
UC Irvine
ICS Technical Reports

Title
Efficient decoding of prefix codes

Permalink
https://escholarship.org/uc/item/2m49z4q2

Authors
Hirschberg, Daniel S.
Lelewer, Debra A.

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2m49z4q2
https://escholarship.org
http://www.cdlib.org/

Efficient Decoding of Prefix Codes_

Daniel S. Hirschberg_~nd Debra A. Lelewer

Technical Report No. 89-09

Abstract

We discuss representations of prefix codes and the corresponding storage space and

decoding time requirements. We assume that a dictionary of words to be encoded has

been defined and that a prefix code appropriate to the dictionary has been constructed.

The encoding operation becomes simple given these assumptions and given an appropriate

parsing strategy, therefore we concentrate on decoding. The application which led us to this

work constrains the use of internal memory during the decode operation. As a result, we

seek a method of decoding which has a small memory requirement.

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

IntroduCtion

Data compression is an important and much-studied problem. Compressing data to

be stored or transmitted can result in significant improvements in the use of computing

resources. The degree of improvement that can be achieved depends not only on the selection

of a data compression method, but also on the characteristics of the particular application.

That is, no single data compression algorithm will be superior in every application. The

very meaning of "superior" is application dependent. While the goal of data compression is

to represent a message as succinctly as possible, a particular application may modify that

goal by placing additional requirements on the performance of the data compression system.

In other words, the application may define parameters which guide the selection of the data

compression method. These parameters include, for example, knowledge about the type of

data to be compressed and constraints on memory usage and execution speed.

The work we describe here is based on a specific data compression application in which: a)

textual data is to be transmitted and received over a communication line, b) decoding must be

performed on-line, and c) the amount of memory available during the decode operation is very

limited. The encoder in our data compression system is allowed substantial computational

resources. It can expend significant time and space to find a compact representation of the

source text. Once the representation is constructed, it will be transmitted to the decoder.

The decoder may be viewed as a special-purpose translator with very limited space. This

space limitation provides an interesting challenge.

We employ a dictionary compression technique; that is, an algorithm which compresses

a source text by replacing strings of characters in the source by pointers to a dictionary. The

dictionary is a collection of n strings of varying lengths. Long dictionary entries have higher

potential for compression than short ones in that we replace a large number of characters

with a single codeword. However, we must also take into account the frequency with which a

dictionary entry occurs in the source text. We want to assign short codewords to frequently

occuring strings; if a string occurs only rarely its codeword may be too long to provide

good compression even though the string being replaced is itself quite long. The degree of

compression to be achieved by a dictionary compression system is largely dependent on the

1

choice of the dictionary; however, it is also necessary to represent the pointers efficiently.

We choose to represent pointers by prefix codes based upon the relative frequencies of the

dictionary entries they represent. The Huffman code is the most widely known prefix code

and is minimal in that it provides the best compression of any prefix code applied to a fixed

dictionary [Huffman 1952]. Arithmetic codes, which are not prefix codes, can provide better

compression than the Huffman code when applied to the same dictionary [Witten, Neal

and Cleary 1987]. This improved compression is due to the fact that arithmetic codes are

not constrained to map an integer number of bits to each dictionary entry. The additional

compression they provide is generally a few percent. An offsetting advantage of Huffman

codes is that they are more robust. While an error in a single bit will prevent the bits

which follow from being correctly decoded by an arithmetic decoder, Huffman codes tend

to resynchronize quickly thus localizing damage [Lelewer and Hirschberg 1987]. A more

important consideration in terms of the present application is the fact that arithmetic coding

uses the frequencies of the dictiof!.ary entries during decoding. Our methods do not require

the table of frequencies and as a result we are able to decode with a much smaller space

requirement. For these reasons we elect to use Huffman coding for our application.

The compressed version of the source text consists of a representation of 1) the encoding

dictionary, 2) its prefix code and 3) the sequence of codes that can be expanded to recover

the original text. Most of the compression is achieved by choosing an appropriate dictionary.

The computation of the corresponding prefix code is straightforward. However, the method

of representing the dictionary and the prefix code also affects the resulting compression

ratio (for moderate-sized files, the representation choice can have a significant impact on the

compression ratio). The encoder in our application must construct a representation which is

compact and which our space-limited decoder can translate efficiently. The way in which the

encoder represents the dictionary and the prefix code is the focus of our work. We partition

the encoding dictionary into two parts: la) a stream of characters, and lb) information

which permits parsing this stream into individual dictionary entries (e.g., the lengths of the

entries or their starting positions). All of our methods prep end the stream of characters to

the encoded text. It is in the way that lb) and 2) are represented that the methods differ.

To facilitate comparison of our methods, we define representation overhead to be the number

of bytes in the compressed text which are used to represent items 1 b) and 2). We allow the

decoder some limited set-up time to receive the code representation (items 1 and 2) and store

the information needed for performing translation. Except for the "lag" due to set-up, the

decoder must operate on-line. That is, the time required for decoding must be proportional

to the size of the expanded source.

2

A number of papers have appeared on the subject of implementations of Huffman en

coding and decoding. These implementations apply to any prefix code. The more recent

of these papers [Sieminski 1988; Choueka et al. 1986] concentrate on fast implementations

and reduce processing time by avoiding manipulation of individual bits. However, a price

is paid for the reduced time requirements in the form of increased memory requirements.

Sieminski's method requires 64 K bytes to store the decode tables for a simple situation in

which the dictionary contains only 127 individual characters. The size of the decode tables

grows exponentially if dictionary entries longer than one character are used [Sieminski 1988].

The method of [Choueka et al. 1986] requires O(n2
) extra space where n is the number of

dictionary entries. While processing time is of concern, our primary criterion is the efficient

use of internal memory during decoding. Thus these methods are inappropriate for our

purposes.

Hankamer [1979] describes a modified Huffman procedure with reduced memory require

ments. The reduced memory requirements are attained by reducing the size of the dictionary

and computing a suboptimal Huffman code. Hankamer's method is defined for fixed length

dictionary entries; it is unclear whether it can be extended to variable-length entries. It

is clear that Hankamer's strategy does not meet our needs. Tanaka [1987] gives a finite

automaton-based Huffman decoding algorithm. His method assumes single character dictio

nary entries. A straightforward modification to allow for variable-length entries is similar to

our Method Al in terms of execution speed but requires approximately 67% more memory.

In order that our methods may be presented in the most general form, we define the

variables listed in Figure 1. It should be noted that N ~ lg n t bits, that M ~ V, that

B ~ V, and that A~ C since we must be able to access any dictionary entry with an address.

Figure 2 presents a small example dictionary which we use to illustrate our methods.

Method A

Our first solution to the problem of decoding in restricted memory uses the Huffman

code tree to represent the dictionary. However, we do not use the obvious linked imple

mentation in which each internal node contains pointers to its left and right subtrees; the

space requirements of this implementation are prohibitive. Instead, Method Al employs an

implicit representation of the tree structure. Method A2 is a variation of Method Al which

provides improved storage utilization under fairly general conditions.

t lg denotes the base 2 logarithm

3

J

symbol storage requirement for typical value

A an address 2 bytes

c number of characters in a dictionary entry 1 byte

N an integer between 1 and n + 1 2 bytes

]VJ number of codewords of a given length 1 byte

B length of a codeword (in bi ts) 1 byte

v value of a codeword 2 bytes

meaning

L max - min+ 1 13

max length of longest codeword (in bi ts) 12-16

min length of shortest codeword (in bits) 1-3

Figure 1 Variables used to define storage requirements.

string frequency

abed 10

rst 9

wxyz 15

qu 7

lm 2

ps 2

the 22

Figure 2 An example dictionary.

Method Al

Method Al uses a total of nC + (n - 1)A space in addition to the space required for

the n dictionary entries (the space for a dictionary entry is the space required to store the

characters which make up the entry). The code representation and the dictionary are stored

as a single structure. The prefix code is represented by the corresponding binary tree stored

in preorder form. Preorder storage is defined recursively: the root node is stored first,

4

followed by its left subtree stored in preorder form and then its right subtree in preorder

form. In our storage scheme a leaf node contains a flag bit (set to one, distinguishing between

internal nodes and leaves) , the length of the corresponding dictionary entry, and the entry

itself. For each internal node we store two items , a flag bit (set to zero) and an address . The

address component of an internal node is the address of its right subtree. The left subtree

for an internal node is stored imme.diately following the node itself. A tree with n leaves

contains n - 1 internal nodes. Thus the total storage in addition to the dictionary entries

is nC for the leaf nodes and (n - 1)A for the internal nodes, assuming that there is a spare

bit in the address and length fields. In our application, for which the typical values given in

Figure 1 apply, the storage requirement is 3n - 2 bytes. Figure 3 shows a Huffman tree for

the example dictionary. The codeword for each dictionary entry appears under the entry.

We use the convention that left branches are labeled 'O ' and right branches ' 1 ' . Figure 4

gives the corresponding decode data structure. We represent tree nodes as tuples of the

form (O,address) or (1,length,entry). The address values are based on allowing 2 bytes for an

address (A = 2) and 1 byte for each character and each string length (C = 1). We assume

that the first bit of an address or length field stores the flag bit.

Figure 3 A Huffman tree for the example dictionary.

The storage scheme described above allows for simple decoding. For each codeword we

begin at the first position of the decode table and we decode one bit at a time. On a 0 bit

5

we move from an internal node to its left child by advancing over the address field. On a 1

bit we use the address field to move to the right subtree of the current internal node. We

continue to decode bits until a flag value of 1 is encountered, indicating a leaf node. At

this point we have detected the end of a codeword and located the corresponding dictionary

entry. The dictionary entry is appended. to the decoded output and we return to the first

position of the decode table ready to decode the next codeword. The following operations

are performed for each codeword in the encoded source. We use address(n) to represent the

address component of an internal node n, flag(n) to represent the flag component of any

node n, and length(n) to represent the length component of a leaf node n.

n +-- 1

repeat

receive bit

if bit= 0

then n +-- n +A

else n +-- address(n)

flag+-- flag(n)

until flag = 1

append contents of memory locations n .. . n + length(n) - 1 to the decoded output

The encoder transmits the tree to the decoder in the form we have described. Thus the

representation overhead associated with Method Al is nC + (n - 1)A and the "lag" time

consists of the time necessary to receive and store the tree.

address 1 3 5 7 12 16 20

contents (0,20) (0,16) (0, 12) (1, 4, abed) (1,3,rst) (1,3,the) (0,35)

address 22 24 27 29 32 35

contents (0, 27) (1,2,qu) (0,32) (1,2,lm) (1,2,ps) (1, 4, wxyz)

Figure 4 Method Al storage of example dictionary.

Method A2

The storage requirement of Method Al can be improved in some cases by exploiting

the fact that the length values need not be stored in the decode data structure. The key

observation which allows us to eliminate the string lengths is that we can find the length of an

6

entry by subtracting its starting address from the starting address of its preorder successor.

The starting address of any leaf node's preorder successor can be found easily; trivially, in

fact, if the leaf, x, is a left child of its parent. In this case, the preorder successor of x is

its sibling, and the address of the sibling is stored in x's parent node. In the other case,

when x is a right child, we can walk from x to its preorder successor as follows: we walk up

'1' branches until we reach a node which is not a right child; at this point, we walk up a

single 'O' branch and then down a '1' (right) branch. In other words, the preorder successor

of x is the right child of the lowest internal node from which we follow a 'O' (left) branch

to x. This characterization is also valid when x is a left child, since x 's parent is the lowest

internal node from which we follow a left branch to x and x's preorder successor is the right

child of this (parent) node. The only node for which the above characterization is not valid

is the final node in the preorder listing. This node lies on a path from the root consisting

of only right branches and it has no preorder successor. So that we can decode this final

node, we store the address of its (nonexistent) preorder successor in address 0 of the decode

data structure, ahead of the preorder representation of the decode tree. Thus we store n

addresses in Method A2 instead of the n - 1 addresses used in Method Al.

In the Method Al decode data structure, address values are coupled with flag bits to

represent internal nodes, and length values are coupled with flag bits and combined with

character strings to represent leaf nodes. The coupling is accomplished by using the leading

bit of the address or length value for storing the flag. In eliminating the length value from a

leaf node, we are presented with the problem of how to store the flag bit. The best solution

to this problem is to couple the flag bit with the leading character of the dictionary entry. In

order for this to be possible, we must be able to store characters in b- 1 bits (where bis the

number of bits per byte). This assumption may be reasonable on machines with 8-bit bytes

where the application involves storing or transmitting text. The printable characters typical

of many text files can be represented in seven bits. Under this assumption, the storage

requirement of Method A2 becomes nA, as compared with (n - 1)A + nC for Method Al.

Using the typical values given in Figure 1, we have 2n bytes for Method A2 as compared

with 3n - 2 bytes for Method Al.

If the assumption of a spare bit in character storage is not valid, eliminating the lengths

may not provide an improvement in storage utilization. Since high-level languages have the

byte as the atomic unit of addressable memory, we are forced to store the flag in a byte

when neither the length field nor the character field can accomodate it. If string lengths can

be stored in a single byte (C = 1) with a spare bit, we gain nothing by storing a one-byte

flag instead of a one-byte (flag,length) pair. In fact, the storage requirement for Method A2

7

would be nA + n bytes as compared with (n - 1)A+ n bytes for Method Al. However, in a

case where lengths require more than one byte of storage (C 2::: 2), the one-byte flag would

be an improvement over J;he C-byte (flag,length) pair. In this case, Method Al requires

(n - 1)A + nC bytes of storage and Method A2 requires only nA + n. In addition, the

use of the (flag,length) coupling depends on the assumption that lengths can be stored in

such a way as to provide a spare bit for the flag . If this assumption is not valid, storing

the flag alone will provide a space improvement over storing the (flag,length) pair in C + 1

bytes. In summary, the elimination of the length values from the Method Al data structure

is not guaranteed to provide improved storage utilization, but does so under fairly general

conditions. In fact, Method A2 will be superior to Method Al unless characters require all

b bits in a byte and string lengths require exactly b bits.

In Figure 5 we give the Method A2 data structure for the example dictionary of Figure 2

under the assumption that each character contains a spare bit which can be used for the

flag value. We assume that address fields also contain the spare bit, and that A = 2. We

represent internal nodes as (flag,address) pairs and leaf nodes as (flag,entry) pairs.

address 0 1 3 5 7 11 14 17

contents 33 (0, 17) (0,14) (0, 11) (1, abed) (1, rst) (1,the) (0,29)

address 19 21 23 25 27 29

contents (0,23) (1,qu) (0, 27) (1, lm) (1, ps) (1,wxyz)

Figure 5 Method A2 storage of example dictionary of Figure 2.

Using the Method A2 data structure to decode is very similar to using the Method Al

structure. The only difference is that, in addition to the address of the dictionary entry

being decoded, we are also looking for the address of its preorder successor. The follow

ing instructions are performed for each codeword. We use address(n) and flag(n) as in

Method Al; p represents the current candidate for the address of the preorder successor and

succ the actual successor. We use the notation contents(O) to retrieve the successor of the

last node in the preorder listing from memory location 0. Decode speed is very similar to

that of Method Al; the only extra time is due to storing an address in p for each 0 bit.

pf- 0

n f- 1

8

repeat

receive bit

if bit= 0
/

then p ~ address(n)

n ~n+A

else n ~ address(n)

.flag~ flag(n)

until! lag = 1

i.fp=O

then succ ~ contents(O)

else succ ~ p

append contents of memory locations n ... succ - 1 to the decoded output

The encoder transmits the tree to the decoder in the form we have described. Thus, as

suming a spare bit in character bytes, the representation overhead for Method A2 is nA and

the set-up time consists of the ti~e necessary to receive and store the tree. Both represen

tation overhead and set-up time are smaller for Method A2 than for Method Al. Figures 10

and 11 present space and time comparisons of our methods. The data for Method Al pre

sumes the spare bit in the address and length bytes and for Method A2 the spare bit in

character bytes is assumed.

Method B

The second method we discuss is based on the concept of a canonical Huffman code

defined by Schwartz and Kallick (1964] and by Connell [1973]. We describe this concept

first and then our implementation of it. The essence of the canonical code concept is that

Huffman's algorithm is needed only to compute the lengths of the codewords to be mapped

to the dictionary entries. Once lengths are determined, actual codewords may be specified in

many ways; the only necessary condition is that they satisfy the prefix property. This is true

for prefix codes in general. Intuitively, the canonical code may be viewed as one which builds

the prefix code tree from left to right in increasing order of depth (i.e., codeword length) with

the convention that each leaf is placed at the "first" position (from left to right) available

to it. The example dictionary has codeword length sequence [2,2,3,3,3,4,4]. In constructing

the canonical code the first codeword of length two is placed at the left edge of level two of

the tree. Using the convention that left branches are labeled with 0 and right branches with

1, the first codeword is 00. The second codeword of length two is the sibling of the first,

01. The first codeword of length three is placed at the first available position on level three

of the tree. Level three is filled from left to right by placing codewords 100, 101, and 110.

9

The length-four codewords , 1110 and 1111 , complete the tree . The canonical code tree for

the example dictionary is given in Figure 6. The codeword for each dictionary entry appears

under the entry.

Figure 6 The canonical Huffman code tree for the example dictionary of Figure 2.

The canonical code possesses some nice mathematical properties. The codewords of a

given length are consecutive binary numbers. The first codeword of length l~ cz, is related

to the last codeword of length l - 1, d1-1, by the equation CJ= 2(dz_1 +1). In other words ,

the first codeword of length l is obtained from the last codeword of length l - 1 by adding

1 to the binary number represented by d1-1 and shifting that binary number left once. In

the case where some lengths are unused, as in [1,3,3,3,4,4], the codewords of length 3 are

consecutive binary numbers as are the codewords of length 4. The function which computes

the first length 3 codeword from the length 1 codeword is 2(2(d1+1)); that is, to move down

two levels in the tree from level 1 to level 3, two shifts are required. For the length sequence

[1,3,3,3,4,4], the canonical code is {O, 100, 101, 110, 1110, 1111}. Every canonical code has

a string of zeros as its first (shortest) codeword and a string of ones as its last (longest)

codeword. We say that a canonical code has the numerical sequence property.

We now discuss the way in which the numerical sequence property contributes to reducing

memory requirements. First, the canonical code eliminates the need for the encoder to

transmit to the decoder an explicit representation of the tree; the length sequence is sufficient

10

to define the tree. We represent the length sequence as a list consisting of 1) min, the length

of the shortest codeword, 2) max, the length of the longest codeword, and 3) the number of

codewords of each length ., The first example above is thus represented by 2,4,2,3,2 and the

second by 1,4,1,0,3,2. In most cases this representation is more compact than a list of the

lengths of all of the codewords. If the encoder uses the length list to define the code, the

size of the representation is 2B + LM where L = max - min+ 1, M represents the number

of bytes required to store the maximum number of codewords of any given length, and B

the number of bytes required to store the length of a codeword. We will show that the data

structure needed by the decoder can be constructed efficiently given the length list.

In addition to providing a compact representation of the code, the numerical sequence

property may be used to index into the data dictionary. This is done through the use of

two small tables, limit and base. Each of these tables is indexed from min to max. The

limit table is used in decoding to detect the end of a codeword. The entry limit[i] contains

the value of the largest codeword of length at most i. The numerical sequence property

guarantees that the numerical value of a codeword of length i is greater than the value of

any shorter codeword. Thus if the binary value of a string of i bits is greater than limit[i]

the string is not a codeword but a prefix of a codeword. The decoder reads min bits from

the coded text. If the binary value of this bit string is less than or equal to limit[min] the

bit string represents a codeword. If the value of the first min bits is greater than limit[min]

the decoder reads another bit, updates the value of the bit string, and compares that value

to limit[min+ l]. This process continues until the value of the bit string of length i is less

than or equal to limit[i] for some i. At this point we have recognized a codeword. Once

the end of a codeword is detected the base table may be used to locate the corresponding

dictionary entry. The base table as defined in [Connell 1973] maps a codeword value onto

the relative position of the corresponding dictionary entry in a list of dictionary entries.

The information provided by the limit and base tables is sufficient to allow decoding

if the entries of the data dictionary are all of the same length; however for variable-length

entries we need the address of the appropriate entry, not an index. We present two solutions

to this problem. We comment that tables limit and base as defined by Connell [1973] are

redundant with respect to one another. That is, the information contained in the base table

can be extracted from the limit table entries. However, the base table can be represented in

very little space, and contributes substantially to the clarity of exposition of our methods.

Eliminating the base table also results in slower decoding; therefore we maintain the base

table.

11

Method Bl

Method Bl adapts Connell's base table method to allow for variable-length dictionary

entries by introducing ar{ address table indexed from 1 to n + 1. The value of address[k]

is the address of the first character of the kth dictionary entry. The entries are stored in

a string table which is organized in the following way: entries are stored in nondecreasing

order by codeword length and the block of entries with codeword length i is stored in order

of decreasing codeword value. In terms of the prefix tree we store the dictionary in modified

level order; that is, in increasing order by level and in order from right to left on each level

(of course we are storing only the leaves of the prefix tree). The base table provides pointers

into the address table; that is, base[i] contains x such that address[x] is the starting address

of the block of dictionary entries with codeword length i. When a codeword c of length

i is recognized , limit[i] - value(c)t provides an offset in the list of codewords of length i.

Thus p = base[i] + limit[i] - value(c) is the subscript in the address table at which the

beginning of the corresponding dictionary entry is stored. The length of the entry is given

by address[p + l] - address[p]. The address and length of the entry are all we need to

append the entry to the output of the decoder. The storage requirement at decode time

consists of L V for the limit table (limit contains codeword values), LN for the base table

(base contains subscripts from 1 to n + 1), and (n + 1)A for the address table. In most cases

we expect LV + LN + (n + l)A to be an improvement over the nC + (n - l)A requirement of

Method Al. In practice L is generally O(lg n) while a "typical" value of L is 13. Therefore

Method Al requires 3n-2 bytes and Method Bl 2n+54 in a typical application. The storage

requirement of Method Bl will always be greater than the 2n requirement of Method A2;

thus, Method Bl provides no improvement in an application in which character bytes contain

an unused bit. In terms of translation time, Method Bl is expected to be a little bit slower

than the A Methods, but not significantly slower.

The encoder transmits the length list, the strings, and their lengths as a preface to the

encoded text. Thus, the representation overhead is 2B + LM + nC. The representation

is transmitted in the following form: first, min and max; then for each codeword length i

(from min to max), ni followed by ni (length, str) pairs. Each ni represents the number

of dictionary entries with codeword length i and each (length, sir) pair gives the number

of characters in a dictionary entry followed by the character string itself. The entries with

codeword length i are listed in order of decreasing codeword value. The decoder performs the

following calculations to set up the decode data structure. In addition to the time required

+ value(c) is the binary value of codeword c

12

to receive the data, the decoder performs B(n) operations in setting up the address table and

B(L) operations in constructing tables limit and base.

sf- 1

a +- 1

receive min, max

for i f- min to max do

receive ni

if i =min

then base[min] +- 1

limit[min] +- nmin - 1

else base[i] +- base[i - l] + ni-1

limit[i] +- 2(limit[i - l] + 1) + ni - 1

for j +- 1 to ni do

endfor

receive length, sir

store sir in siring[s · · · s +length - l]

address[a] +- s

a+-a+l

s +- s +length

endfor

address[a] +- s

Figure 7 gives the Method B 1 data structure for the example dictionary. The addresses

represent byte addresses of dictionary entries; we assume a starting address of 1, and that

each character of an entry occupies 1 byte. Figures 10 and 11 provide space and time

comparisons of Method Al, Method A2, and Method Bl.

Method B2

We now present a modification of Method Bl which can provide space utilization supe

rior to that of Method A2. Method B2 is actually a collection of methods, parameterized

by a variable k. The time-space compromise which best fits the requirements of a partic

ular application can be selected by fixing an appropriate value of k. The improvement in

Method B2 over Method Bl is achieved by storing fewer than n address values; the value

of the parameter k determines what fraction of the n address values are stored. Method B2

uses the limit and base tables exactly as in Method Bl. The dictionary is represented by

three tables. The first table, string, contains the dictionary entries stored as in Method Bl

(i.e., in modified level order). The second table, address, is indexed from 1 to l I J and stores

the. address of every kth dictionary entry, with address[j] containing the address of entry

13

codeword lengths limit base

min= 2 1 (01)

3 6 (110)

max= 4 15 (1111)

Figure 7 Method Bl data structure for the example of Figure 2.

jk. The third table, Zen, is indexed from 1 ton - L-fJ and contains string lengths. Thus the

space requirements of Method B2 are: L V + LN for the limit and base tables, L -f J A for the

address table, and (n - LI J) C for the Zen table.

The limit table is used to recognize codewords as in Method B 1. The base table yields

an index into the list of dictionary entries as in Method Bl; if base[i] = x then the xth

dictionary entry is the first entry (in modified level order) with codeword of length i. When

a codeword c of length i has been decoded, we use p = base[i] + limit[i] - value(c) - 1 to

find the corresponding dictionary entry. If p mod k = 0, the address of the first character

of the entry is stored in address [r]. If p mod k # (k - 1)' the length of entry p is stored

in len[p - LfJ + l]. Thus, when p mod k = 0, both the address and the length of the

corresponding dictionary entry are stored in the decode data structure. When p mod k # 0,

address[LfJ] is a pointer to the block of k entries which includes the one we seek. We "walk"

along this block until we find the entry corresponding to c. This walk can be viewed as a

sequence of "jumps" which use the Zen values to jump over entries. The number of jumps is

given by p mod k; the maximum number of jumps is k - 1. If p mod k # (k - 1), the length

of the entry is stored in the Zen table; otherwise, the length of the entry is computed from

14

the starting address of its successor in the modified level order listing (i.e., address[lfJ + 1)).

The following calculations provide the starting address start and the length corresponding

to any index p.

p +- base[i] + limit[i] - value(c) - 1

q +- lf J
if q = 0
then start +- 1

else start +- address[q]

r +- p mod k

t+-p-q

for i +- 1 to r do

start +- start+ len[t - i + l]
endfor

ifrtfk-1
then length+- len[t + 1)

else length +- address[q + 1) - start

As in Method Bl, the encoder transmits the length list, the strings, and their lengths.

Thus the representation overhead is 2B + LM + nC. Tables limit and base are built exactly

as in Method Bl. The following code includes the computations for tables Zen and address.

The set-up time is again B(n) + B(L).

s +- 1

a +- 1

l +- 1

count+- 0

receive min, max

for i +-min to max do

receive ni

if i =min

then base[min] +- 1

limit[min] +- nmin - 1

else base[i] +- base[i - 1) + ni-1

limit[i] +- 2(limit[i - l] + 1) + ni - 1

for j +- 1 to ni do

receive length, str

store sir in string[s · · · s +length - 1]

if count mod k # k - 1

then len[l] +- length

l+-l+l

if count# 0 and count mod k = 0

15

then address[a] +-- s

a+-a+l

count +-- count+ 1

s +-- s +length

endfor

endfor

if count mod k = 0

then address[a] +-- s

Figure 8 gives the Method B2 data structure for the example of Figure 2 with k = 2. A

comparison with the other methods is provided in Figures 10 and 11. We note that if k = 1

the storage requirement for Method B2 reduces to the requirement for Method Bl.

codeword lengths limit base len

min= 2 1 (01) 1 4 (wxyz)

3 6 (110) 3 2 (qu)

max= 4 15 (1111) 6 4 (abed)

2 (lm)

Figure 8 Method B2 data structure for the example dictionary of Figure 2 (k = 2).

We provide a second example for Method B2 in Figure 9. The data structure for an

example with a larger dictionary and k = 3 is given. The reader can use the limit table

values to verify that the codewords for {wxyz, the, qu, rst, abed, ps, lm, out, rt} are {O,

110, 101, 100, 11110, 11101, 11100, 111111, 111110}.

The parameter k determines the decode speed of Method B2 as well as its storage

16

codeword lengths limit base len

min= 1 0 (0) 1 4 (wxyz)

2 1 3 (the)

3 6 (llO) 2 3 (rst)

4 13 4 (abed)

5 30 (llllO) 5 2 (lm)

max= 6 63 (llllll) 8 3 (out)

string w x y z t h e q u r s t a b c d p s l m o u t r t

Figure 9 Method B2 data structure for an example with k = 3.

requirement. The maximum number of jumps determines the worst case time for appending

one dictionary entry to the output. The maximum number of jumps is k - 1. It is important

to recognize that the time-space tradeoff provided by Method B2 is nonlinear. When k = 1,

Method B2 stores n addresses; when k = n, Method B2 stores 1 address and n - 1 lengths.

Assuming A = 2 and C = 1, the choice k = 1 requires 2n bytes of storage and the choice

k = n requires n + 1 bytes. When k = 2, the storage requirement is l.5n bytes; essentially

midway between the requirement for k = 1 and that for k = n. However, the choice of

k = 2 may result in decode speed much closer to that provided by k = 1 than that provided

by k = n. The extra decode time required by Method B2 (as compared to Method Bl) is

proportional to the number of jumps. When k = n, only one address is stored. Thus, the

first codeword (in modified level order) can be decoded with no jumps, the second requires 1

jump, and in general the jth requires j -1 jumps; the maximum number of jumps required to

decode a single codeword is n - 1. Employing Method B2 with k = 2 reduces the maximum

number of jumps to just one. If we compare the use of k = n with the use of k = 1, we see

17

that by doubling the space requirement we eliminate the need to jump since every address

is stored; however, we can reduce the maximum number of jumps to one at a cost of only

50% extra space. In general, a space increase of t of the k = n requirement (which stores

only a single address and all n string lengths) imposes a ceiling of k - 1 on the number of

jumps. In practice a k value of about 4 or 5 is reasonable.

Method

Al

A2

Bl

B2

Method

Al

A2

Bl

B2

Representation Decode Space Decode Space in

Overhead Requirements "Typical" Application

(n - l)A + nC (n - l)A + nC 3n - 2

nA nA 2n

2B+LM +nC (n+l)A+LV+LN 2n + 54

2B+LM +nC lIJA + (n - lIJ)C + LV + LN l.2n + 52

Figure 10 Space comparison of methods.

Receiving Time for Additional Relative Decode

Code Description Set-up Time Time

(n - l)A + nC none very fast

nA none very fast

2B+LM +nC c1L + c2n very fast

2B+LM +nC c1L + c2n fast

Figure 11 Time comparison of methods.

We present a summary of the performance of our methods in Figures 10 and 11. The

"typical" values are those given in Figure 1 with the addition of k = 5. In the second

column of Figure 11, labeled "Receiving Time for Code Description", we give the number of

bytes transmitted for the code description; clearly the time required to receive the data is

proportional to its size. In column three of Figure 11, ci and c2 represent small constants.

We note that while the A Methods require no additional set-up time, their code descriptions

are almost guaranteed to be longer than those of the B Methods, so that the larger receiving

time requirement offsets the savings in set-up time.

18

Additional Implementation Considerations

Reducing transmission time

We consider several issues associated with the representation of: la) the stream of char

acters; 1 b) information needed to reconstruct the dictionary from the character stream; and

2) the prefix code. Our discussions have focused on the way in which the representation is

stored in the decoder and the way in which it is used to decode the message. We now make

some observations on the way in which it is transmitted.

We have assumed that the characters of the dictionary are stored one character per byte

in our decode data structures. It is not necessary to respect byte boundaries in transmitting

the stream of characters. The stream of characters may be represented in 7- or 8-bit ASCII;

however, if the dictionary is very large, it may be significantly more efficient to employ

a variable-length coding technique. The canonical Huffman code can be used at very low

cost for encoding single characters; only tables limit and base and an array of characters in

modified level order are required for decoding.

In Figures 10 and 11 we include nC bytes in the representation overhead for the lengths

of the dictionary entries. We observe, first, that it is not necessary that an integer number of

bytes be used to transmit a string length. In addition, if the lengths of the entries vary across

a wide range, we can do much better than nC bytes by using a variable-length representation

of the integers such as the Fibonacci codes described by Apostolico and Fraenkel [1987]. If

dictionary-entry lengths vary from li to 12, a fixed length representation requires lg 12 bits

for each length. The variable-length codes represent small lengths in fewer than lg 12 bits,

but large length values require more bits. The variable-length code is justified, then, if

dictionary entries are short on average. For Methods Bl and B2, in which the prefix code

is represented by a length list, the same variable-length coding can be applied to codeword

lengths. Codeword lengths are expected to be short; it is likely that most of them can be

represented in less than one byte. The Fibonacci codes are simple to encode and decode

in-place, and are well-suited for representing integers.

Reducing decode time

Another implementation detail worthy of mention is one which can reduce decode time

for Method B2. Just as the canonical Huffman code can be viewed as a refinement of standard

Huffman coding (in that it selects a particular code tree among multiple optimal trees), we

present a further refinement of the canonical code which we call the B2-optimal canonical

19

code. We note, first, that while the canonical code specifies a code tree, it leaves open the

question of how to assign the ni codewords of length i to the ni dictionary entries. We

specify this assignment so as to minimize the average number of jumps (thus a B2-optimal

canonical code is one which minimizes decode time).

The B2-optimal code depends on the parameter k and on the interplay between k and

the number of codewords of each length. Figure 8 shows that decoding any of wxyz, qu,

abed, or Im requires no jumps and that decoding either the, rst, or ps requires one jump.

The B2-optimal code reverses the positions of wxyz and the so that the entry with higher

frequency can be decoded without jumps. Two of the level-three entries can be decoded

without jumps; these should be the two with highest frequencies. Therefore, qu is placed

at the middle position of level three and the positions of abed and rst are arbitrary. Since

ps and Im have equal frequency their relative positions on level four are arbitrary. The

B2-optimal tree typically reduces the average number of jumps in decoding a source text by

25-30%. There are no disadvantages to the use of the B2-optimal tree for decoding; the only

cost is the time it takes the encoder to construct the optimal tree rather than an arbitrary

canonical tree and this cost is small.

Summary

Four methods of decoding prefix codes in limited space have been presented. The meth

ods are partitioned into two categories based on the data structuring strategy employed.

Method A2 is almost always superior to Method Al; however, the choice among Meth

ods A2, Bl, and B2 is less obvious. Parameters of a particular application :will influence

this decision. Tables comparing time and space requirements of the four methods expose the

relevant parameters. The methods are described in sufficient detail to allow practitioners to

implement them easily.

20

REFERENCES

Apostolico, A. and Fraenkel, A. S. Robust transmission of unbounded strings

using Fibonacci representations. IEEE Trans. Inf. Theory 33, 2 (Mar. 1987),

238-245.

Choueka, Y., Fraenkel, A. S., Klein, S. T., and Perl, Y. Huffman coding with

out bit-manipulation. Tech. Rep. CS86-05, Weizmann Institute of Science,

Dept. of Applied Mathematics, Rehovot, Israel, 1986.

Connell, J.B. A Huffman-Shannon-Fano code. Proc. IEEE 61, 7 (Jul. 1973),

1046-1047.

Hankamer, M. A modified Huffman procedure with reduced memory require

ments. IEEE Trans. Comm. 27, 6 (Jun. 1979), 930-932.

Huffman, D. A. A method for the construction of minimum-redundancy

codes. Proc. IRE 40,9 (Sept. 1952), 1098-1101.

Lelewer, D. A. and Hirschberg, D.S. Data compression. ACM Comput. Surv.)

19, 3 (Sept. 1987), 261-296.

Schwartz, E. S., and Kallick, B. Generating a canonical prefix encoding.

Commun. ACM 7, 3 (Mar. 1964), 166-169.

Sieminski, A. Fast decoding of the Huffman codes. Inf. Process. Lett. 26, 5

(May 1988), 237-241.

Storer, J. A. Data Compression Methods and Theory, Computer Science

Press, Rockville, Md., 1988.

Tanaka, H. Data structure of Huffman codes and its application to efficient

encoding and decoding. IEEE Trans. Inf. Theory 33, 1(Jan.1987), 154-156.

Witten, I. H., Neal, R. M., and Cleary, J. G. Arithmetic coding for data

compression. Commun. A CM 30, 6 (June 1987), 520-540.

