
Efficient data collection from Open Modeling Interface (OpenMI)
components

Tom Bulatewicz, Daniel Andresen
{tombz@ksu.edu, dan@ksu.edu}

Dept. of Computing and Information Sciences, Kansas State University, Manhattan, KS, USA

Abstract— The management of output data from simulation
models can be simplified in grid environments by automating
and standardizing the way in which they are collected
and stored. In the context of component-based computer
models with well-defined input-output interfaces, general-
purpose data collector components can be linked to model
components to retrieve output data and deliver them to
online repositories via web services. We have developed
a distributed data collector component that adheres to the
Open Modeling Interface (OpenMI). The component buffers
data to minimize the impact on a simulation’s runtime and
shares the buffer across compute nodes for load-balancing
and cooperative delivery of data to web services. The
buffering capability resulted in minimal runtimes within a
single simulation and reduced data delivery latencies for
concurrently executing simulations across a cluster. In this
paper we report on the design and performance of the
component.

Keywords: OpenMI, data, web services, modeling, simulation

1. Introduction
The output data produced by environmental computer

simulations often provides a starting point for investigation
into the phenomena being studied. The data may need to be
archived, aggregated, processed, and analyzed statistically
or geographically before they can be visualized and inter-
preted. These may be performed by an individual or as part
of a collaborative effort between groups within or across
institutions.

Model output traditionally takes the form of local data
files that may be of a custom format or adhere to simple
standards such has comma separated values and extensible
markup language or more complex standards such as netCDF
and various database formats. Managing output files can
be challenging, particularly in a grid environment in which
simulations execute on multiple machines across a compute
cluster.

As an alternative to data files, model output data can be
immediately relayed to an Internet-connected data storage
service that serves as a single repository for the data.
This facilitates sharing of the data over the Internet and
automates common tasks such as data archiving. In the
general case, this capability is added to a model program

by either modifying the model source code or incorporating
intermediary software (often via scripting). In the case of
model components with well-defined input-output interfaces,
a general-purpose data collector component can be attached
to any model component to retrieve the output data. Such
components can mitigate data management challenges in any
linked modeling context.

The Open Modeling Interface (OpenMI) [1] defines a
standard way for software components to exchange data with
each other and coordinate their execution. It defines a set
of capabilities that a component must possess in order for
it to be linkable to other components. These capabilities are
both descriptive, to support the task of specifying component
interactions at the domain level, and functional, to support
the execution of a set of linked components. To fulfill the
descriptive requirements, a component must be capable of
providing a list (via a function call) of the domain quantities
that it can provide and those that it uses as input, along with
the units and spatial distribution of each. These are called
output exchange items and input exchange items, and in the
case of model components there is typically one output item
for each quantity that it simulates and one input item for
each of its inputs. To fulfill the functional requirements, a
component must possess a GetValues function through which
it provides data (that correspond to the exchange items) at
runtime.

The GetValues function has three parameters that collec-
tively identify a quantity at a single point in time at one or
more locations as illustrated in Figure 1. A quantity (labeled
Q in the figure) is represented by an object with several
properties such as a textual identifier and units information.
A time T is represented by a simple date object. A list
of locations E is represented by an elementset object that
contains a collection of element objects that each have a
textual identifier, spatial shape (point, line, or polygon) and
geographic coordinates. The GetValues function returns an
array of real numbers called a valueset V such that each
number corresponds to an element (based on its index) and
collectively represents the state of a quantity at a point in
time.

The GetValues function not only provides a means for
the exchange of data between a group of linked components
(called a composition) but it also provides a means for
their coordinated execution at runtime. A special component

C3

C2

C1 Trigger

GetValues(Q,T,E)

GetValues(Q,T,E)

V

V

temperature

Q - quantity

12/1/2010

T - time

18915

18921

18923

18956

E - elementset

67.2

73.1

68.2

65.9

V - valueset

spatial element
conceptualization

18921 18923

18956
18915

Fig. 1: OpenMI pull-based execution. Solid lines indicate
function calls and dashed lines indicate the flow of data.

called a trigger begins by calling GetValues on one of the
components. When GetValues is called on a component, it
executes as many time steps as necessary to advance to the
requested point in simulation time and returns a valueset
corresponding to that time. Thus a component only executes
time steps as-needed to respond to a GetValues call. If it
needs input from another component in order to execute a
time step it calls GetValues on that component and blocks
until a valueset is returned. The components take turns
executing synchronously and pull data from each other until
the simulation completes.

Compositions of linked components can be created and
executed using visual software tools. A scientist chooses a
set of components, and for each one, assigns each output
exchange item to another component’s input exchange item.
These assignments are called links and there may be multiple
links between two components and may be in the same or
opposite directions.

In this work we present the design and evaluation of
a general-purpose Data Collector Component (DCC) that
is capable of collecting data from OpenMI components
and delivering them to online repositories. We describe the
design and implementation of the DCC in the following
section and present our experimental results in Section 3. We
review related work in Section 4 and present our conclusions
in Section 5.

2. Methods
Figure 2 illustrates the movement of data through a

distributed data collection system for linked model compo-
nents. Compositions of linked components execute on cluster
nodes. Each composition includes a DCC that collects data
from the components and delivers them to web services. Any
web service that is capable of accepting data items consisting
of a quantity identifier, date, list of location identifiers, and

cluster

node

DCC

C

C

DCC

CC

C

web
services

Fig. 2: System overview.

list of values, can be used.

2.1 Web Services
The Open Geospatial Consortium [2] publishes interface

standards for location-based information and services to
support interoperability. The Geographic Markup Language
(GML) [3] standard defines XML schemas for geospatial
information including observations data, which is capable
of describing model output from OpenMI components.
The prototype implementation of the DCC uses this XML
schema to represent the data as they are sent to web services.
An example of an XML document that conforms to the
schema is given in Figure 3 (we used a more succinct gml:id
attribute in place of a gml:location element). Additional XML
schemas, such as Observations and Measurements [4] could
be incorporated into the DCC as well.

<gml:Observation gml:id="18951">
 <gml:validTime>
 <gml:TimeInstant>
 <gml:timePosition>2010-12-01T12:00:00</gml:timePosition>
 </gml:TimeInstant>
 </gml:validTime>
 <gml:resultOf>
 <app:Temperature>67.2</app:Temperature>
 </gml:resultOf>
</gml:Observation>

Fig. 3: GML description of a single value.

If a DCC were to make a web service call each time
it collects a valueset then the execution of the simulation
would be paused for the duration of the call due to the
synchronous execution of components. In addition, sending
a single valueset in each web service call may result in
inefficient network utilization when the network latency is
comparable to the transmission time of the valueset.

In the ideal case the collection of valuesets would not
increase the runtime of a simulation and a sufficient number
of valuesets would be transferred in each web service call to
achieve efficient network utilization. To these ends the DCC
utilizes a buffer that enables the sending of valuesets to be

asynchronous with respect to their collection and allows for
the coalescing of multiple valuesets into a single web service
call. The buffer is shared among all DCC’s across a cluster
to provide a total buffer size that is greater than the local
buffer size of each individual and to allow cooperation in
delivering the buffered data.

The implementation of the DCC consists of a buffering
module and a delivery module as illustrated in Figure 4.
The buffering module collects valuesets from components
and stores them in the shared buffer. The delivery module
removes valuesets from the buffer and delivers them to web
services. The behavior of these modules is dictated by three

local map

GetValues()

Delivery Buffering

web
services

collect

send

check
event

component

DCC
DCC

DCCDCC

balancing

89.0 72.357.1

67.2 73.168.2

67.268.2

67.2 73.168.2

67.268.2

67.2 73.168.2
67.268.2

67.268.2
67.268.2

Fig. 4: Operation of the data collector component. Solid lines
indicate function calls and dashed lines indicate the flow of
data.

parameters: maximum local buffer size, maximum residence
time, and minimum delivery size. These are described in the
following sections.

2.2 Buffering
A DCC may be linked to one or more components

within a composition. Components raise an event each time
output data is produced, typically after each time step (the
DataChanged event). The DCC listens for this event and in
response calls the component’s GetValues function to obtain
the newly created valueset and places it into the buffer.

The shared buffer is provided by an open source data
distribution platform (Hazelcast [5]) that is compiled into,
and runs as a set of background threads within, each DCC.
It manages a distributed map data structure, dynamically dis-
covering peers via multicast and communicating via TCP/IP.
The entries in the map are evenly distributed among all peers
and each peer holds a portion of the entries in a local map.
Entries are keyed by a universally unique identifier and are
variably sized and include the quantity identifier (string),
timestamp (long), elementset identifier (string), expiration
date (long), valueset data (byte array), and valueset data size

(long). The memory overhead of storing an entry in the
distributed map data structure is approximately 260 bytes.

The amount of memory dedicated to the local map is
dictated by the maximum local buffer size parameter, thus
the total memory available to the distributed map is the sum
of all peers’ local maximums. If the addition of an entry
into the buffer would cause the local map’s size to become
greater that the maximum, then the buffering module waits
until there is available space, during which the execution of
the simulation is blocked. The buffering module relies on
the delivery module to remove entries from the buffer and
send them.

2.3 Delivery
The removal of entries from the buffer by the delivery

manager is dictated by two parameters: minimum delivery
size and maximum residence time. The minimum delivery
size provides a means to regulate network efficiency. The
delivery manager attempts to remove enough valuesets from
the buffer to meet the minimum delivery size before sending
them in a single web service call. This may cause entries to
remain in the buffer for extended periods of time. This may
be acceptable in cases in which the data is being archived,
but in cases where the data is consumed as the simulation is
being carried out, it may be necessary to place a constraint
on the duration that an entry may reside in the buffer before
it is delivered. This is controlled by the maximum residence
time parameter, which places a limit on the length of time
an entry remains in the buffer. Each entry in the buffer has
an expiration date that is calculated based on the creation
date and maximum residence time. The maximum residence
time has higher priority than the minimum delivery size, so
in some cases a web service call may contain a small amount
of data in order to enforce the time constraint.

The minimum delivery size is specified in terms of the
number of values per web service call rather then the number
of bytes of serialized XML because different web services
may utilize different XML schemas and the latter would
require a priori knowledge of the serialized XML size for
any valueset. Identifying the serialized XML size for a
valueset would require either (1) the serialized XML size
per value to be known or (2) valuesets to be temporarily
serialized to XML as the buffer is being inspected. The
former would require calculating the serialized XML size per
value for each XML schema and the latter would consume
additional system resources.

The following algorithm is used by the delivery manager.
The delivery thread periodically iterates over the entries in
the local map and determines (1) whether there are any
entries that have expired and (2) whether there are enough
entries to meet the minimum delivery size. If either case
is true, the delivery thread iterates over the local map
to identify the entry with the lowest expiration date and
removes it. It repeatedly iterates over the entries, removing

the entry with the lowest expiration date, until either (1)
enough entries have been collected to meet the minimum
delivery size, or (2) the local map is empty. Only the
entries in the local map are iterated in order to avoid global
operations and improve scalability. The valuesets within the
entries are deserialized from their byte array representation,
coalesced, serialized into XML, and then sent in a single web
service call. The process repeats until both the simulation
is completed and the number of entries delivered is equal
to or greater than the number of entries inserted into the
local buffer. The latter ensures that each DCC delivers a fair
share of the entries and that only DCC’s with excess capacity
deliver more entries then they collect.

When a valueset is delivered to a web service it must
include information about the location that each value repre-
sents. This information is not stored inside the buffer entries
because it would be redundant as the location information
is identical for all valuesets that correspond to a common
elementset. Elementsets are static during a simulation run
so there is typically a high ratio of valuesets to elementsets.
The buffer entries only store the elementset’s identifier and
the actual elementset information is stored in a separate
distributed map. In this way a DCC can lookup the complete
elementset information for any valueset before it is delivered.

3. Experimental Results
We conducted a performance study using an onsite Linux-

based Beowulf cluster. The compute nodes had 2 quad-core
2.3 GHz Opteron 2376 processors with 8 GB of memory
and the server node had a quad-core 2.7 Ghz processor and
8 GB of memory. All nodes were connected via gigabit
ethernet. The software components were implemented in
Java using the Alterra OpenMI 1.4 SDK and the web service
was SOAP-based and implemented in PHP hosted by the
Apache HTTP server within a Windows virtual machine.

To represent a model component we created a producer
component that used a fixed-length time step of 1 day and
would sleep for a fixed amount of time between time steps
to mimic the time spent calculating a time step. On each
time step a single valueset was generated and collected by
the DCC linked to it.

3.1 Minimum Delivery Size
The minimum delivery size that maximizes throughput to

the web service is dependent on several factors including
network latency, available bandwidth, and software perfor-
mance. We conducted a series of measurements to empir-
ically identify the ideal delivery size for our experimental
configuration.

To establish a baseline of the expected performance of the
DCC, we independently measured the maximum throughput
from a benchmark Java application to the Apache/PHP web
service and found it to be 47 MB/s. This performance
was only possible when the ChunkedStreamingMode of

the java.net.HttpURLConnection object was enabled, which
prevents the complete POST request from being buffered
in memory and streams the data directly from disk to the
connection’s input stream (although not all web servers
support this mode).

We configured a single composition consisting of a
producer component linked to a DCC and measured the
throughput from the DCC to the web service in a series
of simulations. In each simulation the producer generated
a number of valuesets that were collected by the DCC
and individually sent to the web service in separate calls.
The average throughput (over all sends in each simulation)
achieved in each simulation is shown in Figure 5.

40

30

20

10

0

th
ro

ug
hp

ut
 (

M
B/

s)

403020100
serialized XML size (MB)

Fig. 5: Impact of minimum delivery size on throughput.

As the data size increased, the throughput increased as
well until the maximum throughput was reached, at which
point larger data sizes no longer improved the throughput.
To achieve at least 50% of the maximum throughput it was
necessary to set the minimum delivery size to 2.6 × 105

values which ensures that each web service call contains at
least 11 MB of serialized XML data.

3.2 Maximum Residence Time
The maximum residence time imposes a limit on the

amount of time that an entry may reside in the buffer. When
expired entries are detected in the buffer, all expired entries
are removed from the buffer, along with any additional
entries necessary to meet the minimum delivery size, and
are sent in a single web service call. Thus some entries may
be removed from the buffer before they expire resulting in
an average residence time that is less than the maximum
residence time.

To investigate the effect of the maximum residence time,
we measured the average residence time of entries that
were added to the buffer at a regular interval. The testing
configuration included a single producer component that
generated a valueset at a regular interval that was shorter

than the maximum residence time in each case causing
several entries to be added to the buffer before one of
them expires. The buffer was configured such that entries
were only removed as a result of an expiration (unlimited
maximum buffer size) and when an expiration occurs all
entries were removed from the buffer and sent in a single
web service call (minimum delivery size set to maximum).

The results indicate that the average residence time was
one-half the maximum residence time in all cases. The
expiration of the first entry added to the buffer causes all
the entries to be removed and delivered, all of which spent
differing amounts of time in the buffer. In general, the sum
S of the residence time rt of n entries added to the buffer
at a fixed interval i is:

Sn = rt1 + (rt1 + i) + ..+ (rt1 + (n− 1)i)

= n/2(rt1 + rtn)
(1)

The first entry added to the buffer has the maximum resi-
dence time RTmax and the last one added has 0 residence
time, thus the average residence time RTavg is given by:

RTavg = (n/2(0 +RTmax))/n = RTmax/2 (2)

With respect to network efficiency, setting a low maxi-
mum residence time resulted in inefficient bandwidth usage
because the minimum delivery size was not met. In such
cases, network efficiency can be improved by increasing the
maximum residence time.

3.3 Buffering
The primary purpose of the buffer is to provide a means

for the asynchronous delivery of data to minimize the impact
of the data collection on the simulation runtime. To evaluate
the buffer’s utility in this respect we measured the simulation
runtime of a single composition consisting of a producer
component linked to a DCC with varying buffer sizes.

The producer generated valuesets of 100 KB at a fixed
interval and the DCC had an unlimited maximum residence
time and a minimum delivery size equivalent to the size
of the valueset so that valuesets were delivered to the web
service in individual calls. We imposed a latency on the
web service of twice the interval so that data was added
to the buffer at exactly twice rate at which it was removed
causing the amount of buffered data to increase throughout
the simulation.

We measured the simulation time as the time spent by
the producer executing time steps. In general the minimum
buffer size BSmin to ensure no impact on runtime is given
by:

BSmin = (InRate−OutRate)× Tsim (3)

where InRate is the rate at which data is added to the
buffer, OutRate is the rate at which data is removed, and
Tsim is the simulation time. In this experiment the expected
minimum buffer size was (20.0 KB/s - 10.0 KB/s) × 2500
s = 25.0 MB.

Results are given in Figure 6. Given a sufficient buffer size
the runtime remains constant with minimal overhead added
by the data collection and sending (adding only the time to
retrieve the valueset from the component and insert it into
the buffer, both of which occur in memory). The results are
consistent with the expected minimum buffer size as speedup
becomes constant as the buffer size approaches 24 MB.

3.0

2.5

2.0

1.5

1.0

sim
ul

at
io

n
tim

e
sp

ee
du

p
403020100

buffer size (MB)

Fig. 6: Speedup for varying buffer sizes.

3.4 Distributed Cooperation
The entries in the local buffer of each DCC are evenly

distributed among all the active DCC’s on a cluster. This
results in entries migrating away from DCC’s that are
collecting faster then they are delivering, and toward DCC’s
that are delivering faster then they are collecting, which
enables cooperative sending of the data.

To evaluate the effect of cooperation among DCC’s we
executed concurrent simulations on multiple cluster nodes
with differing rates of data collection and data delivery. A
single composition consisting of a single DCC and producer
executed on each compute node and we measured the
completion time which we define as the amount of time
necessary for all data to be delivered. In the ideal case the
completion time is equivalent to the simulation time, but may
extend past the simulation time if the simulation completes
before all data is delivered.

Four fast-production nodes were configured such that data
was produced at a faster rate than it could be delivered, and
the other slow-production nodes were configured such that
data was produced at a slower rate than it was delivered.
Given a sufficient number of nodes, the runtime remains
constant with minimal overhead added by the data collection
and sending (adding only the time to retrieve the valueset
from the component and insert it into the buffer, both of
which occur in memory). The following equation describes
the necessary balance of capacity across a cluster to ensure

that simulation runtimes are not affected by the data collec-
tion. For N nodes over a given simulation period:

0 =

N∑
i=1

InRatei −OutRatei (4)

In this configuration, the 4 fast-production nodes inserted
0.5 entries per second while the remaining slow-production
nodes each inserted 0.01 entries per second. All nodes
removed entries at the rate of 0.1 entries per second. By
Equation 4, 32 slow-production nodes would be sufficient to
collectively match the rate of 1.6 entries per second inserted
by the four fast-production nodes. This assumes that the
slow-production nodes are actively delivering data during
the complete simulation period.

5

4

3

2

1

co
m

pl
et

io
n

tim
e

sp
ee

du
p

5040302010
number of nodes

 observed
 ideal

Fig. 7: Speedup for varying numbers of nodes.

We observed near-ideal speedup in the average completion
time of the four fast-production nodes for up to 16 nodes
as shown in Figure 7. As the number of nodes increased
beyond 16, the rate at which entries were added to the
distributed buffer was not sufficient to ensure each slow-
production node had entries in its local buffer, resulting in
the slow-production nodes not sending at all times (as in
the ideal case). For example, each slow-production node
spent an average of 31% less of its excess time delivering
data when there were 48 nodes than when there were 16
nodes. Enabling the cooperation across nodes reduces the
completion time, but achieving ideal speedup is contingent
on the availability of sufficient data at each node.

4. Related Work
The DCC automates both the task of collecting model out-

put data and transferring them to online services. These are
typically performed manually or using custom software [6]
that execute general-purpose tools such as GridFTP [7]. Web
services have been utilized in modeling and simulation since
their conception as both a means to access data and to control

the execution of online models [8], [9], [10], [11]. The
DCC provides a point of integration between linked models
and any Internet-connected data platform that supports web
services, including Workflow Management Systems such as
Taverna [12] and Vistrails [13] and distributed data storage
systems such as iRODS [14] and HIS [15]. It complements
existing methods for input data retrieval from online services
for OpenMI linked models [16], [17], [18].

5. Conclusions
We presented the design of the Data Collector Component

(DCC) for OpenMI components and evaluated its perfor-
mance. The DCC collects model output data from model
components and efficiently delivers them to web services.
It utilizes a distributed buffer optimized for the unique
behavior and constraints of the OpenMI. General-purpose
data collector components simplify the task of collecting
model output within a grid environment and facilitate storage
and post-processing by online services.

The DCC consists of a buffering module and a delivery
module. The buffering module obtains output data from one
or more components as they are created and stores them in a
distributed buffer that is shared among all DCC’s executing
on a cluster. The delivery module continuously monitors
the buffer and delivers data to web services in a way that
balances efficiency and latency.

We evaluated the performance of the DCC and its sensitiv-
ity to its three parameters: maximum buffer size, minimum
delivery size, and maximum residence time. The minimum
delivery size was found to have a significant impact on the
throughput and to achieve at least 50% of the maximum
throughput each message must contain at least 2.6 × 105

elements in our experimental configuration. The maximum
residence time resulted in an average residence time that
is one-half the maximum residence time when entries are
added to the buffer at a regular interval. We found that
buffering resulted in maximum speedup in simulation time
(a factor of 3) within a single composition, and distributed
cooperation resulted in a speedup in the completion time by
a factor of 2.4.

As the importance of data availability, interoperability
and transparency continue to rise, so too does the need
for software tools to facilitate these. General-purpose tools
that intelligently and efficiently collect and deliver data
will become an essential part of OpenMI linked models on
workstations and grids alike and this work provides a starting
point for such tools.

6. Acknowledgments
This work was supported by the National Science Founda-

tion (grants GEO0909515, EPS0919443, EPS1006860). Ac-
cess to the Beocat compute cluster at the Dept. of Computing
and Information Sciences at Kansas State University was
appreciated.

References
[1] J. B. Gregersen, P. J. A. Gijsbers, and S. J. P. Westen, “OpenMI: Open

modeling interface,” J. Hydroinform., vol. 9(3), pp. 175–191, 2007.
[2] OGC, “Open geospatial consortium,” 2012,

http://www.opengeospatial.org.
[3] C. Portele, “OpenGIS geography markup language (GML) encoding

standard,” Open Geospatial Consortium, 2007, OGC 07-036.
[4] S. Cox, “Observations and measurements - XML implementation,”

Open Geospatial Consortium, 2011, OGC 10-025r1.
[5] T. Ozturk, “Scalable data structures for java,” in Devoxx, Metropolis

Antwerp Belgium, November 2010.
[6] M. Papiani, J. L. Wason, A. N. Dunlop, and D. A. Nicole, “A dis-

tributed scientific data archive using the web, XML and SQL/MED,”
in SIGMOD RECORD, vol. 28, 1999, pp. 56–62.

[7] G. Toolkit, “GridFTP user’s guide,” 2012, http://www.globus.org.
[8] S. Chandrasekaran, G. Silver, J. Miller, J. Cardoso, and A. Sheth,

“Web service technologies and their synergy with simulation,” Winter
Simulation Conference, vol. 1, pp. 606–615, 2002.

[9] J. M. Pullen, R. Brunton, D. Brutzman, D. Drake, M. Hieb, K. L.
Morse, and A. Tolk, “Using web services to integrate heterogeneous
simulations in a grid environment,” Future Gener. Comput. Syst.,
vol. 21, pp. 97–106, January 2005.

[10] S. Shasharina, C. Li, R. Pundaleeka, N. Wang, D. Wade-Stein,
D. Schissel, and Q. Peng, “HDF5WS – web service for remote access
of simulation data,” APS Meeting Abstracts, p. 2014, October 2006.

[11] J. Horak, A. Orlik, and J. Stromsky, “Web services for distributed and
interoperable hydro-information systems,” Hydrol. Earth Syst. Sci.,
vol. 12, pp. 635–644, 2008.

[12] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows
of services,” Nucleic Acids Research, vol. 34(Web Server issue), pp.
729–732, 2006.

[13] L. Bavoil, S. P. Callahan, C. E. Scheidegger, H. T. Vo, P. J. Crossno,
C. T. Silva, and J. Freire, “Vistrails: Enabling interactive multiple-
view visualizations,” Visualization Conference, IEEE, vol. 0, p. 18,
2005.

[14] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder, “A prototype
rule-based distributed data management system,” in HPDC workshop
on Next Generation Distributed Data Management, Paris, France,
2006.

[15] T. Whitenack, “CUASHI HIS Central 1.2,” 2010.
[16] T. Bulatewicz and D. Andresen, “Efficient data access for open

modeling interface (openmi) components,” in Proceedings of the
International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA) Volume 1, ed. H. R. Arabnia,
CSREA Press, Las Vegas, Nevada, USA, July 18-21, 2011, pp. 822–
828.

[17] Q. Harpham, “Future service chain platform,” in First Open Con-
sultation Meeting, Distributed Research Infrastructure For Hydro-
Meteorology Study, Genoa, Italy, October 2010.

[18] KISTERS, “Kisters news,” 2010, http://www.kistersnews.com.

