
International Journal of Security and Its Applications

Vol. 9, No. 5 (2015), pp. 195-204

http://dx.doi.org/10.14257/ijsia.2015.9.5.20

ISSN: 1738-9984 IJSIA

Copyright ⓒ 2015 SERSC

Efficient Database Encryption Scheme for Database-as-a-Service

Environment

Hankyu Joo

Hallym University

hkjoo@hallym.ac.kr

Abstract

Computing-as-a-service is gaining ground. Clients may use the service without

purchasing the system supporting the service. Database-as-a-Service (DBaaS) is an

important area of computing-as-a-service. DBaaS allows clients to use an expensive

database management system without purchasing it. In a DBaaS environment, database

Tables are stored on servers belonging to a service provider, and hence, they must be

encrypted in order to ensure data confidentiality. However, the encryption introduces

performance degradation in the execution of queries over encrypted data. The execution

of range queries, in particular, undergoes severe performance degradation. Several

encryption schemes to alleviate this problem have been proposed. However, most of these

schemes leak other information in addition to order information. In this study, a new

database encryption scheme for DBaaS is proposed. The proposed scheme enables the

execution of range queries without severe performance degradation and without leakage

of information other than order information.

Keywords: database-as-a-service, confidentiality, database encryption, order

preserving encryption

1. Introduction

Nowadays, computing as a service is gaining ground. Clients may use the service

without purchasing the system supporting the service. One of the areas in computing

as a service is Database-as-a-service (DBaaS). With DBaaS, clients may use an

expensive database management system without purchasing the system [1].

In DBaaS, clients store their data Tables on servers that belong to the service providers.

These servers are not under the control of clients, and hence, there is no guarantee of

confidentiality of the client data that is stored on the servers without a proper protection

scheme. Clients may encrypt the sensitive data to ensure data confidentiality. However,

the encryption of data introduces performance degradation in the execution of queries

over encrypted data.

When a column of a database Table is encrypted, exact queries can be executed

without severe performance degradation by maintaining the index on the encrypted

column. The client may encrypt the search condition and send a query of the

encrypted condition to the server.

However, the execution of range queries undergoes severe performance degradation. In

order to execute a range query, the server must decrypt each encrypted item to determine

whether the item is in the range. The index is maintained on the encrypted data, and

hence, it may not be used for performance enhancement.

Several approaches to alleviate the performance degradation have been proposed. In

order to alleviate the problem, the server must be able to perform the order comparison

without decrypting the encrypted items. In order to enable the server to perform order

comparison without decryption, Order-Preserving Encryption (OPE) schemes have been

proposed. Some of the proposed OPE schemes allow servers to perform an order

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

196 Copyright ⓒ 2015 SERSC

comparison without decryption; however, they leak other information in addition to order

information. Other schemes require the server to perform operations that are not database

operations. The server must support such operations.

In this study, a database encryption scheme that does not result in severe

performance degradation is proposed. The proposed scheme leaks only order

information and uses only database operations of the server.

The remainder of this paper is organized as follows: Related work is discussed in

Section 2. Our proposed database encryption scheme is described in Section 3. The

proposed scheme is evaluated in Section 4. The conclusion of the study is presented in

Section 5.

2. Related Work

A large amount of research has been conducted in the field of database encryption.

Database encryption has encountered severe performance degradation in the execution of

range queries. Research in database encryption has mainly focused on alleviating

performance degradation. OPE was proposed for database encryption by Agrawal, et al.,

[2] to alleviate performance degradation. Boldyreva, et al., [3] proposed a new security

definition for order-preserving encryption called indistinguishability under ordered

chosen-plaintext attack (IND-OCPA). The introduction of OPE by [2] was followed by

numerous studies in the field [3-6]. OPE allows the encryption function to preserve the

numerical ordering of the plaintexts. Another similar scheme called order-preserving

encoding has also been proposed [7]. An order-preserving encoding scheme maintains

tree-structured order information on the server.

Studies such as [7-9] indicate that most of the proposed OPE schemes leak other

information in addition to order information. Another scheme [7] requires operations that

are not database operations to be performed at the server. Joo [10] proposed a basic

approach to the database encryption scheme in which an order column is added for each

encrypted column. According to Kolesnikov and Shikfa [11], even an ideal encryption

system with order information leaks other information.

3. Proposed Scheme

In this section, the proposed database encryption scheme is described. In Section 3.1,

the assumptions on which the design of the scheme is based are listed. The encryption

scheme is described in Section 3.2. The algorithm for range query is presented in Section

3.3 and the algorithm for insertion is discussed in Section 3.4.

3.1. Assumptions

The design of a new scheme is based on the following assumptions:

 In DBaaS, all database Tables, including those containing confidential

information, are stored on the server of the service provider. The server is a

database server, and hence, it can be accessed only by database operation

interfaces.

 The cost of storage is not high. This implies that an increase in the Table size

does not result in excessive cost.

 In many applications, database Tables are initialized with a large number of

items. After the initialization, query operations are extremely frequent. The

insertion of items is required; however, it is not a frequent operation. Extensive

Table modification may occur periodically.

 Indexing is used to improve the query speed.

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 197

3.2. Database Encryption Scheme

The proposed scheme uses an extended Table. When a Table is created and stored on a

server, each column having confidential data (x) of a database Table is encrypted and

renamed (eX), and an additional order column (oX) is added. The encryption may be

performed by using any existing secure encryption algorithm such as Advanced

Encryption Standard (AES) [12]. The order column (oX) is used to maintain the order of

the confidential data column (x). Let us assume that an item m has a value xm in column x

and oXm in column oX. Further, an item n has a value xn in column x and oXn in column

oX. Then, if xm < xn, oXm < oXn.

For example, let us consider an emp Table, Table 1. The Table contains four columns:

ID, Name, Title, and Salary. The columns, ID and Salary, contain confidential

information.

Table 1. Plaintext emp Table

ID Name Title Salary

650213-1234567 Hankyu Joo Manager 14,000

690313-2345678 Sangmin Han Programmer 12,000

700225-1234567 Jaewook Choi Programmer 15,000

…. …. …. ….

In order to ensure security, the data in the columns, ID and Salary, are encrypted. The

corresponding column names are renamed as eID and eSalary, as shown in Table 2. The

columns, oID and oSalary, with order information of ID and Salary, respectively, are also

added. The extended Table is named eEmp and is stored on the server.

Table 2. Encrypted eEmp Table

eID Name Title eSalary oID oSalary

eX12Klm Hankyu Joo Manager tyK3xDs 200 600

jMcD38h Sangmin Han Programmer wQ1b0ld 700 300

y08b1xK Jaewook Choi Programmer d2IpRz9 900 900

 …. …. …. …. .… ….

Indexes are created for the columns, eID, eSalary, oID, and oSalary.

The encryption and order calculation is performed on the computer of the client. When

a Table is created, the order column has a large interval. Although xn and xm are

consecutive in order, oXn. - oXm is not one but a large number such as 100. Indexes are

used whenever necessary.

3.3. Range Query for Encrypted Tables

For unencrypted database Tables, the following range query may be performed.

The column x may be indexed to improve the query speed.
Select a

from tb

where x >= m and x <= n

If the column x contains confidential information, this column is encrypted as the

column eX and the encrypted Table is renamed as eTb. In the encrypted Table, the same

format of range query results in severe performance degradation. In order to alleviate the

performance degradation, the query should be changed as follows:

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

198 Copyright ⓒ 2015 SERSC

Select a

from eTb

where oX >= minLarge(eTb, eX, oX, m) and

 oX <= maxSmall(eTb, eX, oX, n)

For example, the following query may be executed to obtain the names corresponding

to a salary between 12,000 and 15,000 in Table 1. The column Salary may be indexed to

improve the query speed.
Select Name

from employee

where Salary >= 12,000 and Salary <= 15,000

If the column Salary is encrypted as the column eSalary, and if the column oSalary

maintains the order of Salary as seen in Table 2, the query should be modified as follows.
Select Name

from eEmp

where oSalary >= minLarge(eEmp, eSalary, oSalary, 12,000)

 and

 oSalary <= maxSmall(eEmp, eSalary, oSalary, 15,000)

The functions minLarge and maxSmall are executed on the computer of the client. The

client communicates with the server to obtain the necessary information by using only the

query select. The function minLarge(eTable, field, order, value) is used to obtain the

order of an item whose decrypted field has the least value greater than or equal to value in

eTable. The algorithm for function minLarge(eTable, field, order, value) is described in

Table 3. The function maxSmall(eTable, field, order, value) is used to obtain the order of

an item whose decrypted field has the largest value smaller than or equal to value in

eTable. The algorithm for function maxSmall(eTable, field, order, value) is described in

Table 4.

Table 3. MinLarge Algorithm

int minLarge(TableName eTable, ColumnName field,

ColumnName order, Comparable value) {

 int min = select MIN(order) from eTable;

 int max = select MAX(order) from eTable;

 return internalMinLarge(eTable, field, order, min, max,

 value);

}

int internalMinLarge(TableName eTable, ColumnName field,

ColumnName order, int min, int max, Comparable value) {

 Comparable dF;

 int eF, oX;

 if (min >= max) return min;

 int mid = (min+max)/2;

 (eF, oX) = select field, order

 from eTable

 where order >= mid

 order by order

 limit 1;

 dF = decrypt(eF);

 if (value == dF) return oX;

 else if (value < dF) return internalMinLarge(eTable,

 field, order, min, mid-1, value);

 else return internalMinLarge(eTable, field, order,

 oX+1, max, value);

}

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 199

The function minLarge obtains the minimum (min) and maximum (max) values in the

column order of eTable. With these values, minLarge calls the function internalMinLarge.

The function internalMinLarge(eTable, field, order, min, max, value) is a recursive

function to determine the order of an item whose decrypted field has the least value

greater than or equal to value. The internalMinLarge(eTable, field, order, min, max,

value) searches only those items whose order is between min and max. When

internalMinLarge is called, an item whose column order has the least value greater than

or equal to mid is selected from eTable. The selected item is checked to determine

whether its decrypted field is the same as value. If the decrypted field of the item is the

same as value, the order of the item is found and returned. If the decrypted field is smaller

than value, internalMinLarge is called with the range between min and mid. If the

decrypted field is larger than value, internalMinLarge is called with the range between

mid and max. After successive recursive calls, min becomes greater than or equal to max.

At that point, min has the order of the item whose field is least greater than value.

Table 4. MaxSmall Algorithm

int maxSmall(TableName eTable, ColumnName field,

ColumnName order, Comparable value) {

 int min = select MIN(order) from eTable;

 int max = select MAX(order) from eTable;

 return internalMaxSmall(eTable, field, order, min,

max,

 value);

}

int internalMaxSmall(TableName eTable, ColumnName field,

ColumnName order, int min, int max, Comparable value) {

 Comparable dF;

 int eF, oX;

 if (min >= max) return max;

 int mid = (min+max)/2;

 (eF, oX) = select field, order

 from eTable

 where order <= mid

 order by order DESC

 limit 1;

 dF = decrypt(eF);

 if (value == dF) return oX;

 else if (value < dF) return internalMaxSmall(eTable,

 field, order, min, oX-1, value);

 else return internalMaxSmall(eTable, field, order,

 mid+1, max, value);

}

The function maxSmall works in a similar manner as the function minLarge. The

function maxSmall obtains the minimum (min) and maximum (max) values in the column

order of eTable. With these values, maxSmall calls the function internalMaxSmall. The

function internalMaxSmall(eTable, field, order, min, max, value) is a recursive function to

determine the order of an item whose decrypted field has the largest value smaller than or

equal to value. The internalMaxSmall(eTable, field, order, min, max, value) searches only

those items whose order is between min and max. When internalMaxSmall is called, an

item whose column order has the largest value smaller than or equal to mid is selected

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

200 Copyright ⓒ 2015 SERSC

from eTable. The selected item is checked to determine whether its decrypted field is the

same as value. If the decrypted field of the item is the same as value, the order of the item

is found and returned. If the decrypted field is smaller than value, internalMaxSmall is

called with the range between min and mid. If the decrypted field is larger than value,

internalMaxSmall is called with the range between mid and max. After successive

recursive calls, min becomes greater than or equal to max. At that point, max is the order

of the item whose field has the largest value smaller than value.

3.4. Insertion into Encrypted Tables

When a new item is inserted into an unencrypted database Table, the following insert

statement must be executed, where Tb is the Table name, a and x are column names, and

aV and xV are values corresponding to the columns, a and x:
Insert Into Tb (a, x)

Values (aV, xV);

When a new item is inserted into an encrypted Table, a value for the column order

must be calculated. The value of the column order for the new item is the average value

of the two neighboring order values. Let us assume that the encrypted Table is eTb, eX is

the encrypted column corresponding to x, and oX is the column order corresponding to x.

The following insert statement must be executed:
Insert Into eTb (a, eX, oX)

Values (aV, encrypt(xV), newOx(eTb, eX, oX, xV));

The algorithm newOx in Table 5 is used to calculate a new value of order

corresponding to the value that is supposed to be encrypted. The function newOx is

executed on the computer of the client. The client communicates with the server to obtain

the necessary information by using only the query select.

Table 5. NewOx Algorithm

int newOx(TableName eTable, ColumnName field,

ColumnName order, Comparable value) {

 int lox, sox;

 lox = minLarge(eTable, field, order, value);

 sox = maxSmall(eTable, field, order, value);

 if (lox == sox) newOx = lox;

 else if (lox == sox+1) {

 adjust(lox);

 newOx = (lox + sox) / 2;

 } else {

 newOx = (lox + sox) / 2;

 }

 return newOx;

}

void adjust(TableName eTable, ColumnName order, int

lox) {

 tox = an item whose next order is not current

order+1;

 for (all items with order >= lox && order <= tox)

 increase order by 1;

}

The function newOx(eTable, field, order, value) is used to calculate the new value of

order corresponding to the value that is supposed to be encrypted. The function newOx

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 201

uses minLarge and maxSmall functions that are described in Tables 3 and 4, respectively.

The order of the item, which has the smallest value of order that is larger than or equal to

the new item with value, is selected from eTable and saved as lox. The order of the item,

which has the largest value of order that is smaller than or equal to the new item with

value, is selected from eTable and saved as sox. The new order value (newOx) is the

average value of lox and sox. The function adjust is called when it is not possible to have

a new order because the existing order interval is 1.

If multiple order columns are added, the number of times that the function newOx is

called is equal to the number of columns added.

For example, let us suppose that an item (690812-2011369, Kyoung Kim, Secretary,

12,500) must be added to Table 1. In order to insert the item, the following insert

statement must be executed.
Insert Into emp (ID, Name, Title, Salary)

Values (690812-2011369, Kyoung Kim, Secretary, 12,500);

After the insertion, the Table emp is modified as shown in Table 6.

Table 6. Modified emp Table

ID Name Title Salary

650213-1234567 Hankyu Joo Manager 14,000

690313-2345678 Sangmin Han Programmer 12,000

690812-2011369 Kyoung Kim Secretary 12,500

700225-1234567 Jaewook Choi Programmer 15,000

…. …. …. ….

In order to insert the item into an encrypted Table as shown in Table 2, the following

insert statement must be executed.
Insert Into eEmp (eID, Name, Title, eSalary, oId, oSalary)

Values (encrypt(690812-2011369), Kyoung Kim, Secretary,

encrypt(12,500), newOx(eEmp, eID, oID, 690812-2011369),

newOx(eEmp, eSalary, oSalary, 12,500));

If the above insert statement is executed, an item (Dj8L1s, Kyoung Kim, Secretary,

q9PlnT, 800, 450) will be added to Table 2, thus generating Table 7.

Table 7. Modified eEmp Table

eID Name Title eSalary oID oSalar

y

eX12Klm Hankyu Joo Manager tyK3xDs 200 600

jMcD38h Sangmin Han Programme

r

wQ1b0ld 700 300

Dj8L1s Kyoung Kim Secretary q9PlnT 800 450

y08b1xK Jaewook Choi Programme

r

d2IpRz9 900 900

 …. …. …. …. .… ….

Periodically, a large number of items may be modified. When this occurs, the Table

may be retrieved to the client side, and the order columns may be recalculated by using

the same approach as used in Table initialization.

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

202 Copyright ⓒ 2015 SERSC

4. Evaluation

The encryption of a column uses an existing secure encryption algorithm, and hence,

the proposed scheme leaks only order information. This scheme uses only standard query

operations to access the server and does not require any changes at the server. In the

absence of order information, the performance of a range query for an encrypted column

is O(n) slower than that for a plaintext column, where n is the total number of items in the

Table. In the proposed scheme, the addition of the order column to the encrypted columns

results in the performance of the range query for the encrypted column to be O(logn)

slower than that for a plaintext column. In the proposed method, the insertion operation

may be performed in O(logn). If many items are inserted for a specific range of values, the

order column may be restructured. By inspecting the order column, clients may learn

about its status.

5. Conclusion

In this study, a new scheme for database encryption is proposed. The proposed scheme

may be implemented only on the client side without any changes to the server. It does not

leak any information except the order of the encrypted field. The proposed method may

execute a range query on the encrypted column without resulting in severe performance

degradation. The proposed scheme requires additional columns in the encrypted Table.

However, the additional storage for these columns is not expensive in a DBaaS

environment. In this method, periodic inspection of the order column is necessary and

possible restructuring of the column may be required. However, database insertion is not

a frequent operation and restructuring may only be necessary when the original Table

undergoes a major update.

ACKNOWLEDGEMENTS

This research was supported by Hallym University Research Fund, 201504 (HRF-

201504-012).

References

[1] H. Hacigumus, B. Iyer and S. Mehrotra, “Providing database as a service,” Proceedings of 18th

International Conference on Data Engineering, (2002) February 26–March 1, San Jose, California.

[2] R. Agrawal, J. Kiernan, R. Srikant and Y. Xu, “Order preserving encryption for numeric data,” ACM

SIGMOD, (2004), pp. 563-574.

[3] A. Boldyreva, N. Chenette, Y. Lee and A. O’Neill, “Order-preserving symmetric encryption,”

EUROCRYPT, LNCS 5479. (2009), pp. 224-241.

[4] A. Boldyreva, N. Chenette and A. O’Neill, “Order-preserving symmetric encryption revisited: Improved

security analysis and alternative solutions,” CRYPTO 2011, LNCS 6841, (2011), pp. 578-595.

[5] D. H. Yum, D. S. Kim, J. S. Kim, P. J. Lee and S. J. Hong, “Order-preserving encryption for non-

uniformly distributed plaintexts,” WISA 2011, LNCS 7115, (2012), pp. 84-97.

[6] D. Liu and S. Wang, “Nonlinear order preserving index for encrypted database query in service cloud

environments,” Concurrency and Computation: Practice and Experience, vol. 25, (2013), pp. 1967-1984.

[7] R. A. Popa, F. H. Li and N. Zeldovich, “An ideal-security protocol for order-preserving encoding,”

IEEE Symposium on Security and Privacy, (2013), pp. 463-477.

[8] X. Liangliang, O. Bastani and I. Yen, “Security Analysis for an Order-Preserving Schemes,” Technical

Report UTDCS-06-10, University of Texas at Dallas, (2010).

[9] X. Liangliang, I. Yen and D. Lin, “Security Analysis for an Order-Preserving Schemes,” Technical

Report UTDCS-01-12, University of Texas at Dallas, (2012).

[10] H. Joo, “Practical Database Encryption Scheme for Database-as-a-Service,” Advanced Science and

Technology Letters, Security, Reliability and Safety, vol. 93, (2015), pp. 34-39.

[11] V. Kolesnikov and A. Shikfa, “On The Limits of Privacy Provided by Order-Preserving Encryption,”

Bell Labs Technical Journal, vol. 17, no. 3, (2012), pp. 135-146.

[12] National Institute of Standards and Technology, “Advanced Encryption Standard (AES),” FIPS PUB,

vol. 197, (2001).

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 203

Author

Hankyu Joo, received his B.Sc. degree in Computer Science from

Hallym University, Korea, in 1988. He received his M.S. and Ph.D.

degrees in Computer Science and Engineering from Arizona State

University in 1994 and 1998, respectively. He worked for the

Electronics and Telecommunications Research Institute, Korea, from

1999 to 2000. He is a professor of Computer Engineering at Hallym

University. His research interests include information security and

software engineering.

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

204 Copyright ⓒ 2015 SERSC

