequency domain features in detecting at-

tacks. Therefore, in addition to testing the time domain features

(i.e., the sensors’ values over time), in this step, we transform

the signals from the time domain to the frequency domain.

The following method was used to create signal representation

in the frequency domain (outlined in Algorithm 1).

1) Determine the dominant frequency of each signal (the

frequency with the most energy) using the discrete fast

Algorithm 1 Transform signal s into the frequency domain

representation

1: function FREQUENCYANALYSIS(s, sp)
2: ⊲ Find the dominant frequency of the signal and its period

given the signal s and the sampling period sp
3: n← len(s)
4: freq ← DFFT (s) ⊲ The discrete FFT of the signal
5: mag ← abs(freq)[: n/2] ∗ 1/n ⊲ The magnitudes of the

real part of the FFT
6: freq mag ← listOf(freq,mag)
7: sorted freq ← decSort(freq mag)
8: if sorted freq[0][0] then ⊲ Ignore the constant component

if it has the most energy
9: ff ← sorted freq[0][0] ⊲ Fundamental frequency

10: else
11: ff ← sorted freq[1][0]

12: period← (1.0/ff)/sp
13: return (ff, period)

14:

15: function FREQTRANSFORM(s, sp, ratio, b num)
16: ⊲ Represent the signal s as energy in

the b num most dominant frequency bands given the sampling
period sp and STFT window to the dominant signal period ratio

17: all freq bins← 10
18: (f freq, period)← frequencyAnalysis(s, sp)
19: STFT wind← period ∗ ratio
20: freqs, Sx← spectrogram(s, rate, STFT wind)
21: bands← linspace(0, len(freqs), all freq bins+ 1)
22: for i = 0 to all freq bins do

23: bands energyi ←
∑bandsi+1

i=bandsi
Sxi

24: dom bands← decSort(bands energy)[: b num]
25: return dom bands

Fourier transform (DFFT) (frequencyAnalysis function,

described in lines 1-13 and called in line 18).

2) Determine the window for the short-time Fourier transform

(STFT) based on the dominant frequency period. It was
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Fig. 4. Feature statistic comparison. LIT101 (first row) has a very similar distribution in both the training and test data. (second row) has a similar but slightly
offset distribution. Its K-S has a high value, but its K-S* value correctly classifies the distributions as close. AIT201 (third row) has very different distributions.

found that the optimal window is between one and two

periods of the dominant frequency (line 19).

3) Transform the signals into their frequency representation.

a) Split the entire signal into overlapping windows.

b) Perform STFT for each window (these two items are

presented by the call of the spectrogram function in

line 20).

c) Binarize the entire STFT spectrum into a number of

bins. Calculate the total energy value of the signal in

each bin (lines 21-23).

d) Select a small number of bins with the most energy (line

24). The energy values will represent the feature in the

frequency domain for the corresponding time window.

We found that two or three bins were sufficient for

representing the features. It is also possible to calculate

the number of bins based on the percentage of the total

energy value they contain (e.g., at least 90%).

This process is also illustrated in Figure 5 which presents the

original signal of the L T1 sensor from the BATADAL dataset,

its spectrogram, and two features representing the power density

of the L T1 readings over time in the two frequency bands

with the most energy.

E. Data (System) Modeling

The following four approaches were used to model the sensor

data by training the models either on the time or frequency

domain features:

1) 1D CNN - using the architecture described in [17];

2) UAE - using a modified version of an undercomplete

autoencoder which is described later in this section

(Section IV-E1);

3) VAE - using a standard variational autoencoder (VAE)

architecture (see Appendix A), with the addition of the

inflation layer used in the UAE approach; and,

4) PCA - using two modes of the principle component

analysis (PCA) algorithm which is described later in this

section (Section IV-E2).

1) Undercomplete Autoencoders: After experimenting with

multiple AE architectures, including LSTM-based AEs, vari-

ational AEs, and denoising AEs, we discovered that the

best detection performance is achieved with the simplest

undercomplete AEs. We describe the selected UAE architecture

here, and a comparison of the results in provided in Section V-D.

The best results were achieved using the UAE network variant

adapted for multivariate sequence reconstruction.

The network of the modified UAE contains the following:

• an optional corruption layer applying Gaussian noise to

the input sequence,

• a fully connected layer with a ReLU or tanh activation

function inflating the input; the purpose of this layer is

to enlarge the hypothesis space,

• an encoding layer that flattens the input and produces its

compact representation using a fraction of the input size;

in our experiments the best results were achieved using a

compact representation that is 50% the size of the input,
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Fig. 6. The architecture of the undercomplete autoencoder used in this research.

• a decoding layer that reconstructs the original sequence

from its compact representation.

This architecture can deal with sequences of arbitrary length

and is presented in Figure 6.

2) Principal Component Analysis: Principal component

analysis (PCA) transforms a set of variables into a set of

values of linearly uncorrelated principal components (PCs),

orthogonal to each other. We used PCA as a baseline to compare

the performance of the neural networks to. The use of PCA

for anomaly detection in ICSs is not new; it was suggested

as one of the detection layers in [14], and [45] used it for

detecting anomalies in a simulated Lorenz system and telemetry

data. In [14], detection was conducted in the PC subspace.

Anomalies found in this subspace do not have a direct physical

meaning in the original data feature space and therefore are

difficult to interpret and explain.

In our research, we used the approach outlined in Algo-

rithm 2. Our analysis restores the prediction to the original

feature space and therefore, unlike previously presented meth-

ods that used PCA for anomaly detection, our method allows

for the natural application of the detection method we use

for the neural networks (described below). To distinguish this

detection method from detection in the PC subspace, we refer

to it as PCA-Reconstruction in Section V. We implemented an

extension to the classic PCA analysis. PCA usually operates on

single time step vectors. This allows for the detection of context

inconsistencies between multiple features but is less powerful

in the detection of time-related inconsistencies in a single

feature. To compensate for this deficiency, we implemented

a windowed-PCA algorithm (similar to [53]), which divides

the data into time windows of a given width, performs the

analysis depicted in Algorithm 2 on vectors containing multiple

data points, and then restores the window predictions into the

original signal shape. Two variants of this windowed-PCA

algorithm were implemented: with overlapping windows and

with non-overlapping windows. The standard PCA algorithm

implementation from the Python scikit-learn package with the

number of components equal to half of the modeled features

was used as the basis for our experiments.

F. Threshold Tuning, Anomaly Detection, and Scoring Method

The anomaly detection method used in this research is based

on the one used in [17], however in the current study we extend

it in a number of ways which are elaborated upon below.

An NN or PCA is used to predict the future values of the

data features based on previous values (either in the time or

frequency domains). Thus, the network performs the function

(ŷh+n, ŷh+n+1, . . . , ŷh+n+m) = f(yn−1−l, . . . , yn−1), (8)

where l and m represent the input and output sequence length

respectively and h is the prediction horizon. We generalized the

method described in [17] to allow the prediction of arbitrary

length sequences in the future with a specified horizon, e.g.,

predicting 256 time steps starting with the fifth time step from

the last input time. Next, the residual vectors are calculated as:

~rt =
∣

∣

∣
~yt − ~̂yt

∣

∣

∣
. (9)

The residuals are used to trigger anomaly alerts in one of

two ways: max-based and std-based scoring.

Algorithm 2 Use PCA to predict xtest given training data

xtrain

1: function PCAANALYSIS(xtrain, xtest, components)
2: pcaModel← PCA(components)
3: pcaModel.fit(xtrain)
4: xtestPCA← pcaModel.transform(xtest)
5: x̂test ← pcaModel.inverse transform(xtestPCA))
6: return x̂test
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Max-based scoring. In this approach, the residuals are

normalized by dividing them by the maximal per feature

residuals for the validation set data, and the maximum of

the normalized residuals is compared to a threshold τ :

~Rt =
~rt

max~r
(10)

In order to prevent false alarms on short-term deviations, we

require that the residual exceed the threshold for at least a

specified duration of time window w. Thus, an anomaly alert

A〉 at time i is determined by:

A〉 =
i
∏

t=i−w

max ~Rt > τ. (11)

The hyperparameters τ and w are determined by setting a

maximal accepted false alarm rate for the validation data and

finding the solution to:

(τ, w) = argmin
τ,w

(τn + wn){(τ, w) | |A(τ, w)| ≤ FPmax},

(12)

where τn and wn are respectively the threshold and the window

values normalized to the (0, 1) range, A(τ, w) is the set of

anomalies detected with the specific threshold and window

values, and FPmax is the maximal allowed number of false

alarms in the validation data. In other words, we are looking

for the hyperparameter values that do not produce more than

the permitted number of false alerts, while minimizing the sum

of their normalized values. Using normalized values allows us

to optimize both hyperparameters with equal weight (regardless

of their absolute values). Minimizing the sum of normalized

values enables us to strike a balance between the detection

sensitivity controlled by the threshold and the detection latency

controlled by the window size.

Std-based scoring. This approach for detecting the attacks

differs from the max-based scoring approach by normalizing

the residuals using their mean and standard deviation (for each

feature individually) and is described in [17].

Please note that with the frequency domain detection,

transforming between domains spreads the energy across the

STFT time window thus pushing the attack’s start forward

and pushing its end back. To compensate for this effect, we

subtract the duration equal to one third of the STFT window

from both ends of the detected attack period.

To summarize, our extensions to the anomaly detection

method used in [17] are:

• generalization of the prediction, allowing arbitrary length

sequence prediction and an arbitrary prediction horizon,

• addition of a max-based method for determining the

desired threshold, and

• formalization of the hyperparameter selection criteria.

G. Adversarial Threat Model and Robustness Analysis

In addition to evaluating the performance (in terms of the

detection rate) of the proposed method (described in Figure 3),

we are also interested in evaluating the robustness of the

proposed method to adversarial evasion attacks. Therefore, in

this section we describe the implementation of an adversarial

attack on the trained models which is used to evaluate the

method’s robustness.

1) Threat model: In this research, we assumed the worst-case

scenario - a white-box attacker that knows everything about the

model used for detection, including, for example, the weights

of the NN. We consider an attacker that is trying to perform

a specific integrity attack, namely, to cause a physical-level

change in the system’s behavior while remaining undetected

by the monitoring anomaly detection system. The attacker can

influence the values of sensors sent to the PLC but does not

have complete control of the network, in either the remote

or control segment. Such an attack scenario is very common,

especially in ICSs with sensors distributed over a large area

that send their data to a PLC residing in a physically protected

and monitored center.

In this setup, an adversary can replace the original sensor with

a malicious one, reprogram the sensor, change its calibration,

influence the sensor externally, or just send false data to the

PLC over the cable/wireless connection. We argue that this

setup is much more practical than an attacker controlling the

internal network of the remote segment, or even the network of

the control segment, which was the scenario examined in [48].

In our threat model the attacker’s input is processed by both

the PLC and the detection system; hence, the attacker’s goal

is to produce the input that will simultaneously: (1) cause

the intended physical impact on the system, and (2) be close

enough to the prediction of the detector to stay under the

detection threshold.

Other characteristics of our threat model include: (i) the attacker

can change multiple sensors, (ii) the attacker can prepare the

attacks offline; we argue that if the system is characterized

by periodic behavior, the attacker can choose the moment

of the attack and precompute the system state in our perfect

knowledge threat model, and (iii) the values of the sensors

after the attack should be within, or close to, the valid range

of the sensor values (e.g., an on/off sensor can’t accept any

other value).

2) Adversarial attack algorithm: The evaluation of the

model’s robustness to adversarial evasion attacks was conducted

as follows. For each sensor spoofing attack we performed

gradient-based search for the adversarial input, as outlined in

Algorithm 3. The goal of this algorithm is to search for the

minimal perturbation of the sensor’s data that is sufficient for

performing the attack without being detected. The algorithm

aims to achieve the attacker’s objective of evading detection

(expressed by Equation 4) by minimizing the value of the

model’s loss function for the attacker-controlled input, thus

bringing the model’s prediction close to the attacker’s desired

result. As the loss function is differentiable, we can solve the

attacker’s problem by the iterative gradient descent.

This algorithm is adapted to a sequence prediction model that

processes the input using subsequences of length l, which we

assume is also known to the attacker. The use of a single model

to predict multiple overlapping sequences creates additional

constraints for the attacker:

• each data point is used (i.e., examined) in l subsequences;

• as the previous data points are used to predict the next

one, perturbing a data point at time t will require changes
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to earlier data points so that the prediction at time t will

be close enough to the desired value; these changes will

need to propagate back in time.

In order to cope with these constraints, we created a wrapper

model (WM) for the original model M. WM represents the

processing of all of the input, including enrichment feature

generation (as in [17]) and subsequence generation as one

graph, allowing for full gradient propagation from the model’s

prediction to all of the original input, not just a specific

subsequence. In other words, each iteration of generating the

adversarial sample considers the gradients of all subsequences

in which the perturbed data point is used.

Trained 

model

Reconstructed  

time series

Input 

time 

series

Subsequences

Loss

GradientsCombined 

prediction

Extracting and 

combining 

graph ops

Wrapper 

model

Fig. 7. Wrapper model that allows the calculation of the gradients and
optimization of the samples for arbitrary long input sequences based on an
original model that predicts short sequences.

Algorithm 3 Find xadv given a trained model M, test data with
attack xatt, a detection threshold τ , acceptable noise level ǫ, input
constraints φ. ADV LR is the adversarial learning rate.

1: function FINDADVINPUT(M, xatt, l, τ , ǫ, φ)
2: M

′
←WM+∇xL(w, x, y)⊲ Add to the model graph the

wrapper model containing the cost function gradient calculation
L given the model parameters w, input x of the arbitrary length,
and correct output y with respect to x.

3: noise← zeros like(xatt)
4: advIt← 0
5: while advIt < MAX ADV ITERS do
6: noisy input← xatt + noise
7: noisy input← enforce(noisy input, φ)
8: model residue, grad← runModel(M′)
9: if model residue < τ then break

10: step← ADV LR ∗max(abs(grad))
11: ⊲ Update the noise and make sure it does not pass the

acceptable level ǫ
12: noise← noise− step ∗ grad
13: noise← clip(noise, ǫ)
14: advIt← advIt+ 1
15: return noisy input

This wrapper model (see Figure 7) is used in Algorithm 3

as follows. First, the algorithm constructs the wrapper model

around the attacked model. Then, the algorithm starts searching

for the target adversarial input beginning with the attacker’s

desired result. Then, iteratively, it calculates the gradient

of the model’s loss function for the adversarial input with

respect to the input ∇xatt
L(w, xatt, y), where w are the model

parameters, xatt denotes the input (partially under the attacker’s

control), y is the real measured system output, and L is the loss

function. L is the same loss function used to train the model,

namely the MSE. The gradient is multiplied by the selected

learning rate and is used to update the adversarial input for

the next iteration. The algorithm proceeds until detection is

successfully evaded or until the maximal number of iterations

has been reached. Note that we approximated the attack evasion

by reducing the prediction residue so that it is less than the

threshold. This criteria can easily be extended to use the

detection window in addition to the threshold.

V. EXPERIMENTS AND RESULTS

A. Datasets

Three datasets commonly used for research in the domain

of cyber-physical systems were used in our evaluation. We

provide a brief description of the datasets below, and a detailed

description is provided in Appendix B.

1) SWaT: The Secure Water Treatment (SWaT) testbed was

built at the Singapore University of Technology and Design.

The testbed is a scaled-down fully operational six-stage water

treatment plant. The dataset contains seven days of recording

under normal conditions and four days during which 36 attacks

were conducted [18].

2) BATADAL: The BATADAL dataset represents a water

distribution network comprised of seven storage tanks with

eleven pumps and five valves, controlled by nine PLCs. The

network was generated with epanetCPA [54], a MATLAB

toolbox that allows the injection of cyber attacks and simulates

the network’s response to the attacks. The test dataset contains

2,089 records (from 87 days of recording) with seven attacks.

3) WADI: Finding another high-quality real-world cyber-

physical dataset containing attacks was not easy. The best

candidate is the WADI dataset [55], collected from a scaled-

down water distribution testbed and compiled by the developers

of SWaT. The testbed consists of large water tanks that supply

water to consumer tanks. The dataset contains 16 attacks whose

goal is to stop the water supply to the consumer tanks. The

dataset is significantly larger than the SWaT and BATADAL

datasets; there are 1,209,610 data points in the training set and

126 features.

B. Research Questions

In our evaluation we aim at addressing the following research

questions:

• RQ#1: Is the proposed K-S feature selection approach

effective and does it assist in generating more accurate

anomaly detection models?

• RQ#2: What is the influence of the detection mechanism

hyperparameters on the detection performance?

• RQ#3: What is the maximal detection performance

achieved by each detection mechanism for each dataset

examined?

• RQ#4: Can we suggest a set of hyperparameters that

result in high and robust detection performance across all

of the datasets examined?

• RQ#5: How robust are the proposed models to adversarial

evasion attacks?
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C. Data Preprocessing and Feature Selection

In the first stage of our evaluation, we performed data normal-

ization and feature selection, as described in Section IV-C. Our

goal in this stage is to evaluate and answer our first research

question RQ#1. First, the features were normalized to (0,1)

scale. Then, we evaluated the features’ stability in the SWaT,

BATADAL, and WADI datasets. The evaluation was performed

using the K-S* test; features with a K-S statistic of less than

0.2 and with a K-S* statistic of less than 80 were selected for

further modeling. To evaluate the effectiveness of the proposed

feature selection method, we compared the average detection

results produced by the proposed K-S* method with the results

of detection done with: i) no feature selection, and ii) feature

selection using Kullback-Leibler (KL) divergence [56], an

established method for measuring the probability distribution

distance. As the true probability density functions for the

signals are not known, a histogram was used as a probability

density estimator [57]. It should be noted that prior work

by Lin et al. [13] that claimed to use some form of feature

selection (attempting to test the stability or consistency of

the signal) did not specify any quantitative criteria for the

selected features and therefore their method could not be used

for comparison. For the evaluation, we trained the same model

of each algorithm with features selected based on the three

selection criteria results (i.e., none, K-S*, and KL) in two

different settings: (1) using a validation set, and (2) using the

test set. Note that our initial data exploration revealed that

one sensor in BATADAL (P J280) and one sensor in WADI

(2B AIT 002 PV) are erroneous due to a fault in the data

collection process and therefore were removed and were not

included in the evaluation.1
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Fig. 8. Feature selection method comparison for three datasets and four model
types, both with validation and test datasets. The top row presents the results
for the test dataset, and the bottom row presents the results for the validation
dataset.

As Figure 8 shows, the validation set can provide a

good approximation of the test set. It also illustrates

the superior performance of the K-S* test over the KL

test, especially for SWaT. In addition, both K-S and KL

result in significant improvement of the detection score

when compared to no feature selection. Based on the test

results, we removed the following sensors: AIT201, AIT202,

1Sensor P J280 in BATADAL changes its type from continuous in the
training data to discrete in the test data; the values of sensor 2B AIT 002 PV
in WADI become one thousand times larger in the middle of the test data.

AIT203, P201, AIT401, AIT402, AIT501, AIT502, AIT503,

AIT504, FIT503, FIT504, PIT501, PIT502, PIT503 from

SWaT; P J280 from BATADAL; and 1 AIT 001 PV,

1 AIT 003 PV, 1 AIT 004 PV, 1 AIT 005 PV,

2 LT 001 PV, 2 PIT 001 PV, 2A AIT 001 PV,

2A AIT 003 PV, 2A AIT 004 PV, 2B AIT 001 PV,

2B AIT 002 PV, 2B AIT 003 PV, 2B AIT 004 PV,

3 AIT 005 PV from WADI.

In addition to data normalization and feature statistic

profiling, we subsampled the training and test data of SWaT

at a five second rate; this rate was selected, as the SWaT

testbed controls water and chemical processes that do not

change drastically within seconds. This subsampling served as

a low pass filtering mechanism, removing some sensor noise.

In addition, the reduction in data volume improved the training

speed. However, this subsampling may introduce a slight delay

(up to 2.5 seconds) in the attack detection time. For the WADI

dataset, subsampling at a 10 second rate was applied, followed

by additional low-pass data filtering. This noise removal also

helps in coping with PCA’s sensitivity to outliers.

D. Models’ Performance and Generality

In this section, we aim to evaluate the performance of the

anomaly detection algorithm and its ability to generalize over

the three different datasets: BATADAL, SWaT, and WADI.

For consistency with previous publications, we used precision,

recall, and F1 as the detection performance metrics for all

datasets (note that the original BATADAL competition used a

different scoring system).

1) Parameter tuning: To answer the second research ques-

tion (RQ#2), for each of the models (1D CNN, UAE, VAE,

and PCA), we tested multiple hyperparameter configurations,

using both grid search and genetic algorithms [58], in order

to determine the hyperparameters’ influence on the detection

effectiveness. Due to space limitations, we present the list of

hyperparameters examined for each model type and the optimal

parameter values observed across all datasets. We also provide

a summary of our findings. More details can be found in the

supplementary material.

1D CNN:

• number of layers (LR) - eight to 10 layers provided optimal

performance;

• kernel size (K) - small filters with sizes of two to four

were the optimal ones;

• number of filters (F) - increasing the number of filters

improved the detection performance, where 16 and 32

filters were found to be the optimal number overall, even

though eight filters worked better for SWaT ;

• activation function (A) - there was no definitive indication

whether ReLU or tanh resulted in better performance in

all cases;

• sequence length (LN) - the optimal length was found to

be between 15 and 18 samples.

UAE and VAE:

• number of layers (LR) - for the time domain signals,

increasing the number of layers did not improve the

model’s performance, and a single layer was sufficient.
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For the frequency domain, since multiple frequency bands

representing the same time feature resulted in more data,

increasing the number of layers to three was optimal;

• sequence length (LN) - for the time domain data, using

sequence lengths between one and eight was optimal,

and increasing the length did not improve the results

significantly or at all. For the frequency domain, the

optimal sequence length was three;

• activation function (A) - no clear advantage was found

for either ReLU or tanh;

• code-to-input ratio (R) - 0.5 was found to be the optimal

ratio overall, and this is probably related to the PCA

findings described below;

• corrupting noise level (N) - low levels, such as 0.01, or

no noise at all produced the best results; this probably

stems from the natural noise present in the data;

• UAE vs. VAE - we found that with equivalent hyperpa-

rameters, the UAE performed consistently better than the

VAE.

PCA:

• sequence length (LN) - in BATADAL, one was the optimal

length, while in SWaT and WADI, increasing it (up to

seven) provided a small improvement;

• number of principal components-to-input ratio (R) - having

it equal to the half of the modeled features provided

optimal performance; a further increase did not result in

improvement, while smaller values caused degradation. We

found that this number of principal components captures

99% of the variance in the datasets used.

In the next subsection, we use the findings presented above

in order to search for a setup (configuration) for each model

that is optimal across all datasets.

2) Attack detection performance: We first attempt to answer

the third research question (RQ#3), and then we present

the best detection results of the optimized models for the

BATADAL, SWaT, and WADI datasets. The best detection

results were obtained as follows: for each dataset, we evaluated

each model type with the configurations obtained from all

possible combinations of hyperparameter values identified in

Subsection V-D1. The results in terms of the precision, recall,

and F1 measure are presented in Tables III, IV, and V for the

BATADAL, SWaT, and WADI datasets respectively. For each

of the models evaluated, we also present the configuration of

hyperparameters leading to the best detection results. Note that

we denote both the windowed and regular variants of PCA as

simply PCA. In addition, for the frequency domain features,

the UAE model outperformed the 1D CNN and VAE, and

therefore we only present the results of the PCA and UAE

models.

As presented in Tables III, IV, and V, our method’s best

detection results come close to or improve upon prior research.

For each dataset, we were able to achieve scores higher than

previously reported with at least two different methods. In

particular, the results for the WADI dataset stand out, as we

were able to improve upon the previously reported results

by 38%. Based on the results presented in Tables III, IV,

and V, we make the the following observations regarding the

comparison between the different methods examined in this

study. Among the NN models, UAEs were able to achieve the

best scores both for the time and frequency domain features.

They also outperformed VAEs for every dataset. 1D CNNs

produced comparable, but slightly worse results. Surprisingly,

PCA performed very well, and produced the best result for the

time domain on the SWaT dataset. We attribute this success to

the careful feature selection and noise reduction we performed,

as well as to the linear nature of dependencies between many

remaining features of the SWaT dataset.

As can be seen in Tables III, IV, and V, the hyperparameters

of the best models were different across different datasets. To

evaluate the robustness of the proposed method in terms of

the ability to find a model and configuration that provides

the best results across the different datasets (RQ#4), we

performed experiments aimed at determining the universal

sets of hyperparameters’ values that provide optimal average

detection performance across all three datasets. The universal

hyperparameters’ values were found by testing all combinations

of the best models’ hyperparameters on all three datasets and

identifying the best configuration for each model; we refer

to this model as a universal model. The universal models’

parameters (determined as described above), the average

detection scores for each dataset, as well as the average F1
score for all datasets are presented in Table VI. As can be

seen, while the universal models achieve good detection scores,

their generality comes at the price of reduced performance.

However, we can still observe the same trends: UAE was the

best NN model, and 1D CNN was the second best. With the

universal models, PCA’s performance stands out again.

For both BADATAL and SWaT, UAEs provided the highest

detection results across all methods and domains. The PCA’s

result for the frequency domain was high but significantly

lower than the UAE’s result. We observed that the shallow,

one-layer UAEs that performed well for the time domain did

not fare as well in the frequency domain where there was

greater variance in the performance results. The reason for this

performance difference is a larger number and variety of the

frequency domain features comparatively to the time domain,

as each time domain feature is represented by several frequency

bins. To provide strong and stable results for frequency domain

representation, we increased the model’s capacity by increasing

the inflation layer to be ten-fold instead of three-fold which

was used for the time domain and by using more layers (three

instead of one). Such UAE models were robust, as can be

seen from the results of the universal UAE frequency model

in Table VI.

While these results are encouraging and merit further study

and validation, we discovered one limitation of frequency do-

main detection. As the frequency representation transformation

requires the use of windows of at least one period of the

signal’s dominant frequency, in the frequency domain it is

impossible to distinguish between brief attacks that quickly

follow one another within the same window. Although in reality

this might be a mild concern, in the SWaT dataset many quick

attacks occur in succession. Our method usually detects them

as one long attack, which reduces the precision metrics. The

WADI dataset did not appear to be suitable for frequency
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TABLE III
COMPARATIVE PERFORMANCE OF ATTACK DETECTION FOR THE BATADAL DATASET.1 2

Method Model Hyperparameters Detection parameters Precision Recall F1
Abokifa et al. [14] 0.844 0.921 0.88

Chandy et al. [15] 0.392 0.857 0.538

1D CNN LN=18, LR=8, K=2, F=32, A=tanh D=max, T=1.6, W=20 0.901 0.867 0.883

UAE LN=4, LR=1, R=0.5, N=0, A=tanh D=max, T=1.3, W=5 0.957 0.928 0.943

VAE LN=1, LR=1, R=0.5, N=0, A=relu D=max, T=1.35, W=5 0.963 0.762 0.851

PCA LN=1, R=0.5 D=max, T=1.35, W=5 0.956 0.806 0.875

UAE Frequency LN=1, LR=1, R=0.5, N=0.01, A=relu D=std, T=2.1, W=20 0.918 0.961 0.939

PCA Frequency LN=3, R=0.5 D=std, T=2.58, W=15 0.919 0.806 0.859
1 The results of [14] and [15] were calculated from the raw data in [41].
2 Legend: LN - sequence length, LR - number of layers, K - kernel size, F - number of filters, A - activation function, D -

detection scoring, R - code or principal components ratio, T - detection threshold, W - detection window. D, T, and W are

introduced in Section IV-F. The bold script indicates the best results.

TABLE IV
COMPARATIVE PERFORMANCE OF ATTACK DETECTION FOR THE SWAT DATASET.1

Method Hyperparameters Detection parameters Precision Recall F1
DNN [12] 0.983 0.678 0.803

SVM [12] 0.925 0.699 0.796

TABOR [13] 0.862 0.788 0.823

1D CNN LN=15, LR=8, K=2, F=8, A=relu D=std, T=5.3, W=40 0.868 0.854 0.861

UAE LN=1, LR=1, R=0.5, N=0, A=tanh D=std, T=2.9, W=19 0.965 0.778 0.861

VAE LN=1, LR=1, R=0.5, N=0, A=tanh D=std, T=2.51, W=37 0.94 0.785 0.855

PCA LN=4, R=0.5 D=std, T=2.85, W=19 0.92 0.841 0.879

UAE Frequency LN=3, LR=3, R=0.5, N=0.01, A=tanh D=std, T=4.13, W=9 0.911 0.860 0.885

PCA Frequency LN=3, R=0.5 D=std, T=2.3, W=130 0.925 0.727 0.815

TABLE V
COMPARATIVE PERFORMANCE OF ATTACK DETECTION FOR THE WADI DATASET.1

Method Hyperparameters Detection parameters Precision Recall F1

PCA2 0.3953 0.0563 0.10

KNN2 0.0776 0.0775 0.08

FB2 0.086 0.086 0.09

EGAN2 0.1133 0.3784 0.17

MAD-GAN2 0.4144 0.3392 0.37

1D CNN LN=16, LR=8, K=2, F=16, A=relu D=std, T=5, W=293 0.697 0.731 0.714

UAE LN=1, LR=1, R=0.5, N=0, A=relu D=max 0.916 0.640 0.754

VAE LN=7, LR=1, R=0.5, N=0, A=relu D=std, T=6.16, W=14 0.853 0.621 0.718

PCA LN=7, R=0.5 D=max, T=1.2, W=5 0.807 0.593 0.683
1 The WADI dataset did not appear to be suitable for frequency domain analysis as the vast majority of its features

do not have clear periodicity.
2 As reported in [43].
3 Each stage of the process was modeled separately, and the results were merged.

TABLE VI
AVERAGE DETECTION (OVER 10 RUNS) F1 OF UNIVERSAL MODELS.1

Method Hyperparameters BATADAL SWaT WADI Average

1D CNN LN=18, LR=8, K=2, F=32, A=relu, D=std 0.834 0.773 0.649 0.752 (0.804)

UAE LN=8, LR=1, R=0.5, A=tanh, D=max 0.876 0.791 0.685 0.784 (0.833)

VAE LN=1, LR=1, R=0.5, A=relu, D=std 0.751 0.837 0.689 0.759 (0.794)

PCA LN=1, R=0.5, D=max 0.875 0.820 0.683 0.793 (0.848)

UAE Frequency LN=3, LR=3, R=0.5, A=tanh, D=std 0.842 0.870 - 0.8562

PCA Frequency LN=3, R=0.5, D=std 0.859 0.809 - 0.8342

W-UAE LN=3, LR=3, R=0.5, A=tanh, D=std 0.868 0.775 - 0.8222

W-PCA LN=3, R=0.5, D=std 0.766 0.836 - 0.8012

1 The detection parameters are not presented, as they are dependent on the specific dataset and found according to

Equation 12 as a function of the user-selected false positive rate.
2 Averaged over two datasets only.

domain analysis. Only 44 of 127 features had a clear dominant

frequency, and their frequency was very low (with a dominant

frequency period of 1440 minutes or 24 hours). Such very

long periods result in poor resolution in detecting short attacks

(attacks in the WADI dataset are about 10 minutes long). Other

features did not have any clear periodicity. We consulted with

the dataset developers who indicated that WADI’s production

cycle was driven by consumer demand, and those demand

patterns change hourly. Thus, WADI represents ICSs without

a stable production cycle, and therefore frequency domain

analysis is not applicable to them. We conclude that in general,

frequency domain analysis can contribute to attack detection,
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however it is less effective in systems with unstable periodicity

and is imprecise in detecting short attacks.

We compared detection in the frequency domain with another

popular approach to frequency analysis of time-series data,

wavelet transformation. Among several wavelet neural network

architectures described in literature, we selected a W-ANN

architecture, as the most consistent with the methodology used

in our study. This architecture is also becoming increasing pop-

ular in various research fields such as rainfall prediction [59],

tomography [60], and wastewater prediction [61]. In the W-

ANN architecture, the signal is first decomposed using a

wavelet transformation and then passed to the NN for prediction

or classification. We used 3 decomposition levels using the

Discrete Meyer wavelet as the mother wavelet function, found

to be the best configuration in [61]. The decomposed signal is

then passed to the UAE (W-UAE) or to the PCA (W-PCA) with

the universal frequency configuration. The results are presented

in Table VI. As the results show, the tested W-ANN architecture

had lower average detection score than the proposed method.

However, this promising direction will be studied further in

future research.

E. Model Size and Speed Comparison

As shown in [17], 1D CNNs are smaller and faster to train

than the recurrent neural networks commonly used for time

series prediction. We evaluated the model sizes and the training

and testing times for the 1D CNNs, UAEs, and PCA proposed in

this research (Table VII presents the results of this evaluation).

The training times were measured in a batch setting, while

the testing time was measured in an online mode simulation,

evaluating the test data as it arrived. It is evident that UAE-

based networks are smaller (for short sequences), take less

time to train, and are slightly faster to test than 1D CNNs.

However, PCA provides an even smaller footprint and faster

times in both settings.

To conclude, our evaluation demonstrates the generality and

efficiency of the proposed detection method and models used.

The results show that UAEs are a lightweight and effective

NN architecture that can be used for anomaly and cyber

attack detection in CPSs. In addition, PCA provides a simple

alternative that can be sufficient in many real-world setups.

F. Adversarial Robustness of the Proposed Method

In order to answer RQ#5, we evaluated the robustness of

the neural network-based models (1D-CNN and UAE) to the

attack presented in Section IV-G2. Note that we did not include

the VAE model in this evalaution, since it performed worse

than the others. As we did not have access to the testbeds,

we based our study on adversarial manipulation of the attacks

in the datasets that were caused by sensor value spoofing;

this includes 18 of the SWaT dataset attacks and one attack

from the WADI dataset. Unfortunately, the BATADAL attacks

and the rest of the WADI attacks were not suitable for this

experiment due to the replay of the valid signal present in the

dataset.

While this method cannot replace testing with a real system,

it can provide an approximation of the ability to produce the

desired adversarial inputs. The two main limitations of such

data-only research are:

1) it is limited to the attacks already present in the dataset;

even if these attacks cannot be concealed by an adversarial

input, there may be other attacks that have this capability,

2) there is no way of testing the physical effect of an

adversarial sample found analytically in the real system.

We evaluated the ability to create adversarial examples on a

model by manipulating a single feature (i.e., sensor). In order

to consider the worst-case scenario, no constraints were set

on the adversarial noise allowed. The experiments show that

our wrapper model-based method is indeed capable of creating

adversarial examples that cause the desired malicious physical

effect and are not detected by the 1D CNN model.
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Fig. 9. SWaT attack 7. LIT301 is spoofed to cause an underflow.
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Fig. 10. A 1D CNN model’s prediction for SWaT attack 7. During the attack
and its recovery, the prediction is very different from the observed value.

Figure 9 illustrates attack 7 from the SWaT dataset in which

the measurement of the water level sensor LIT301 is spoofed

to be much higher, causing an underflow. When a 1D CNN

model created for LIT301 was used to detect anomalies in

the relevant time period, it produced the prediction shown

in Figure 10. After the adversarial optimization (described in

Section IV-G), we were able to produce input that retains the

physical characteristics of the attack (maintaining the spoofed

high level for the attack period) and was predicted by the model

very closely, thus going undetected (see Figure 11). However,

when an additional feature was added to the model, the

adversarial optimization prevented the attacker from achieving
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TABLE VII
TRAINING TIME, ONLINE TESTING TIME, AND MODEL SIZE COMPARISON FOR BATADAL.1 2

UAE 1D CNN PCA

Sequence length 1 3 5 18 18 18 18 1 3 5 18

Layers 1 1 1 1 4 8 12 1 3 5 18

One training epoch time, s 0.268 0.288 0.306 0.459 0.641 0.878 1.761 0.061 0.100 0.207 0.439

Online testing time, s 0.00032 0.00034 0.00037 0.00118 0.00050 0.00057 0.00164 0.00003 0.00011 0.00055 0.00106

Model size, Kb 67 587 1624 20957 697 3689 50417 6 15 24 81
1 Both UAEs and 1D CNNs used a three-fold inflation layer. UAEs did not use inflation in decoding. CNNs used 32 filters.
2 Experiments were performed on a desktop equipped with Intel i7-6700K CPU, 32GB of RAM, and NVIDIA GeForce 1080 GPU.
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Fig. 11. A 1D CNN model’s prediction for SWaT attack 7 after adversarial
input optimization (see Section IV-G). The adversarial input is expected to cause
an underflow and is undetected by the model. The adversarial expected output

denotes the signal the attacker wants the model to produce as a prediction,
the adversarial caused output is the actual model’s prediction.

his/her goal of physically affecting the system - the adversarial

input conforms to the original model’s prediction and does not

cause an underflow (see Figures 12 and 13).
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Fig. 12. A 1D CNN model’s prediction for SWaT attack 7 with two fields
(the artifacts of another attack that occurred before attack 7 can also be seen.

The same behavior was observed with UAE-based models.

For attack 2 from the WADI dataset, the adversarial optimiza-

tion was able to produce the input that maintained the spoofed

value of sensor 1 FIT 001 PV while being undetected by

an UAE model. However, in order to achieve this effect, the

attacker was forced to change the values of all of the sensors

and actuators modeled significantly. As stated in our threat

model, an attacker that is able to spoof all sensor values of

the system is highly unlikely and thus is considered out of the

scope of this study.
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Fig. 13. A 1D CNN model’s prediction for SWaT attack 7 after adversarial
input optimization when using two features. The adversarial input loses its
desired physical impact.
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Fig. 14. Change of model prediction error for SWaT attack 7 with iterations of
Algorithm 3 for different noise constraint levels ǫ and a threshold of 0.03. With
lower noise levels, the attack fails to reach the threshold; with the noise level
of one (allowing practically unconstrained signal manipulation), the threshold
is reached but at the expense of losing the desired physical impact.

In addition, we observed that using noise to corrupt the

input, as described in Appendix B, increases the robustness of

the model to the adversarial input even further, because the

random noise applied to the adversarial examples is different

during the adversarial training and testing.

Generating adversarial inputs for other attacks demonstrated

the same or even more robust behavior: sometimes it was

not possible to create adversarial input that preserves the

intended physical effect for a one-feature model. In addition,

if we constrain the level of noise allowed (e.g., to 0.05), the

generation of adversarial inputs fails completely in all of our

experiments. Figure 14 illustrates the influence of noise on

the adversarial input generation for SWaT attack 7. For this

attack, the detection threshold for a 1D CNN model found by
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Equation 12 for a false positive rate of zero is 0.03. As can be

seen in Figure 14, with low noise levels, the attack fails and

does not reach the detection threshold. With a very high noise

level of one, which allows the attacker to change the signal

completely, the threshold is reached, but the attack loses its

desired effect, as illustrated in Figure 13.

The results of our experiments suggest that the proposed

detection mechanisms are robust to adversarial evasion attacks.

Validating this finding on a real system is a task for future

research. This adversarial robustness stands out against adversar-

ial learning’s success in other domains (e.g., image processing).

A number of factors make the cyber security and cyber-physical

domains different from computer vision with regard to the

adversarial attacks [62]. The most relevant differences in our

case are: the use of regression machine learning algorithms vs.

classification algorithms used in computer vision, the strong

dependencies between the past and future values of the signals,

and the strong mutual dependencies between the features due to

the laws of physics. These differences impose hard constraints

on the sensory data, unlike images where such constraints are

largely absent.

VI. CONCLUSIONS

In this paper, we studied the effectiveness of 1D CNN and

AE-based anomaly and cyber attack detection mechanisms.

Based on our experiments, we conclude that both 1D CNNs

and AEs achieve or exceed the state-of-the-art performance on

the three public datasets used in this study, while maintaining

generality, simplicity, and a small footprint. It is not clear

whether one of these architectures is always preferable over

another, and we plan to extend our research with additional

datasets to investigate this further. We recommend an ensemble

consisting of both models when possible. If a single model must

be chosen, in most cases, AEs will likely work out of the box,

while 1D CNNs will require a round of hyperparameter tuning

to eliminate false positives. We discovered that given proper

data preparation and feature selection, PCA-Reconstruction

and windowed-PCA can serve as simple and efficient detectors

in many real-life cases. Therefore, we recommend to try PCA

as a baseline detector before applying NN-based detectors. We

also found frequency domain analysis helpful in anomaly and

attack detection. Its applicability is subject to several practical

requirements; if they are met, frequency domain analysis can

provide strong results. The proposed detection method was

found to be resilient to adversarial evasion attacks. This finding

is a promising one as it allows the system operator to trust the

method’s decisions. There is a need to confirm these results

using actual testbeds. Future research could also examine the

effect of adversarial poisoning attacks on the proposed method.
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