
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO. 2,  MARCH/APRIL 1998 209

Efficient Data Mining
for Path Traversal Patterns

Ming-Syan Chen, Senior Member, IEEE,
Jong Soo Park, Member, IEEE, and Philip S. Yu, Fellow, IEEE

Abstract—In this paper, we explore a new data mining capability that involves mining path traversal patterns in a distributed
information-providing environment where documents or objects are linked together to facilitate interactive access. Our solution
procedure consists of two steps. First, we derive an algorithm to convert the original sequence of log data into a set of maximal
forward references. By doing so, we can filter out the effect of some backward references, which are mainly made for ease of
traveling and concentrate on mining meaningful user access sequences. Second, we derive algorithms to determine the frequent
traversal patterns¦i.e., large reference sequences¦from the maximal forward references obtained. Two algorithms are devised for
determining large reference sequences; one is based on some hashing and pruning techniques, and the other is further improved
with the option of determining large reference sequences in batch so as to reduce the number of database scans required.
Performance of these two methods is comparatively analyzed. It is shown that the option of selective scan is very advantageous and
can lead to prominent performance improvement. Sensitivity analysis on various parameters is conducted.

Index Terms—Data mining, traversal patterns, distributed information system, World Wide Web, performance analysis.

——————————���F���——————————

1 INTRODUCTION

UE to the increasing use of computing for various ap-
plications, the importance of database mining is growing

at a rapid pace recently. Progress in bar-code technology
has made it possible for retail organizations to collect and
store massive amounts of sales data. Catalog companies can
also collect sales data from the orders they received. It is
noted that analysis of past transaction data can provide
very valuable information on customer buying behavior,
and thus improve the quality of business decisions (such as
what to put on sale, which merchandises to be placed to-
gether on shelves, how to customize marketing programs,
to name a few). It is essential to collect a sufficient amount
of sales data before any meaningful conclusion can be
drawn therefrom. As a result, the amount of these proc-
essed data tends to be huge. It is hence important to devise
efficient algorithms to conduct mining on these data.

Note that various data mining capabilities have been ex-
plored in the literature. One of the most important data
mining problems is mining association rules [3], [4], [13],
[15]. For example, given a database of sales transactions, it
is desirable to discover all associations among items such
that the presence of some items in a transaction will imply
the presence of other items in the same transaction. Also,
mining classification is an approach of trying to develop
rules to group data tuples together based on certain

common features. This has been explored both in the AI
domain [16], [17] and in the context of databases [2], [6],
12]. Mining in spatial databases was conducted in [14]. An-
other source of data mining is on ordered data, such as
stock market and point of sales data. Interesting aspects to
explore from these ordered data include searching for
similar sequences [1], [19], e.g., stocks with similar move-
ment in stock prices, and sequential patterns [5], e.g., gro-
cery items bought over a set of visits in sequence. It is noted
that data mining is a very application-dependent issue and
different applications explored will require different mining
techniques to cope with. Proper problem identification and
formulation is therefore a very important part of the whole
knowledge discovery process.

In this paper, we shall explore a new data mining capa-
bility which involves mining access patterns in a distrib-
uted information-providing environment where documents
or objects are linked together to facilitate interactive access.
Examples for such information-providing environments
include World Wide Web (WWW) [11] and on-line services
where users, when seeking for information of interest,
travel from one object to another via the corresponding fa-
cilities (i.e., hyperlinks) provided. Clearly, understanding
user access patterns in such environments will not only
help improve the system design (e.g., provide efficient ac-
cess between highly correlated objects, better authoring
design for pages, etc.) but also be able to lead to better mar-
keting decisions (e.g., putting advertisements in proper
places, better customer/user classification and behavior
analysis, etc.). Capturing user access patterns in such envi-
ronments is referred to as mining traversal patterns in this
paper. Note that although some efforts have elaborated
upon analyzing the user behavior [8], [9], [10], there is little
result reported on dealing with the algorithmic aspects to

1041-4347/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� M.-S. Chen is with the Electrical Engineering Department, National
Taiwan University, Taipei, Taiwan, Republic of China.
�E-mail: mschen@cc.ee.ntu.edu.tw.

•� J.S. Park is with the Department of Computer Science, Sungshin Women’s
University, Seoul, Korea. E-mail: jpark@cs.sungshin.ac.kr.

•� P.S. Yu is with the IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, NY 10598. E-mail: psyu@watson.ibm.com.

Manuscript received 8 Aug. 1996.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104467.

D



210 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO. 2,  MARCH/APRIL 1998

improve the execution of traversal pattern mining. This can
be in part explained by the reason that these information-
providing services, though with great potential, are mostly
in their infancy and their customer analysis may still re-
main in a coarser level such as user occupation/age study.
In addition, it is important to note that, since users are
traveling along the information-providing services to
search for the desired information, some objects are visited
because of their locations rather than their content,
showing the very difference between the traversal pattern
problem and others which are mainly based on customer
transactions. This unique feature of the traversal pattern
problem unavoidably increases the difficulty of extracting
meaningful information from a sequence of traversal data.
However, as these information-providing services are be-
coming increasingly popular nowadays, there is a growing
demand for capturing user behavior and improving the
quality of such services. As a result, the problem of mining
traversal patterns has become too important not to address
immediately.

Consequently, we shall explore in this paper the problem
of mining traversal patterns. Our solution procedure con-
sists of two steps. First, we derive an algorithm, called algo-
rithm MF (standing for maximal forward references), to
convert the original sequence of log data into a set of tra-
versal subsequences. As defined in Section 2, each traversal
subsequence represents a maximal forward reference from
the starting point of a user access. As will be explained
later, this step of converting the original log sequence into a
set of maximal forward references will filter out the effect of
backward references which are mainly made for ease of
traveling, and enable us to concentrate on mining meaning-
ful user access sequences. Secondly, we derive algorithms
to determine the frequent traversal patterns, termed large
reference sequences, from the maximal forward references
obtained above, where a large reference sequence is a refer-
ence sequence that appeared in a sufficient number of times
in the database. Note that the problem of finding large ref-
erence sequences is similar to that of finding large itemsets
for association rules [3], where a large itemset is a set of
items appearing in a sufficient number of transactions.
However, they are different from each other in that a refer-
ence sequence in mining traversal patterns has to be con-
secutive references in a maximal forward reference whereas
a large itemset in mining association rules is just a combi-
nation of items in a transaction. As a consequence, although
several schemes for mining association rules have been re-
ported in the literature [3], [4], [15], the very difference be-
tween these two problems calls for the design of new algo-
rithms for determining large reference sequences.

Explicitly, we ulitize two algorithms for determining
large reference sequences. The first one, referred to as
full-scan (FS) algorithm, essentially utilizes some techniques
on hashing and pruning while solving the discrepancy
between traversal patterns and association rules mentioned
above. Although trimming the transaction database as it
proceeds to later passes, algorithm FS is required to scan
the transaction database in each pass. In contrast, by prop-
erly utilizing the candidate reference sequences, the second
algorithm devised, referred to as selective-scan (SS) algo-

rithm, is able to avoid database scans in some passes so as
to reduce the disk I/O cost involved. Specifically, algorithm
SS has the option of using a candidate reference set to gen-
erate subsequent candidate reference sets, and delaying the
determination of large reference sets to a later pass when
the database is scanned. Since SS does not scan the database
to obtain a large reference set in each pass, some database
scans are saved. It is noted that, although the concept of
selective  scan was used in [15] for mining association rules,
its implementation and performance implication are differ-
ent when it is employed for mining path traversal patterns.
Experimental studies are conducted by using a synthetic
workload that is generated based on referencing some
logged traces, and performance of these two methods, FS
and SS, is comparatively analyzed. It is shown that the
option of selective scan is very advantageous and algo-
rithm SS thereby outperforms algorithm FS in general. Sen-
sitivity analysis on various parameters is also conducted.

This paper is organized as follows. Problem formulation
is given in Section 2. Algorithm MF to identify maximal
forward references is described in Section 3.1, and two al-
gorithms, FS and SS, for determining large reference se-
quences are given in Section 3.2. Performance results are
presented in Section 4. Section 5 contains the summary.

2 PROBLEM FORMULATION

As pointed out earlier, in an information-providing envi-
ronment where objects are linked together, users are apt to
traverse objects back and forth in accordance with the links
and icons provided. As a result, some node might be revis-
ited because of its location, rather than its content. For ex-
ample, in a WWW environment, to reach a sibling node a
user is usually inclined to use “backward” icon and then a
forward selection, instead of opening a new URL. Conse-
quently, to extract meaningful user access patterns from the
original log database, we naturally want to take into con-
sideration the effect of such backward traversals and dis-
cover the real access patterns of interest. In view of this,
we assume in this paper that a backward reference is
mainly made for ease of traveling but not for browsing,
and concentrate on the discovery of forward reference pat-
terns. Specifically, a backward reference means revisit-
ing a previously visited object by the same user access.
When backward references occur, a forward reference path
terminates. This resulting forward reference path is termed
a maximal forward reference. After a maximal forward refer-
ence is obtained, we back track to the starting point of
the next forward referencing and resume another forward
reference path.

While deferring the formal description of the algorithm
to determine maximal forward references (i.e., algorithm
MF) to Section 3.1, we give an illustrative example
for maximal forward references below. Suppose the tra-
versal log contains the following traversal path for a user:
{A, B, C, D, C, B, E, G, H, G, W, A, O, U, O, V}, as shown in
Fig. 1. Then, it can be verified by algorithm MF that
the set of maximal forward references for this user is
{ABCD, ABEGH, ABEGW, AOU, AOV}. After maximal for-
ward references for all users are obtained, we then map the



CHEN ET AL.: EFFICIENT DATA MINING FOR PATH TRAVERSAL PATTERNS 211

problem of finding frequent traversal patterns into the one
of finding frequent occurring consecutive subsequences
among all maximal forward references. A large reference se-
quence is a reference sequence that appeared in a sufficient
number of times. In a set of maximal forward references,
the number of times a reference sequence has to appear in
order to be qualified as a large reference sequence is called
the minimal support. A large k-reference is a large reference
sequence with k elements. We denote the set of large
k-references as Lk and its candidate set as Ck, where Ck, as
obtained from Lk-1 [4], contains those k-references that may
appear in Lk. Explicitly, Ck is a superset of Lk.

Fig. 1. An illustrative example for traversal patterns.

It is worth mentioning that after large reference se-
quences are determined, maximal reference sequences can then
be obtained in a straightforward manner. A maximal refer-
ence sequence is a large reference sequence that is not con-
tained in any other maximal reference sequence. For exam-
ple, suppose that {AB, BE, AD, CG, GH, BG} is the set of
large two-references (i.e., L2) and {ABE, CGH} is the set of
large three-references (i.e., L3). Then, the resulting maximal
reference sequences are AD, BG, ABE, and CGH. A maximal
reference sequence corresponds to a “hot” access pattern
in an information-providing service. In all, the entire
procedure for mining traversal patterns can be summarized
as follows.

Procedure for mining traversal patterns:

Step 1: Determine maximal forward references from the
original log data.

Step 2: Determine large reference sequences (i.e., Lk, k � 1)
from the set of maximal forward references.

Step 3: Determine maximal reference sequences from large
reference sequences.

Since the extraction of maximal reference sequences from
large reference sequences (i.e., Step 3) is straightforward,
we shall henceforth focus on Steps 1 and 2, and devise algo-
rithms for the efficient determination of large reference
sequences.

3 ALGORITHM FOR TRAVERSAL PATTERN

We shall describe in Section 3.1 algorithm MF which con-
verts the original traversal sequence into a set of maximal
forward references. Then, by mapping the problem of
finding frequent traversal patterns into the one of finding
frequent consecutive subsequences, we develop two algo-
rithms, called full-scan (FS) and selective-scan (SS), for
mining traversal patterns.

3.1� Identifying Maximal Forward References
In general, a traversal log database contains, for each link
traversed, a pair of (source, destination). This part of log
database is called referer log [7]. For the beginning of a
new path, which is not linked to the previous traversal,
the source node is null. Given a traversal sequence {(s1, d1),
(s2, d2), ..., (sn, dn)} of a user, we shall map it into multiple
subsequences, each of which represents a maximal forward
reference. The algorithm for finding all maximal forward
references is given as follows. First, the traversal log data-
base is sorted by user IDs, resulting in a traversal path,
{(s1, d1), (s2, d2), ..., (sn, dn)}, for each user, where pairs of
(si, di) are ordered by time. Algorithm MF is then applied to
each user path to determine all of its maximal forward ref-
erences. Let DF denote the database to store all the resulting
maximal forward references obtained.

Algorithm MF: An algorithm to find maximal forward
references

Step 1: Set i = 1 and string Y to null for initialization,
where string Y is used to store the current forward
reference path. Also, set the flag F = 1 to indicate a
forward traversal.

Step 2: Let A = si and B = di .
If A is equal to null then
/* this is the beginning of a new traversal */
begin

Write out the current string Y (if not null) to the
database DF;

Set string Y = B;
Go to Step 5.

end
Step 3: If B is equal to some reference (say the jth refer-

ence) in string Y then
/* this is a cross-referencing back to a previous

reference */
begin

If F is equal to 1 then write out string Y to
database DF;

Discard all the references after the jth one in
string Y;

F = 0;
Go to Step 5.

end
Step 4: Otherwise, append B to the end of string Y.

/* we are continuing a forward traversal */
If F is equal to 0, set F = 1.

Step 5: Set i = i + 1. If the sequence is not completed
scanned then go to Step 2.



212 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO. 2,  MARCH/APRIL 1998

Consider the traversal scenario in Fig. 1 for example. It
can be verified that the first backward reference is encoun-
tered in the fourth move (i.e., from D to C). At that point,
the maximal forward reference ABCD is written to DF (by
Step 3). In the next move (i.e., from C to B), although the
first conditional statement in Step 3 is again true, nothing is
written to DF since the flag F = 0, meaning that it is in a re-
verse traversal. The subsequent forward references will put
ABEGH into the string Y, which is then written to DF when
a reverse reference (from H to G) is encountered. The exe-
cution scenario by algorithm MF for the input in Fig. 1 is
given in Table 1.

TABLE  1
AN EXAMPLE EXECUTION BY ALGORITHM MF

move string Y output to DF

1 AB -
2 ABC -
3 ABCD -
4 ABC ABCD
5 AB -
6 ABE -
7 ABEG -
8 ABEGH -
9 ABEG ABEGH

10 ABEGW -
11 A ABEGW
12 AO -
13 AOU -
14 AO AOU
15 AOV AOV (end)

It is noted that in some cases, the traversal log record
obtained only contains the destination references instead of
a pair of references. For example, for WWW browsing, the
request message may only contain the destination URL. The
traversal sequence will then have the form {d1, d2, ..., dn} for
each user. Even with such an input, we can still convert it
into a set of maximal forward references. The only differ-
ence is that in this case we cannot identify the breakpoint
where the user picks a new URL to begin a new traversal
path, meaning that two consecutive maximal forward refer-
ences; e.g., ABEH and WXYZ, may be treated as one path,
i.e., ABEHWXYZ. Certainly, this constraint, i.e., without the
IDs of source nodes, could increase the computational
complexity because the paths considered become longer.
However, this constraint should have little effect on identi-
fying frequent reference subsequences. Since there is no
logical link between H and W, a subsequence containing
HW is unlikely to occur frequently. Hence, a reference con-
taining the pattern HW will unlikely emerge as a large ref-
erence later. Therefore, algorithm MF can in fact be em-
ployed for the case when the IDs of source nodes are not
available.

3.2 Determining Large Reference Sequences
Once the database containing all maximal forward refer-
ences for all users, DF, is constructed, we can derive the
frequent traversal patterns by identifying the frequent oc-
curring reference sequences in DF. A sequence s1, ...., sn is

said to contain r1, ...., rk as a consecutive subsequence if
there exists an i such that si+j = rj, for 1 � j � k. For example,
BAHPM is said to contain AHP. A sequence of k references,
r1, ...., rk, is called a large k-reference sequence, if there are a
sufficient number of users with maximal forward references
in DF containing r1, ...., rk as a consecutive subsequence.

As pointed out before, the problem of finding large ref-
erence sequences is different from that of finding large
itemsets for association rules and thus calls for the design of
new algorithms. Consequently, we shall derive in this paper
two algorithms for mining traversal patterns. The first one,
called full-scan (FS) algorithm, essentially utilizes the con-
cept of DHP [15] (i.e., hashing and pruning) while solving
the discrepancy between traversal patterns and association
rules. DHP has two major features in determining associa-
tion rules: one is efficient generation for large itemsets and
the other is effective reduction on transaction database size
after each scan. Although trimming the database as it pro-
ceeds to later passes, FS is required to scan the database in
each pass. In contrast, by properly utilizing the candidate
reference sequences, the second algorithm, referred to as
selective-scan (SS) algorithm, is improved with the option
of determining large reference sequences in batch so as to
reduce the number of database scans required.

3.2.1 Algorithm on Full Scan (FS)
Algorithm FS utilizes key ideas of the DHP algorithm. The
details of DHP can be found in [15]. An example scenario
for determining large itemsets and candidate itemsets is
given in the Appendix.1 As shown in [15], by utilizing
a hash technique, DHP is very efficient for the gen-
eration of candidate itemsets, in particular for the large
two-itemsets, thus greatly improving the performance bot-
tleneck of the whole process. In addition, DHP employs
effective pruning techniques to progressively reduce the
transaction database size.

Recall that Lk represents the set of all large k-references
and Ck is a set of candidate k-references. Ck is in general
a superset of Lk. By scanning through DF, FS gets L1 and
makes a hash table (i.e., H2) to count the number of oc-
currences of each two-reference. Similarly to DHP, starting
with k = 2, FS generates Ck based on the hash table
count obtained in the previous pass, determines the set of
large k-references, reduces the size of database for the next
pass, and makes a hash table to determine the candidate
(k + 1)-references. Note that as in mining association rules, a
set of candidate references, Ck, can be generated from join-
ing Lk-1 with itself, denoted by Lk-1 * Lk-1.

2 However, due to
the difference between traversal patterns and association
rules, we modify this approach as follows. For any two dis-
tinct reference sequences in Lk-1, say r1, ...., rk-1 and s1, ....,
sk-1, we join them together to form a k-reference sequence
only if either r1, ...., rk-1 contains s1, ...., sk-2 or s1, ...., sk-1
contains r1, ...., rk-2 (i.e., after dropping the first element in
one sequence and the last element in the other sequence,

1. In this example, the technique of hashing, which is employed by DHP
to reduce the number of candidate itemsets, is not shown.

2. This approach of generating Ck directly from Lk-1 is proposed by algo-
rithm Apriori in [4] in generating candidate itemsets for association rules.



CHEN ET AL.: EFFICIENT DATA MINING FOR PATH TRAVERSAL PATTERNS 213

the remaining two (k - 2)-references are identical). We note
that when k is small (especially for the case of k = 2), deriv-
ing Ck by joining Lk-1 with itself will result in a very
large number of candidate references and the hashing
technique is thus very helpful for such a case. As k in-
creases, the size of Lk-1 * Lk-1 can decrease significantly.
Same as in [15], we found that it is generally beneficial for
FS to generate Ck directly from Lk-1 * Lk-1 (i.e., without using
hashing) once k � 3.

To count the occurrences of each k-reference in Ck to de-
termine Lk, we need to scan through a trimmed version of
database DF. From the set of maximal forward references,
we determine, among k-references in Ck, large k-references.
After the scan of the entire database, those k-references in Ck
with count exceeding the threshold become Lk. If Lk is
nonempty, the iteration continues for the next pass, i.e.,
pass k + 1. Same as in DHP, every time when the database is
scanned, the database is trimmed by FS to improve the effi-
ciency of future scans.

3.2.2 Algorithm on Selective Scan (SS)
Algorithm SS is similar to algorithm FS in that it also
employs hashing and pruning techniques to reduce both
CPU and I/O costs, but is different from the latter in that
algorithm SS, by properly utilizing the information in can-
didate references in prior passes, is able to avoid database
scans in some passes, thus further reducing the disk I/O
cost. The method for SS to avoid some database scans and
reduce disk I/O cost is described below. Recall that algorithm
FS generates a small number of candidate two-references by
using a hashing technique. In fact, this small C2 can be used
to generate the candidate three-references. Clearly, a ′C3  gener-

ated from C2 * C2, instead of from L2 * L2, will have a size

greater than |C3| where C3 is generated from L2 * L2. How-

ever, if | ′C3| is not much larger than |C3|, and both C2 and

′C3  can be stored in the main memory, we can find L2 and L3

together when the next scan of the database is performed,
thereby saving one round of database scan. It can be seen

that using this concept, one can determine all Lks by as few
as two scans of the database (i.e., one initial scan to deter-
mine L1 and a final scan to determine all other large refer-
ence sequences), assuming that ′Ck  for k � 3 is generated
from ′−Ck 1 and all ′Ck s for k > 2 can be kept in the memory.

Note that when the minimum support is relatively small

or potentially large references are long, Ck and Lk could

become large. With ′ +Ck 1 being generated from ′Ck  * ′Ck , if
| ′+Ck 1| > | ′Ck | for k � 2, then it may cost too much CPU
time to generate all subsequent ′Cj , j > k + 1, from candidate

sets of large references since the size of Cj may become huge
quickly, thus compromising all the benefit from saving disk
I/O cost. For the illustrative example in the Appendix, if C3

was determined from C2 * C2, instead of from L2 * L2, then

C3 would be {{ABC}, {ABE}, {ACE}, {BCE}}. This fact sug-
gests that a timely database scan to determine large refer-
ence sequences will in fact pay off. After a database scan,
one can obtain the large reference sequences which are not

determined thus far (say, up to Lm) and then construct the

set of candidate (m + 1)-references, Cm+1, based on Lm from
that point. According to our experiments, we found that if
| ′+Ck 1| > | ′Ck | for some k � 2, it is usually beneficial to have

a database scan to obtain Lk+1 before the set of candidate
references becomes too big. (Same as in FS, each time the
database is scanned, the database is trimmed by SS to im-
prove the efficiency of future scans.) We then derive ′ +Ck 2

from Lk+1. (We note that ′ +Ck 2  is in fact equal to Ck+2 here.)
After that, we again use ′Cj  to derive ′+Cj 1  for j � k + 2. The pro-

cess continues until the set of candidate (j + 1)-references
becomes empty.

Illustrative examples for FS and SS are given in Table 2
where the number of reference paths |D| = 200,000 and the
minimum support s = 0.75 percent. Extensive experiments
are conducted in Section 4. In this example run, FS per-
forms a database scan in each pass to determine the corre-
sponding large reference sequences, resulting in six data-
base scans. On the other hand, SS scans the database only
three times (skipping database scans in passes 2, 4, and 5),
and is able to obtain the same result. The CPU and disk I/O
times for FS are 19.48 seconds and 30.8 seconds, respectively,
whereas those for SS are 18.75 seconds and 17.8 seconds,
respectively. Considering both CPU and I/O times, the exe-
cution time ratio for SS to FS is 0.73, showing that the con-
cept of selective scan is useful not only for mining associa-
tion rules [15] but also for mining path traversal patterns.

4� PERFORMANCE RESULTS

To assess the performance of FS and SS, we conducted sev-
eral experiments to determine large reference sequences
by using an RS/6000 workstation with model 560. The

TABLE  2
RESULTS FROM AN EXAMPLE RUN BY FS AND SS

k 1 2 3 4 5 6 time (sec)

Algorithm FS
Ck 121 84 58 22 3
Lk 94 91 84 58 21 3 19.48
Dk 12.8 MB 12.8 MB 12.2 MB 5.3 MB 1.9 MB 0.26 MB 30.80

Algorithm SS
Ck 121 144 58 22 3
Lk 94 91 84 58 21 3 18.75
Dk 12.8 MB - 12.8 MB - - 5.3 MB 17.80



214 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO. 2,  MARCH/APRIL 1998

methods used to generate synthetic data are described in
Section 4.1. Performance comparison of these two methods
is given in Section 4.2. Sensitivity analysis is conducted in
Section 4.3.

4.1 Generation of Synthetic Traversal Paths
In our experiment, the browsing scenario in a World Wide
Web (WWW) environment is simulated. To generate a syn-
thetic workload and determine the values of parameters,
we referenced some logged traces which were collected
from a gateway in our work location [18]. First, a traversal
tree is constructed to mimic WWW structure whose starting
position is a root node of the tree. The traversal tree consists
of internal nodes and leaf nodes. Fig. 2a shows an example
of the traversal tree. The number of child nodes at each in-
ternal node, referred to as fanout, is determined from a uni-
form distribution within a given range. The height of a
subtree whose subroot is a child node of the root node is
determined from a Poisson distribution with mean mh.
Then, the height of a subtree whose subroot is a child of an
internal node Ni is determined from a Poisson distribution
with mean equal to a fraction of the maximum height of the
internal node Ni. As such, the height of a tree is controlled
by the value of mh.

A traversal path consists of nodes accessed by a user. The
size of each traversal path is picked from a Poisson distri-
bution with mean equal to |P|. With the first node being
the root node, a traversal path is generated probabilistically
within the traversal tree as follows. For each internal node,
we determine which is the next hop according to some pre-
determined probabilities. Essentially, each edge connecting
to an internal node is assigned with a weight. This weight
corresponds to the probability that each edge will be next
accessed by the user. As shown in Fig. 2b, the weight to its
parent node is assigned with p0, which is generally 1

1n+

where n is the number of child nodes. This probability of

traveling to each child node, pi, is determined from an ex-
ponential distribution with unit mean, and is so normalized
that the sum of the weights for all child nodes is equal to
1 - p0. Some internal nodes in the tree allow internal jumps
which can go to any other nodes. If an internal node has an

internal jump and the weight for this jump is pj, then p0 is

changed to p0(1 - pj) and the corresponding probability for

each child node is changed to pi(1 - pj) such that the sum of
all the probabilities associated with this node remains one.
When the path arrives at a leaf node, the next move would
be either to its parent node in backward (with a probability
0.25) or to any internal node (with an aggregate probability
0.75). The number of internal nodes with internal jumps is

denoted by NJ, which is set to 3 percent of all the internal

nodes in general cases. The sensitivity of varying NJ will
also be analyzed. Those nodes with internal jumps are de-
cided randomly among all the internal nodes. Table 3
summarizes the meaning of various parameters used in our
simulations.

4.2�Performance Comparison between FS and SS
Fig. 3 represents execution times of two methods, FS and
SS, when |D| = 200,000, NJ = 3 percent, and pj = 0.1. HxPy

means that x is the height of a tree and y is the average size
of the reference paths. D200K means that the number of
reference paths is 200,000. A tree for H10 was obtained
when the height of a tree is 10 and the fanout at each inter-
nal node is between 4 and 7. The root node consists of
seven child nodes. The number of internal nodes is 16,200
and the number of leaf nodes is 73,006. The number of in-
ternal nodes with internal jumps is thus 16,200 � NJ = 486.
Note that the total number of nodes increases as the height
of a tree increases. To make the experiment tractable, we
reduced the fanout to 2 - 5 for the tree of H20 with
the height of 20. This tree contained 616,595 internal nodes
and 1,541,693 leaves. In Fig. 3, the left graph of each
HxPy.D200K represents the CPU time to find all the large
reference sequences, and the right graph shows the I/O
time to find them where the disk I/O time is set to
2 MB/sec and 1 MB buffer is used in main memory. It can

(a)

(b)

Fig. 2. A traversal tree to simulate WWW.



CHEN ET AL.: EFFICIENT DATA MINING FOR PATH TRAVERSAL PATTERNS 215

be seen from Fig. 3 that algorithm SS in general outper-
forms FS, and their performance difference becomes
prominent when the I/O cost is taken into account.

To provide more insights into their performance, in ad-
dition to Table 2 in Section 3, we have Table 4, which shows
the results by these two methods when |D| = 200,000 and s
= 0.75 percent. In Table 4, FS scans the database eight times

to find all the large reference sequences, whereas SS only
involves three database scans. Note that after initial scans,
disk I/O involved by FS and SS will include both disk read
and disk write (i.e., writing the trimmed version of the da-
tabase back to the disk). The I/O time for these two meth-
ods is shown in Fig. 4. Considering both CPU and I/O
times, the total execution time of FS is 143.94 seconds, and

Fig. 3. Execution times for FS and SS.



216 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO. 2,  MARCH/APRIL 1998

that of SS is 100.89 seconds. Note that the execution time
ratio for FS to SS is 0.70 in this case, which is slightly better
than the one associated with Table 2.

Fig. 5 shows scale-up experiments, where both the CPU
and I/O times of each method increase linearly as the data-
base size increases. For this experiment, the traversal tree
has 10 levels, the fanout of internal nodes is between 4 and
7, and the minimum support is set to 0.75 percent. It can be

seen that SS consistently outperforms FS as the database
size increases.

4.3�Sensitivity Analysis
Since, in general, algorithm SS outperforms FS, without loss
of generality, we shall conduct the sensitivity analysis on
various parameters for algorithm SS in this section. Per-
formance evaluation was carried out under the condition

TABLE  3
MEANING OF VARIOUS PARAMETERS

H The height of a traversal tree.
F The number of child nodes, fanout.
NJ The number of internal nodes with an internal jump.
p0 Backward weight in probability to its parent node.
pj Jump weight in probability to its internal jump.
q A parameter of a Zipf-like distribution.

HxPy x is the height of a tree and y = |P|.
|D| The number of reference paths (size of database).
Dk Set of forward references for Lk.
Ck Set of candidate k-reference sequences.
Lk Set of large k-reference sequences.
|P| Average size of the reference paths.

TABLE  4
NUMBER OF LARGE REFERENCE SEQUENCES AND EXECUTION TIMES FOR H20P20

k 1 2 3 4 5 6 7 8 time (sec)

Algorithm FS
Ck 206 146 106 75 37 15 4
Lk 141 139 124 103 70 36 15 4 58.94
Dk 29 MB 29 MB 27.3 MB 13.8 MB 10.1 MB 5.3 MB 1.9 MB 0.6 MB 85.00

Algorithm SS
Ck 206 370 106 75 37 15 4
Lk 141 139 124 106 70 36 15 4 57.89
Dk 29 MB - 29 MB - - - - 14.1 MB 43.00

Fig. 4. Input/output cost for FS and SS in each pass.



CHEN ET AL.: EFFICIENT DATA MINING FOR PATH TRAVERSAL PATTERNS 217

that the database size is 200,000, the average size of tra-
versal paths is 10 (i.e., |P| = 10), and the minimum support
is 0.75 percent.

Fig. 6 shows the number of large reference sequences
when the probability to backward at an internal node, p0,
varies from 0.1 to 0.5. As the probability increases, the
number of large reference sequences decreases because the
possibility of having forward traveling becomes smaller.
Fig. 7 shows the number of large reference sequences when
the number of child nodes of internal nodes, i.e., fanout F,
varies. The three corresponding traversal trees all have the
same height 8. The tree with 2 - 4 fanout consists of 483
internal nodes and 1,267 leaf nodes. The tree for the second
bar consists of 11,377 internal nodes and 62,674 leaf nodes,
and the one for the third bar consists of 74,632 internal
nodes and 634,538 leaf nodes. The results show that the
number of large reference sequences decreases as the

degree of fanout increases, because with a larger fanout the
traversal paths are more likely to be dispersed to several
branches, thus resulting in fewer large reference sequences.
Clearly, when the large reference sequences decreases, the
execution time to find them also decreases.

Fig. 8 gives the number of large reference sequences
when the probability of traveling to each child node from
an internal node is determined from a Zipf-like distribu-
tion. Different values of parameter q for the Zipf-like distri-
bution are considered. The Zipf-like distribution of
branching probabilities to child nodes is generated as fol-

lows. The probability pi that the ith child node is accessed

by a traversal path is pi = c/i(1-q), where

c = 1/ 1 1

1
/ ( )i

i

n −
=∑ θ4 9

Fig. 5. Execution time of FS and SS when database size increases.

Fig. 6. Number of large reference sequences when backward weight p
0
 is varied.



218 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO. 2,  MARCH/APRIL 1998

is a normalization constant and n is the number of child
nodes at an internal node. After we get each pi, it is then
normalized so that

p0 + p pi ji

n
+

=∑ 1
 =  1

as in Section 4.1. Setting the parameter q = 0 corresponds to
the pure Zipf distribution, which is highly skewed, whereas
q = 1 corresponds to the uniform distribution. The results
show that the number of large reference sequences increases
when the corresponding probabilities are more skewed.

Table 5 shows the performance results of SS when the
number of internal nodes with internal jumps, NJ, varies
from 3 percent to 27 percent of the total internal nodes. The
number of large reference sequences decreases slightly as
NJ increases, meaning that it is less likely to have large ref-
erence sequences when we have more jumps in traversal

Fig. 7. Number of large reference sequences when the fanout F is varied.

Fig. 8. Number of large reference sequences when parameter q of a Zipf-like distribution is varied.

TABLE  5
NUMBER OF LARGE REFERENCE SEQUENCES WHEN
THE PERCENTAGE OF INTERNAL JUMPS NJ  IS VARIED

NJ [%] k 1 2 3 4 5 6 Time
(sec)

3 Lk 94 91 84 58 21 3 18.76

9 Lk 94 92 83 56 22 2 18.70

15 Lk
93 90 83 55 22 3 18.88

21 Lk
93 90 82 55 22 3 18.95

27 Lk 90 87 80 53 20 2 18.69



CHEN ET AL.: EFFICIENT DATA MINING FOR PATH TRAVERSAL PATTERNS 219

paths. It is noted that performance of SS is less sensitive to
this parameter than to others.

Table 6 shows results of SS when the height of a traversal
tree varies. The fanout is between 2 and 5. As the height
increases, the numbers of internal nodes and leaf nodes
increase exponentially. The height of a traversal tree is in-
creased from 3 to 20, As the height of a traversal tree in-
creases, the number of candidate nodes for L1 increases and
the execution time to find L1 thus increases. On the other
hand, |L1| can decrease as the height of the tree increases
since the average visit to each node decreases. The number
of large reference sequences slightly decreases, for 1 � k � 3,
when the height of the tree increases from 5 to 20.

5 CONCLUSION

In this paper, we have explored a new data mining capabil-
ity which involves mining traversal patterns in an informa-
tion-providing environment where documents or objects
are linked together to facilitate interactive access. (This data
mining capability is now incorporated into a Web usage
mining tool, SpeedTracer [20].) Our solution procedure con-
sisted of two steps. First, we derived algorithm MF to con-
vert the original sequence of log data into a set of maximal
forward references. By doing so, we filtered out the effect of
some backward references and concentrated on mining
meaningful user access sequences. Secondly, we developed
algorithms to determine large reference sequences from the
maximal forward references obtained. Two algorithms were

TABLE  6
NUMBER OF LARGE REFERENCE SEQUENCES WHEN THE HEIGHT OF A TRAVERSAL TREE H  IS VARIED

H k 1 2 3 4 5 6 7 Time (sec)
3 Lk 64 93 60 42 9 15.52
5 Lk 157 136 103 76 41 11 17.90
10 Lk 116 111 100 80 48 20 4 19.68
15 Lk 111 110 100 81 43 14 1 20.39
20 Lk 98 97 92 73 46 19 4 21.01

Fig. 9. An example for candidate set generation.



220 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO. 2,  MARCH/APRIL 1998

devised for determining large reference sequences: one was
based on some hashing and pruning techniques, and the
other was further improved with the option of determining
large reference sequences in batch so as to reduce the num-
ber of database scans required. Performance of these two
methods has been comparatively analyzed. It is shown that
the option of selective scan is very advantageous and algo-
rithm SS thus in general outperformed algorithm FS. Sensi-
tivity analysis on various parameters was conducted.

APPENDIX

Generation of Large Itemsets
and Candidate Itemsets
Given an example transaction database D, as shown in
Fig. 9, the large itemsets and candidate itemsets can be de-
termined as follows. In essence, generated first are large 1-
itemsets, which are then used to construct candidate item-
sets in the next pass. With the minimal support equal to
two, after each database scan, large itemsets are determined
from candidate itemsets with the number of occurrences
greater than or equal to two. A detailed algorithm can be
found in [5].

ACKNOWLEDGMENTS

Ming-Syan Chen is supported, in part, by Project No. NSC
86-2621-E-002-023-T of the National Science Council, Tai-
wan, Republic of China. Jong Soo Park is supported by
the 1997 Grants for Professors of Sungshin Women’s Uni-
versity in Korea.

REFERENCES

[1]� R. Agrawal, C. Faloutsos, and A. Swami, “Efficient Similarity
Search in Sequence Databases,” Proc. Fourth Int’l Conf. Foundations
of Data Organization and Algorithms, Oct. 1993.

[2]� R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami, “An
Interval Classifier for Database Mining Applications,” Proc. 18th
Int’l Conf. Very Large Data Bases, pp. 560–573, Aug. 1992.

[3]� R. Agrawal, T. Imielinski, and A. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” Proc. ACM
SIGMOD, pp. 207–216, May 1993.

[4]� R. Agrawal and R. Srikant, “Fast Algorithms for Mining Associa-
tion Rules in Large Databases,” Proc. 20th Int’l Conf. Very Large
Data Bases, pp. 478–499, Sept. 1994.

[5]� R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
11th Int’l Conf. Data Eng., pp. 3–14, Mar. 1995.

[6]� T.M. Anwar, H.W. Beck, and S.B. Navathe, “Knowledge Mining
by Imprecise Querying: A Classification-Based Approach,” Proc.
Eighth Int’l Conf. Data Eng., pp. 622–630, Feb. 1992.

[7]� T. Berners-Lee, R. Fiekding, and H. Frystyk, “Hypertext Transfer
Protocol-HTTP/1.0,” Internet Draft, Feb. 1996.

[8]� M. Bieber and J. Wan, “Backtracking in a Multiple-Window Hy-
pertext Environment,” ACM European Conf. Hypermedia Technol-
ogy, pp. 158–166, 1994.

[9]� E. Caramel, S. Crawford, and H. Chen, “Browsing in Hypertext: A
Cognitive Study,” IEEE Trans. Systems, Man, and Cybernetics, vol.
22, no. 5, pp. 865–883, Sept. 1992.

[10]� L.D. Catledge and J.E. Pitkow, ”Characterizing Browsing Strate-
gies in the World-Wide Web,” Proc. Third WWW Conf., Apr. 1995.

[11]� J. December and N. Randall, The World Wide Web Unleashed, SAMS
Publishing, 1994.

[12]� J. Han, Y. Cai, and N. Cercone, “Knowledge Discovery in Data-
bases: An Attribute-Oriented Approach,” Proc. 18th Int’l Conf.
Very Large Data Bases, pp. 547–559, Aug. 1992.

[13]� J. Han and Y. Fu, “Discovery of Multiple-Level Association Rules
from Large Databases,” Proc. 21th Int’l Conf. Very Large Data Bases,
pp. 420–431, Sept. 1995.

[14]� R.T. Ng and J. Han, “Efficient and Effective Clustering Methods
for Spatial Data Mining,” Proc. 18th Int’l Conf. Very Large Data
Bases, pp. 144–155, Sept. 1994.

[15]� J.-S. Park, M.-S. Chen, and P.S. Yu, “Using A Hash-Based Method
with Transaction Trimming for Mining Association Rules,” IEEE
Trans. on Knowledge and Data Eng., vol. 9, no. 5, pp. 813-825,
Sept./Oct. 1997.

[16]� G. Piatetsky-Shapiro, “Discovery, Analysis, and Presentation of
Strong Rules,” Knowledge Discovery in Databases, pp. 229–248,
1991.

[17]� J.R. Quinlan, “Induction of Decision Trees,” Machine Learning, vol. 1,
pp. 81–106, 1986.

[18]� N.R. Trio, personal communication, May 1995.
[19]� J.T.-L. Wang, G.-W. Chirn, T.G. Marr, B. Shapiro, D. Shasha, and K.

Zhang, “Combinatorial Pattern Discovery for Scientific Data:
Some Preliminary Results,” Proc. ACM SIGMOD, Minneapolis, pp.
115–125, May 1994.

[20]� K.-L. Wu, P.S. Yu, and A. Ballman, “SpeedTracer: A Web Usage
Mining and Analysis Tool,” IBM Systems J., vol. 37, no. 1, pp. 89-
105, Jan. 1998.

Ming-Syan Chen received the BS degree in
electrical engineering from National Taiwan Uni-
versity, Taipei, Taiwan, Republic of China, in
1982; and the MS and PhD degrees in computer
information and control engineering from the
University of Michigan, Ann Arbor, in 1985 and
1988, respectively. Dr. Chen is now a professor
in the Electrical Engineering Department at Na-
tional Taiwan University. His research interests
include database systems, Internet technologies,
and multimedia applications. He was a research

staff member at the IBM Thomas J. Watson Research Center, York-
town Heights, New York, from 1988 to 1996, primarily involved in proj-
ects related to parallel databases, multimedia systems, and data min-
ing. He has published more than 75 refereed international jour-
nal/conference papers in these research areas, and more than 30 of
the papers have appeared in ACM and IEEE journals and transactions.
Dr. Chen is currently an editor of IEEE Transactions on Knowledge and
Data Engineering and also served as a guest co-editor for a special
issue of IEEE Transaction on Knowledge and Data Engineering on
mining of databases in December 1996. Has has invented many inter-
national patents in the areas of interactive video playout, video server
design, interconnection networks, and concurrency and coherency
control protocols. He received the Outstanding Innovation Award from
IBM in 1994 for his contribution to parallel transaction design for a
major database product, and numerous other awards for his inventions
and patent applications. Dr. Chen is a senior member of the IEEE and
a member of the ACM.

Jong Soo Park received the BS degree in elec-
trical engineering (with honors) from Pusan Na-
tional University, Pusan, Korea, in 1981; and the
MS and PhD degrees in electrical engineering
from the Korea Advanced Institute of Science
and Technology, Seoul, Korea, in 1983 and 1990,
respectively. From 1983 to 1986, he served as an
engineer at the Korean Ministry of National De-
fense. He was a visiting researcher at the IBM
Thomas J. Watson Research Center in Yorktown
Heights, New York, from July 1994 to July 1995.

He is currently an associate professor in the Department of Computer
Science at Sungshin Women’s University, Seoul, Korea. His research
interests include data mining, geographic information systems, and
digital libraries. He is a member of the ACM, the IEEE, and Korea In-
formation Science Society (KISS).



CHEN ET AL.: EFFICIENT DATA MINING FOR PATH TRAVERSAL PATTERNS 221

Philip S. Yu (S’76-M’78-SM’87-F’93) received
the BS degree in electrical engineering from
National Taiwan University, Taipei, Taiwan, Re-
public of China, in 1972; the MS and PhD de-
grees in electrical engineering from Stanford
University in 1976 and 1978, respectively; and
the MBA degree from New York University in
1982. He has been with the IBM Thomas J. Wat-
son Research Center, Yorktown Heights, New
York, since 1978, and he is currently manager of
the Software Tools and Techniques group there.

His current research interests include database systems, data mining,
multimedia systems, transaction and query processing, parallel and
distributed systems, disk arrays, computer architecture, performance
modeling, and workload analysis. He has published more than 220

papers in refereed journals and conferences, and more than 140 re-
search reports, and 90 invention disclosures. He holds, or has applied
for, 56 U.S. patents. Dr. Yu is a fellow of the IEEE and the ACM. He
was an editor of IEEE Transactions on Knowledge and Data Engi-
neering. In addition to serving as a program committee member for
various conferences, he served as the program chair of the Second
International Workshop on Research Issues on Data Engineering:
Transaction and Query Processing, and as program co-chair of the
11th International Conference on Data Engineering. He has received
several IBM and other industrial honors, including awards for
best paper, IBM Outstanding Innovation, Outstanding Technical
Achievement, 21 Invention Achievement plateaus, and two Research
Division awards.


