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Abstract-Efficient aggregation of data collected by sensors is
crucial for a successful application of wireless sensor networks
(WSNs). Both minimizing the energy cost and reducing the
time duration (or called latency) of data aggregation have
been extensively studied for WSNs. Algorithms with theoretical
performance guarantees are only known under the protocol
interference model, or graph-based interference models generally.
In this paper, we study the problem of designing time efficient
aggregation algorithm under the physical interference model.
To the best of our knowledge, no algorithms with theoretical
performance guarantees are known for this problem in the
literature. We propose an efficient algorithm that produces a data
aggregation tree and a collision-free aggregation schedule. We
theoretically prove that the latency of our aggregation schedule
is bounded by O(R+~) time-slots. Here R is the network radius
and ~ is the maximum node degree in the communication graph
of the original network. In addition, we derive the lower-bound
of latency for any aggregation scheduling algorithm under the
physical interference model. We show that the latency achieved
by our algorithm asymptotically matches the lower-bound for
random wireless networks. Our extensive simulation results
corroborate our theoretical analysis.

Index Terms-Wireless sensor networks, aggregation, schedul­
ing, physical interference model.

I. INTRODUCTION

One practical issue in wireless sensor networks (WSNs)

is efficient data processing. As we know, in WSN, data are

generated everywhere, such as temperature reporting and so

on. In most scenarios, we assume there is a distinguished sink

sensor that has more computing ability than other sensors.

Thus we only need to send all data from sensor nodes

within network to the sink sensor which is termed as data

collection or data aggregation. Different from data collection,

data aggregation allows in-network processing. This means

that data can be compressed within the network. This feature

introduces a possibility of a new energy or time efficient

method to collect data, comparing to data collection. For

data aggregation, different objectives will be emphasized,

depending on the applications, such as to minimize the energy

consumption, to minimize the latency, to increase the accuracy

of the reported data, and so on.

In this paper, we concentrate on minimizing latency for data

aggregation. It can be roughly defined as follows: given a set of

sensor nodes distributed in a two-dimensional Euclidean plane,

the objective is to compute an aggregation function (which

will be defined later) on the input data from all sensors within

the networks. Data aggregation under the protocol interference
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model has been extensively studied recently [1], [6], [12], [16],

[23], [25]. Protocol interference model is generally a graph­

based interference model, under which, given a network G,

there is a conflict graph H such that two vertices in H cannot

be activated simultaneously. Here vertices of H could be all

wireless nodes of G, or all wireless links of G, depending

on the interference model. For minimizing the latency of data

aggregation, a class ofconstant-ratio approximation algorithms

have been given under various protocol interference models

captured by some conflict graphs. When the conflict graph

H is a unit disk graph, Li et al. proposed an algorithm

[2] that achieves latency at most 24D + 6~ + 16 for a

network of diameter D and maximum node degree ~. This

was recently improved to 16R + ~ model by Xu et al. [27]

and (1 + (log R/ {!ii)) R + ~ by Wan et al. [25] under the

same network model.

However, protocol interference model and other graph-based

interference models can not reflect some key features in real

WSNs. They are only approximate interference models. It

is a folklore that physical interference model captures the

interferences between links more accurately. Surprisingly, few

previous literatures have studied data aggregation under this

model. This may be due to challenges in handling physical

interferences in which we have to take care of the effect of

aggregated interferences from nodes that are far away. The

potential interference effect from far-away nodes makes it

difficult to design a scheduling method to ensure the SINR

(Signal to Interference-plus-Noise Ratio) of every receiver

node is always above the threshold.

To the best of our knowledge, we are the first to study the

problem of data aggregation under the physical interference

model. Our main contributions are as follows. Assume that

we are given a network G consisting of n wireless nodes V.

Every node in V will transmit with a constant power P and

the power received by a node at distance d is assumed to

be P . min(l, d- a
) . The variance of the background noise is

assumed to be No > 0 and for a successful transmission, the

received SINR is required to be above a threshold value (3.

To ensure that we can perform scheduling using some local

information, we will focus only on links that are not too long.

Specifically, let r = (/3;0 )-a be the maximum length of a

link which can transmit alone successfully. For the set V of

wireless nodes, we will only consider all links (u, v) with

Euclidean length at most 8r, where 0 < 8 < 1 is a small

constant. The network formed by these links is denoted as

G(V,8r). We first present an algorithm for data aggregation
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scheduling for the network G(V,8r) under the physical in­

terference model. We analytically proved that our algorithm

can achieve a constant approximation ratio on the latency of

data aggregation where the optimum is also computed using

network G(V,8r). We then present the latency lower-bound

of any algorithm under this network model. Notice that using

links longer than 8r, we may be able to reduce the latency of

data aggregation (it is an open question at the current stage

whether we can reduce the latency by more than a constant

factor). Fortunately, we are able to prove that our method is

asymptotically optimum for random wireless networks where

nodes are uniformly and randomly distributed in a square

region. We prove that, using only G(V,8r), a subgraph of

the original communication graph G(V, r), our method will

achieve a latency that is within a constant factor of the

optimum latency achievable using all links from G(V, r) for

random WSN. On the negative side, we show that, given any

constant 8 < 1, there is an example ofn nodes V such that any

algorithm for data aggregation scheduling using only links in

G(V, 8r) will have latency that is at least n, while the optimum

latency using all links in G(V, r) is only O( jn). Our extensive

simulation studies show that our method performs well in

practice. To further reduce the latency, we also adopt several

strategies to compress the scheduling by possibly merging

the scheduled links in previous time-slots. We found that this

compressive scheduling will almost halve the latency achieved

by our first algorithm for sparse networks (with maximum

node degree ~ ::; 25, which is always true in practice).

The rest of the paper is organized as follows. Section II

formulates the data aggregation problem. Section III presents

our scheduling algorithm and Section IV analyzes its perfor­

mances. Section V discusses the overall lower-bound under

our model. Furthermore, Section VI provides the analytical

results in randomly deployed networks. Section VII presents

the simulation results. Section VIII outlines the related work.

Section IX concludes the paper.

II. SYSTEM MODELS

In this section, we describe the network model that we will

use and some related terminologies.

A. Network Model

Consider a WSN consisting of n nodes V where V s E V is

the sink node. Each node can send (receive) data to (from) all

directions. The objective is to find a "valid" data aggregation

schedule such that after using the schedule, all data can be

aggregated to the sink node. Here "valid" means that, in this

schedule, a node can receive data successfully if and only if its

Signal to Interference-plus-Noise Ratio (SINR) is greater than

some threshold. In other words, we consider data aggregation

scheduling under the physical interference model. We define

physical interference model formally as follows.

PHYSICAL INTERFERENCE MODEL: Assume all nodes have

fixed transmission power P. We define Pv(u) = p. g(u,v)

as the received power at the receiver node v of the signal

transmitted by node u, Here g(u, v) ::; 1 is called the path­

gain from node u to node v. A receiver node v can successfully

receive a packet from a sender node u if and only if:

Pv(u) > e
No + LWESu Pv(w) -

Here (3 > 0 denotes the SINR threshold, No 2: 0 denotes the

ambient noise, and Su denotes the set of other simultaneous

senders with sender u. Note that Su is not necessarily the same

for all time-slots.

In our paper, we set path-gain as g(u, v) = min(l, Iluvll-a
) ,

where the constant a 2: 2 is the path-gain exponent, and Iluvll
is the Euclidean distance between node u and v.

COMMUNICATION GRAPH: By the above definition ofphysical

interference model, we can compute the maximum link length

as r = (1:13) - ~ , i.e., any node u cannot transmit a packet to a

node v that is more than the distance r away successfully even

there is no other simultaneous transmission. In other words, a

pair ofnodes can possibly communicate and thus be connected

if and only if their mutual distance is smaller or equal to r. If

we draw a link between every pair of nodes whose distance is

smaller than r, we can derive a communication graph (denote

as G(V, r)). Generally in this paper, given a set of nodes V,

we use G(V, r) to denote the graph that has all edges (u, v)

whose Euclidean length is at most r.

As we know, the longer the link, the smaller the path-gain,

thus the smaller the SINR can be obtained by its corresponding

receiver. Therefore, a long link with length comparatively

close to r is not a good candidate in practice for transmission

since the SINR at the receiver is very small. Even worse, it

prevents many possible simultaneous transmissions. In brief,

a shorter link is a better candidate for the transmission. Thus,

in this paper we assume that we will only use some links

that are smaller than r. Specifically, we assume that there is

a constant factor 8 E (0,1) and we consider only the links

shorter or equal to 8r. We call these short links as strong

connected links. Then we can construct a strong connected

communication graph (denote as G(V,8r)) with only these

strong connected links. In the strong connected communication

graph, only the nodes which lie within 8r of u can receive the

data transmitted by u successfully. Note that this requirement

is not necessary. However it allows multiple simultaneous

transmissions for data communications. Next, we consider

data aggregation scheduling in this new communication graph

G(V,8r).

DATA AGGREGATION SCHEDULING: For simplicity, we only

consider data aggregation scheduling in a synchronous mes­

sage passing model in which time is divided into slots. In each

time-slot, a node v E V is able to send a message to one of its

neighboring nodes for unicast communication. Note that, at the

cost of higher communication cost, our scheduling can also be

implemented in asynchronous communication settings using

the notions of synchronizer. The data aggregation scheduling

is to define transmission time-slot(s) for every node Vi E V

such that with a minimum latency (measured in time-slots),

the sink node will be able to get the final correct aggregation

results.

Consider a time-slot t, and let A be the set of senders and B

be the receivers. Assume A, B c V and AnB = 0. Then data
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are aggregated from A to B in communication graph G(V, 8r)
in one time-slot if:

1) all the transmission links exist in G(V,8r);

2) all the nodes in A merge their data and the receiving data

if any using an aggregation function and then transmit

data in one time-slot simultaneously;

3) all data are received by some nodes in B with the SINR

at each receiving node greater or equal to (3.

Here aggregation functions will be defined in Section II-B.

Then a valid aggregation schedule in G(V, 8r) with latency L

can be defined as a sequence of sender sets Sl, S2,··· ,SL

satisfying the following conditions:

1) s, n s, = 0, Vi =1= i:
2) Ur=lSi=V\{Vs};
3) Data are aggregated from s; to V \ Uf=l s, in G(V,8r)

at time-slot k, for all k = 1,2,··· ,L and all data are

aggregated to the sink node V s in L time-slots.

Notice that here Ur=l S, = V\ {v s } is to ensure that all data

will be aggregated; S, nSj = 0 (Vi =1= j) is to ensure that every

datum is aggregated at most once. To simplify our analysis,

we will relax the requirement that S, n Sj = 0, Vi =1= j.

When the sets Si, 1 ::; i ::; L are not disjoint, in the actual

data aggregation, a node v, that appears multiple times in Si,

1 ::; i ::; L, will participate in the data aggregation only once

(say the smallest i when it appears in Si), and then it will

only serve as a relay node in later appearances.

We will find a valid aggregation schedule {S1, S2, . .. ,SL }

in the graph G(V,8r) with minimum latency L. Here, we

assume the network G(V,8r) is connected. This assumption

is necessary, otherwise the disconnected nodes cannot send

their data to the sink node via the network. For simplicity, we

define ~(G), D(G), R(G) as the maximum degree, network

diameter, network radius of graph G(V,8r) respectively.

B. Related Terminologies

AGGREGATION FUNCTIONS: Data aggregation functions can

be classified into three categories: distributive (e.g., maxi­

mum, minimum, sum, count), algebraic (e.g., minus, aver­

age, variance) and holistic (e.g., median, k t h smallest or

largest). Here we only focus on the distributive or algebraic

aggregation functions. A aggregation function f is said to

be distributive if for every pair of disjoint data sets Xl, X 2 ,

we have f(X l U X 2) = h(f(X1), f(X2)) for some function

h. For example, when f is sum, then h can be set as sum;

when f is count, h is sum as well. Given a distributive

aggregation function f, it can be expressed as a combination

of k distributive functions for some integer constant k, i.e.,

f(X) = h(91(X),92(X), ···,9k(X)).

For example, when f is average, then k = 2, 91(X) =
LXiEX Xi, 92(X) = LXiEX 1, (obviously both 91 and 92

are distributive) and h(91,92) = 91/92. When f is variance,

then k = 3, gl(X) = LXiEX x;, g2(X) =2 LXiEX Xi,

93(X) = LXiEX 1, and h(91,92, 93) = 91 - :~. Hereafter,
we assume that an algebraic function f is given in formula

h(91,92,··· ,9k). Thus, instead of computing f, we just com­

pute 9i(X) distributively for i E [1, k] and h(91,92, ... ,9k)

at the sink node.

CONNECTED DOMINATING SET: In a graph G = (V, E), a

subset Vo of V is a dominating set (DS) if each node in V is

either in Vo or adjacent to some node in Vo. Nodes in YO
are called dominators, whereas nodes not in Vo are called

dominatees. A subset C of V is a connected dominating set

(CDS) if C is a dominating set and C induces a connected

subgraph. Consequently, the nodes in C can communicate with

each other without using nodes in V \ C.

III. AGGREGATION SCHEDULING

In this section we first present an algorithm to construct

a data aggregation tree. Then based on this tree, we design

a schedule of links' transmissions to approximately minimize

the latency of the aggregation.

A. Aggregation Tree Construction

We construct the aggregation tree on the communication

graph G(V,8r) using Algorithm 1. The basic idea of Algo­

rithm 1 is to construct a tree similar to the breadth-first-search

tree, with the following properties: (1) the depth of the tree

is within a small constant factor of the diameter D(G), (2)

each internal node will be connected with at most a constant

number of other internal nodes. The second property ensures

that we can schedule the transmissions of internal nodes in

constant time-slots. Our algorithm is similar to [21] with two

crucial modifications:

1) We select the topology center of G(V, 8r) as the root of

our BFS tree. Notice that, previous methods use the sink

node as the root. Our topology center selection enables us

to reduce the latency to a function of the network radius

R(G), instead of the network diameter D(G) proved by

previous methods. Here a node Vo is called the topology

center in a graph G if Vo = arg minv { max., dG(U, v) },
where dG(U, v) is the hop distance between nodes U and

v in graph G. Notice that in most networks, the topology

center is different from the sink node.

2) After the topology center gathered the aggregated data

from all nodes, it will then send the aggregated result

to the sink node via the shortest path from the topology

center Vo to the sink node vs- This will incur an additional

latency dG(vo,vs ) of at most R(G).

Algorithm 1 Aggregation Tree Construction

1: select the topology center Vo of G(V, 8r);
2: using Vo as the root, perform BFS over G(V, 8r) to build

the BFS tree TG; we denote the height of TG as R =
R( G), the radius of the network G(V, 8r).

3: select the MIS of TG by an existing approach [21]. We

call all nodes in MIS as dominators and all the other nodes

in TG as dominatees;

4: connect MIS using some nodes (we call them as con­

nectors) to form a CDS of the graph G(V,8r) (note that

connectors are some dominatees originally);

5: output the CDS G e as the backbone of the aggregation

tree with Vo as the root.

Observe that here the CDS G e does not contain all nodes

V yet: some dominatees are not in G e . For each dominatee
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Fig. 1. The process of Algorithm 4: the black nodes are dominators and
white nodes are dominatees.

Then, our aggregation scheduling algorithm can be divided

into two phases:

Phase I: every dominator aggregates the data from all its

dominatees (as described in line 3 - 9 of Algorithm 4

and also shown in Figure 1(a»;

Phase II: dominators aggregate their data to the sink node V s

level by level (as described in line 10 - 20 of Algorithm

4 and also shown in Figure l(b).).

For each level (which is an iteration in the pseudo-code as

shown in line 11 - 20 of Algorithm 4) in the second phase,

the process can be further divided into two sub-phases:

• every dominator aggregates its data to its corresponding

connectors (as shown in line 11 - 15 of Algorithm 4);

• every connector transmits its data to the dominator in the

upper level (as shown in line 16 - 20 of Algorithm 4).

A. Correctness

We first prove that at any single time-slot, every receiver in

our schedule can receive data successfully.

Theorem 1: After the plane is divided into cells , we can set

K = f( 4(3rp·ro )± + 1 + V21 to ensure the SINR at
(V2 )-o P .€ O-{3N o

. . j3 a ( H T ~ )
every recerver IS at least the threshold . Here T = a - I +
T~ M

2(a-2)' £ = 8r/v 2.

B. Upper-bound on the latency ofAlgorithm 4

In this section, we prove that the latency achieved by

Algorithm 4 is OeD + ~) where D is the diameter of the

network G(V,8r) and ~ is the maximum node degree in G.

We first bound the number of connectors that a dominator

u will use to connect to all dominators within two-hops. Our

proof is based on a technique lemma implied from lemmas

proved in [24].

Lemma 2: [24] Suppose that dominator v and ware within

2-hops of dominator u, v' and w' are the corresponding

connectors for v and w respectively. Then either Iwv'l :::; 1

or Ivw'l :::; 1 if L. VUW :::; 2 arcsin j ,
Lemma 3: There are at most 12 connectors for each dom­

inator.

Proof After we delete all the redundant connectors, for

each connector, there exists at least one dominator which

has only this connector as its adjacent connector. This can

be proven by contradiction as follows , assume there exists a

connector c; such that each of its adjacent dominators is also a

neighbor of some other connector, then we can always delete

this redundant connector Ci.

Algorithm 2 Link Coloring by receiver locations

IV. PERFORMANCE ANALYSIS OF OUR ALGORITHM

In this section we first show that our schedule is valid, i.e.,

all receiver nodes have SINR at least j3. We then analytically

prove that the latency of data aggregation using our schedule

is at most a small constant factor of the optimum.

Input: Set of links .c = {h , la. >: , in};
Output: Colored links;

I : for r = 0, . . . ,K - 1 and s = 0, . .. ,K - 1 do

2: for i , jEZdo

3: if i mod K = rand j mod K = s then

4: select one link from .c whose receiver is located

within gi ,j;

5: all the selected links are colored as Or,s;

Algorithm 3 Link Coloring by sender locations

Input: Set of links .c = {h , la. >: , in};
Output: Colored links;

I : for r = 0, . . . ,K - 1 and s = 0, . .. ,K - 1 do

2: for i, jEZdo

3: if i mod K = rand j mod K = s then

4: select one link whose sender is located within gi ,j;

5: all the selected links are colored as Or,s;

(b) Phase II(a) Phase I

v not in G c , we will connect it to the neighboring dominator

that has the smallest hop-distance to the topology center vo.

The tree formed by these additional links is called the final

data aggregation tree T . For the constructed aggregation tree

T, we can prove that the depth of T is at most 2R(G) , where

R(G) is the radius of the network G(V,8r) . Additionally, each

node v E G c is connected to at most 19 nodes in G c .

B. Our solution

We then propose our aggregation scheduling algorithm

based on the aggregation tree constructed in Algorithm I .

Assume that each wireless node already knows its geometric

locations. A number of methods have been proposed in the

literature to approximate the geometric locations of nodes.

We partition the deployment plane into grids by using a set

of vertical lines av : x = v . £ (v E Z) and horizontal

lines bh : Y = h . £ (h E Z). Hereafter v (h) is called the

index of the vertical (horizontal) line av (bh). We call the cell

formed by a pair of neighboring vertical lines a v , a v+l and

neighboring horizontal lines bh , bh+l as g v ,h. Then we color

the cells (shown in Algorithm 2 and Algorithm 3) with the

specification that any pair of cells that have the same color

are far away enough for simultaneously transmitting. Then,

for any cell, at any time-slot, we will only choose at most

one node from this cell to transmit. In Theorem 1, we will

formally give the closest distance between any two cells with

the same color in terms of the number of cells between them .

And we prove that this distance guarantees the simultaneous

transmission.
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Algorithm 4 Minimum Latency Aggregation Scheduling

1: Partition the deployment plane into cells, each with side

length 8r/ J2.
2: Construct an aggregation tree using Algorithm 1;

3: while there still exist some unmarked dominatees do

4: For each dominator, we select an unmarked neighboring

dominatee. All the links form a set L.

5: We then apply Algorithm 2 to color the links in L;
6: for r = 0, ... ,K - 1 and s = 0, ... ,K - 1 do

7: schedule all links in E with color Cr,s;

8: Mark all the selected dominatees;

9: Unmark all nodes (including all dominators and domina­

tees);

10: for i= R to 2 do

11: while there still exist some dominator in level i whose

data have not been aggregated to their parent nodes

(connectors) do

12: For every dominator in level i, we select the link

from itself to its parent. All the links form a set L.

13: Apply Algorithm 3 to color the links in L;
14: for r = 0, ... ,K - 1 and s = 0, ... ,K - 1 do

15: schedule all links in E with color Cr,s;

16: while B some dominators in level i-I that did not

aggregate the data from all its connectors do

17: For every dominator in level i, we select the link

from its connector to itself, and this link to L.

18: Apply Algorithm 2 to color the links in L;
19: for r = 0, ... ,K - 1 and s = 0, ... ,K - 1 do

20: schedule all links in E with color Cr,s;

It implies that if there are 13 connectors for one dominator,

we must have at least 13 non-sharing dominators. By Lemma

2, we know that there are at least two dominators will share a

same connector which contradicts to fact that all of those 13

dominators should be non-sharing with each other. •

Lemma 4: Each connector has at most 12 . 5 neighboring

connectors.

Proof This lemma can be proven by contradiction. We

first prove that each connector has at most 5 neighboring

dominators, assuming there exists a connector c, which has

at least 6 neighboring dominators, then there must exist

two dominators dj and dk such that LdjCidk ::; 60°, this

contradicts to the fact that no two dominators are adjacent to

each other.

Then since each connector has at most 5 neighboring dom­

inators and there are at most 12 connectors for one dominator,

so there are no more than 12·5 neighboring connectors for each

connector, otherwise, there must exist one dominator which

has at least 13 neighboring connectors. It contradicts to our

previous results. This finishes the proof. •

Lemma 5: In the first phase of Algorithm 4, all the dom­

inators can aggregate the data from all its corresponding

dominatees in K 2
• ~ time-slots.

Proof Since the maximum degree of each dominator d;

is ~ and the side length of each cell is 8r/ J2, so there are

at most 1 dominator and ~ dominatees falling in the same

cell. It follows that the load of each cell in the first phase is

at most ~ . According to Theorem 1, because every cell can

be scheduled at least once every K 2 time-slots, all the links

can be scheduled in K 2
• ~ time-slots. •

Lemma 6: In the second phase of Algorithm 4, the sink can

receive all the aggregated data in at most 62· K 2
•R time-slots.

Proof Since there is at most one dominator fallen in

one cell, the total load of each cell in the first sub-phase of

phase two is at most 1. Further, Lemma 4 shows that every

connector has at most 60 neighboring connectors, so the total

number of connectors fallen in the same cell is 61, then we

get the load of each cell in the second sub-phase is at most

61. By summarizing the above analysis on the two sub-phases,

we have the total load of each cell is at most 1 + 61 = 62.

Again, based on Theorem 1, we find that all the data can be

aggregated from level i + 1 to i by at most 62 . K 2 time-slots,

note that K is a constant. Since the depth of our aggregation

tree is R, we finally get a upper-bound 62 . K 2
• R on the

latency for the second phase. •

Lemma 5 and Lemma 6 together imply following theorem.

Theorem 7: The latency of Algorithm 4 is at most K 2
• R +

K2.~.

V. OVERALL LOWER-BOUND ON LATENCY

Here we discuss the overall lower-bound on the latency for

data aggregation under the physical interference model. An

overall lower-bound is the minimum time-slots (which may

not be tight) needed to finish the data aggregation by any

possible algorithm for the given network G(V,8r).

Lemma 8: Under the physical interference model, for a

communication graph G(V,8r), it requires at least R time­

slots for any algorithm to finish the aggregation transmission

. Here R is the maximum hop-distance for any node to the

sink node in G(V,8r).

Proof We can see that the scheduled links can only be

selected from the edges in G(V, 8r). It requires at least R

time-slots for the farthest node v to transmit its data to the

sink node Vs ' Since R 2: ~, the latency is at least D /2. •

Lemma 9: Under the physical interference model, for a

communication graph G(V, 8r), there are at most w = (8;]0 -
1 = 8° ~o - 1 senders transmitting simultaneously which are

all neighbors of a single node.

Corollary 10: Under the physical interference model, for a

communication graph G(V,8r), it requires ~ time-slots for

any algorithm to finish the aggregation transmission.

Proof We consider the node v whose degree reaches

maximum value ~ (if there are multiple such nodes, choose

one randomly). Since for every neighboring node of v, it needs

to report its data to the sink. This means every neighboring

node of v needs to transmit at least once. By Lemma 9,

at each time-slot, at most w neighboring node can send

simultaneously, thus it requires at least ~ time-slots to finish

aggregation scheduling. •

From Lemma 8 and Corollary 10, we can derive the overall

lower-bound for data aggregation scheduling as follows.

Theorem 11: Under the physical interference model, for

any 8 < 1, for a communication graph G(V,8r), it requires
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Fig. 2. A network example: the optimum solutions for G(V, r) and G(V, <5r)
are not in the same order. The distance dh between consecutive vertical lines
is (<5 + E)r, The distance between two consecutive nodes on a vertical line is
dv = <5r.

In Fig 2, there are n nodes deployed in a rectangle region .

There are y'n vertical evenly spaced lines with Euclidean

distance dh = (8 + €)r between consecutive lines. Here 8 < 1

is a given constant and 0 < € < 1 - 8. For example, we

can set € = mine 8, 1;0). For each such line, we evenly

place y'n nodes with Euclidean distance d; = 8r between

consecutive nodes. Additionally, y'n-l nodes , like w between

u and v in the example, act as the bridges to guarantee

the network connectivity when doing aggregation in graph

G(V,8r). Distance between w and u (or v) is smaller or equal

to 8r, and distances between wand other nodes are larger than

to connect any two vertices in G(V, r) is in the same order of

the minimum number of hops used in G(V,8r). •

Theorem 14: If there is an algorithm for aggregation

scheduling in G(V,8r) with approximation ratio a, then we

can achieve an solution for the original topology G(V, r) with

approximation ratio p . a w.h.p.

Proof Assume the optimum schedules for G(V, r) and

G(V,8r) are OPT(G(V, r)) , OPT(G(V, 8r)). We overload

the terms as the latency achieved using the schedules re­

spectively. By Lemma 13, the hop distance in the graph

G(V,8r) is at most p times of the hop distance in the original

graph G(V, r). So Ror = maxuEV min h(u, vs) of the graph

G(V,8r) is at most p times of R; = maxuEvminh(u, vs)
of the original graph G(V, r). Here h(u, vs) is the number of

hops between the node u and the sink node Vs. By Lemma 8,

R is a lower bound of the data aggregation under the physical

interference model. At the same time, the maximum degree

of graph G(V,8r) ( ~ o r ) is at most the maximum degree of

graph G(V, r) (~r). In Corollary 10, we have proved that ~

is another lower bound of the data aggregation under physical

interference model. Then OPT(8r) :::; p ' OPT(r) . Thus by

definition, ALG(8r) :::; a -OPT(8r) :::; p -a -OPT(r). •

B. Arbitrarily Placed Nodes

Theorem 14 shows that the optimum solutions for the

communication graphs G(V, 8r) and G(V, r) are in the same

order for random wireless sensor networks. One may conjec­

ture that this nice property holds for an arbitrary network.

Unfortunately, Fig 2 gives such an example where the latency

of data aggregation using these two graphs will be different

when 0 < 8 < 1 is a given constant.

max{R, ~ / w} time-slots for any algorithm to finish the ag­

gregation transmission. Here R is the maximum hop-distance

for any node to the sink node in graph G(V,8r) and ~ is the

maximum degree of the graph.

This theorem implies that our algorithm achieves the asymp­

totically optimum latency for data aggregation when we can

only use links with length at most 8r.

VI. COMPARE WITH OPTIMUM USING ALL LINKS

In this section, we then study the performance of our

algorithm compared with the optimum solution when all links

in the network G(V, r) could be used for data aggregation.

We first study the case when V is randomly placed and then

study the case for a set V of arbitrarily placed nodes .

A. Randomly Placed Nodes

When we study WSNs deployed in real life, we find that

in many scenarios, the sensors are deployed randomly and

uniformly. Thus we can use a random graph to denote the

topology in which all the sensors are deployed randomly and

uniformly. For random networks, we assume that all n nodes

are randomly deployed in a square region of side-length A.

Notice that we assume that the transmission power of every

node is a fixed constant P and the background noise is No.

This implies that the maximum link length is r. Then it is well­

known that to ensure that the random network is connected

with high probability, the degree of each node should be in

the order of D(log n) . Then the side-length A is assumed to be

in the order A = O( l o~ n) here. Before we study the latency

for random networks, we first introduce the following lemma.

Lemma 12: [18] Assume there is a graph with n nodes ran­

domly deployed in a square region with side-length O( lo~n)'

We partition the deployment square into cells, each of side­

length a constant a. Then there is a sequence of 8(n) ---+ 0

such that

Pr (every cell contains anode) ~ 1 - 8(n)

In a graph G, the hop distance between a pair of nodes u

and v is defined as the smallest number of hops between them

in the topology graph hG(u, v). In random wireless sensor

networks, if we connect any pair of sensor nodes with distance

smaller than 8r and r respectively, we get two topology graphs

G(V,8r) and G(V, r).

Lemma 13: For any pair of nodes u and v , w.h.p, we have

hG(V,or)(u , v ) :::; p . hG(V,r)(u , v ), where p is a constant.

Proof In a graph G(V,8r), any pair of nodes u and v

from two adjacent cells (sharing a common side) will be able

to communicate with each other directly. Then by choosing

one node from each cell which is crossed by segment uv, we

can connect u and v using 8(lluvll/r) hops.

Similarly, if we partition the network into squares with

side-length 8r/ vts. Then together with the assumption that

the random network is connected with high probability, it

follows that by only using the links with length 8r, we can

connect any two vertices u and v within 8(lluvll/8r) hops .

Notice that 8(lluvll/8r) = 8(lluvll /r). It implies that under

random network model, the minimum number of hops used

, - ..-. , - -e-. ·-e-. t., , , , , , ,
t + t + + t t, , , , , , ,
• · • · · • •, , , , , , ,

• • • • + • •, , , , , , ,
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• • t • + • •, , , , , , ,
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t t · t + t ·, ,, , + , , ,

+• • · •,
u ~- lf- ~ v ' ' , ,

• .. -. -.. . - -e-.

Graph G(V,8r)

s w

Graph G(V, (8 + €)r)
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8r. Thus, in graph G(V, 8r), if we want to aggregate the data

from s to t, we should strictly follow the dashed path as shown

in Fig 2. The latency of data aggregation in G(V,8r) thus is

at least n. On the other hand, in graph G(V, r), the red solid

path may be a possibility for getting data from a source node

s to the sink node t. It is easy to show that for graph G(V, r),
the network radius is in the order of 8( jn). On the other

hand, the graph G(V, r) contains the graph G(V, (8 + E)r)
as a subgraph. Notice that, for the graph G(V, (8 + E)r), the

maximum node degree is ~ ::; 10 and the radius of the

network is at most R ::; 2jn. Then using our scheduling

algorithm, for graph G(V, (8 + E)r), the latency of data

aggregation is at most O(~ + R) = O( jn). Consequently,

the latency of data aggregation in the original network G(V, r)
is at most O( jn). Thus, we have the following theorem

Theorem 15: For any constant 0 < 8 < 1, there are

examples ofnetworks with n nodes V in two-dimensional such

that the latency using only links in G(V, 8r) is at least n while

the latency using all links in G(V, r) is only O( jn) using

Algorithm 4. In other words, there is no universal constant 8

that ensures a constant approximation ratio for the latency of

data aggregation by any algorithm that only considers links in

G(V,8r).

We then show that the ratio of the latency for data ag­

gregation in G(V,8r) over the latency for data aggregation

in G(V, r) is at most O(n2
/

3
) for any network of n nodes

V in a two-dimensional space. Let us consider any n nodes

V distributed in a two-dimensional region. Let ~ and R be

the maximum node degree and radius for network G(V, r)
respectively. Obviously, we have Jr R 2

• ~ 2:: n. This implies

that max(R,~) 2:: Jrl/3nl/3. Thus, the latency of data

aggregation in G(V, r) is at least Jrl/3nl/3. On the other hand,

the latency of data aggregation in G(V, 8r) is at most n. Then

we have the following theorem.

Theorem 16: The ratio of the latency for data aggregation

in G(V,8r) over the latency for data aggregation in G(V, r)
is at most n2

/ 3 / Jr l / 3 for any network of n nodes V in a two­

dimensional space.

This implies that our algorithm achieves a latency that is at

most O(n2
/

3
) factor of the latency by the optimum algorithm

for G(V, r). Theorem 15 implies that there are network ex­

amples such that the latency achieved by our algorithm is at

least f2(n1
/

2
) factor of the latency by the optimum algorithm

for G(V, r). Note that there is a gap between the performance

bound of our algorithm for network G(V, r). We conjecture

that

Conjecture 17: The latency achieved by our algorithm is

8(n1
/

2
) factor of the latency by the optimum algorithm for

G(V, r).

VII. SIMULATION RESULTS

In this section, we present our simulation results. We

randomly deploy a number of n nodes in a two-dimensional

square area and randomly choose one node as the sink node.

The objective is to measure the latency for the sink node to

get the aggregation (max, sum or average) result of all data

using our aggregation scheduling algorithm (Algorithm 4).

TABLE I
THE PARAMETERS OF PHYSICAL INTERFERENCE MODEL

Note that latency is defined as the number of time-slots needed

to aggregate all data from within the network to the sink

node. We evaluate Algorithm 4 from different perspectives

under the physical interference model. For simplicity, we first

list the parameter setting of physical interference model in

Table I. Note that the parameter (3 is set to 1 while in reality

this threshold could be much more than 1. Based on the

parameters, we can compute the value of r.

A. The effects of ~ and R in Algorithm 4

To evaluate the effect of maximum node degree ~, we

measure the latencies of Algorithm 4 with varied values of

~ .

We fix the network deployment area as (500m x 500m) and

vary the network size (# of nodes) from 100 to 1000 with step

50. By connecting every pair of nodes with distance no larger

than 8r, we get a communication graph. Here we set 8 = 0.6

which can ensure that the corresponding communication graph

is connected. Later we will discuss how to set the value of 8.
By fixing the size of network deployment area, we find that

the network radius R is nearly fixed (around 25). At the same

time, the network density (~) increases monotonously with

network size. We measure the performance of Algorithm 4

for 50 times under this condition, the average performance is

illustrated in Figure 3(a). We can see that the latency increases

monotonously when the network density (~) increases. That

is because the interferences will be greatly decreased when

our algorithm aggregates data level by level.

To evaluate the effect of network radius R, we create a

network instance similar to the first one with two crucial

modifications: we vary the network deployment area from

(200m x 200m) to (1000m x 1000m) gradually with the net­

work size and set 8 = 0.1. In other words, we fix the node den­

sity in the network deployment area. We find that ~ is nearly

fixed (around 25) as well in the corresponding communication

graph. At the same time, R increases monotonously with the

network size. We measure the performance of Algorithm 4

for 50 times under this condition, the average performance is

illustrated in Figure 3(b). We can see that there is still a gap

between the latency ofAlgorithm 4 and ~ +R. This is because

we use ~ +R as a lower bound on the latency. This means that

either Algorithm 4 can be potentially further improved or the

lower bound ~ + R should be improved for data aggregation

under the physical interference model. We leave it as an open

question to further close the gap between upper bound and

lower bound on latency.

B. Compare Algorithm 4 with compressive scheduling

In this section we show that in practice, our algorithm can

be further improved, although the theoretical performances

remain the same here. The new method, named compressive

scheduling, will further reduce the latency by merging the links
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scheduled in different slots to a single slot without violating

the SINR. We will then compare the performance of our

algorithm (Algorithm 4) with that of compressive scheduling

algorithm. Our compressive scheduling algorithm, which is in

fact a greed algorithm, is described as follows.

1) find all leave nodes, say N, in the same BFS tree

constructed in Algorithm 1.

2) partition the deployment region into cells using the same

method in Section III-B.

3) find a subset N 1 ~ N such that each cell contains at

most one node from N 1• If some cell contains multiple

nodes from N, we choose the one with the largest level

in BFS tree .

4) for each node in N 1, we find the corresponding link from

itself to its parent in the BFS tree. All the links found

form a link set L.

• color the links in E using Algorithm 2, find a subset £1

of links with monotone color with the largest size. We

then try to add more links greedily without destroying

the SINR threshold constraint ( Equation (1) );

• apply Algorithm 1 in [15] to find a feasible solution

£2 which is a subset of E;

• select one of the two sets £1 and £2 with a larger size.

Let all links in the selected set transmit simultaneously.

Delete all transmitters which are leaf nodes in the BFS

tree. Update the BFS tree accordingly.

5) repeat step 1)-4) until there is no leaf node in the BFS

tree. This means that all data have been aggregated to the

sink node.

Clearly, theoretically, the latency of our new compressive

scheduling algorithm for data aggregation is at most the

latency of our previous method. We do simulations for com­

pressive scheduling algorithm and Algorithm 4 for 50 times

and compare their latencies. Note all comparisons are fairly

conducted in the same communication graph, and in each

communication graph data are aggregated from the same set

of nodes to the same sink node. Figure 4 shows the average

latencies of different algorithms respectively. From Figure

4(a) to Figure 4(b), we can see that when network is sparse,

compressive scheduling has remarkable effect on the latencies

of data aggregation. It significantly reduces the latencies.

C. Discussion on the choices of 5

As we know, 5 is a crucial parameter on the latencies of

data aggregation. In previous subsections, we all set 5 as

some default values, which may not be an optimum choice

to minimize the latencies. Here we discuss on how to choose

the value of 5. Generally, the smaller the value of5, the smaller

the length of links we can choose in GW,5r). Thus we have

less links in the corresponding communication graph G, this

implies that in G:

1) each node has less incident links (edges), thus the maxi­

mum node degree ~ becomes smaller. This will help to

reduce the latency of data aggregation.

2) the maximum length of links in G becomes smaller,

thus the network radius R becomes larger. This will then

increase the latency of the data aggregation.

Thus, it is not straightforward whether we should select

smaller 5 or larger 5 here . Since the time spent (denoted as

it) for collecting data to dominators increases monotonically

with ~ . Thus it becomes smaller as 5 becomes smaller. The

time spent (denoted as l2) for collecting data from dominators

to dominators level by level increases monotonically with R.

Thus l2 becomes larger as 5 becomes smaller. To sum it and

tz as the total latency, when 5 become smaller, it is not clear

whether the total latency will decrease or increase.

However, 5 cannot be too small or too large (close to

1). First if 5 is too small, the communication graph may

not be connected, thus some un-connected node can not

send its datum to the sink node. Second, if 5 is close to

1, then the network is strongly connected by a lot of long
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links. These long links prevent the simultaneous transmissions,

which potentially increases the latency. From this perspective,

a link with smaller length is preferred for scheduling. We

conjecture the smallest 8 which can ensure the connectivity of

G(V,8r) is an optimum choice. So far our conjecture cannot

be proved formally.

We conduct extensive simulations to see the effect of 8 in

different scenarios. Fig 5(a) shows the latencies of both Al­

gorithm 4 and compressive scheduling with varied 8. Fig 5(b)

shows the best choices of 8 with varied network size in a fixed

deployment area. Here a best choice means that the latency of

Algorithm 4 achieves minimum when 8 is set as this value.

VIII. RELATED WORK

Both data aggregation in sensor network and link scheduling

under the physical interference model have been both well

studied recently. However, no paper combine these issues

together, that is, studying the problem of data aggregation

under the physical interference model. Therefore our literature

part can only review data aggregation under graph-based

interference models and link scheduling separately.

A. Related work on data aggregation

There are a lot of existing researches on in-network aggre­

gation [7], [8], [10], [22]. The tradeoff between energy con­

sumption and time latency was considered in [28] and some

heuristic algorithms for data aggregation were proposed [1],

[23], aiming at reducing time latency and energy consumption.

Kesselman et ale [16] proposed a randomized and distributed

algorithm for aggregation in wireless sensor networks with

an expected latency of O(log n). A collision-free scheduling

method for data collection is proposed in [17], aiming at

optimizing energy consumption and reliability.

All these work did not discuss the minimal-latency aggre­

gation scheduling problem. In addition, the minimum latency

of data aggregation problem was proved to be NP-hard [6].

The distributed algorithms for aggregation scheduling were

proposed in [2]. It proposed a distributed scheduling algorithm

generating a collision-free schedule that has a latency bound

of 24D + 6~ + 16, where D is the network diameter when

the conflict-graph is the original unG communication graph.

This was recently improved to 16R + ~ model by Xu et ale

[27] and (1 + (log R/-lfii)) R + ~ by Wan et al. [25] under

the same network model.

B. Link scheduling under the physical interference model

The problem of joint scheduling and power control un­

der the physical interference model has been well studied

previously. For instance, in [9], [11], optimization models

and heuristics for this problem are proposed. In [13], [20],

topology control with SINR constraints is studied. In [19],

a power-assignment algorithm which schedules a strongly

connected set of links in poly-logarithmic time is presented.

In [4], the combined problem of routing and power control is

addressed.

In [14], the scheduling problem without power control under

the physical interference model, where nodes are arbitrarily

distributed in Euclidean space, has been shown to be NP­

complete. A greedy scheduling algorithm with approximation
ratio of 0(n l - 2 / ( \}J (a )+ €) (Iogn)"}, where \lJ(a) is a constant

that depends on the path-loss exponent a, is proposed in

[3]. Notice that this result can only hold when the nodes

are distributed uniformly at random in a square of unit area.

In [14], an algorithm with a factor O(g(L)) approximation

guarantee in arbitrary topologies, where g(L) = log 19(L) is

the diversity of the network, is proposed. In [5], an algorithm

with approximation guarantee of O ( l o g ~ ) was proposed,

where ~ is the ratio between the maximum and the minimum

distances between nodes. Obviously, it can be arbitrarily larger

than 19(L). Most recently, Goussevskaia et ale [15] propose

an algorithm which has a constant approximation guarantee.

Unfortunately, their method [15] works correctly only if the

background noise is o. Recently, Xu et ale [26] resolved

this issue by proposing an efficient link scheduling algorithm

that has a constant approximation ratio, i.e., the number of

scheduled links is at least a constant factor of the optimum.

IX. CONCLUSIONS

In this paper we study the aggregation scheduling with

minimum latency under the physical interference model in

wireless sensor networks. We proposed a distributed aggrega­

tion scheduling algorithm, and proved that the latency achieved

by our algorithm is O(R + ~) time-slots, which is within

a constant factor of optimum if we can only use links in

G(V,8r). We further provided the overall lower-bound of

latency by any algorithm for aggregation scheduling under

the physical interference model. We also analyzed aggregation

latency in a randomly deployed wireless networks. Some

interesting questions are left for future research. The first is

to improve the constant approximation ratio of our scheduling

algorithm. The second is to design efficient data aggregation

method that has the asymptotical optimum performance guar­

antee compared with the optimum latency using G(V, r). The

third is to extend our algorithm to deal with a more general

path loss model.
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ApPENDIX

PROOF OF THEOREM 1.

Proof When a sender u transmits to a node v, the SINR at

the receiver v is P<;:;:'!;o. Here the P is the total interference

at the receiver v from all other simultaneous senders. As shown

in Fig. 6, the shortest hop-number of v and another sender is

at least hi = h - (1 + -J2).

Fig. 6. Cell partition of the region (h and h' are hop-number).

We then bound the total interference P.
00 00

P :::; L L P ( vii 2 +P .h'era
i=- oo j=- oo

4 . (~P( ih ' e)-a + ~ ~ P( Vi2 +rr: .(h'e)-a )

4P(h'e)-a . (~ i- a + ~ ~(Vi2 + p)-a)

4P(h'e)-a . (1 + ~ C
a + T~ +2~(Vi+i2)- a

+ ~~(vli2 +p)-a)

:::; 4Ph'ra ( 0:(1 + T~) + 1T2-
aj2

) = 4Ph'e-aT
0: - 1 2(0: - 2)

Here T = a .(l+T-7) + 1I' ·T-7 . Thus the SINR at receiver
a-I 2(a-2)

• p .( v'2e)-o p .( v'2f)-O I

V IS at least No+P 2: No+4-rP.(h' .fj 2: (3. Then h 2:

(v'2/~-r:e ' f:~ {3N)±' So K = r(v'2)4 ~1/~~ {3N o)± + 1 +
-J21 is a lower bound of h. •

PROOF OF LEMMA 9.
Proof Assume by contradiction that there are Wi senders

transmitting simultaneously which are all neighbors of a

single node. Here Wi > w, thus Wi 2: (or. Con­

sider the sender s , whose incident link li is the shortest

among all links of the senders, we assume its correspond­

ing receiver is r c- Then the interference eXFerienced by

node r, is at least SINRs",,(li) = L ~+N :::;
SjESw ' II S j T ill O' 0

P P < 1 <
" P N < " P -" j
L.. Sj E Sw f II s j r ill O' + 0 L.. SjE S w ' II s j r ill O' L.. s j E S w ' II s j r ill O'

~ :::; (3. This contradicts the fact that i, can transmit
w . ! 6r) O

without interference. •
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