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Efficient Datapath Merging for Partially
Reconfigurable Architectures
Nahri Moreano, Edson Borin, Cid de Souza, and Guido Araujo

Abstract—Reconfigurable systems have been shown to achieve
significant performance speedup through architectures that map
the most time-consuming application kernel modules or inner
loops to a reconfigurable datapath. As each portion of the ap-
plication starts to execute, the system partially reconfigures the
datapath so as to perform the corresponding computation. The
reconfigurable datapath should have as few and simple hardware
blocks and interconnections as possible, in order to reduce its cost,
area, and reconfiguration overhead. To achieve that, hardware
blocks and interconnections should be reused as much as possible
across the application. We represent each piece of the application
as a data-flow graph (DFG). The DFG merging process identifies
similarities among the DFGs, and produces a single datapath that
can be dynamically reconfigured and has a minimum area cost,
when considering both hardware blocks and interconnections.
In this paper we present a novel technique for the DFG merge
problem, and we evaluate it using programs from the MediaBench
benchmark. Our algorithm execution time approaches the fastest
previous solution to this problem and produces datapaths with an
average area reduction of 20%. When compared to the best known
area solution, our approach produces datapaths with area costs
equivalent to (and in many cases better than) it, while achieving
impressive speedups.

Index Terms—High-level synthesis, reconfigurable computing,
resource sharing.

I. INTRODUCTION

I T is well known that embedded systems must meet high-
throughput, low power, and low cost constraints, specially

when designed for signal processing and multimedia applica-
tions [1]. These requirements lead to the design of application
specific components, ranging from specialized functional units
and coprocessors to entire application specific processors. Such
components are designed to exploit the peculiarities of the ap-
plication domain in order to achieve the required performance
and to meet the design constraints.

With the advent of reconfigurable systems, new architectural
alternatives for the design of complex digital systems have been
investigated [2], [3]. The claim of reconfigurable architectures
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Fig. 1. Data-flow graph merging.

is to provide some degree of software flexibility, while ap-
proaching the performance of hardware [4], [5]. Recent work in
reconfigurable computing research has shown that a significant
performance speedup can be achieved through architectures
that map the most time-consuming application kernel modules
or inner loops to a reconfigurable datapath [6]–[8]. As a result,
it became possible to design application specific components,
like specialized datapaths, that can be adapted to perform a
different computation, according to the specific part of the
application that is running. At run-time, as each portion of the
application starts to execute, the system partially reconfigures
the datapath so as to perform the corresponding computation.

A reconfigurable datapath should have as few and simple
hardware blocks (functional units and registers) and intercon-
nections (multiplexers and wires) as possible, in order to reduce
its cost, area, and possibly power consumption. To achieve that,
hardware blocks and interconnections should be reused across
the application as much as possible. Resource sharing has also a
crucial impact in reducing the system reconfiguration overhead,
both in time and space.

To design such a reconfigurable datapath, one must repre-
sent each selected piece of the application as a data-flow graph
(DFG) and merge them together, synthesizing a single reconfig-
urable datapath. The data-flow graph merging process enables
the reuse of hardware blocks and interconnections by identi-
fying similarities among the DFGs, and produces a single data-
path that can be partially reconfigured at run-time to work for
each DFG.

Fig. 1 illustrates the concept of data-flow graph merging.
When DFGs and from Fig. 1 are merged, the resulting
datapath is produced. Notice that in the resulting datapath there
are interconnections originated from only one DFG (e.g., the

interconnection from DFG ) and interconnections
shared by both DFGs (e.g., the interconnection).

With the advent of new manufacturing technologies, inte-
grated circuits with more and more transistors are being de-
signed, and design productivity has not been able to keep up
with transistor density growth [9], [10]. Moreover, intercon-
nection networks are becoming very complex, contributing to
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a large share of the total circuit area. As a result, reconfigurable
architectures based on coarse-grained logic blocks (instead of
fine-grained ones) should be able to improve the usage of com-
puting blocks, while reducing the wiring overhead, due to their
high-level organization. It is also necessary the use of efficient
allocation techniques which are able to reach better results con-
cerning the component total area (and not only estimating inter-
connection area) in a reasonable time.

The resource sharing problem is well known in traditional
High-Level Synthesis (HLS). There, a datapath is synthesized
from a given design behavioral specification, represented by a
DFG, optimizing a certain goal (e.g., the hardware cost). The
synthesis process consists in the major tasks of scheduling and
allocation, where allocation can be further divided into two main
subtasks: unit selection and unit binding [11], [12].

Contrary to this problem, in the DFG merge problem studied
in this paper, the synthesized reconfigurable datapath must be
able to perform the computation of several input behavioral
specifications (represented by several DFGs), multiplexed in
time, while in HLS the resulting datapath corresponds to only
one input DFG. The merging problem is mainly focused in
providing inter-DFG resource sharing, while HLS allocation
enables intra-DFG resource sharing. In traditional HLS, func-
tional unit and storage binding are performed using estimated
interconnection costs, and interconnection binding is done
afterward, when the requirements on the interconnections
become clear. This is not a good approach to solve datapath
merging, because the interconnection area resulting from inter-
connection binding is highly dependent on functional unit and
storage binding.

The main contribution of this paper is a novel and faster tech-
nique for the DFG merge problem, with the goal of synthesizing
a partially reconfigurable datapath that can be adapted to ex-
ecute different parts of an application. This technique solves
together unit selection and unit binding, minimizing the total
area cost of the datapath. Our graph-based approach is built on
the solution of a maximum weight clique problem and merges
two DFGs at a time. Contrary to most previous solutions, which
are based on hardware block mapping, our approach simultane-
ously maps hardware block and interconnections to compute the
reconfigurable datapath. Experimental results using the Media-
Bench benchmark suite [13], reveal that this technique produces
datapaths with area costs equivalent to (and in many cases better
than) the best previous (exponential time) solution for area, in
much shorter execution times.

This paper is organized as follows. In the next section we
describe our datapath architecture model. Section III presents
the DFG merge problem more formally and exposes its diffi-
culty. Section IV describes previous work in the literature re-
lated to this problem. We present in Section V our graph-based
approach to the problem. In Section VI a set of experiments is
described to support the efficiency of the proposed approach.
Finally, Section VII concludes the work.

II. ARCHITECTURE MODEL

The datapath architecture model used in this paper consists
of a set of functional units (FUs) and registers (RGs) organized
around an interconnection network forming a programmable
datapath, as shown in Fig. 2. The interconnection network is

Fig. 2. Architecture model of the reconfigurable datapath.

based on a set of multiplexers (MUXes) that select the input data
for functional units and registers. The datapath is built based
on a ASIC (application specific integrated circuit) way and its
composition in terms of hardware blocks and interconnections is
customized statically toward the computational intensive pieces
of the application. That is, the datapath has fixed hardwired logic
blocks and only the interconnection network is programmable.
Each hardware block is selected from a component library
containing from single-operation FUs, such as adders and
multipliers, to multifunctional units, such as arithmetic-logic
units capable of performing addition, subtraction, and logic
operations. Area and resource constraints can be imposed during
the construction of the datapath. The reconfigurable datapath is
attached to a host processor that executes the remaining of the
application. The selected pieces of the application are replaced
by new instructions which are executed in the customized
datapath.

As the computation progresses, the system partially reconfig-
ures the datapath (setting the MUXes of the interconnection net-
work), such that the pieces of the application are mapped onto
it. Given the coarse granularity of the logic blocks (FUs and
RGs), fewer bits are needed to reconfigure the datapath (than in
the case of fine-grained architectures), thus diminishing the size
of the memory required to store the reconfiguration bits (the so
called reconfiguration context). This is a central issue in SoC
(System-on-a-Chip) designs where on-chip area is a premium
asset.

III. DATA-FLOW GRAPH MERGE PROBLEM

In this section we formulate the DFG merge problem more
formally. We want to merge several DFGs (corresponding to ap-
plication portions), in order to build a reconfigurable datapath
that is capable of performing the computation of each portion,
multiplexed in time, and has the minimum area cost of hard-
ware blocks (functional units and registers) and interconnec-
tions. Each application portion , is modeled as a
DFG , as defined below.

Definition 1: A data-flow graph (DFG) is a directed graph
, where:

• A vertex represents an operation or a variable. Each
vertex has a set of input ports and attributes
specifying its type and width (in bits).

• An arc indicates a data transfer from
vertex to the input port of vertex .

Given a vertex of a DFG, there may be several hardware
blocks (in the component library) where it can be executed.
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Fig. 3. DFGs G and G and three different merged graphs �G , �G , and �G: A ( �G ) > A ( �G ) and A ( �G ) = A ( �G), but A ( �G ) > A ( �G).

Definition 2: The set of hardware blocks of a DFG
vertex contains the hardware blocks from the component li-
brary which can perform the computation represented by .

The resulting reconfigurable datapath is the merge of all
DFGs , and is modeled as a merged graph , as
defined below. The merged graph is the overlapping of all

, such that only vertices which can be implemented by the
same hardware block can be overlapped.

Definition 3: A merged graph, corresponding to DFGs ,
, is a directed graph , where:

• A vertex represents a mapping of vertices ,
, each one from a different , such that

.
• An arc represents a mapping of arcs

, , each one from a different
, such that all have been mapped onto , all have

been mapped onto , and all match.1

The reconfigurable datapath will have a hardware block cor-
responding to each , capable of performing all the opera-
tions mapped onto . For each , there will
be a “path” (in the reconfigurable datapath) from the output of

to the input port of . Moreover, for each input port of
each vertex which has more than one incoming arc ,
the reconfigurable datapath will have a MUX selecting the input
operand.

Given a set of input DFGs , it is possible to build sev-
eral solutions for the merged graph . The optimal solution
for is the one which produces the reconfigurable datapath
with minimum area cost, considering both hardware blocks and
interconnections.

Since in our architecture model the interconnection network
is based on MUXes, the interconnection area cost is proportional
to the number of MUX inputs. For each arc
which is a mapping of arcs from DFGs , the MUX
(if exists) at the input port of hardware block has

fewer inputs than it would have if no arcs were overlapped.
Regarding each MUX as a tree of 2-input MUXes, there is a
linear dependency between the number of 2-input MUXes and
the number of wires, so the interconnection area cost can be
expressed in terms of the number of wires.

The area cost of the reconfigurable datapath is defined below.

1The meaning of matching input ports will be further elaborated in Sec-
tion III-A.

Definition 1: The total area cost of the reconfigurable
datapath corresponding to the merged graph is

where and are
the hardware block and interconnection area cost, respectively,
of the reconfigurable datapath. is the area cost of the hard-
ware block allocated to , and represents the area cost
equivalent to one MUX input of the suitable width.

We can now define the DFG merge problem, as follows.
Definition 5: Given input DFGs , , find the

merged graph , such that is minimum.
Finding a mapping of the vertices from the DFGs so as to

minimize the hardware block area cost is not a difficult task. It
can be modeled as a maximum weight bipartite matching, for
which a polynomial time algorithm is well known (the Hun-
garian Method described in [14]). On the other hand, mapping
the arcs from the DFGs so as to minimize the interconnection
area is a hard problem (more precisely, it is NP-complete),
because the mapping of arcs depends on the mapping of their
adjacent vertices. That is, two arcs from two DFGs can only
be mapped if their source vertices are mapped as well as their
destination vertices. So, if we map vertices without considering
the interconnection costs or using only estimates, we may get a
solution where the interconnection area cost is not minimized
and consequently, the total area cost is also nonoptimal.

We now illustrate these concepts with an example. Given
the DFGs and in Fig. 3, we can build three different
merged graphs , , and . In , vertices from and

from are not mapped, so the reconfigurable datapath cor-
responding to would have six hardware blocks (a multiplier,
two adders, a subtractor, an and, and a shifter). In , those ver-
tices are mapped (represented by the notation ), resulting
in a reconfigurable datapath with five hardware blocks (a mul-
tiplier, an adder/subtractor, an adder, an and, and a shifter). So,

is larger than and consequently, is also
larger than .

Still in Fig. 3, and represent different vertex mappings.
In vertex of is mapped onto vertex of , while it is
mapped onto in . The vertex mappings represented by
and may appear equivalent and, as a matter of fact,
is equal to . But they allow for different arc mappings.
In , no arcs are overlapped, so two MUXes are needed at
the two input ports of vertex . In , the arcs and
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are mapped (highlighted in the figure), thus eliminating
the need for one of the MUXes. As a result, is larger
than and consequently, is also larger than .

In order to compute the optimal solution for we have to find
out which vertex mapping, among several possibilities, gives the
best arc mapping, i.e., which mapping minimizes the total area
cost.

We proved that the DFG merge problem is NP-complete [15]
by reducing the subgraph isomorphism problem [16] to it.

A. Input Ports and Commutativity

Several two-input operations are commutative, so properly
exchanging the sources of these operations can enable arc map-
pings that would not exist otherwise, thus eliminating wires and
MUXes and reducing the interconnection area cost of the re-
configurable datapath. Each operation has a set of input ports
which represent the input operands it expects, for instance an
addition has two input ports and . From Definition 3, two
arcs and can be mapped if

and can be mapped, as well as and , and and
match. The input ports and match if: (a) they are equal; or
(b) and/or represent two-input commutative operations.

Consider for example the DFGs and of Fig. 4, where
the input ports 1 and 2 of the addition operations are shown.
When merging and , there are three possible vertex map-
pings and the two possible arc mappings
and . These arc mappings would not be ob-
tained without exploiting the commutativity of the addition op-
eration, because the input ports of the mapped arcs are different.
As a result, the merged graph has two less interconnections
and MUXes than it would have without commutativity.

IV. RELATED WORK

In this section we describe the work available in the literature,
related to the data-flow graph merge problem.

The most commonly used method to the merge problem com-
bines two DFGs at a time and is based on the problem of finding
a maximum weight matching of a bipartite graph. The two parti-
tions of vertices in the bipartite graph correspond to the vertices
of the two DFGs being merged. There is an edge connecting
two vertices in the bipartite graph if they can be mapped (over-
lapped). The weight of this edge represents the gain achieved if
the two vertices are mapped, concerning the desired objective
function. Since each vertex of one DFG should be mapped to at
most one vertex of the other, the maximum weight matching of
the bipartite graph gives a solution to the problem. This method
is a polynomial-time approach, but since vertices are mapped
using only estimates about the interconnection mapping, the so-
lutions produced can be far from optimal.

The bipartite matching method has been used in [17]–[19].
In [17] two solutions are presented to synthesize an application
specific unit capable of executing in different modes, each one
corresponding to one cluster of operations from the application
nonscheduled flow graph. The presented solutions solve both
unit selection and unit binding and try to minimize the area cost
of the resulting unit. The weight of an edge represents the area

Fig. 4. Interconnection sharing through commutativity.

gain achieved if the two vertices are mapped. This gain includes
hardware block and estimated interconnection area. The inter-
connection area gain, corresponding to the mapping of vertices

and , is an upper bound estimate, because it considers that the
predecessors of and in the DFGs being merged have been
mapped to each other, as well as the successors (what may not
happen). The second solution uses a slightly different approach
to handle situations in which the two DFGs being merged ex-
hibit a high degree of similarity and regularity. The relative po-
sitions of the vertices in the DFGs are used to break ties when
several edges in the bipartite graph have the same weight.

In [18] the authors combine two or more designs into a
reconfigurable one, based on the identification and mapping of
components common to these designs. The goal is to minimize
the reconfiguration time. The bipartite graph edge weights are
defined using as criteria the component types, the component
positions in the FPGA, and the depth from matched ports. In
[19] this technique is used to design a reconfigurable data-
path capable of performing the computation corresponding to
time-consuming inner loops of an application. The bipartite
graph edge weights represent estimates on the interconnection
mapping.

Another group of methods [17], [20] relies on search mech-
anisms to explore the solution space looking for the optimal
solution. Since the solution space has an exponential size and
is explored randomly, these methods execution times may be
not polynomially bounded, although in practice they sometimes
behave reasonably well.

In [20] a merging technique is proposed to synthesize a multi-
functional processing unit, in which each function corresponds
to clusters of operations in the specification. The method assigns
operations to the processing unit’s operators, given a number of
pre-allocated operators. The approach is based on iterative im-
provement and simulated annealing local search algorithms, and
aims at reducing the interconnection cost of the processing unit.
Both algorithms start with an initial random assignment, and
continuously step through a randomly chosen neighborhood so-
lution set, considering a cost acceptance criterion. The concept
of neighborhood is defined using a two-exchange mechanism,
where the assignment of two operations from the same DFG are
exchanged. The neighborhood of the current solution is the set
of solutions that can be reached from it by performing only one
two-exchange. The solution provided by the iterative improve-
ment algorithm is the first local minimum found, so it may be far
from optimal. The simulated annealing method accepts limited
deteriorating transitions, trying to escape from local minima,
and as a consequence has longer execution times.
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Fig. 5. Steps of DFG merging algorithm. (a) DFGsG andG ; (b) all possible mappings of vertices and arcs ofG andG ; (c) maximum weight clique on the
compatibility graph G ; (d) merged graph �G.

A solution described in [17] also uses an iterative improve-
ment method based on the algorithm presented in [20], but
performs unit selection and unit binding, and starts with a dif-
ferent initial solution. Again the solution space is explored by
stepping from one solution to one of its neighbors, reached by
a two-exchange. The cost acceptance criteria does not permit
deteriorating transitions, but zero-cost difference transitions
are accepted.

In another solution from [17], which also merges two DFGs
at a time, an ILP (Integer Linear Programming) model is devel-
oped to represent a global interconnection-cost model. In this
case, the interconnection area gain corresponding to the map-
ping of the vertices and is dependent on the mapping of
its predecessors in the DFGs. This model provides an exact but
exponential-time solution to the problem of merging only two
clusters, and can be used as an approximation in order to merge
several DFGs iteratively.

None of the above referred solutions exploit operation com-
mutativity in order to improve the interconnection mapping.

A merging approach is proposed in [21] to design a reconfig-
urable datapath capable of performing the computation corre-
sponding to time-consuming inner loops of an application. The
authors use a graph-based technique to perform hardware block
and interconnection assignment together, trying to minimize the
interconnection area cost. Our merge solution is an extension
of this approach, but it is more complete and precise because
we model both hardware block and interconnection area costs
and we globally solve unit selection and unit binding. Our al-
gorithm solves both unit selection and binding, while the re-
ferred solution solves only unit binding and assumes that the
blocks have been previously allocated. Besides, our technique

tries to minimize the total area of the datapath (including hard-
ware blocks and interconnections), while the referred solution
tries to minimize only the interconnection area. Finally, our al-
gorithm exploits the commutativity of the operations in order to
increase the interconnection sharing, while the referred solution
does not.

V. HARDWARE BLOCK AND INTERCONNECTION

MAPPING APPROACH

In this section, we propose a technique to solve the DFG
merge problem. Our approach solves the unit selection and unit
binding tasks, and performs functional-unit, storage, and inter-
connection binding simultaneously. So, we are able to find a
global solution and optimize the interconnection network using
accurate area costs instead of estimates, even for the case in
which the interconnection network is MUX-based. Our method
merges two DFGs at a time and in order to merge several DFGs,
this method is applied iteratively. First, two input DFGs are
merged, then the resulting graph is merged with another input
DFG, and so on.

A. Compatibility Graph

Initially, a compatibility graph is constructed to represent all
possible vertex and arc mappings between two input DFGs
and and the consistency among these mappings. Two ver-
tices from and respectively, can be mapped (overlapped)
if there is, in the component library, a module capable of per-
forming the operations they represent. Two arcs from and

can be mapped if their corresponding source vertices can
be mapped, as well as their destination vertices, and their input
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Fig. 6. Incompatible mappings: a maps to b and b .

ports match.2 Given the conditions for matching input ports de-
fined in Section III-A, the compatibility graph also contains arc
mappings obtained exploiting the commutativity of operations.
Fig. 5(b) lists those vertices and arcs from DFGs and in
Fig. 5(a) that can be overlapped to each other. Each mapping
is represented by a double-arrow line connecting the vertices or
arcs that can be overlapped. We formally define the compati-
bility graph below.

Definition 6: A compatibility graph, corresponding to DFGs
and , is an undirected weighted graph ,

where:

• Each vertex with weight corresponds to:
— a possible mapping of vertices and

such that ; or
— a possible mapping of arcs

and such that
, , and and

match.
• There is an edge if the mappings

represented by and are compatible.

In order to build the compatibility graph we need also to de-
fine the notion of mapping compatibility.

Definition 7: Two vertex or arc mappings are not compatible
whenever they map the same vertex of to two different ver-
tices of , or vice-versa.

This compatibility criterion is illustrated in Fig. 6. In that
figure two DFGs and are shown. There are two possible
arc mappings between and , which are
and . These two mappings are not compatible
since they map the same vertex from to two different ver-
tices, and , in .

The weight of vertices in the compatibility graph are assigned
using the concept of area reduction. If we map two vertices
and , we will have, in the reconfigurable datapath, only one
hardware block capable of computing both and operations,
instead of having two hardware blocks to perform each opera-
tion, respectively. When we map two arcs, instead of having, in
the reconfigurable datapath, two interconnections, we will have
only one, and we will not need a MUX at the input port of the

2Note that the compatibility graph used here has a different meaning from its
traditional use in HLS. In HLS, the vertices of the compatibility graph are in
one-to-one correspondence with the operations of the input DFG. An edge in
the compatibility graph represents two operations that can be bound to the same
resource. In our approach, each vertex in the compatibility graph represents a
possible mapping of two operations or data transfers from two input DFGs, i.e.,
two operations or data transfers that can be bound to the same resource. An edge
in the compatibility graph represents two mappings that can be used together.

destination hardware block. The area reduction achieved by this
mapping corresponds to the area cost equivalent to one MUX
input of the suitable width.

Definition 8: The weight of vertex is the area cost
reduction achieved with the mapping represented by , where

• If represents a mapping , then
.

• If represents a mapping , then
.

By using the definitions presented above the compatibility
graph can be easily constructed. Fig. 5(c) shows the compati-
bility graph resulting from the mappings of vertices and arcs
from and in Fig. 5(b). Consider, for example, mappings

(vertex 1 in ) and (vertex 3 in ). For
those mappings, no vertex from maps to two distinct vertices
in and vice-versa. As a result, the two mapping are compat-
ible, and an edge (1,3) is required in . On the other hand, no
edge exist in between vertices 3 and 5. The reason is that
the mappings represented by 3 and 5 are incompatible, since
in maps to both and in . The vertex weights rep-
resent the area cost reductions of the corresponding mappings.
For instance, the weight of the mapping corresponds
to the area cost reduction achieved by having one adder/sub-
tractor functional unit, instead of one adder and one subtractor.

B. Maximum Weight Clique Solution

In order to determine the resulting graph such that
is minimum, it is necessary to find the set of mappings that are
compatible to each other and provide the maximum area cost
reduction. This can be achieved by computing the maximum
weight clique of the compatibility graph .

Definition 9: The maximum weight clique of a graph
is a set of vertices where, for all vertices ,

, the edge , and is maximum.
In the compatibility graph of Fig. 5(c), the maximum

weight clique has vertices 1, 2, 3, and 4 (highlighted in the
figure). The maximum weight clique problem is also NP-com-
plete [16], thus a heuristic polynomial-time algorithm is used to
solve it.

Finally, the mappings represented by the vertices from the
maximum weight clique of are used to construct the
optimal merged graph . Since the clique gives the mappings
which achieve the maximum area cost reduction, the merge
graph produced is the one with minimum area cost. Each vertex
from C gives a vertex or arc mapping between and that
will become a vertex or arc in , respectively. If a vertex in

represents an arc mapping obtained through commutativity,
the input ports of the corresponding destination vertex of
are properly set. Those vertices and arcs from and that
do not belong to any mapping in C, are also inserted into
as unmapped vertices and arcs. For example, using the clique
shown in Fig. 5(c), we get the optimal merged graph shown
in Fig. 5(d).

Notice that if the arc mapping (node 3 of
) had not been included into the compatibility graph and only

vertex mappings had been considered, the maximum weight
clique could have been the set of vertices 2, 4, and 5 of ,
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Fig. 7. DFG merge based on hardware block and interconnection mapping.

resulting in the merged graph shown in Fig. 3, which, as
we have already seen, has a larger total area cost than . This
shows the importance of performing simultaneous vertex and
arc mappings.

In this approach, both unit selection and unit binding are
solved. For each vertex of , one hardware block is allocated
and its type is selected based on the operations mapped on the
vertex. These operations are bound to this hardware block. For
each arc in , a connection is required in the reconfigurable
datapath, and for each vertex of which has more than one arc
coming to one of its input ports, a MUX is allocated. The arc
mappings represented in correspond to the interconnection
binding of the data transfers.

C. DFG Merging Algorithm

Our DFG merging method is shown in Fig. 7. It computes
an exact solution for merging two DFGs, if we use an exact al-
gorithm to the maximum weight clique problem. Since we use
a polynomial time heuristic for the clique problem, our algo-
rithm runs in polynomial time. In order to merge two DFGs

and , the worst-case time com-
plexity of the “ConstructCompatibilityGraph” step is

, since is at most . The algorithm
used in the “FindMaximumWeightClique” step is based on a
branch-and-bound technique [22]. We tuned this algorithm such
that its execution time is polynomially bounded by , that is,
we interrupt the search when this time limit is reached. Finally,
the worst-case time complexity of the “ReconstructResulting-
Graph” step is . This worst-case scenario arises
when all vertices of and represent the same commutative
operation, which in practice is never the case.

D. Exploiting Commutativity

Traditionally, commutativity is exploited in pre- or post-pro-
cessing steps, so it only uses estimate information about unit
binding or it is based on highly constrained alternatives. Our
DFG merge algorithm exploits operation commutativity during
the binding task, and since hardware block and interconnection
bindings are unified, the exchange decisions are taken using
precise area costs. During the construction of the compatibility
graph, we already consider the possible source exchanges.
When we find the maximum weight clique, we choose the
mappings that result in the maximum area cost reduction,
which may include some mappings obtained by commutativity.

Fig. 8. Compatibility graphG with mappings ofG andG from Fig. 4 (arc
mappings obtained through commutativity).

For example, given the DFGs and of Fig. 4, we get the
compatibility graph shown in Fig. 8. Notice that the arc
mappings represented by vertices 4 and 5 of are obtained
only if commutativity can be exploited.

VI. EXPERIMENTAL RESULTS

This section describes a set of experiments we performed
in order to evaluate the datapath merging approach and the
merging technique proposed in this work. Our solution to the
DFG merge problem was applied to a number of programs
from the MediaBench suite [13]. Enough experimental evi-
dence exists to support the fact that inner loops account for
the largest share of program execution time. Therefore, these
loops are good candidates for mapping onto a reconfigurable
datapath. Each program was compiled using the GCC compiler,
and profiled so as to determine which inner loops contributed
the most to the program execution time. For each such loop, a
DFG was generated from the loop body RTL code (GCC inter-
mediated representation) [23]. Using RTL instead of machine
instructions permitted us to extract the loop code after most
machine-independent code optimizations, but before register
allocation and machine-dependent optimizations. Moreover,
whenever possible, procedure integration (automatic inlining)
was applied. The section of application code corresponding
to a DFG can contain control constructions, such as “if-then”,
“if-then-else”, and “switch”. For simplicity, we do not handle
nested loops. The DFGs were generated using a technique
based on if-conversion and using condition bit vectors.

We considered up to eight inner loops for each application (if
available). The loops/DFGs that required too many resources
were discarded, in order to guarantee that the resulting datapath
would meet area and resource constraints of the target archi-
tecture. In all experiments, the host processor was a SPARC-v8
processor.

For each application, the DFGs were merged iteratively using
our merge algorithm, starting from the larger DFG to the smaller
one (with respect to the number of vertices). We performed
some experiments with different orderings of the input DFGs.
Although the decreasing size ordering achieved better results in
many cases, no significant differences in area for the different
orderings were obtained, as also reported in [17].

A. Comparing Merging Techniques

Experiments were performed in order to evaluate our pro-
posed merging algorithm with respect to other merging tech-
niques. In the experiments described in this subsection, HLS
was performed on each DFG beforehand, using an in-house tool.
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Fig. 9. Area increase of previous methods wrt. our Compatible Clique (the missing bars correspond to area increase of 0%).

Fig. 10. Our Compatible Clique speedup wrt. previous methods (the missing bars correspond to speedup of 0.1).

Chaining was exploited during scheduling and no intra-DFG re-
source sharing was exploited. The DFGs resulting from HLS
were merged afterward. The area and delay information used
were obtained from a component library. The control units of
the input DFGs were not unified on the merged datapath, so con-
trol logic area was not measured.

We implemented three techniques based on previous ap-
proaches to DFG merge and compared their solutions to ours,
with respect to both the area of the resulting reconfigurable
datapath and the execution time of the algorithm. These
methods are the bipartite maximum weight matching approach
(in this section referred as Bipartite Matching) [17]–[19], the
iterative improvement local search algorithm (referred as Itera-
tive Improvement) [17], [20] and the ILP solution (referred as
Integer Programming) [17]. Our approach, based on computing
the solution to a compatible maximum weight clique, is referred
as Compatible Clique.

In a first experiment we compared, for each application
program, the area of the resulting datapath produced by our
approach, and by the three previous techniques. Fig. 9 shows
the percentage of area increase produced by the previous
methods when compared to our approach. We also measured

the execution time of each technique. Fig. 10 shows the speedup
achieved by our approach when compared to the other methods
(note the logarithm scale).

Notice that Bipartite Matching produces datapaths with area
up to 30% larger than our algorithm. Iterative Improvement
produces area increase from 2.5% to 14.9%, when compared
to our Compatible Clique, but it also takes much longer than
our approach. For example, for the JPEG decoder program,
Iterative Improvement produces an area increase of only 4.9%,
but it takes 75.3 times longer to execute. For the MPEG2
decoder program, its execution time is only 20% longer than
our Compatible Clique, but the area increase is 14.9%. Integer
Programming is almost equivalent to our Compatible Clique
concerning the area of the resulting datapath, but its execution
time can be up to 20 thousand times longer than the Compatible
Clique approach. For some applications, our Compatible Clique
produced datapaths with smaller area than even the Integer
Programming approach. Although this method provides the
exact solution when merging two DFGs, it does not guarantee
to find the best solution when merging several DFGs iteratively.
Moreover, this method does not exploit operation commutativity,
while our approach does.
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Fig. 11. Area increase wrt. our Compatible Clique and execution time for GSM coder (the missing bars correspond to area increase of 0%).

Fig. 12. Area increase wrt. our Compatible Clique and execution time for JPEG coder (the downward bars correspond to area increase of �0.1%).

TABLE I
COMPARISON OF OUR COMPATIBLE CLIQUE SOLUTION AND

PREVIOUS APPROACHES

Table I summarizes the results of Figs. 9 and 10 and shows
the average area increase of the previous methods with respect
to our algorithm and the average speedup obtained by our algo-
rithm over the others. The Bipartite Matching approach is very
fast (average execution time of 0.6 s, while Compatible Clique
average execution time is 4.8 s), but it produces poor results
for datapath area (average area increase of 20.4%, when com-
pared to our Compatible Clique approach), so it is not a good
choice if we have strict area constraints. Iterative Improvement
produced an average area increase of 8.4%, while taking 21.8
times longer than our Compatible Clique. Finally, the datapath
areas produced by Integer Programming technique are almost
equivalent to (but slightly worse than) our Compatible Clique,
but its exponential execution time is prohibitive.

In a second experiment, we analyzed the behavior of the
merge techniques when the number of merged DFGs grows.
We merged, for each application, the two most relevant DFGs
(which correspond to the two loops which contributed the most
to the program execution time), followed by the three most
relevant DFGs, and so on. Again, for each merge execution,
DFGs were merged iteratively from the larger to the smaller
one (with respect to the number of vertices). Figs. 11 and 12
show these results for the GSM and JPEG encoding programs,

Fig. 13. DFGs G and G .

respectively. For both applications we noticed that Integer
Programming execution time, as expected, grows exponentially
and Iterative Improvements also grows very drastically, while
our Compatible Clique execution time grows polynomially.

Hence, our algorithm produces resulting datapaths with area
costs equivalent to (and in many cases better than) the best
known solution for area (Integer Programming), which takes ex-
ponential time. At the same time, our execution time approaches
the fastest previous solution (Bipartite Matching), which pro-
duces the worst area result.

B. Comparing Datapath Merging versus Datapath Combining

A pertinent question one may pose is if we need the data-
path merging approach at all. We could simply combine all input
DFGs into a complete DFG, just multiplexing their inputs and
outputs. Then we could apply HLS to this complete DFG and
let the HLS tool exploit resource sharing. Therefore, we want
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Fig. 14. VHDL code combining G and G and combined datapath at Synopsys DC output.

Fig. 15. VHDL code merging G and G and merged datapath at Synopsys DC output.

to know if the datapath merge approach can provide some area
gain, when compared to this pure HLS approach. In order to ad-
dress this issue we performed another set of experiments, which
are described in this subsection.

In these experiments, the input DFGs were merged using our
algorithm and we generated a datapath for the merged DFG. We
also generated a datapath (referred as combined datapath) for
a complete DFG combining all input DFGs without merging.
Then these two datapaths were synthesized under the same
design constraints and optimization options, and the synthesis
results were compared.

We used the Synopsys Design Compiler (DC) synthesis
tool (version 2003.03) [24], which performs three levels
of optimization: architectural optimization, logic-level and
gate-level optimization. During architecture optimization, DC
exploits common subexpression sharing and resource sharing.
We provided design constraints so as to optimize the design
to minimize its area (setting the directives set_resource_al-
location and set_resource_implementation to area_only and
set_max_area to 0.0). We also directed the optimization process
to apply the maximum effort in the mapping and area reduction
phases (specifying both options -map_effort and -area_effort
of the compile optimization command set to high).

We illustrate this experiment with an example. Given the
DFGs and in Fig. 13, we produced a combined data-
path, as well as, a merged datapath. Figs. 14 and 15 show the
datapath and the corresponding VHDL code, for the combined
and merged datapaths, respectively. When we submit these
two datapaths to DC, the merged datapath provides an area
reduction of 27% when compared to the combined datapath.

By analyzing the resource allocation and sharing reports gen-
erated by DC during synthesis, shown in Fig. 16, one can see that
in the combined datapath, the subtractions and of and

(lines 38 and 48 in Fig. 14, respectively) were mapped onto
the same subtractor (resource r23 in Fig. 16(a)). However, the
addition and subtraction (lines 39 and 50) were mapped
onto an adder/subtractor (resource r22), as well as, the subtrac-
tion and addition (lines 40 and 49) which were mapped
onto resource r79. In the merged datapath, there is also a sub-
tractor corresponding to the mapped operation (line 38
in Fig. 15 and resource r22 in Fig. 16(b)). But differently from
the combined datapath, (lines 40 and 42) shared the same
adder (resource r70), and (line 44) shared a subtractor
(resource r73). As a result, the combined datapath uses two
adder/subtractors for operations which the merged datapath im-
plements with only one adder and one subtractor. Besides, fewer
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Fig. 16. Resource allocation and sharing reports generated by Synopsys DC synthesis tool. (a) Combined datapath. (b) Merged datapath.

TABLE II
NON-MERGING VS. MERGING APPROACH COMPARISON

MUXes are needed in the merged datapath, resulting in the area
reduction.

We observed that DC is very good in mapping mutually
exclusive operations which receive the same operands. But it
may introduce additional MUXes when these operations have
different operands. The merge algorithm, on the other hand,
maps input and output operands, as well as operations, and
permits us to map exclusive operations which may have different
operands, if it results in the final datapath area reduction.
In order to accomplish this, it analyzes hardware block and
interconnection mapping together.

Table II shows the area results achieved (measured in DC area
units), for the MediaBench applications, using DC synthesis
of the combined datapath, as defined above, and the merged
datapath produced by our merging technique. The area reduction
obtained with the merging approach is also shown. The results
strongly indicate that the datapath merging technique indeed
provides area reduction, when compared to a nonmerging
approach.

VII. CONCLUSION

This paper presented a novel graph-based technique for the
DFG merge problem. Performance speedup can be achieved
through architectures that map the most time-consuming appli-
cation kernels and inner loops to a partially reconfigurable data-
path. We represented each such fragment as a DFG and merged
them together into a single reconfigurable datapath. Our ap-
proach merges the individual DFGs into a single reconfigurable
datapath one at a time. At each step, it solves a maximum weight
clique problem that allocates and binds hardware blocks and in-
terconnections at the same time, minimizing the area cost of the
resulting reconfigurable datapath.

Experiments were performed to evaluate the efficiency of the
proposed algorithm and to compare it with previous solutions to
the DFG merge problem. Area of the resulting reconfigurable
datapath and the execution time of the algorithm were mea-
sured. Our algorithm and the previous techniques were applied
to merge the DFGs corresponding to the most relevant loops
from a set of programs in the MediaBench suite.

One of the previous approaches was very fast (average exe-
cution time of 0.6 s, while ours is 4.8 s), but it produced poor
datapath area results (average area increase of 20.4%, when
compared to our solution). Another previous method produced
an average area increase of 8.4%, while taking 21.8 times
longer than our approach. Finally, the datapath areas produced
by the last previous technique are almost equivalent to (but
slightly worse than) ours, but its exponential execution time is
prohibitive. We conclude that our interconnection mapping al-
gorithm produces resulting datapaths with area costs equivalent
to (and in many cases better than) the best known solution for
area (which takes exponential time) while at the same time, our
execution time approaches the fastest previous solution, which
produces the worst area results.
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