
Annals of Mathematics and Artificial Intelligence (2005) 43: 137–152  Springer 2004

Efficient data structures for backtrack search SAT solvers

Inês Lynce and João Marques-Silva

IST/INESC-ID, Technical University of Lisbon, Lisbon, Portugal
E-mail: {ines,jpms}@sat.inesc-id.pt

The implementation of efficient Propositional Satisfiability (SAT) solvers entails the uti-
lization of highly efficient data structures, as illustrated by most of the recent state-of-the-art
SAT solvers. However, it is in general hard to compare existing data structures, since different
solvers are often characterized by fairly different algorithmic organizations and techniques,
and by different search strategies and heuristics. This paper aims the evaluation of data struc-
tures for backtrack search SAT solvers, under a common unbiased SAT framework. In addi-
tion, advantages and drawbacks of each existing data structure are identified. Finally, new data
structures are proposed, that are competitive with the most efficient data structures currently
available, and that may be preferable for the next generation SAT solvers.

Keywords: propositional satisfiability, backtrack search

1. Introduction

In recent years Propositional Satisfiability (SAT) has successfully found a large
number of significant applications. SAT has also been the subject of intensive research.
New backtrack search algorithms have been proposed, that include new search strate-
gies, new search techniques and new implementations. Broadly, improvements in SAT
solvers have been characterized by a few significant paradigm shifts. First, GRASP [12]
and rel-sat [3] very successfully proposed using clause recording and non-chronological
backtracking in SAT solvers. More recently, search restart strategies have been shown to
be extremely effective for solving real-world problem instances [2,8]. Finally, the most
recent paradigm shift was observed first in SATO [18] and more recently and more dras-
tically in Chaff [14], that proposed several significant new ideas on how to efficiently
implement backtrack search SAT algorithms.

This paper proposes to further investigate the paradigm shift personified by SATO
and Chaff. How effective are the data structures proposed by these SAT solvers? Are
these data structures the best option for existing SAT solvers? Are these data structures
the most adequate for the expected next generation SAT solvers? Is it possible to do
better? This paper represents a first study to answer these questions.

The paper is organized as follows. Section 2 introduces preliminary definitions.
Afterwards, we briefly review backtrack search SAT solvers. Section 4 analyzes existing
SAT data structures and proposes new data structures. These different data structures are

138 I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers

then evaluated in a common SAT framework, and some of their limitations are identified
and empirically characterized. The paper concludes in section 6.

2. Definitions

This section introduces the notational framework used throughout the paper.
Propositional variables are denoted x1, . . . , xn, and can be assigned truth values 0 (or F)
or 1 (or T). The truth value assigned to a variable x is denoted by ν(x). (When clear
from context we use x = νx , where νx ∈ {0, 1}.) A literal l is either a variable xi or
its negation ¬xi . A clause ω is a disjunction of literals and a CNF formula ϕ is a con-
junction of clauses. A clause is said to be satisfied if at least one of its literals assumes
value 1, unsatisfied if all of its literals assume value 0, unit if all but one literal assume
value 0, and unresolved otherwise. Literals with no assigned truth value are said to be
free literals. A formula is said to be satisfied if all its clauses are satisfied, and is unsat-
isfied if at least one clause is unsatisfied. The SAT problem consists of deciding whether
there exists a truth assignment to the variables such that the formula becomes satisfied.

It will often be simpler to refer to clauses as sets of literals, and to the CNF formula
as a set of clauses. Hence, the notation l ∈ ω indicates that a literal l is one of the literals
of clause ω, whereas the notation ω ∈ ϕ indicates that clause ω is one of the clauses of
CNF formula ϕ.

In the following sections we shall address backtrack search algorithms for SAT.
Most if not all backtrack search SAT algorithms apply extensively the unit clause
rule [6]. If a clause is unit, then the sole free literal must be assigned value 1 for the for-
mula to be satisfiable. In this case, the value of the literal and of the associated variable
are said to be implied. The iterated application of the unit clause rule is often referred to
as Boolean Constraint Propagation (BCP) [16]. A decision level is associated with each
variable selection and assignment. The first variable selection corresponds to decision
level 1. For each new decision assignment, the decision level is incremented by 1. Vari-
ables whose value is implied at a given decision level are characterized by that decision
level. In general, the notation x = ν(x)@δ(x) is used to denote a variable x assigned at
decision level δ(x) with value ν(x). For implementing some of the techniques common
to some of the most competitive backtrack search algorithms for SAT, it is necessary to
properly explain the truth assignments to the propositional variables that are implied by
the clauses of the CNF formula. For example, let x = vx be a truth assignment implied
by applying the unit clause rule to a unit clause clause ω. Then the explanation for this
assignment is the set of assignments associated with the remaining literals of ω, which
are assigned value 0. Let ω = (x1 ∨ ¬x2 ∨ x3) be a clause of a CNF formula ϕ, and
assume the truth assignments {x1 = 0, x3 = 0}. Then, for the clause to be satisfied
we must necessarily have x2 = 0. We say that the implied assignment x2 = 0 has the
explanation {x1 = 0, x3 = 0}. A more formal description of explanations for implied
variable assignments, as well as a description of mechanisms for their identification, can
be found for example in [12].

I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers 139

3. Backtrack search algorithms

Over the years a large number of algorithms has been proposed for SAT, from the
original Davis–Putnam procedure [6], to recent backtrack search algorithms [3,10,12,
14,17], to local search algorithms [15], among many others.

SAT algorithms can be characterized as being either complete or incomplete. Com-
plete algorithms can establish unsatisfiability if given enough CPU time; incomplete
algorithms cannot. In a search context complete algorithms are often referred to as sys-
tematic, whereas incomplete algorithms are referred to as non-systematic.

Among the different algorithms, we believe backtrack search to be the most robust
approach for solving hard, structured, real-world instances of SAT. This belief has been
amply supported by extensive experimental evidence obtained in recent years [2,12,14].

3.1. General organization

The vast majority of backtrack search SAT algorithms build upon the original back-
track search algorithm of Davis, Logemann and Loveland [5]. Most backtrack search
SAT solvers are conceptually composed of three main stages:

1. The decision stage elects the variable and value to assign at each branching step of
the search process.

2. The deduction state identifies necessary assignments as a result of each selected vari-
able assignment.

3. The diagnosis stage implements the backtracking step of the algorithm.

Despite being based on the same underlying algorithm, recent backtrack search SAT al-
gorithms present significant modifications, that can be categorized in terms of new search
strategies, new search techniques and new implementation paradigms. In the following
sections we will illustrate the most significant approaches within each category.

3.2. Search strategies

Search strategies are used to organize the search process. The most well-known
search strategy is the variable branching heuristic used for selecting variables and the
values to assign to them. Moreover, most of the other successful search strategies for
SAT involve randomization. It is well known that randomization is essential in many
local search algorithms [15]; indeed, most local search algorithms repeatedly restart the
(local) search by randomly generating complete assignments. In addition, randomization
has also been successfully included in variable selection heuristics of backtrack search
algorithms [3]. Variable selection heuristics, by being greedy in nature, are bound to
select the wrong variable at the wrong time for the wrong instance. The utilization of
randomization helps reducing the probability of seeing this happening.

Although intimately related with randomizing variable selection heuristics, ran-
domization is also a key aspect of search restart strategies [2,8]. Randomization ensures

140 I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers

that different sub-trees are searched each time the search algorithm is restarted. Cur-
rent state-of-the-art SAT solvers already incorporate the described forms of randomiza-
tion [2,14]. In these SAT solvers variable selection heuristics are randomized and search
restart strategies are utilized.

3.3. Search techniques

Besides the identification of necessary assignments using the unit-clause rule, re-
ferred to as Boolean Constraint Propagation, recent state-of-the-art backtrack search
SAT solvers [3,12,14,17] incorporate techniques for diagnosing conflicting conditions,
thus being able to backtrack non-chronologically, and to record clauses that explain
and prevent identified conflicting conditions. Clauses that are recorded due to diagnos-
ing conflicting conditions are referred to as conflict-induced clauses (or simply conflict
clauses). Additional techniques used in backtrack search SAT algorithms include identi-
fication of unique implication points [12] and relevance-based learning [3]. (We should
observe that a number of other techniques is often used as a preprocessing step [7,9].)

3.4. Implementation paradigms

Implementation issues for SAT solvers include the design of suitable data structures
for storing variables, clauses and literals. The elected data structures dictate the way
BCP and conflict analysis are implemented and have significant impact on the run time
performance of the SAT solver. Recent state-of-the-art SAT solvers are characterized by
using very efficient data structures, intended to reduce the CPU time required per each
node in the search tree. Examples of efficient data structures include the head/tail lists
used in SATO [17] and the watched literals used in Chaff [14].

4. Data structures for SAT

The main purposes of this section are twofold. First, to review existing SAT data
structures. Second, to propose new data structures, that may be preferable for the next
generation SAT solvers. Our description of SAT data structures is organized in two main
categories: data structures based on adjacency lists, and lazy data structures. Moreover,
we also analyze optimizations that can be applied to most data structures, by special
handling of small clauses. Also, we discuss the effect of lazy data structures in accurately
predicting dynamic clause size (i.e. the number of unassigned literals in a clause).

4.1. Adjacency lists

Most backtrack search SAT algorithms represent clauses as lists of literals, and
associate with each variable x a list of the clauses that contain a literal in x. The lists
associated with each variable can be viewed as containing the clauses that are adjacent
to that variable. In general, we use the term adjacency lists to refer to data structures in
which each variable x contains a complete list of the clauses that contain a literal in x.

I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers 141

In the following subsections, different alternative implementations of adjacency
lists are described. In each case we are interested in being able to accurately and effi-
ciently identify when clauses become satisfied, unsatisfied or unit.

4.1.1. Assigned literal hiding
One approach to identify satisfied, unsatisfied or unit clauses consists of extracting

from the clause’s list of literals all the references to unsatisfied and satisfied literals.
These references are added to dedicated lists associated with each clause. As a result,
satisfied clauses contain one or more literal references in the list of satisfied literals;
unsatisfied clauses contain all literal references in the list of unsatisfied literals; finally,
unit clauses contain one unassigned literal and all the other literal references in the list
of unsatisfied literals.

This data structure is illustrated in figure 1. Whenever a literal is assigned, it is
moved either to the satisfied or unsatisfied literals list. In the given example, the ternary
clause is identified as unit on the third step, when only one literal is unassigned and
the other two literals are unsatisfied. Observe that when the search backtracks the same
operations are performed on the reverse order.

Figure 1. Operation of adjacency lists data structures.

142 I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers

As will be shown in section 5, this organization of the adjacency list data structure
is never competitive with the other approaches.

4.1.2. The counter-based approach
An alternative approach to keep track of unsatisfied, satisfied and unit clauses is

to associate literal counters with each clause. These literal counters indicate how many
literals are unsatisfied, satisfied and, indirectly, how many are still unassigned. A clause
is unsatisfied if the unsatisfied literal counter equals the number of literals; it is satisfied
if the counter of satisfied literals is greater than one; finally, it is unit if the unsatisfied
literal counter equals the number of literals minus one, and there is still one unassigned
literal. When a clause is declared unit, the list of literals is traversed to identify which
literal needs to be assigned. An example of a SAT solver that utilizes counter-based
adjacency lists is GRASP [12].

The counter-based approach is also illustrated in figure 1. Whenever a literal is
given a value, either the counters for satisfied or unsatisfied literals are updated, depend-
ing on the literal being assigned value 1 or 0, respectively. Observe that when the clause
is identified as unit (#Unsatisfied Literals = #Literals−1), the whole clause is traversed
in order to find the remaining unassigned literal. Moreover, counters have to be updated
when the search backtracks.

4.1.3. Counter-based with satisfied clause hiding
A key drawback of using adjacency lists is that the lists of clauses associated with

each variable can be large, and will grow as new clauses are recorded during the search
process. Hence, each time a variable is assigned, a potentially large list of clauses needs
to be traversed. Different approaches can be envisioned to overcome this drawback. For
the counter-based approach of the previous section, one solution is to remove from the
list of clauses of each variable all the clauses that are known to be satisfied. Hence, each
time a clause ω becomes satisfied, ω is hidden from the list of clauses of all the variables
with literals in ω. The technique of hiding satisfied clauses can be traced back to the
work of O. Coudert in Scherzo [4] for the Binate Covering Problem. The motivation
for hiding clauses is to reduce the amount of work required each time a variable x is
assigned, since in this case only the unresolved clauses associated with x need to be
analyzed.

4.1.4. Satisfied clause and assigned literal hiding
One final organization of adjacency lists is to utilize the same data structures as the

ones used by Scherzo [4]. In this case, unsatisfied literals get removed from literal lists
in clauses, and satisfied clauses get hidden from clause lists in variables.

The utilization of clause and literal hiding techniques aims reducing the amount of
work associated with assigning each variable. As will be shown in section 5, clause and
literal hiding techniques are not particularly effective when compared with the simple
counter-based approach described above. Moreover, lazy data structures, described in
the next section, are by far more effective.

I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers 143

4.2. Lazy data structures

As mentioned in the previous section, adjacency list-based data structures share
a common problem: each variable x keeps references to a potentially large number of
clauses, that often increases as the search proceeds. Clearly, this impacts negatively the
amount of work associated with assigning x. Moreover, it is often the case that most of
x’s clause references need not be analyzed when x is assigned, since they do not become
unit or unsatisfied.

In this section we analyze lazy data structures, which are characterized by each
variable keeping a reduced set of clauses’ references, for each of which the variable can
be effectively used for declaring the clause as unit, as satisfied or as unsatisfied. The
operation of these data structures is summarized in figure 2.

4.2.1. Sato’s head/tail lists
The first lazy data structure proposed for SAT was the Head/Tail (H/T) data struc-

ture, originally used in the SATO SAT solver [18]. As the name implies, this data struc-
ture associates two references with each clause, the head (H) and the tail (T) literal
references (see figure 2). Initially the head reference points to the first literal, and the
tail reference points to the last literal. Each time a literal pointed to by either the head or
tail reference is assigned, a new unassigned literal is searched for. In case an unassigned
literal is identified, it becomes the new head (or tail) reference, and a new reference is
created and associated with the literal’s variable. In case a satisfied literal is identified,
the clause is declared satisfied. In case no unassigned literal can be identified, and the
other reference is reached, then the clause is declared unit, unsatisfied or satisfied, de-
pending on the value of the literal pointed to by the other reference. When the search
process backtracks, the references that have become associated with the head and tail

Figure 2. Operation of lazy data structures.

144 I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers

references can be discarded, and the previous head and tail references become activated
(represented with a dashed arrow in figure 2 for column HT). Observe that this requires
in the worst-case associating with each clause a number of literal references in variables
that equals the number of literals.

4.2.2. Chaff’s watched literals
The more recent Chaff SAT solver [14] proposed a new data structure, the Watched

Literals (WL), that solves some of the problems posed by H/T lists. As with H/T lists,
two references are associated with each clause. However, and in contrast with H/T
lists, there is no order relation between the two references. The lack of order between
the two references has the key advantage that no literal references need to be updated
when backtracking takes place. In contrast, unit or unsatisfied clauses are identified only
after traversing all the clauses’ literals; a clear drawback. The identification of satisfied
clauses is similar to H/T lists.

With respect to figure 2, the most significant difference between H/T lists and
watched literals occurs when the search process backtracks, in which case the refer-
ences to the watched literals are not modified. Moreover, and in contrast with H/T lists,
for each clause the number of literal references that are associated with variables is kept
constant.

4.2.3. Head/tail lists with literal sifting
The problems identified for H/T lists and watched literals can be solved with yet

another data structure, H/T lists with literal sifting (htLS). This new data structure is
similar to H/T lists, but it dynamically rearranges the list of literals, ordering the clause’s
assigned literals by increasing decision level. Assigned variables are sorted by non-
decreasing decision level, starting from the first or last literal reference, and terminating
at the most recently assigned literal references, just before the head reference and just
after the tail reference. This sorting is achieved by sifting assigned literals as each is
visited by the H and T literal references. The sifting is performed towards one of the
ends of the literal list. The solution based on literal sifting has several advantages:

– When the clause either becomes unit or unsatisfied, there is no need to traverse all
the clause’s literals to confirm this fact. Moreover, satisfied clauses are identified in
the same way as for the other lazy data structures.

– As illustrated in figure 2, only four literal references need to be associated with each
clause. This is in contrast with H/T lists, that in the worst-case need a number of
references that equals the number of literals (even though watched literals just require
two references).

– Literals that are assigned at low decision levels are visited only once, and then sifted
out of the literal range identified by the H/T references, until the search backtracks to
those low decision levels. Hence, literal references never cross over assigned literals,
neither when the search is moving forward nor when the search is backtracking.

I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers 145

Table 1
Comparison of the data structures.

Data structure
AL HT LS WL

Lazy data structure? N Y Y Y

literal references min L 2C 4C 2C

max L L 4C 2C

visited literals identifying unit/unsat cls min 1 1 1 W − 1
max 1 W − 1 W − 1 W − 1

total per conflict (max) Lb Lb Lb 0

L = number of literals.
C = number of clauses.
W = number of literals in clause.
Lb = number of literals to be unassigned when backtracking.

4.2.4. Watched literals with literal sifting
One additional data structure consists of utilizing watched literals with literal sift-

ing (WLS). This data structure applies literal sifting, but the references to unassigned
literals are watched, in the sense that when backtracking takes place the literal refer-
ences are not updated (see figure 2). This data structure keeps two watched literals, and
uses two additional references for applying literal sifting and keeping assigned literals
by decreasing order of decision level. Watched literals are managed as described earlier,
and literal sifting is applied as proposed in the previous section.

The main advantage of the WLS data structure is the simplified backtracking
process; the disadvantage is the requirement to visit all literals between the literal refer-
ences HS and TS each time the clause is either unit or unsat.1

4.3. A comparison of the data structures

Besides describing the organization of each data structure, it is also interesting to
characterize each one in terms of the memory requirements and computational effort. In
table 1, we provide a comparison of the data structures described in the previous section.

The table indicates which data structures are lazy, the (minimum and maximum)
total number of literal references associated with all clauses, and also provides a broad
indication of the work associated with keeping clause state when the search either moves
forward (i.e. implies assignments) or backward (i.e. backtracks).

Even though it is straightforward to prove the results shown, a careful analysis of
the behavior of each data structure allows establishing these results. For example, when
backtracking takes place, the WL data structure updates no literal references. Hence, the
number of visited literal references for each conflict is 0.

1 Observe that it is easy to reduce the number of literal references to three: two for the watched literals and
one for keeping the sifted literals. However, the overhead of literal sifting then becomes more significant.

146 I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers

4.4. Handling special cases: B/T clauses

As one final optimization to literal sifting, we propose the special handling of the
clauses that are more common in problem instances: binary and ternary clauses. Both
binary and ternary clauses can be identified as unit, sat or unsat in constant time, thus
eliminating the need for moving literal references around. Since the vast majority of
the initial number of clauses for most real-world problem instances are either binary or
ternary, the average CPU time required to handle each clause may be noticeably reduced.
In this situation, the H/T lists with literal sifting are solely applied to large clauses and
to clauses recorded during the search process.

As one final comment, observe that special handling of binary/ternary clauses can
also be used with all the other data structures described in this section.

4.5. Do lazy data structures suffice?

As mentioned earlier, most state-of-the-art SAT solvers currently utilize lazy data
structures. Even though these data structures suffice for backtrack search SAT solvers
that solely utilize Boolean Constraint Propagation, the laziness of these data structures
may pose some problems, in particular for new algorithms that aim the integration of
more advanced techniques for the identification of necessary assignments, namely re-
stricted resolution, two-variable equivalence, and pattern-based clause inference, among
other techniques [9,13]. For these techniques, it is essential to know which clauses are
binary and/or ternary. As already mentioned, lazy data structures are not capable of keep-
ing precise information about the set of binary and/or ternary clauses.2 Hence, if future
SAT solvers choose to integrate advanced techniques for the identification of necessary
assignments, they either forgo using lazy data structures, or they apply those techniques
to a subset of the total number of binary/ternary clauses. One reasonable assumption
is that lazy data structures will indeed be deemed essential, and that future SAT solvers
will apply advanced techniques to a lazy set of binary/ternary clauses. In this situation,
it becomes important to characterize the laziness of a lazy data structure in terms of the
actual number of binary/ternary clauses it is capable of identifying. A data structure that
is able to identify the largest number of binary/ternary clauses is clearly the best option
for the implementation of advanced search techniques.

5. Experimental results

This section evaluates the different SAT data structures described in the previous
section. We start by introducing the algorithmic framework used for the experimental
evaluation, JQUEST. The next step is to analyze the results of using different data struc-
tures in SAT solvers. Finally, we also evaluate the accuracy of lazy SAT data structures
in estimating the number of satisfied, binary and ternary clauses.

2 Clearly, this can be done by associating additional literal references with each clause, and as a result by
introducing additional overhead.

I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers 147

5.1. The JQUEST SAT framework

In order to experimentally evaluate the different data structures described in the
previous section, in a controlled experiment that ensures that only the differences in data
structures are evaluated, a dedicated SAT solving framework is needed. Besides differing
data structures and coding styles, each existing SAT solver implements its own set of
search techniques, strategies and heuristics. Hence, a comparison between state-of-the-
art SAT solvers hardly guarantees meaningful results with respect to the underlying data
structures.

In order to experimentally evaluate the different algorithms, in a controlled exper-
iment that ensures that only specific differences are evaluated, a dedicated SAT solving
framework is needed. Consequently, we developed the JQUEST SAT framework, a Java
implementation that can be used to conduct unbiased experimental evaluations of SAT
algorithms and techniques.

As a result we developed the JQUEST SAT framework, a Java implementation that
can be used to conduct unbiased experimental evaluations of SAT algorithms and tech-
niques. For a given problem instance and for each data structure considered, JQUEST
guarantees the same algorithmic organization and enforces the same search tree.

Even though Java yields a necessarily slower implementation, it is also plain that
it allows fast prototyping of new algorithms. Moreover, well-devised Java implemen-
tations can be used as the blueprint for faster C/C++ implementations. In the case
of JQUEST, all the proven strategies and techniques for SAT have been implemented:
clause recording; non-chronological backtracking; search restarts; random backtracking;
and also variable selection heuristics.

For the results shown below a P-III@833 MHz Linux Red Hat 6.1 machine with
1 GByte of physical memory was used. The Java Virtual Machine used was SUN’s
HotSpot JVM for JDK1.3.

5.2. Lazy vs. non-lazy data structures

In order to compare the different data structures, the following algorithm organiza-
tion of JQUEST is used:

– The VSIDS (Variable State Independent Decaying Sum) [14] heuristic is used for all
data structures. Our implementation of the VSIDS heuristic closely follows the one
proposed in Chaff.

– Identification of necessary assignments solely uses boolean constraint propagation.
We should note that, in order to guarantee that the same search tree is visited, the unit
clauses are handled in a fixed pre-defined order.

– Conflict analysis is implemented as in GRASP. However, only a single clause is
recorded (by stopping at the first Unique Implication Point (UIP) [12] as suggested
by the authors of Chaff [14]). Moreover, no clauses are ever deleted.

– Search restarts and random backtracking are not applied.

148 I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers

Table 2
Results for the time per decision (tpd, in msec).

Time ratio w.r.t. minimum tpd
Instance # decs tpd ALl ALcb ALcbsr ALlsr HT WL htLS htLS23 wLS wLS23

175-81 1001 3.33 1.99 1.10 2.06 1.88 1.11 1.02 1.09 1.00 1.22 1.01
200-82 29308 2.13 7.28 3.17 1.78 1.60 1.68 1.23 1.06 1.00 1.26 1.13

100-13 1816 0.16 1.69 1.00 1.84 1.59 1.18 1.03 1.20 1.15 1.28 1.15
100-79 1421 0.77 1.71 1.00 2.16 1.90 1.21 1.21 1.23 1.22 1.40 1.18

10 6380 3.91 8.39 3.39 1.47 1.27 1.88 1.39 1.00 1.02 1.21 1.13

barrel5 5940 8.12 3.16 1.62 1.85 1.75 1.35 1.06 1.06 1.02 1.14 1.00
longmult6 4807 11.53 6.80 3.03 1.60 1.51 1.36 1.13 1.09 1.00 1.23 1.08
queueinver18 8680 3.17 4.46 2.10 1.46 1.31 1.27 1.23 1.06 1.00 1.15 1.03

c5315_bug 28621 1.51 1.58 1.07 1.81 1.77 1.17 1.04 1.16 1.03 1.21 1.00

hole9 6072 5.16 7.51 3.00 2.06 1.62 1.45 1.04 1.03 1.03 1.04 1.00
ii32e5 1466 1.95 2.72 1.30 3.25 3.67 1.05 1.09 1.33 1.28 1.21 1.00
par16-4-c 6167 5.30 7.90 3.44 1.33 1.21 1.80 1.22 1.08 1.00 1.20 1.03

4blocksb 6803 15.37 6.34 2.51 2.13 1.73 1.24 1.29 1.00 1.17 1.14 1.16

bmc-ibm-3 2559 16.15 1.84 1.09 2.25 2.13 1.21 1.05 1.18 1.07 1.21 1.00

facts7hh.13 2241 6.70 2.71 1.36 3.02 2.71 1.42 1.46 1.14 1.03 1.36 1.00

bw_large.c 10020 37.97 5.24 2.39 2.55 2.38 1.41 1.25 1.10 1.00 1.26 1.01

bw_large.c 3280 24.09 3.03 1.50 2.62 2.46 1.39 1.31 1.13 1.02 1.30 1.00

dlx2_aa 10292 1.02 5.04 2.22 1.97 1.66 1.55 1.00 1.04 1.02 1.09 1.01
dlx2_cc_bug07 10314 2.54 4.57 2.00 1.98 1.72 1.25 1.03 1.15 1.00 1.17 1.05

dlx2_cc_bug17 7681 2.74 2.55 1.31 1.93 1.73 1.30 1.13 1.09 1.03 1.13 1.00
dlx2_cc_bug59 2588 1.87 2.27 1.20 2.03 1.89 1.22 1.13 1.12 1.07 1.18 1.00

dlx2_cc_...bug004 18481 1.23 2.51 1.30 2.00 1.77 1.27 1.14 1.09 1.03 1.13 1.00
dlx2_cc_...bug006 29173 1.91 3.33 1.61 2.05 1.77 1.36 1.13 1.09 1.02 1.12 1.00

bf0432-079 1038 2.23 1.67 1.04 2.01 1.86 1.16 1.00 1.13 1.05 1.18 1.03
ssa2670-141 674 1.31 1.28 1.00 1.70 1.57 1.22 1.06 1.22 1.17 1.27 1.12

The results of comparing the different data structures are shown in table 2. In order
to perform this comparison, instances were selected from several classes of instances.
In all cases, the problem instances chosen are solved with several thousand decisions,
usually taking a few tens of seconds. Hence, the instances chosen are significantly hard,
but can be solved without sophisticated search strategies, that would not necessarily
guarantee the same search tree for all data structures considered.

The table of results includes the (constant) number of decisions required to solve
each problem instance, and the minimum time-per-decision over all data structures. The
results for all the problem instances are shown as the ratio with respect to the minimum
time-per-decision for each problem instance. For the data structures considered: ALl
denotes adjacency lists with assigned literal hiding; ALcb denotes counter-based adja-
cency lists; ALcbsr denotes adjacency lists with satisfied clause removal/hiding; ALlsr
denotes adjacency lists with assigned literal and satisfied clause removal/hiding; HT de-

I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers 149

Figure 3. Analysis of performance.

notes H/T lists; WL denotes watched literals; htLS denotes H/T lists with literal sifting;
finally, htLS23 denotes H/T lists with literal sifting and with special handling of binary
and ternary clauses.

From the table of results, several conclusions can be drawn. Clearly, lazy data
structures are in general significantly more efficient that data structures based on ad-
jacency lists. Regarding the data structures based on adjacency lists, the utilization of
satisfied clause and assigned literal hiding does not pay off. For the lazy data structures,
H/T lists are in general significantly slower than either watched literals or H/T lists with
literal sifting. Finally, H/T lists with literal sifting tend to be somewhat more efficient
than watched literals. This results in part from the literal sifting technique, that allows
literals assigned at low decision levels not to be repeatedly analyzed during the search
process.

Despite the previous results that indicate H/T lists with literal sifting to be in gen-
eral faster than the watched literals data structure, one may expect the small performance
difference between the two data structures to be eliminated by careful C/C++ implemen-
tations. This is justified by the expected better cache behavior of watched literals [14].

A summary of the experimental results for a selected number of data structures is
shown in figure 3. The graph represents the number of instances that to be solved require
less than a given time ratio wrt the time per decision. As can be observed, both the htLS
and WL data structures are in the vast majority of cases very close to time ratio 1.

5.3. Limitations of lazy data structures

As mentioned in section 4.2, lazy data structures do not maintain all the infor-
mation that may be required for implementing advanced SAT techniques, namely two-

150 I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers

variable equivalence conditions (from pairs of binary clauses), restricted resolution (be-
tween binary and ternary clauses), and pattern-based clause inference conditions (also
using binary and ternary clauses) [1,9,13]. Even though some of these techniques are
often used as a preprocessing step by SAT solvers, their application during the search
phase has been proposed in the past [11,13]. The objective of this section is thus to
measure the laziness of lazy data structures during the search process. The more lazy
a (lazy) data structure is, the less suitable it is for implementing (lazy) advanced rea-
soning techniques during the search process. As we show below, no lazy data structure
provides completely accurate information regarding the number of binary, ternary or sat-
isfied clauses. However, some lazy data structures are significantly more accurate than
others. Hence, if some form of lazy implementation of advanced SAT techniques is to be
used during the search process, some lazy data structures are significantly more adequate
than others.

We start by observing that the watched literals data structure is unable to dynam-
ically identify binary and ternary clauses, since there is no order relation between the
two references used. Identifying binary and ternary clauses would involve maintaining
additional information than what is required by the watched literals data structure.3

Table 3 includes results measuring the accuracy of each lazy data structure in iden-
tifying satisfied, binary and ternary clauses among recorded clauses. The reference val-
ues considered are given by the values obtained with adjacency lists data structures,
which are the actual exact values. (Observe that, as mentioned above, the watched lit-
erals data structure can only be used for identifying satisfied clauses.) From the results
shown, we can conclude that H/T lists with literal sifting provide by far the most accurate
estimates of the number of satisfied, binary and ternary clauses. In addition, for satisfied
and binary clauses, the measured accuracy is often close to the maximum possible value,
whereas for ternary clauses the accuracy values tend to be somewhat lower.

6. Conclusions

This paper surveys existing data structures for backtrack search SAT algorithms
and proposes new data structures. In addition, we introduce the JQUEST SAT frame-
work, that allows the fast prototyping of SAT solvers, and can be used for the unbiased
evaluation of SAT data structures and algorithms. The JQUEST SAT framework is also
expected to serve as the blueprint for the implementation of efficient SAT algorithms in
C/C++.

Regarding the evaluation of SAT data structures, the experimental results, indicate
that some of the new data structures proposed may be preferable for the next generation

3 Observe that the utilization of two references only guarantees the identification of unit clauses. The lack
of order among the two references prevents the identification of binary and ternary clauses. In order to
identify all or some of the binary/ternary clauses, either the two references respect some order relation, or
more references need to be used.

I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers 151

Table 3
Results for the accuracy of recorded clause identification.

Satisfied clauses Binary clauses Ternary clauses
Instance AL HT WL wLS htLS AL wLS HT htLS AL wLS HT htLS

175-81 291874 73% 80% 62% 89% 9978 10% 19% 93% 11166 3% 37% 86%
200-82 148284026 96% 98% 85% 99% 438356 20% 29% 85% 613244 9% 14% 75%

100-13 424018 95% 96% 91% 98% 7185 36% 13% 91% 8616 2% 0% 85%
100-79 259450 95% 96% 94% 98% 3062 26% 10% 79% 4780 5% 2% 73%

10 18519748 98% 98% 83% 99% 43337 31% 20% 75% 74899 10% 9% 68%

barrel5 9005238 90% 95% 73% 99% 251321 1% 78% 98% 168820 1% 50% 92%
longmult6 9892419 88% 93% 70% 95% 109446 8% 75% 96% 45805 9% 8% 77%
queueinver18 11318602 96% 97% 90% 98% 3927 8% 51% 90% 11486 1% 8% 74%

c5315_bug 24701766 90% 92% 86% 96% 628304 3% 65% 96% 539811 1% 50% 90%

hole9 14775953 84% 93% 53% 98% 22258 10% 17% 72% 62987 4% 1% 64%
ii32e5 128713 99% 99% 99% 100% 1413 4% 14% 70% 1256 0% 4% 50%
par16-4-c 18326757 97% 99% 66% 100% 9454 19% 38% 95% 12131 7% 37% 90%

4blocksb 15442183 92% 93% 81% 96% 191817 12% 48% 89% 196534 7% 16% 72%

bmc-ibm-3 778745 82% 88% 73% 94% 136082 2% 89% 98% 31120 3% 18% 89%

facts7hh.13 493070 89% 94% 86% 96% 16055 8% 62% 90% 14160 3% 52% 84%

bw_large.c 32784773 89% 93% 65% 97% 275761 12% 36% 86% 284054 6% 24% 71%

bw_large.c 2713365 87% 90% 70% 96% 48475 14% 34% 91% 46996 7% 23% 82%

dlx2_aa 14905254 83% 89% 52% 93% 105184 20% 10% 89% 116638 5% 15% 58%
dlx2_cc_bug07 16664430 66% 85% 78% 91% 157500 16% 14% 86% 131612 6% 6% 66%

dlx2_cc_bug17 6359386 95% 96% 86% 98% 44562 13% 10% 87% 49437 8% 2% 75%
dlx2_cc_bug59 586538 94% 93% 90% 95% 6450 13% 3% 74% 13002 5% 1% 55%

dlx2_cc_...bug004 8587704 90% 93% 86% 97% 147713 11% 10% 92% 137653 7% 15% 84%
dlx2_cc_...bug006 35417574 88% 93% 72% 97% 318105 12% 13% 93% 271931 6% 12% 81%

bf0432-079 200114 89% 92% 79% 98% 7423 4% 23% 90% 6702 2% 26% 91%
ssa2670-141 57588 93% 92% 87% 96% 1595 11% 13% 88% 1646 3% 4% 90%

SAT solvers. This conclusion results from these new data structures being in general
faster, but mostly due to coping better with the laziness of recent (lazy) data structures.

Related research work involves evaluating how advanced SAT techniques perform
with lazy structures. Clearly, this will depend on the accuracy of each data structure
to identify binary/ternary clauses. As a result, data structures that are unable to gather
the information required by advanced SAT techniques may be inadequate for the next
generation state-of-the-art SAT solvers.

Acknowledgements

This work is partially supported by the European research project IST-2001-34607
and by Fundação para a Ciência e Tecnologia under research projects PRAXIS/C/EEI/
11249/98 and POSI/34504/CHS/2000.

152 I. Lynce, J. Marques-Silva / Efficient data structures for backtrack search SAT solvers

References

[1] F. Bacchus, Exploiting the computational tradeoff of more reasoning and less searching, in: Pro-
ceedings of Fifth International Symposium on Theory and Applications of Satisfiability Testing (2002)
pp. 7–16.

[2] L. Baptista and J.P. Marques-Silva, Using randomization and learning to solve hard real-world in-
stances of satisfiability, in: International Conference on Principles and Practice of Constraint Pro-
gramming, ed. R. Dechter, Lecture Notes in Computer Science, Vol. 1894 (2000) pp. 489–494.

[3] R. Bayardo, Jr. and R. Schrag, Using CSP look-back techniques to solve real-world SAT instances,
in: Proceedings of the National Conference on Artificial Intelligence (1997) pp. 203–208.

[4] O. Coudert, On solving covering problems, in: Proceedings of the ACM/IEEE Design Automation
Conference (1996) pp. 197–202.

[5] M. Davis, G. Logemann and D. Loveland, A machine program for theorem-proving, Communications
of the Association for Computing Machinery 5 (1996) 394–397.

[6] M. Davis and H. Putnam, A computing procedure for quantification theory, Journal of the Association
for Computing Machinery 7 (1960) 201–215.

[7] A.V. Gelder and Y.K. Tsuji, Satisfiability testing with more reasoning and less guessing, in: Second
DIMACS Implementation Challenge, eds. D.S. Johnson and M.A. Trick (American Mathematical
Society, 1993).

[8] C.P. Gomes, B. Selman and H. Kautz, Boosting combinatorial search through randomization, in:
Proceedings of the National Conference on Artificial Intelligence (1998) pp. 431–437.

[9] J.F. Groote and J.P. Warners, The propositional formula Checker Heerhugo, in: Proceedings of SAT
2000, eds. I. Gent, H. van Maaren and T. Walsh (IOS Press, 2000) pp. 261–281.

[10] C.M. Li and Anbulagan, Look-ahead versus look-back for satisfiability problems, in: Proceedings of
the International Conference on Principles and Practice of Constraint Programming (1997) pp. 341–
355.

[11] J.P. Marques-Silva, Algebraic simplification techniques for propositional satisfiability, in: Interna-
tional Conference on Principles and Practice of Constraint Programming, ed. R. Dechter, Lecture
Notes in Computer Science, Vol. 1894 (2000) pp. 537–542.

[12] J.P. Marques-Silva and K.A. Sakallah, GRASP: A new search algorithm for satisfiability, in: Proceed-
ings of the ACM/IEEE International Conference on Computer-Aided Design (1996) pp. 220–227.

[13] J.P. Marques-Silva and K.A. Sakallah Boolean satisfiability in electronic design automation, in: Pro-
ceedings of the ACM/IEEE Design Automation Conference (2000) pp. 675–680.

[14] N. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik, Engineering an efficient SAT solver, in:
Proceedings of the Design Automation Conference (2001) pp. 530–535.

[15] B. Selman and H. Kautz, Domain-independent extensions to GSAT: Solving large structured satisfia-
bility problems, in: Proceedings of the International Joint Conference on Artificial Intelligence (1993)
pp. 290–295.

[16] R. Zabih and D.A. McAllester, A rearrangement search strategy for determining propositional satisfi-
ability, in: Proceedings of the National Conference on Artificial Intelligence (1988) pp. 155–160.

[17] H. Zhang, SATO: An efficient propositional prover, in: Proceedings of the International Conference
on Automated Deduction (1997) pp. 272–275.

[18] H. Zhang and M. Stickel, Implementing the Davis–Putnam method, in: Proceedings of SAT 2000,
eds. I. Gent, H. van Maaren and T. Walsh (IOS Press, 2000) pp. 309–326.

